

STABLE MANIFOLDS FOR MAPS^{*)}

DAVID RUELLE

IHES, 91 Bures-sur-Yvette,
FRANCE

MICHAEL SHUB

QUEENS COLLEGE OF
THE CITY UNIVERSITY OF NEW YORK
FLUSHING, NEW YORK

Here we present a stable manifold theorem for non-invertible differentiable maps of finite dimensional manifolds. There is a long history of stable manifold theorems for hyperbolic fixed points and sets, see for instance [1]. More recently Pesin [3] has proven theorems of a general nature which rely on measure theoretic techniques. Pesin's results have been extended in [5]. The results described in the present paper were arrived at by the two authors along different paths. The first author starting from a treatment of differentiable maps in Hilbert space [6] specializes to the finite dimensional case while the second starting from seminar notes by Fahti, Herman and Yoccoz applies graph transform as in [1].

We say that a map is of class $C^{r,\theta}$ if its r -th derivative is Hölder continuous of exponent θ (Lipschitz if $\theta = 1$). Similarly for manifolds. In what follows class C will mean class $C^{r,\theta}$ with integer $r \geq 1$ and $\theta \in (0,1]$, or class C^r with $r \geq 2$, or class C^∞ , or class C^ω (real analytic), or (complex) holomorphic. [Class C^{-1} will be respectively $C^{r-1,\theta}$, C^{r-1} , C^∞ , C^ω , or holomorphic].

Throughout what follows, M will be a locally compact C -manifold and $f: M \rightarrow M$ a C -map such that fM is relatively compact in M . (In particular, if $fM = M$, then M is a compact manifold). We introduce the inverse limit.

$\widetilde{M} = \{(x_n)_{n \geq 0} : x_n \in M \text{ and } fx_{n+1} = x_n\}$ and define $\widetilde{\pi}(x_n) = x_0$, $\widetilde{f}(x_n) = (y_n)$ where $y_n = x_{n+1}$ for $n \geq 0$. Notice that \widetilde{M} is compact, $\widetilde{\pi}$ is continuous $\widetilde{M} \rightarrow M$ with image $\bigcap_{n \geq 0} f^n M$, and \widetilde{f} is a homeomorphism of \widetilde{M} . Furthermore $f \circ \widetilde{\pi} = \widetilde{\pi} \circ \widetilde{f}^{-1}$.

We state in (1), (2), (3) below some (easy) consequences of the multiplicative ergodic theorems^{**)}. Our main results are the stable and unstable manifold

*) This work has been supported by NSF Research Grant

**) See Oseledec [2], Raghunathan [4].

theorems in (4), (5). It is likely that these results extend to general local fields (the multiplicative ergodic theorem does, see [4]). We have however not checked the ultrametric case.

(1) There is a Borel set $\Gamma \subset M$ such that $f\Gamma \subset \Gamma$, and $\rho(\Gamma) = 1$ for every f -invariant probability measure ρ . If $x \in \Gamma$, there are an integer $s \in [0, m]$, reals $\mu^{(1)} > \dots > \mu^{(s)}$, and spaces $T_x M = V_x^{(1)} \supset \dots \supset V_x^{(s)} \supset V_x^{(s+1)} \supset \{0\}$ such that

$$\lim_{n \rightarrow \infty} \frac{1}{n} \log \|Tf^n(x)u\| = \mu^{(r)} \quad \text{if } u \in V_x^{(r)} \setminus V_x^{(r+1)}$$

for $r = 1, \dots, s$, and

$$\lim_{n \rightarrow \infty} \frac{1}{n} \log \|Tf^n(x)u\| = -\infty \quad \text{if } u \in V_x^{(s+1)}.$$

The functions $x \rightarrow s$, $\mu^{(1)}, \dots, \mu^{(s)}$, $V_x^{(1)}, \dots, V_x^{(s)}$ are Borel and $x \rightarrow s$, $\mu^{(1)}, \dots, \mu^{(s)}$, $\dim V_x^{(1)}, \dots, \dim V_x^{(s)}$ are f -invariant.

(2) Similarly there is a Borel set $\tilde{\Gamma} \subset \tilde{M}$ such that $\tilde{f}\tilde{\Gamma} \subset \tilde{\Gamma}$ and $\tilde{\rho}(\tilde{\Gamma}) = 1$ for every \tilde{f} -invariant probability measure $\tilde{\rho}$. If $\tilde{x} = (x_n) \in \tilde{\Gamma}$, there are $s \in [0, m]$, $\mu^{(1)} > \dots > \mu^{(s)}$ and $\{0\} = \tilde{V}_{\tilde{x}}^{(0)} \subset \tilde{V}_{\tilde{x}}^{(1)} \subset \dots \subset \tilde{V}_{\tilde{x}}^{(s)} \subset T_{x_0} M$

such that if $(u_n)_{n \geq 0}$ satisfies $u_n \in T_{x_n} M$ and $Tf(x_{n+1})u_{n+1} = u_n$ and

$$\lim_{n \rightarrow \infty} \frac{1}{n} \log \|u_n\| < +\infty$$

then $u_0 \in \tilde{V}_{\tilde{x}}^{(s)}$. Conversely, for every $u_0 \in \tilde{V}_{\tilde{x}}^{(s)}$ there is such a sequence

(u_n) , it is unique and

$$\lim_{n \rightarrow \infty} \frac{1}{n} \log \|u_n\| = -\mu^{(r)} \quad \text{if } u_0 \in \tilde{V}_{\tilde{x}}^{(r)} \setminus \tilde{V}_{\tilde{x}}^{(r-1)}$$

for $r = 1, \dots, s$.

(3) The map $\tilde{\pi}$ sends the \tilde{f} -invariant probability measures on \tilde{M} onto the f -invariant probability measures on M . Almost everywhere with respect to every \tilde{f} -invariant probability measure $\tilde{\rho}$, the quantities $s \circ \tilde{\pi}$, $\mu^{(r)} \circ \tilde{\pi}$, $\dim V_{\tilde{x}}^{(r+1)}$ occurring in (1) are equal to $s, \mu^{(r)}$, $m - \dim \tilde{V}_{\tilde{x}}^{(r)}$ in (2). This $\tilde{\pi}(\cdot)$ justifies the confusion in notation for s and $\mu^{(r)}$.

(4) Local stable manifolds

Let θ, λ, r be f -invariant Borel functions on Γ with $\theta > 0, \lambda < 0, r$ integer $\in [0, s]$, and

$$\mu^{(r+1)} < \lambda < \mu^{(r)}$$

(where $\mu^{(0)} = +\infty, \mu^{(s+1)} = -\infty$). Replacing possibly Γ by a smaller set retaining the properties of (1) one may construct Borel functions $\beta > \alpha > 0$ on Γ with the following properties.

(a) If $x \in \Gamma$ the set $W_x^\lambda = \{y \in M: d(x, y) \leq \alpha(x) \text{ and } d(f^n x, f^n y) \leq \beta(x) e^{n\lambda(x)} \text{ for all } n > 0\}$ is contained in Γ and is a C -submanifold of the ball $\{y \in M: d(x, y) \leq \alpha(x)\}$. For each $y \in W_x^\lambda$, we have $T_y W_x^\lambda = V_y^{(r+1)}$. More generally, for every $t \in [0, s]$, the function $y \mapsto V_y^{(t+1)}$ is of class C^{-1} on W_x^λ .

(b) If $y, z \in W_x^\lambda$, then

$$d(f^n y, f^n z) \leq \gamma(x) d(y, z) e^{n\lambda(x)}.$$

(c) If $x \in \Gamma$, then $\alpha(f^n x), \beta(f^n x)$ decrease less fast with n than the exponential $e^{-n\theta}$.

The manifolds W_x^λ do not in general depend continuously on x , but the construction implies measurability properties on which we shall not elaborate here.

(5) Local unstable manifolds

Let θ, μ, r be \tilde{f} -invariant Borel functions on $\tilde{\Gamma}$ with $\theta > 0, \mu > 0, r$ integer $\in [0, s]$, and

$$\mu^{(r+1)} < \mu < \mu^{(r)}$$

(where $\mu^{(0)} = +\infty, \mu^{(s+1)} = -\infty$). Replacing possibly $\tilde{\Gamma}$ by a smaller set retaining the properties of (2), one may construct Borel functions $\tilde{\beta} > \tilde{\alpha} > 0$ and $\tilde{\gamma} > 1$ on $\tilde{\Gamma}$ with the following properties.

(a) If $\tilde{x} = (x_n) \in \tilde{\Gamma}$ the set

$$\tilde{W}_x^\mu = \{\tilde{y} = (y_n) \in \tilde{M}: d(x_0, y_0) \leq \tilde{\alpha}(\tilde{x}) \text{ and } d(x_n, y_n) \leq \tilde{\beta}(\tilde{x}) e^{-n\mu(\tilde{x})}$$

for all $n > 0\}$ is contained in $\tilde{\Gamma}$; the map $\tilde{\pi}$ restricted to \tilde{W}_x^μ is injective and $\tilde{\pi} \tilde{W}_x^\mu$ is a C -submanifold of the ball $\{y \in M: d(x_0, y) \leq \tilde{\alpha}(\tilde{x})\}$. For each

$\tilde{y} = (y_n) \in \tilde{W}_x^u$, we have $T_{y_0} \tilde{\pi} \tilde{W}_x^u = \tilde{V}_y^{(r)}$. More generally, for every $t \in [0, s]$,

the function $y \mapsto \tilde{V}_y^{(t)}$ is of class C^{-1} on $\tilde{\pi} \tilde{W}_x^u$.

(b) If $(y_n), (z_n) \in \tilde{W}_x^u$, then

$$d(y_n, z_n) \leq \tilde{\gamma}(\tilde{x}) d(x_0, y_0) e^{-n\mu(x)}.$$

(c) If $\tilde{x} \in \tilde{\Gamma}$, then $\tilde{\alpha}(f^b \tilde{x})$, $\tilde{\beta}(f^n \tilde{x})$ decrease less fast with n than the exponential $e^{-n\Theta}$.

(6) Global stable and unstable manifolds exist under obvious transversality conditions (for instance, if $T_x f$ is a linear isomorphism). Under these conditions they are immersed submanifolds.

(7) The results described above for maps apply immediately to flows, via a time T map.

REFERENCES

- [1] M. Hirsch, C. Pugh and M. Shub, Invariant manifolds, Lecture Notes in Math. no. 583, Springer, Berlin, 1977.
- [2] V.I. Oseledec, Multiplicative ergodic theorem, Lyapunov characteristic numbers for dynamical systems. Trudy Moskov., Mat. Obshch. 19, 179-210 (1968). English transl. Trans. Moscow Math. Soc., 19, 197-221 (1968).
- [3] Ya. B. Pesin, Invariant manifold families which correspond to non-vanishing characteristic exponents. Izv. Akad. Nauk SSSR, Ser. Mat. 40 no. 6, 1332-1379. (1976), English transl. Math. USSR izv. 10, no. 6, 1261-1305 (1976).
- [4] M.S. Raghunathan, A proof of Oseledec multiplicative ergodic theorem, Israel J. Math. To appear.
- [5] D. Ruelle, Ergodic theory of differentiable dynamical systems. I.H.E.S. Publications Mathématiques. To appear.
- [6] D. Ruelle, Invariant manifolds for flows in Hilbert space, to appear.