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It is a great honor and pleasure for me to be speaking at the formal
occasion for dedicating the Brown University Center for Dynamical Systems
to the memory of Solomon Lefschetz. Lefschetz is surely one of the towering
figures of mathematics in our century, and while he is mainly thought of
for his contributions to algebraic geometry and topology, his contributions
to dynamical systems have been great. Let me mention just two that are
of special interest to me and that I shall be talking about today. First,
there is the Lefschetz fixed-point formula. While in some sense this formula
has become part of topology, topology used to be called analysis situs. As
Dennis Sullivan put it to me one day: “Topology is the subject; analysis
is the object.” This, of course, is a major theme from Poincaré to the
present. Lefschetz never lost sight of it. With respect to the fixed-point
formula one need only read Lefschetz’s discussion of it in the preface to
[13] or in the introduction to [14]. In the latter, Lefschetz refers to Poincaré’s
interest in fixed points, which came out of dynamics. In case a vector
field X has a manifold of section M, the periodic solutions of X correspond
to the periodic points of the first return map on M. This is, of course,
but one simple application of this very general and powerful formula.
Second, I would like to mention structural stability. Structural stability
was defined by Andronov and Pontryagin in 1937 [2] and they stated
results on structural stability in two dimensions. While I know of no work
of Lefschetz himself on structural stability we can find his influence quite
clearly stated in the works of DeBaggis [6] and Peixoto [22], where some
of the fundamental theorems of structural stability were first proven.

I. The Lefschetz Fixed-Point Formula and Smoothness

The Lefschetz fixed-point formula is known for quite general spaces (e.g..
finite simplicial complexes) but I will restrict my discussion here to compact
differentiable manifolds without boundary.
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If 0 is an isolated fixed point of the continuous map f: U - R™, where
U is an open subset of R™, then the index of f at 0, o(0), is the local
degree of the mapping Id — f restricted to an appropriately small open set
about 0. If 0 is an isolated fixed point of f”, then a;+(0) is defined for all n.
Iff: M > M, f"(p) = p, and p is an isolated fixed point for f*, then ay«(p)
is defined by taking local coordinates around p- The Lefschetz numbers
L(f") are defined by the formula

L(fM=Y (1) Swit H(M) — H{(M),

where H/(M) is the ith homology group of M with rational coefficients
and f;: H(M) — H (M) the map induced by fon these groups. (s W ) )
so it is not too difficult to compute the L(f™) once the eigenvalues of the
[y are known.

The Lefschetz fixed-point formula says that the L(f™) can be computed
in terms of the fixed-point indices.

(1.1) Lefschetz fixed-point theorem

L(f) = ) ap(p)

peFi
provided that the fixed points of /" are isolated.

Of course, this theorem has the immediate corollary that f has a fixed
point if L(f) # 0; but it says much more. Let me give an example of the
type that I shall be pursuing. Let 0 < r < oc and E"(M) denote the space
of C" endomorphisms f: M — M with the C"-topology. E"(M) is a complete
metric space, and hence the Baire category theorem applies. A subset
X < E'(M) is said to be generic if it contains the countable intersection
of open and dense sets.

By the Baire category theorem a generic set in E"(M) is dense. If a property
is true for a generic subset of E"(M) we say that it is generic or that the
generic f has that property. The simplest part of the Kupka-Smale theorem
(see [27], for example) shows that the periodic points of period n of the
generic f (ie.. the fixed points of f") are transversal, hence isolated, and
the index of any periodic point of generic f'is either +1 or —1. Let N,(f)
be the number of period points of period n of f.

(1.2) Proposition. For the generic fin E"(M).
No(f) = [L(f7)]-

This is an immediate consequence of the Lefschetz fixed-point formula.
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Example 1. For the generic . fi§" - 8™

N(f)> |deg (f) + 1]
where the sign is positive if m is even and negative if m is odd.

These formulas are valid for all n and thus we can try to summarize the
information contained in them by a single number that measures the
asymptotic exponential growth rate of the N, (f).

(1.3) Proposition. For the generic f in E'(M),
lim sup (1/n) log N,(f) = lim sup (1/n) log [L(f")].

Another way to express the number lim sup (1/n) log N,(f) is that it is
the reciprocal of the radius of convergence of the Artin-Mazur zeta function

Cs(t) =exp ’ iNn(f)f"-"”}-

Neither Proposition 1 nor 2 holds for all continuous, Lipschitz, or even
piecewise linear mappings.

Example 2. Letf: S? — S% be the map of the Riemann sphere defined by
z—2z%/|z|. Then deg (f) = 2, but f has only two periodic points 0 and cc.
So N,(f) = 2 for all n, whereas L(f") = 2" + 1. This fis Lipschitz but not
piecewise linear. There are piecewise linear homeomorphisms of manifolds
even that do not satisfy this property. The Lefschetz formula is valid, of
course, in the case /+(0) + o/«(cc) = 2" + 1. It is not difficult to calculate
that a,+(0) = 2".

Let me digress for a moment to emphasize thec power of formulas like
Proposition (1.3). In principal if we are to know or even to estimate the
growth rate of the number of periodic points of f of period n for all n, we
must know f precisely and we must iterate it infinitely often. On the other
hand, lim sup (1/n) log |L(f")| can be calculated. If we know the manifold
M and if we know f even approximately, then by simplicial approximation
the eigenvalues of the f,; can be calculated, and lim sup (1/n) log |L(f")|
can be determined. If, for example, the f,; have a unique eigenvalue of
maximal modulus, 4, then lim sup (1/n) log | L(f")| = log |4|. The total effect
is to replace a nonlinear problem involving infinite iterations by a finite
combinatorial problem and to make it linear.
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Example 2 shows that Propositions (1.2) and (1.3) fail for C° endomor-
phisms of manifolds. In fact, there are only two periodic points, while the
Lefschetz numbers tend to infinity. But surprisingly enough it is not known
if Proposition (1.3) is true for smooth maps.

Problem 1 [34]. Letf: M — M besmooth. Is lim sup (1/n) log N,(f) >
lim sup (1/n) log |L(f™)|?

It is only recently that effects of smoothness on the Lefschetz formula
have begun to be studied.

(1.4) Proposition [34]. Suppose f: U— R™ is C! and that 0 is an
isolated fixed point of /" for all n. Then o4+(0) is bounded as a function of .

The Lefschetz trace formula now tells us:

(1.5) Corollary [34]). Iff: M — M is C! and the Lefschetz numbers
L(f") are not bounded then the set of periodic points of fis infinite.

So the phenomenon of Example 2 cannot occur for C* mappings. Any
C! mapping f: §? — §? with degree 2 has infinitely many periodic points.

(1.5") Corollary. Suppose the C* vector field X on N has a C* manifold
of section M, with first return map f: M — M. If the Lefschetz numbers
L(f") are unbounded, then X has infinitely many periodic solutions.

Example 3. Toillustrate Corollaries (1.5)and (1.5') we consider what has
come to be called the Thom diffeomorphism of the two-dimensional torus
T2. Think of T2 as R? mod the integer lattice Z?> = R%. T? = R?/Z% The
matrix A4 = (?]) has integer entries and determinant one, so 4 defines a
map of R*/Z* that is invertible, ie., a difftomorphism. Denote the map of
T? it defines by A again.

A: T? - T2 The homology groups of T? with real coefficients are

Hy(T%, R)=R, H,(T%, R)=R?  H,(T%R)=R.

Ao, and A,, are the identity transformations and A,,: R? — R? is just 4
itself. Thus the Lefschetz numbers L(A4") = 2 — tr A". The eigenvalues of 4

are (3 + \/3)/2 So
(1) The L(A") are unbounded; in fact,
(2) lim sup (1/n) log |L(4")] = log [(3 +1/5)/2]}
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Consequently:

(a) Any C'fhomotopic to 4 has infinitely many periodic points.

(b) Any C! vector field X that has a C*, T? manifold of section with
first return map homotopic to A has infinitely many periodic solutions.

(c) The generic f in E"(T?) that is homotopic to A4 has

lim sup (1/n) log N,(f) = log [(3 + </5)/2).

so the number of periodic points of f of period n is growing exponentially
with n.

Il. Structural Stability

The theory of structural stability (and Q-stability) for n-dimensional
manifolds has made remarkable progress in the last fifteen years. We recall
these concepts briefly.

(21) Definition. If X and Y are topological spaces, f: X - X and
g: Y - Y are continuous, then f and g are topologically conjugate iff there
is a surjective homeomorphism h: X — Y such that gh = hf.

(2.2) Definition. IfX isatopologicalspaceandf: X — X is continuous,
the nonwandering set of f; Q(f) = {{ € X| given any neighborhood Uy in
X there is an n > 0 such that f{(U,) n U, # J}.

Q(f) is closed, f(Q(f)) = Q(f), and if fis a homeomorphism f(Q(f)) =
Q(f)and Q(f) = Q(f ). Q(f) contains all the periodic points of fand all
the w-limit points of f. So as Smale has said Q( f) is where all the action is.

(2.3) Definition. (a) f € Diff" (M) is structurally stable if there is a
neighborhood ¥, of f in Diff” (M) such that any g€ Vy is topologically
conjugate to f.

(b) fe Diffr (M)is Q-stable if there is a neighborhood ¥ of f in Diff” (M)
such that for any g € V;, f/Q(f) and g/Q(g) are topologically conjugate.

Any structurally stable diffeomorphism is Q-stable, but there are Q-stable
diffeomorphisms that are not structurally stable. This was proven by Smale,
which is why he defined Q-stability. For much more discussion of structural
and Q-stability and examples of these phenomena one should read Smale’s
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original survey article on the subject [39], and one should consult Nitecki’s
book [18] as well as the further survey articles [29, 40, 42]. Lefschetz has
perhaps made the strongest claim for the importance of structural stability
itself [15, p. 250]:

In a system of differential equations arising out of a practical problem
the coefficients are only known approximately: various errors are
inevitably involved in their determination, The phase portrait of the
system must therefore be such that it is not affected by small modifica-
tions in the coefficients. In other words it must be “stable” under
these conditions.

Lefschetz was, of course, talking about the definition of structural stability
for differential equations, but the same may be said for diffeomorphisms.
Insisting that the systems must be stable in the sense of structurally stable
is perhaps extreme. Other authors. for example Thom, content themselves
with less. Lefschetz was perhaps influenced by the situation for two manifolds
that he was talking about, but in any case his statement gives the flavor
of the importance of structurally stable systems, and much the same can be
said for Q-stable systems. Moreover, while it is to be expected that structurally
stable diffeomorphisms exhibit the generic behavior of nearby systems, they
will not have topological properties that are not generic. Thus structurally
stable diffcomorphisms avoid pathological behavior and should be fairly
simple to describe. Since Diff” (M) is separable, there are only countably
many structurally stable systems up to topological conjugacy, and one might
hope to find invariants that give a fairly accurate picture of the orbit
structure of strutturally stable systems.

To give a brief example, if fe Diff" (M) is Q-stable then N.(f)= N,(g)
for all n and all g in some C' neighborhood of S If we now apply
Proposition (1.3) we have

(24) Proposition. If fe Diff" (M) is Q-stable, then
lim sup (1/n) log N,(f) > lim sup (1/n) log |L(f")|.

Now we are faced with an alternative: either there is no diffeomorphism
fi T* > T? that is even homologous to the Thom diffeomorphism (see
Example 3) and is structurally stable or there are structurally stable diffeo-
morphisms with an infinite number of periodic points. This was the motiva-
tion for Thom’s example, and with historical hindsight the situation is
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clear enough. But at the time it was thought that the structurally stable
diffeomorphism might be open and dense on all manifolds and would have
only finitely many periodic points. The reason for this is that Peixoto had
proven the openness and density of structurally stable diffeomorphisms in
Diff” (S*) and had shown that they had oaly finitely many periodic points.

Actually, Smale constructed a structurally stable diffeomorphism of §2
with infinitely many periodic points [37], and Anosov [3] later proved that
the Thom diffeomorphism was structurally stable. The difference between
S!, §2, and T? can be seen in the following remark. If f: S — 8™ is a
diffeomorphism, then |L(f")| = 0 or 2 for all n.

Thus Thom’s example shows that infinitely many periodic points can be
forced for homological reasons, because of the Lefschetz fixed-point formula.
Smale’s example shows that they are not pathological and that they occur
in structurally stable diffeomorphisms for local as well as global topological
reasons. I have dwelt on the Thom diffeomorphism because I will investigate
below further homological restrictions on the growth rate of the number of
periodic points of the Q-stable diffeomorphisms that are understood. But
first, I have to present the picture that evolved through the work of Smale
and others describing Q-stable and structurally stable diffeomorphisms.

(2.5) Axiom A [39]. f e Diff" (M) satisfies Smale’s Axiom A if and
only if

(a) Q(f) has a hyperbolic structure,
(b) Q(f) is the closure of the periodic points of /.

That Q(f) has a hyperbolic structure means that TM [Q(f), the tangent
bundle of M restricted to Q(f), may be written as the direct sum of two
Tf invariant subbundles E* @ E" such that there exist constants 0 < A< 1,
0 <c, and

|Tf"|E|| <ci*  for n>0,
| Tf"|EY|| <ci®  for n<O.

When f satisfies Axiom A, Smale proved the existence of a “spectral
decomposition” for Q(f).

(2.6) Theorem [39]. If f e Diff" (M) satisfies Axiom A, then Q(f) 1s
the disjoint union Q(f) = @, U -+ U Q,, where each ), is closed and invari-
ant for fand f'|Q, is topologically transitive.
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(2.7) Corollary [39]. If f: M — M is as above, then M is the disjoint
union of

@) M=) W@

where

Wi Q) = {y e M| f™() > Q, as m - o).
®) M=U wi@)

where
W Q) = (e M| f™(y) > Q as m > —c}.

Under the circumstances we can define Q,> Q; if (W"(Q )—Q)
(W*(Q;) — Q;) # @. fis said to have no cycles if Q;, >Q > >0 =0
is 1mp0551ble for any j > 1. Actually it is always nnp0551ble for Q, > Q for
an Axiom A diffeomorphism as Smale knew, so we can say j > 2 1f we want,

We can finally state Smale’s Q stability theorem:

(2.8) Theorem (Smale [41]). Iffsatisfies Axiom A and has no cycles
then f'is Q-stable.

The converse to this theorem, which was conjectured by Smale, is one of
the outstanding problems of dynamical systems.

(2.9) Conjecture (Smale [41, 42]). fis Q-stable iff fsatisfies Axiom A
and the no-cycle property.

It is known that

(210) Theorem (Palis [20]). If f satisfies Axiom A and is Q-stable
then f has no cycles.

So the problem really is: Does Q-stability imply Axiom A? There are
some partial results here by Franks [7, 8], Guckenheimer [9], and more
recently Mafié [16], but the problem is still open. Moreover, all these
approaches are strictly C' because they rely on Pugh’s general density
theorem, which states:
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(241) Theorem (Pugh [24]). For the generic fin Diff! (M), Q(f) =
per (f).

So anything that is Q-stable in Diff’ (M) already satisfies Axiom A(b).

To know whether Pugh’s closing lemma or general density theorem holds
in Diff" (M), r > 1, is absolutely crucial for our thinking. Personally, I find
the C' proof so difficult already that I frequently despair and try to find
counterexamples.

Turning our attention to structural stability we define the strong trans-
versality condition as in Smale [40]. If fe Diff" (M) and y € M,

W) = {y e M|d(f"(¥), f"(y)) -0 as n— oo}
W) = {y e M|d(f"(¥), f"(y)) > 0as n— —cc}.

If f satisfies Axiom A, it follows [10, 39] that W*(y) and W*(y) are 1:1
immersed Euclidean spaces for all € M.

(2.12) Strong transversality condition. If f satisfies Axiom A then f
satisfies the strong transversality condition iff W*(y/) and W*(y) are trans-
versal for all y e M.

(2.13) Definition. f e Diff" (M) is Morse-Smale iff:
(1) Q(f)is finite,
(2) fsatisfies Axiom A and the strong transversality condition.

That Q(f) is finite means that it consists of a finite number of period

points.
The first structural stability theorem for diffeomorphisms was Peixoto’s.

(214) Theorem (Peixoto [23]). The structurally stable diffeomor-
phisms are open and dense in Diff” (S') and are the Morse-Smale

diffeomorphisms.

Here the language has changed but the theorem remains the same. This
theorem marked a revival in the subject. It motivated the following
problems:

(1) Find open and dense or generic properties in Diff" (M).

(2) Are the Morse-Smale diffeomorphisms open and dense and structur-
ally stable on all manifolds?
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In response to (1) there are the Kupka-Smale theorem [12, 36] and
Pugh’s general density theorem, as well as some conjectures (see [32], for
example).

In response to (2) we have seen that the Morse-Smale diffeomorphisms
are not open and dense by Smale’s examples and the Lefschetz formula
argument, This still left:

(2a) Are the Morse-Smale diffeomorphisms structurally stable?
(2b) Are the structurally stable diffeomorphisms open and dense?

In response to (2a) there are the theorems of Palis [19] and Palis-Smale
[21], which we may state as:

(215) Theorem (Palis-Smale). The Morse-Smale diffeomorphisms
are precisely the structurally stable diffeomorphisms with a finite Q.

And because of this theorem and the Q-stability theorem, the conjectures
of Smale [40] and Palis-Smale [21]:

(2.16) Conjecture (Palis-Smale). f e Diff" (M) is structurally stable
iff fis Axiom A and satisfies the strong transversality condition.

Robbin [25] proved half of this conjecture for f at least C2 and
Robinson [26] relaxed the hypothesis to C?.

(2.17) Theorem (Robbin-Robinson). If fis Axiom A and satisfies
the strong transversality condition, then f is structurally stable.

Once again one can prove:

(2.18) Theorem [40]. If f is structurally stable and satisfies Axiom A,
then f satisfies the strong transversality condition,

So the real problem is: Does structural stability imply Axiom A?

Of course, if Q-stability implies Axiom A so does structural stability. It
is almost unthinkable that one would and the other would not.

As far as (2b) goes, Smale [38] showed in 1965 that structurally stable
diffeomorphisms were not, in general, dense in Diff" (M) with the CT
topology. He invented the notion of Q-stability and, in 1968, Abraham
and Smale [1] showed that Q-stable diffecomorphisms arc also not dense
in the C" topology. There are still a few concepts of stability that might
prove dense, such as topological Q-stability [11] or the topological structural
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stability of attractors of Thom. Both of these concepts include diffeomor-
phisms that are not Q2-stable. But it is certainly conceivable that a much
weaker notion of stability would be required for density.

As most of the promising approaches to the problem of whether
Q-stability implies Axiom A rely on the periodic points, it seems reasonable
to pose a seemingly more general problem.

Problem 1. Let f e Diff' (M). Suppose that there is a neighborhood U,
of fin Diff* (M) such that N,(g) = N,(f) for all ge U and all n. Does f
satisfy Axiom A?

Q-stable diffefomorphisms have this property. And the Axiom A diffeo-
morphisms that have this property are Q-stable by Palis’s result [20]. A
difffomorphism with this property might reasonably be called zeta-function
stable. So we are asking: Is zeta-function stability <= Axiom A no cycles <
Q-stability?

1. The Lefschetz Fixed-Point Formula and Stability

If fis an Axiom A diffeomorphism, Bowen [4] has proved that
h(f) = lim sup (1/n) log N,(f),

where h(f) is the topological entropy of f. T will not define topological
entropy here but will simply use h(f) for lim sup (1/n) log N,(f) when f
satisfies Axiom A.

If f: M — M is continuous, we can define s(f,) to be the spectral radius

of f,: H,(M, R)> H,(M, R), that is, s(f,) = max [4|, where the max is

taken over all cigenvalues of f,; and all i. It is not difficult to see that

(1) log s(f,) = lim sup (1/n) log | tr f:.'*|'

(I1) Let i(f) = lim sup (1/n) log |Y, (—1)' tr f3l-

log s(f,) = I(f) because there is no alternation of signs in (I), whereas
there is in (II).

Example4. Letf: M — M, and let0: §! - $! be an irrational rotation.
Letg: M x §* =M x §* be f x 6. Thus by the Kunneth formula, Tr Jai =
tr f4; 4 tr fi;-,. Because of the alternations of .signs in (II),
Y (—1)'tr g; = 0 for all n and l(g) = log (0) = — co. The eigenvalues of the
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gy: are the same as the eigenvalues of the f,;, so s(f,) = s(g,) and
log s(f,) = log s(g,). If f: T*> > T? were the Thom diffeomorphism then
g: T° = T I(g) = —oo, and log s(g,) = log [(3 + /5)/2).

We can restate Proposition 2.4 as

(3.1) Proposition. If g e Diff” (M) is zeta-function stable, then

lim sup (1/n) log N,(g) = i(g).
But, in fact, one should be able to do much better:

(3.2) Conjecture. If g e Diff! (M) is zeta-function stable, then

lim sup (1/n) log N,(g) > log s(g,.)-

It is difficult to see how to attack this conjecture without the tools of
Axiom A and no cycles, but perhaps some sort of algebraic approximation
arguments would do the trick. Bob Williams and I have recently proved this
conjecture for Axiom A and no-cycle difffomorphism by proving the
following, which was conjectured in [31] and [33].

(3.3) Theorem [35]. If f e Diff" (M) satisfies Axiom A and has no
cycles, then

h(f) = log s(f,)-

This theorem was previously known for Morse-Smale diffeomorphism
[28, 33] and 0-dimensional Axiom A and no-cycle diffeomorphisms [5].

Let us give a corollary that includes the case of Morse-Smale diffeo-
morphisms.

(3.4) Corollary. Suppose f € Diff* (M) is zeta-function stable and has
only finitely many periodic points; then every eigenvalue of f.: H (M, R) -
H, (M, R) is a root of unity.

To see this corollary we note that each periodic point of f must be
hyperbolic. By Pugh’s theorem a nearby g will have its nonwandering
set equal to the set of periodic points, so it will satisfy Axiom A. By
Palis’s argument g will have no cycles. By the thcorem h(g) > log s(g,) =
log s(f,) and h(g) = 0. So every eigenvalue of f, has modulus 1. As the f;
are integral matrices, every cigenvalue is a root of unity.
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If we return to Example 4 for a moment we see that g: T° — T3 has no
periodic points at all and this corresponds precisely to L(g") = 0 for all n
in the Lefschetz trace formula. But any Axiom A and no-cycle f that is
even homologous to g must have infinitely many periodic points; in fact,
h(f) = log [(3 +/5)/2]. So we naturally have the question: Is g isotopic
to an Axiom A and no-cycle diffeomorphism? Smale answered this question
in 1971.

(3.5) Theorem (Smale [43]). Any f e Diff" (M) is isotopic to an
Axiom A and no-cycle diffeomorphism and hence an Q-stable diffeo-
morphism.

This theorem was generalized in [30] with all the details carried out in
[33] and [44].

(3.6) Theorem. Anyf e Diff" (M)is isotopic to an Axiom A and strong
transversality diffeomorphism and hence a structurally stable diffeo-
morphism. Moreover, the isotopy may be chosen to be C° small, so the
structurally stable diffeomorphisms are dense in Diff" (M) with the C°

topology.

This theorem shows that there are no topological obstructions to
structural stability and Theorem (3.3) shows that the periodic point struc-
ture of the Axiom A and strong transversality diffeomorphisms (which are
the only known structurally stable diffeomorphisms) will be very rich. In
many cases the growth rate of N, will be exponential, whereas the Lefschetz
formula predicts no periodic points at all. Naturally, then one is led to
ask if log s(f,) is the best lower bound one can find for h(f) in terms of the
homology theory of f, when f is Axiom A and no-cycles. This problem in
terms of simplest diffeomorphisms is-discussed at some length in [31] and
[33]. Here I will restrict myself to the Morse-Smale case, because the
distinction between finite and infinite periodic points is the sharpest, and
the Morse-Smale diffeomorphisms are the simplest. Here there is a partial
converse to Corollary (3.4).

(3.7) Theorem [33]. Letdim M > 6andn,(M) = 0.If f € Diff (M)and
every eigenvalue of f, is a root of unity [that is, log s(f,) = 0], then there is
an integer n > 0 such that f" is isotopic to a Morse-Smale diffeomorphism.

A precise condition for f itself to be isotopic to a Morse-Smale diffeo-
morphism is given in [33], but is interesting that n cannot always be chosen
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equal to 1 in the theorem. There is a further obstruction related to the
structure of the ideals in the ring of integers of the cyclotomic extensions
of the rationals. This obstruction is still not well understood (see [33]), but
it is finite.

So we are getting closer to understanding how the homological informa-
tion about f gives lower bounds for h(f) for any structurally stable £, and
these lower bounds are sharper than the Lefschetz fixed-point formula will
give us. Lower bounds are all that is possible. Smale’s examples can be
adapted to show that if dim M > 2, fe Diff" (M), and k > 0, then there is
an Axiom A and strong transversality difftomorphism g that is isotopic to
fand h(g) > k.

Let me close with a small discussion of a possible generalization of
Theorem (3.3) in terms of topological entropy, which would give informa-
tion about the orbit structure of every smooth map in terms of homological
information. Here h(f) will stand for the topological entropy of any
continuous function; for definitions and a further discussion see [31].

(3.8) Conjecture [31]. Let f: M - M be a smooth map (or diffeo-
morphism); then h(f) > log s(f,)-

Here there is some information known. Example 2 shows that the con-
jecture fails for continuous maps; in fact, it fails for some piecewise linear
homeomorphisms of manifolds, so smoothness is essential. We do know,
however, as a special case of work of Manning that:

(3.9) Theorem (Manning [17]). Letf: M — M be continuous. Then
h(f) > log s(f,,), where f,;: H, (M, R) - H,,(M, R).

(3.10) Corollary (Manning [17]). Let f: M - M be a homeomor-
phism, and let dim M < 3. Then h(f) = log s(f,).
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