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Here we present a stable manifold theorem for non-invertible differentiable

maps of finite dimensional manifolds. There is a long history of stable manifold

theorems for hyperbolic fixed points and sets, see for instance [1]. More recently
Pesin [3] has proven theorems ofaigeneral nature which rely on measure theoretic
techniques. Pesin's results have been extended in [5], The results described in
the present paper were arrived at by the two authors along different paths. The
first author starting from a treatment of differentiable maps in Hilbert space [ 6]
specializes to the finite dimensional case while the second starting from seminar
notes by Fahti, Herman and Yoccoz applies graph transform as in [1].

We say that a map is of class Cr’e if its r-th derivative is Holder contin-
uous of exponent 6 (Lipschitz if 6 = 1). Similarly for manifolds. In what

¢t ©

follows class (¢ will mean class with integer r 1 and 8 € (0,1], or

class C* with r 2 2, or class Cm, or class cY (real analytic), or (complex)

- - S
. 1'9, vl 1, ¢”, ¢ or holo-

holomorphic. [Class C—l will be respectively C
morphic].
Throughout what follows, M will be a locally compact (-manifold and
f: M 4M a (C-map such that fM is relatively compact in M. (In particular,

if fM =M, then M 1is a compact manifold). We introduce the inverse limit.

m= [(xn)nzo : xn €M and fxn+1 = xn] and define ﬁtxn) = XO §
f?x ) = (y ) where y = X for n » 0, Notice that ﬁJ is compact, F‘ is
n n n n+1

e

. o N g s
continuous M 4 M with image phzo M, and f is a homeomorphism of M,

1

Furthermore f W = o f

We state in (1), (2), (3) below some (easy) consequences of the multiplicative

%%
ergodic theorems ). Our main results are the stable and unstable manifold

*¥) This work has been supported by NSF Research Grant

#k) See Oseledec [2], Raghunathan [4].



theorems in (4), (5). It is likely that these results extend to general local
fields (the multiplicative ergodic thcorem does, see [4]), We have however not
checked the ultrametric case.

(1) There is a Borel set ' cM such that fr < I, and p(M =1 for

every f-invariant probability measure po If x £ 1, there are an integer

(1) (s) (1)

5 G [0,11'11, reals " & see > W ’ and spaces TXM = V‘{ D DV(S) :}V(S+1) |
2 X X !
:3[0] such that
; i n 4
lim 4 log [Ff (x)u’]= H( ) if u ¢ V(r)\ V(r+l)
Lo x X
for = 1,.e4y8; and
4 1
lim = log ”I‘fn(x)u”: . i 1 GV(S+1) .
n o . *
; 1
The functions x 4 s, u( )’...’u(s), V;l),...,vis) are Borel and x 4 s,
(1 s : 1
3 ),...,u( ), dim Vi ),...,dim V;S) are f-invariant.

(2) Similarly there is a Borel set r[‘:cﬁ' such that 'f"’l\: cT and ';('F) =3
for every ?Linvariant probability measure E’. If §J= (xn) € ?ﬂ there are

5 € [O,m], p(l) P eee > u(s) and {b} = ?:fﬂ) C;ﬁ;fl) C ese C‘?;fS) c:T‘c M

x X X 0
such that if (u ) satisfies u €T M and TE(x _)Ju = u_ and .
n n>0 n xn n+l” n+l n |
1
lim = log |j | <+ =
n n
N4t
~ (8) ~ (s)
then u0 € VAJ . Conversely, for every uO ev there is such a sequence
% X
(un), it is unique and
. 1 (r) ~ (r) ~ (r-1)
1i -1 = - i
im = og ”un ” 1w if u, ev_ % VN
n-%e X X

oy o= LokiesSa
(3) The map 7 sends the f-invariant probability measures on M onto the

f-invariant probability measures on M, Almost everywhere with respect to every

(r)

f-invariant probability measure EJ, the quantities s o ;‘, W LI
dim V (r+1) occurring in (1) are equal to s,u(r), m—dim {Fv( )(r) in (2). This

()
[ e)

Jjustifies the confusion in notation for s and g



(4) Local stable manifolds

Let ®, ), r be f-invariant Borel functions on r with >0, A<0, r in-

teger ¢ [0,s], and

u‘(:»:=+1) ok u(:r)

(0) s+1
(where =4 @, Ll:( 1) = - ®» ). Replacing possibly ' by a smaller set

retaining the properties of (1) one may construct Borel functions B> >0 on
I' with the following properties.
A
(a) If x € the set wx = {y €M: d(x,y) < Ax) and d(fnx,fny) <

n A(x)

B(x)e fou all = & 0} is contained in [ and is a (—submanifold of the

ball {y € M: d(x,y) < o(x) }. For each y € W}?, we have Tyw7‘= v (r+1). More
x y
generally, for every t € [0,s], the function vy -+V(t+1) is of class c—‘l on
y
‘i'b’?L 4
X

(b) If y,z EW}Z‘ , then
d(fny,fnz) < y(x) d(y,z) enh(X).

(¢c) If x ¢r, then Q;(fnx), _s(fnx) decrease less fast with n than the
.-.n@

exponential e
The manifolds Wi' do not in general depend continuously on x, but the con-

struction implies measurability properties on which we shall not elaborate here.

(5) Local unstable manifolds

Let @® py, r be T-invariant Borel functions on [ with @ > 0, n>0, r

integer € [0,s], and

(r+1) (r)
W Su<uy

(where u(O) =4+ @, u(s+1) = = ®). Replacing possibly 71 by a smaller set re-

taining the properties of (2), one may construct Borel functions BJ> a>0 and

fad

Y>1 on 71 with the following properties.

{(a) If x= (xn) €T the set

o bt o " ~ -1 (;EJ)
w}: = [y = (yn) eEM : d(xo,yo) < Qf(%j and d(Xn,}'n) = '3(;(\56 W
for all n » 0] is contained in 'f:; the map 7 restricted to wN_u, is injective

X
and 7 #W" is a (~submanifold of the ball {y eMm: d(xo,y) < wUD }. For each
X



. ~ r
V= (yn) e, we have T 3 W = 9;} ) . More generally, for every t ¢ [0,s], |

the function y =

L

X yO '3 y

=t

V;J-l
w ¥

~

is of class Crl on T WH .
X

®) If (y), (z) €W, then

n
() If % ¢T, then o

exponential e

(6)

X

a g () |
(y %5 ) g v(x) d(xosyo)e . [

n
~b o~
;I g(f X) decrease less fa t with n than the
—.n@

Global stable and unstable manifolds exist under obvious transversality

conditions (for instance, if Txf is a linear isomorphism), Under these condi-

tions they are immersed submanifolds,

(7

The results described above for maps apply immediately to flows, via a

time T map,
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