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Abstract. We consider orthogonally invariant probability measures on GLn(R)
and compare the mean of the logs of the moduli of eigenvalues of the matrices
to the Lyapunov exponents of random matrix products independently drawn

with respect to the measure. We give a lower bound for the former in terms of

the latter. The results are motivated by Dedieu-Shub[DS03]. A novel feature
of our treatment is the use of the theory of spherical polynomials in the proof

of our main result.

1. Introduction and main result

In this paper we investigate bounds for the mean Lyapunov exponents for a
measure on GLn(R) in terms of random Lyapunov exponents. To explain this
further, fix a probability measure µ on G = GLn(R) or GLn(C). If µ satisfies a
mild integrability condition, Oseledets theorem guarantees the existence of n real
numbers

r1 ≥ r2 ≥ · · · ≥ rn

such that for almost every sequence A1, A2, . . . of i.i.d. matrices drawn from the
measure µ, the limit

(1.1) lim
m

1

m
log ∥Am · · ·A1v∥

exists for every nonzero vector v and is equal to one of the ri. We call these ri
the random Lyapunov exponents associated to the measure µ. If the measure µ is
concentrated on a single matrix A ∈ G the ri are simply

log |λ1(A)| ≥ log |λ2(A)| ≥ · · · ≥ log |λn(A)|
for λi(A) the eigenvalues of A written according to their algebraic multiplicity.

For a measure µ on GLn(R) (or GLn(C)) we say that µ is orthogonally (or uni-
tarily) invariant if for any measurable set V in GLn(R) (or GLn(C)) and orthogonal
(or unitary) linear map U we have µ(U(V )) = µ(V ), where U(V ) = {Uv : v ∈ V }.

In the complex case the main Theorem of Dedieu and Shub [DS03] is:

Theorem (Theorem 1, [DS03]). If µ is a unitarily invariant measure on GLn(C),
satisfying the integrability condition

A ∈ GLn(C) 7→ log+(∥A∥) and log+(∥A−1∥) are µ-integrable,

then ∫
A∈GLn(C)

k∑
i=1

log |λi(A)| dµ(A) ≥
k∑
i=1

ri.
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We note that we use the same symbol ∥ · ∥ for both the operator norm ∥A∥
of a matrix and for the euclidean norm of a vector, as in (1.1). We hope no
confusion will arise. In the Theorem above we have also introduced the notation
f+(x) = max{f(x), 0} for a real-valued function f .

In [DS03] and [BPSW01] it is asked if a similar theorem holds for GLn(R) and
On(R) perhaps with a constant cn depending on n. Here we prove that it does.
Our main theorem is the following.

Theorem 1. For any n ≥ 0, if µ is an orthogonally invariant measure on GLn(R)
satisfying the integrability condition A ∈ GLn(R) 7→ log+(∥A∥) and log+(∥A−1∥) ∈
L1(GLn(R), µ), then∫

A∈GLn(R)

(
k∑
i=1

log |λi(A)|

)+

dµ(A) ≥ 1(
n
k

) ( k∑
i=1

ri

)+

,

for any k, 1 ≤ k ≤ n.

Let SLn(R) be the special linear group of n × n matrices with determinant 1.
Then we have the following result.

Corollary 1. For any n ≥ 0, and 1 ≤ k ≤ n, there exists a universal constant
c′n,k > 0 such that, if µ is an orthogonally invariant probability measure on SLn(R),
then, ∫

A∈SLn(R)

k∑
i=1

log |λi(A)| dµ(A) ≥ c′n,k

(
k∑
i=1

ri

)+

.

□

The proof of the corollary follows immediately since, for all A ∈ SL(n,R),∏k
j=1 |λj(A)| ≥ 1, (k = 1, . . . , n).
Some special cases of our main result Theorem 1 have been previously estab-

lished. For n = 2 the result is proved in [DS03] and Avila-Bochi [AB02]. Rivin
[Riv05] proves the case n > 2, k = 1. (Both [AB02] and [Riv05] prove more general
results in these restricted settings, from which the stated results can be derived.)

1.1. Motivation. We place our results in a more general setting in order to provide
motivation, which originates with the study of the entropy of diffeomorphisms of
closed manifolds. Let π : V → X be a finite-dimensional vector bundle. The basic
object of interest is the iteration of fiberwise linear maps A of π which cover a map
f : X → X of the base. The cocycle is described in the following diagram by the
bundle map A : V → V which satisfies π ◦ A = f ◦ π.

(1.2)

V V

X X

A

π π

f

See Ruelle [Rue79], Mañe [Mn87], and Viana [Via14] for extensions. We give four
basic examples of this setup.

Example 1.1. The base X is one point. (This is the object of our paper.)
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Example 1.2. X is a closed manifold M , V is the tangent bundle TM of
M , f is a smooth (at least C1+α endomorphism of M) and A = Tf , the
derivative of f . This is the derivative cocycle. Note that the kth-iterate of
Tf is given by

(Tf)k(x, v) = (fk(x), T f(fk−1(x)) · · ·Tf(x)v), (x, v) ∈ TM.

Example 1.3. Let V π−→ X be a fixed vector bundle and F a family
of bundle maps (A, f) as in (1.2), with A : V → V fibrewise linear and
f : X → X a base map. Assume given a finite measure µ on F .

Then random products of independent elements of F , drawn with respect
to the measure µ, are described by the following cocycle. Let G = FN with
the product measure µN. Writing elements of G as

(Ai, fi)i = (· · · , (An, fn), · · · , (A0, f0))

we define σ : G → G by σ((Ai, fi)i) = (Ai+1, fi+1)i, that is, shift to the
right and delete the first term. Then, the map H : G × V → G × V, given
by

H((Ai, fi)i, v) = (σ((Ai, fi)i),A0(v)), ((Ai, fi)i, v) ∈ G × V
defines the cocycle

G × V G × V

G ×X G ×X

H

IdG×π IdG×π

h

where the base map h : G × X → G × X is given by h((Ai, fi)i, x) =
(σ((Ai, fi)i), f0(x)), where π(v) = x.

The kth-iterate of the cocycle H, is given by

Hk((Ai, fi)i, v) = (σk((Ai, fi)i),Ak−1 · · · A0(v)), ((Ai, fi)i, v) ∈ G × V,
which yields the products of random i.i.d. elements of the measure space
(F , µ).

Example 1.4. Let f : X → X and ϕ : X → GLn(R). Let

(1.3)

X × Rn X × Rn

X X

A

π π

f

be defined by A(x, v) = (f(x), ϕ(x)v). The functions f and ϕ are frequently
called linear cocyles in the literature and A the associated linear extension.
Here we use linear cocycle (or just cocycle) for both. In this case the k-th
iterate of A is given by

Ak(x, v) = (fk(x), ϕ(fk−1(x)) · · ·ϕ(f(x))ϕ(x)v), (x, v) ∈ X × Rn.

We now return to the general setting of a finite dimensional vector bundle V π−→ X
and cocycle as in (1.2). Assume that π has a Finsler structure, i.e. a norm on each
fiber of V. Consider the limit

(1.4) lim
n

1

n
log

∥An(v)∥
∥v∥

,
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for a given nonzero vector v ∈ V. If the limit (1.4) exists we call it a Lyapunov
exponent of A. We refer the reader to the expository article of Wilkinson [Wil17]
for an introduction to Lyapunov exponents.

When X is a finite measure space, subject to various measurability and integra-
bility conditions, the Oseledets Theorem [Ose68] says that for all v ∈ V the limit
(1.4) exists almost surely and coincides with one of the real numbers

λ1 ≥ λ2 ≥ · · · ≥ λn.

(See also Gol’dsheid-Margulis[GdM89], Guivarc’h-Raugi[GR89], Ruelle[Rue79], and
Viana[Via14].)

Recall that we have set ψ+(x) = max(0, ψ(x)) for a real-valued function ψ.
Then the theorem of Pesin [Pes77] and Ruelle [Rue78] implies that in the setting
of Example 1.2, if f : M → M preserves a measure µ, absolutely continuous with
respect to Lebesgue, and A is the derivative cocycle, we have

(1.5)

∫
M

∑
i

λ+i (x) dµ(x) = hµ(f),

where hµ(f) is the entropy of f with respect to µ. From a dynamical systems
perspective, knowing when hµ(f) is positive and how large it may be is of great in-
terest. But the Lyapunov exponents of the derivative cocycle are generally difficult
to compute, even to show positivity of the integral (1.5). On the other hand the
Lyapunov exponents of a random product are frequently easy to show positive.

One attempt to approach the problem is to consider diffeomorphisms or more
generally cocycles that belong to rich families F , and to prove that

∫
M

∑
i λ

+(x, f) dµ(x)
is positive for at least some elements of the family by comparing with Lyapunov
exponents of random products. It is not clear what the notion of rich should be to
carry out this program of bounding the average Lyapunov exponents by those of
random products.

There is some success in Pujals-Robert-Shub[PRS06], Pujals-Shub[PS08], De la
Llave-Shub-Simó[dlLSS08], and Dedieu-Shub[DS03], and an extensive discussion
in Burns-Pugh-Shub-Wilkinson[BPSW01] for derivative cocycles. A notion of rich
which comes close for the circle and two sphere is On(R) invariance. The theorem of
[DS03] for unitarily invariant measures on GLn(C) was important in this direction.

1.2. Outline of paper. We conclude this introduction with an outline of the re-
mainder of the paper and a sketch of the ideas used in the proof of Theorem 1. The
sums

∑
i≤k ri of the random Lyapunov exponents appearing in Theorem 1 admit a

geometric interpretation relating them to an integral over the Grassmannian man-
ifold Gn,k of k dimensional subspaces of Rn. We use this relation in Section 2 to
reduce the proof of Theorem 1 to a comparison of an integral on the the orthogonal
group to an integral on the Grassmannian. This comparison is effected by apply-
ing the coarea formula to the two projections Π1,Π2 of the manifold VA of fixed
k-dimensional subspaces

VA = {(U, g) ∈ On(R)×Gn,k : (UA)#g = g} for fixed A ∈ GLn(R).
This use of the coarea formula, presented in Sections 3 and 4 is similar to the
approach of [DS03]. Our main point of departure from the earlier paper comes
in Section 5 in our treatment of bounding an integral of the normal Jacobian of
the projection Π1. We use the theory of spherical polynomials for the symmetric
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space G/K for G = GLn(R) and K = ON (R). Our Theorem 4 is a consequence of
a positivity result for Jack polynomials due to Knop-Sahi [KS97]. This approach
highlights a difficulty in extending the results of [DS03] to our setting. In the case
of G = GLn(C),K = Un(C), the associated spherical polynomials are simply Schur
polynomials, thus permitting a more direct treatment in the earlier work using the
Vandermonde determinant, see Section 4.5 of [DS03].

We hope that the results and techniques of this paper stimulate further interac-
tions between the ergodic theory of cocycles and harmonic analyses on symmetric
spaces. One appealing direction is the investigations of families of cocycles which
have elements with

∫
x∈X

∑
i λ

+
i (x) dµ(x) positive. Especially interesting would be

more rich families of dynamical systems which must have some elements of positive
entropy. One approach for measure preserving families of dynamical systems would
be to compare the Lyapunov exponents of the derivative cocycles of the family to
the Lyapunov exponents of the random products of the cocycles of the family.

For these reasons, our main interest in establishing Theorem 1 is to bound from
below the mean Lyapunov exponents of an orthogonally invariant measure by ran-
dom Lyapunov exponents. One of the reviewers sees interest in the other direction:
the mean Lyapunov exponents provide an upper bound for the random exponents.
The reviewer points to the recent paper of Hanin-Nica [HN20] and suggests the
possible application of exponents of orthogonally invariant measures to stochastic
gradient descent. We thank the reviewer for bringing this work to our attention.

2. Proof of Theorem 1

LetGn,k be the Grassmannian of k-dimensional subspaces of Rn. Given g ∈ Gn,k,
let O(g) be the subgroup of On(R) that fixes g. For A ∈ GLn(R) we denote by A#

the mapping corresponding to the natural induced action on Gn,k and by A|g the
restriction of A to the subspace g. Choose orthonormal bases for g and the image
of g under A and let detA|g denote the determinant of the matrix representing A
with respect to these bases. It is easy to see that the absolute value |detA|g| is
independent of the choice of bases.

Consider the Riemannian metric on On(R) coming from its embedding in the
space of n × n matrices with the natural inner product ⟨A,B⟩ = tr(A tB). As a
Lie group, this Riemannian structure on On(R) is left and right invariant and it
induces a Riemannian structure on Gn,k as a homogeneous space of On(R). We
denote by volOn(R) and volGn,k the Riemannian volumes of the orthogonal group
and Grassmannian respectively, and note the relation

(2.1) volGn,k =
volOn(R)

volOk(R) · volOn−k(R)
.

Define the constant

(2.2) cn,k =
volOk(R) · volOn−k(R)(

n
k

) .

Theorem 2. For any A ∈ GLn(R) we have∫
U∈On(R)

 sup
g∈Gn,k:

(UA)#g=g

(
log+ |detUA|g|

) dOn(R) ≥ cn,k

∫
g∈Gn,k

log+ |detA|g| dGn,k.
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If we integrate instead with respect to the Haar measure dU on On(R) and the
invariant probability measure dg on Gn,k which is just dGn,k normalized to have
volume one, we get

(2.3)

∫
U∈On(R)

 sup
g∈Gn,k:

(UA)#g=g

(
log+ |detUA|g|

) dU ≥ 1(
n
k

) ∫
g∈Gn,k

log+ |detA|g| dg.

This follows immediately from Theorem 2 and (2.1). The proof of Theorem 2 is
given in Sections 2 and 5.

Note that Theorem 2 implies a slightly more general result.

Theorem 3. If µ is an orthgononally invariant probability measure on GLn(R),
then,

∫
A∈GLn(R)

 sup
g∈Gn,k:
A#g=g

log+ |detA|g|

 dµ ≥ 1(
n
k

) ∫
A∈GLn(R)

∫
g∈Gn,k

log+ |detA|g| dg dµ.

Proof. Since µ is an orthgononally invariant probability measure on GLn(R), for
every integrable function η : GLn(R) → R we have

(2.4)

∫
A∈GLn(R)

η(UA) dµ =

∫
A∈GLn(R)

η(A) dµ.

(This is just the change of variable formula of measure theory, for the transformation
TU : GLn(R) → GLn(R) given by TU (A) = UA. Then, by the On(R)-invariance of
µ we have that the pushforward measure (TU )∗µ coincides with µ.)

For short, let us define φ : GLn(R) → R by

φ(B) = sup
g∈Gn,k:
(B)#g=g

(
log+ |detB|g|

)
.

Then integrating over GLn(R), with respect to µ, on both sides of the inequality
of Theorem 2, we obtain∫
A∈GLn(R)

{∫
U∈On(R)

φ(UA)dOn(R)

}
dµ ≥ cn,k

∫
A∈GLn(R)

∫
g∈Gn,k

log+ |detA|g| dGn,k dµ.

Applying Fubini on the l.h.s.∫
A∈GLn(R)

{∫
U∈On(R)

φ(UA)dOn(R)

}
dµ =

∫
U∈On(R)

{∫
A∈GLn(R)

φ(UA)dµ

}
dOn(R)

= volOn(R)
∫
A∈GLn(R)

φ(A) dµ,

where last equality follows from the On(R)-invariance of µ as in (2.4). Using the
facts that

cn,k
volOn(R)

=
1(

n
k

)
volGn,k

and dGn,k = volGn,k · dg

completes the proof. □
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Proof of Theorem 1. Pointwise we have(
k∑
i=1

log |λi(A)|

)+

≥ sup
g∈Gn,k:
A#g=g

log+ |detA|g|, (A ∈ GLn(R)),

where the supremum on the right hand side is defined to be 0 if the set of g ∈ Gn,k
such that A#g = g is empty.

Then, for finishing the proof of Theorem 1 it suffice to identify the right hand

side of the expression in Theorem 3 in terms of
(∑k

i=1 ri

)+
. As in the proof of

Theorem 3 in [DS03],

k∑
i=1

ri =

∫
A∈GLn(R)

∫
g∈Gn,k

log
∣∣∣ detA|g∣∣∣ dg dµ

so (
k∑
i=1

ri

)+

=

(∫
A∈GLn(R)

∫
g∈Gn,k

log |detA|g| dg dµ

)+

≤
∫
A∈GLn(R)

∫
g∈Gn,k

log+ |detA|g| dg dµ.

□

We will give the proof of Theorem 2 in Sections 2 and 5 after some preparations
in the next section.

3. Manifold of fixed subspaces

Let A ∈ GLn(R), and define the manifold of fixed k-dimensional subspaces

VA := {(U, g) ∈ On(R)×Gn,k : (UA)#g = g}

Let Π1 : VA → On(R) and Π2 : VA → Gn,k be the associated projections.

VA

Π1

��

Π2

��
On(R) Gn,k

Given g ∈ Gn,k, one has

Π−1
2 (g) = {(U, g) : U ∈ On(R), A#g = (U−1)#g}.

By abusing notation we identify Π−1
2 (g) with Π1Π

−1
2 (g), which we in turn identify

with O(k)×O(n− k). Similarly, given U ∈ On(R), we identify Π−1
1 (U) with

{g ∈ Gn,k : fixed by (UA)#}.
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Remark 2. Note that, on a set of full measure in On(R), the fiber Π−1
1 (U) is finite

and #Π−1
1 (U) is bounded above by

(
n
k

)
. This follows from the fact that the set of

U ∈ On(R) such that UA has repeated eigenvalues, is a proper subvariety of On(R)
defined by the discriminant of the characteristic polynomial of UA. Therefore a
k-dimensional invariant subspace for UA, where U lies in the complement of the
algebraic subvariety described above, corresponds to a choice of k-eigenvalues for
UA, and corresponding eigenspaces,

The tangent space to the Grassmannian Gn,k at g, can be identified in a natural
way with the set of linear maps Hom(g, g⊥), i.e., any subspace g′ ∈ Gn,k, in a
neighborhood of g can be represented as the graph of a unique map in Hom(g, g⊥).
More precisely, if we denote by πg and πg⊥ the orthogonal projections of Rn = g⊕g⊥
into g and g⊥ respectively, then, g′ ∈ Gn,k such that g′ ∩ g⊥ = {0}, is the graph of
the linear map πg⊥ ◦ ((πg)|g′)−1.

Lemma 3. Let B ∈ GLn(R), and g ∈ Gn,k such that B#g = g. Then, the induced
map LB : Hom(g, g⊥) → Hom(g, g⊥), on local charts, is given by

LB(φ) = [πg⊥(B|g⊥)] ◦ φ ◦
(
[πg(B|g)] + [πg(B|g⊥)] ◦ φ)

)−1

Furthermore, its derivative at g, represented by 0 ∈ Hom(g, g⊥), is given by

DLB(0)φ̇ = [πg⊥(B|g⊥)] ◦ φ̇ ◦ [πg(B|g)]−1

Let us denote by NJΠ1 and NJΠ2 the normal Jacobians of the maps Π1 and Π2

respectively, where the normal Jacobian of a surjective linear map L : V1 → V2 of
finite dimensional real vectore spaces with inner product, is the absolute value of
the determinant of the linear map L restricted to the orthogonal complement of
the kernel of L in V1. (See [DS03, Section 3.1].)

Lemma 4 ([DS03, Section 3.2]). Given (U, g) ∈ VA, one has

• NJΠ1
(U, g) = |det Id−DLUA(g)|;

• NJΠ2(U, g) = 1.

In Section 5 we will need the normal Jacobian written more explicitly. To this
end, choose bases v1, . . . , vk for g and vk+1, . . . , vn for its orthogonal complement
g⊥. In terms of the basis v1, . . . , vn of Rn, a linear map B : Rn → Rn which satisfies
Bg = g is represented by a matrix of the form(

B1 ∗
0 B2

)
.

By Lemma 3, if X is the matrix representing φ̇ in this basis, then DLB(0)φ̇ is
represented by the matrix B2XB

−1
1 .

Lemma 5. Let (U, g) ∈ VA and let(
B1 ∗
0 B2

)
.

represent the map UA in the basis v1, . . . , vn defined above. Then

det(Id−DLUA(g)) = det(Id−B2 ⊗ tB−1
1 )
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4. Proof of Theorem 2

Let ϕ : Gn,k → R be an integrable function, and let ϕ̂ : VA → R be its lift to

VA, i.e. ϕ̂ is given by ϕ̂ := ϕ ◦ Π2. (Note that given g ∈ Gn,k, ϕ̂ is constant in the

fiber Π−1
2 (g), and its value coincides with the value of ϕ at g.)

For a set of full measure of U ∈ On(R) (cf. Remark 2) we have

(4.1)

(
n

k

)
sup

g∈Π−1
1 (U)

(ϕ(g)) ≥ #Π−1
1 (U) sup

g∈Π−1
1 (U)

(ϕ(g)) ≥
∑

g∈Π−1
1 (U)

ϕ(g).

By the coarea formula applied to Π1 we get

(4.2)

∫
U∈On(R)

 ∑
g∈Π−1

1 (U)

ϕ(g)

 dOn(R) =
∫
VA

ϕ̂(U, g)NJΠ1
(U, g) dVA

On the other hand, applying the coarea formula to the projection Π2,∫
VA

ϕ̂(U, g)NJΠ1(U, g) dVA(4.3)

=

∫
g∈Gn,k

(∫
U∈Π−1

2 (g)

ϕ(g)NJΠ1
(U, g) dΠ−1

2 (g)

)
dGn,k,

where we have used the fact that NJΠ2
= 1, and dΠ−1

2 (g) is the volume form on
Π−1

2 (g) induces by the restriction of the Riemannian metric on VA to Π−1
2 (g).

Then from (4.1), (4.2), (4.3) and Lemma 4 we have∫
U∈On(R)

(
sup

g∈Π−1
1 (U)

(ϕ(g))

)
dOn(R)

≥
(
n

k

)−1 ∫
g∈Gn,k

ϕ(g)

[∫
U∈Π−1

2 (g)

NJΠ1
(U, g) dΠ−1

2 (g)

]
dGn,k

=

(
n

k

)−1 ∫
g∈Gn,k

ϕ(g)

[∫
U∈Π−1

2 (g)

|det Id−DLUA(g)| dΠ−1
2 (g)

]
dGn,k

(4.4)

Specialize now to ϕ : Gn,k → R given by

ϕ(g) := log+ |detA|g|, g ∈ Gn,k.

In particular

sup
g∈Π−1

1 (U)

ϕ(g) = sup
g∈Gn,k:

(UA)#g=g

log+ |det(UA)|g|.

Now, the proof of Theorem 2, follows from Theorem 4 below which is used to
bound the bracketed inner integral in (4.4); this together with the nonnegativity of
ϕ proves Theorem 2.

Theorem 4. Given g ∈ Gn,k, one has∫
U∈Π−1

2 (g)

(det Id−DLUA(g)) dΠ−1
2 (g)(U) ≥ volOk(R) · volOn−k(R).

The proof is given in the following section.
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5. Proof of Theorem 4

For fixed g ∈ Gn,k choose U0 ∈ On(R) such that U0Ag = g. Then

Π−1
2 (g) = {V U0 : V ∈ Ok(R)×On−k(R)},

where we continue to identify Ok(R)×On−k(R) with O(g)×O(g⊥). We have∫
U∈Π−1

2 (g) det (Id−DLUA(g)) dΠ−1
2 (g)(U)

=

∫
V ∈Ok(R)×On−k(R)

det(Id−DLV U0A(g)) dΠ
−1
2 (g)(V U0)

= volOk(R) · volOn−k(R)

×
∫
ψ1∈Ok(R)

∫
ψ2∈On−k(R)

det(Id− (ψ2B2)⊗ t
(ψ1B1)

−1) dψ2 dψ1

where dψ1, dψ2 are the Haar measures on Ok(R) and On−k(R) The last equality
follows from Lemma 5, with

B1 = πg((U0A)|g) and B2 = πg⊥((U0A)|g⊥)
More generally, for B1 ∈ GLk(R), B2 ∈ GLn−k(R) we consider the integral of the
characteristic polynomial expressed in the real variable u
(5.1)

J (B1, B2;u) =

∫
ψ1∈Ok(R)

∫
ψ2∈On−k(R)

det
(
Id− u(ψ2B2)⊗

t
(ψ1B1)

−1
)
dψ2 dψ1.

Therefore Theorem 4 is equivalent to

(5.2) J (B1, B2; 1) ≥ 1.

In fact we will prove an explicit formula for the integral, expressing the coefficients
of the characteristic polynomial J (B1, B2;u) as polynomials in the squares of the
singular values of B1 and B−1

2 with positive integer coefficients.
We complete the proof of the Theorem 4 and inequality (5.2) in several steps.

First we use the representation theory of the general linear group to decompose
the double integral into a linear combination of a product of two integrals over
On(R) and On−k(R) respectively. Next each orthogonal group integral is identified
with a spherical polynomial. Finally, the theorem follows from an identity between
spherical polynomials and Jack polynomials, and a positivity result for the latter
due to Knop and Sahi [KS97]. We first review some notation and terminology from
combinatorics and representation theory.

5.1. Preliminaries. Let λ = (λ1, λ2, . . . , λk) be an integer partition of n with k
parts:

(5.3) |λ| := λ1 + · · ·+ λk = n, λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1.

Associated with the partition λ is a Young diagram which is a left justified arrange-
ment of n boxes into k rows, with λi boxes in the ith row. For example, for the
partition λ = (5, 3, 1) of 9 into 3 parts, the associated Young diagram is
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The conjugate partition to λ, denoted λ′, is obtained by interchanging the rows and
columns of the Young diagram of λ. For the partition λ = (5, 3, 1) depicted above,
we have λ′ = (3, 2, 2, 1, 1).

Partitions λ with at most n-parts — or equivalently, Young diagrams with at
most n rows — parametrize irreducible polynomial representations of G = GLn(R).
For example, letting V0 be the standard n-dimensional representation of G, the
partition (r) corresponds to symr(V0) and (1, 1, · · · , 1) (with r ones) corresponds
to Λr(V0). More generally, letting ai be the number of columns of length i in
the Young diagram of λ, the irreducible representation corresponding to λ can be
identified with a subspace of

(5.4) syman Λn(V0)⊗ syman−1 Λn−1(V0)⊗ · · · ⊗ syma1 V0.

The precise definition of this irreducible representation is not relevant for our
present concerns. However, we note that the representation corresponding to λ
has a vector fixed by the orthogonal group On(R) if and only if every part of λ is
even. (See Section 5.5 for an example.) This observation, presented in Theorem 6
below, and the more explicit positivity statement of Theorem 5 are the key ideas
in our proof of Theorem 4.

5.2. Orthogonal group integrals. We begin by expanding the characteristic
polynomial in the integrand as a sum of traces:

det
(
Id− u(ψ2B2)⊗

t
(ψ1B1)

−1
)
=

k(n−k)∑
j=0

(−u)j tr
∧j

(ψ2B2 ⊗ t
(ψ1B1)

−1)

Next, decompose the exterior powers of the tensor product as

(5.5)
∧j

(ψ2B2 ⊗ t
(ψ1B1)

−1) =
∑

λ:|λ|=j

ρλ′(ψ2B2)⊗ ρλ(
t
(ψ1B1)

−1),

where

• the sum is over all partitions λ of j with at most k rows and n−k columns,
• λ′ is the partition conjugate to λ and
• ρλ, ρλ′ are the irreducible representations of GLk(R) and GLn−k(R) asso-
ciated to the partitions λ, λ′, respectively.

See, for example, Exercise 6.11 of Fulton-Harris [FH91]. Since the trace of a tensor
product of two matrices is the product of the two traces, we may write

det
(
Id− u(ψ2B2)⊗

t
(ψ1B1)

−1
)
=

k(n−k)∑
j=0

(−u)j
∑
|λ|=j

tr ρλ′(ψ2B2) · tr ρλ(ψ1B1).

Integrating over Ok(R)×On−k(R) we find that J (B1, B2;u) is equal to

k(n−k)∑
j=0

(−u)j
∑
|λ|=j

(∫
ψ2∈On−k(R)

tr ρλ′(ψ2B2) dψ2

)
·

(∫
ψ1∈Ok(R)

tr ρλ(ψ1B1) dψ1

)
.

(5.6)

= 1 +
∑

1≤j≤k(n−k)
|λ|=j

(−u)jFλ′(B2)Fλ(B1),
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where for M ∈ GLN (R) and µ a partition of j with at most N parts, we define

(5.7) Fµ(M) =

∫
ψ∈ON (R)

tr ρµ(ψM) dψ

Theorem 4 follows from the following more explicit result.

Theorem 5. Let M ∈ GLN (R) and µ = (µ1, . . . , µr) with µ1 ≥ µ2 ≥ · · · ≥ µr > 0
be a partition of k of at most N parts.

(1) If any of the parts µi is odd, then Fµ(M) = 0.
(2) If all the parts µi are even, then Fµ(M) is an even polynomial in the sin-

gular values of M with positive coefficients.

5.3. Spherical polynomials. The proof of Theorem 5 involves the theory of
spherical polynomials for the symmetric space G/K where G = GLN (R) and
K = ON (R), and Jack polynomials. We recall these briefly.

Let PN be the set of partitions with at most N parts, thus

PN = {µ ∈ ZN | µ1 ≥ µ2 ≥ · · · ≥ µN ≥ 0}.

For µ ∈ PN , let (ρµ, Vµ) be the corresponding representation of G, and let
(ρ′µ, V

∗
µ ) be the contragredient representation. That is, G acts on the dual vector

space V ∗
µ by

⟨ρ′(g)u, v⟩ = ⟨u, ρ(g)−1v⟩
where ⟨u, v⟩ is the evaluation pairing between u ∈ V ∗

µ and u ∈ Vµ. A matrix
coefficient of Vµ is a function on G of the form

ϕu,v(M) = ⟨u, ρµ(M)v⟩,

where u ∈ V ∗
µ and v ∈ Vµ. We write Fµ for the span of matrix coefficients of

Vµ. Then Fµ is stable under left and right multiplication by G, and one has a
G×G-module isomorphism

V ∗
µ ⊗ Vµ ≈ Fµ, u⊗ v 7→ ϕu,v.

Theorem 6. Let µ be a partition in PN . Then the following are equivalent

(1) µ is even, that is, µi ∈ 2Z for all i.
(2) Vµ has a spherical vector, that is, a vector fixed by K.
(3) V ∗

µ has a spherical vector.
(4) Fµ contains a spherical polynomial ϕµ, that is, a function satisfying

ϕµ(kgk
′) = ϕµ(g), g ∈ G, k, k′ ∈ K.

The spherical vector vµ and spherical polynomial ϕµ are unique up to scalar multi-
ple, and the latter is usually normalized by the requirement ϕµ(e) = 1, which fixes
it uniquely.

Proof. This follows from the Cartan-Helgason theory of spherical representations
[Hel84, Theorem V.4.1]. □

We now connect the polynomial Fµ to ϕµ.

Theorem 7. Let Fµ(M) be as in (5.7). If µ is even then Fµ = ϕµ, otherwise
Fµ = 0.
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Proof. If {vi}, {ui} are dual bases for Vλ, V
∗
λ then tr ρµ(M) =

∑
i ϕui,vi(M), thus

the character χµ(M) = tr ρµ(M) is an element of Fµ. Since Fµ is stable under the
left action of K, it follows that Fµ(M) =

∫
K
χµ(kM) dk is in Fµ as well.

We next argue that Fµ is K ×K invariant. For this we compute as follows:

Fµ(k1Mk2) =

∫
K

χµ(kk1Mk2) dk =

∫
K

χµ(k2kk1M) dk = Fµ(M)

Here the first equality holds by definition, the second is a consequence the invariance
of the trace character – χµ(AB) = χµ(BA), and the final equality follows from the
K ×K invariance of the Haar measure dk.

By Theorem 6 this proves that Fµ is a multiple of ϕµ if µ is even, and Fµ = 0
otherwise. To determine the precise multiple we need to compute the following
integral for even µ :

Fµ(e) =

∫
K

χµ(k) dk.

By Schur orthogonality, this integral is the multiplicity of the trivial representation
in the restriction of Vµ to K, which is 1 if µ is even. Thus we get Fµ = ϕµ, as
desired. □

5.4. Jack polynomials. Jack polynomials J
(α)
λ (x1, . . . , xN ) are a family of sym-

metric polynomials in N variables whose coefficients depend on a parameter α.
The main result of [KS97] is that these coefficients are themselves positive integral
polynomials in the parameter α.

Spherical functions correspond to Jack polynomials with α = 2. More precisely,
we have

(5.8) ϕµ(g) =
J
(2)
λ (a1, . . . , aN )

J
(2)
λ (1, . . . , 1)

, µ = 2λ

where a1, . . . , aN are the eigenvalues of the symmetric matrix tgg; in other words,
the ai are the squares of the singular values of g,

We can now finish the proof of Theorem 5.

Proof of Theorem 5. Part (1) follows from Theorem 7. Part (2) follows from for-
mula (5.8) and the positivity of Jack polynomials as proved in [KS97] □

5.5. Examples. We conclude this section with two low rank examples of the char-
acteristic polynomials J (A,B;u) for A ∈ GLk(R), B ∈ GLn−k(R). As we may
assume A and B are diagonal, let us write

A = diag(a1, . . . , ak) and B = diag(b1, . . . , bn−k).

The case n = 4, k = 2. Here we consider the integral

(5.9) J (A,B;u) =

∫
ψ1∈O2(R)

∫
ψ2∈O2(R)

det
(
Id− u(ψ2B)⊗ t

(ψ1A)
−1
)
dψ2 dψ1.

As we are essentially integrating over the circle, it is easy to compute this directly
and see that

(5.10) J (A,B;u) = 1 +
det(B)2

det(A)2
u4 = 1 +

b21b
2
2

a21a
2
2

u4.
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The case n = 6, k = 2. In this case we use (5.6) to compute

J (A,B;u) =

∫
ψ1∈O2(R)

∫
ψ2∈O4(R)

det
(
Id− u(ψ2B)⊗ t

(ψ1A)
−1
)
dψ2 dψ1

for A ∈ GL2(R), B ∈ GL4(R). Write

J (A,B;u) = 1 + c2u
2 + c4u

4 + c6u
6 + c8u

8.

By part 1 of Theorem 5 we immediately see that c2 = c6 = 0 because there are no
partitions λ of 2 or 6 for which both λ and its conjugate λ′ have only even parts.
The only even partition of k = 8 with at most 2 parts and with even conjugate is
λ = (4, 4). For V the standard two-dimensional representation of GL2(R), we have
that ρλ(V ) = sym4(Λ2V ) is the fourth power of the determinant representation.
Hence

Fλ(A
−1) = detA−4.

Similarly forW the standard four-dimensional representation of GL4(R), the conju-
gate λ′ = (2, 2, 2, 2) and ρλ′(W ) = sym2(Λ4(W )) is the square of the determinant.
Hence Fλ′(B) = detB2 and

c8 =
det(B)2

det(A)4
.

The only even partition of k = 4 with even conjugate is λ = λ′ = (2, 2). In
this case ρλ(V ) is the square of the determinant representation. The dimension
20 representation ρλ(W ) is a quotient of sym2(Λ2(W )) with a unique O4(R)-fixed
vector, namely, the image of

v = (e1 ∧ e2)2 + (e1 ∧ e3)2 + (e1 ∧ e4)2 + (e2 ∧ e3)2 + (e2 ∧ e4)2 + (e3 ∧ e4)2.
It is readily seen that the trace ρλ(B) restricted to the span of v is∑

1≤i<j≤4

b2i b
2
j .

Then, including the normalizing factor of 1/J
(2)
(1,1)(1, 1, 1, 1) = 1/6 we conclude that

c4 =
1
6 (b

2
1b

2
2 + b21b

2
3 + b21b

2
4 + b22b

2
3 + b22b

2
4 + b23b

2
4)

a21a
2
2

.
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