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Stability and ﬂm:mln:v. for Diffeomorphisms'

M. SHUB-

Department of Mathematics
University  of California at Santa OEN
m»sg OEN. California

Let M bé a compact C*-manifold without boundary and Diff"(M)
the group of C diffeomorphisms of M with the C uniform topology.
Generally speaking, the problem of mvsﬁimn& systems for Diffr(M) is to
describe the. global orbit behavior of “most” diffeomorphisms f. An
oxnmzoa and important survey of this problem may be found in an article
written by Smale in the summer of 1967 [34] u:&.m?nﬂ in his survey
lectures [33-36], although there have been some important theorems
proven since then. We will try here to present a quick survey of some of
these theorems-with no pretense of being complete even for diffeomor-
phisms. Dynamical systems generally would deal with Lie group actions.
with or without conditions imposed, such as the one-parameter group
actions arising from vector fields or Hamiltonian vector fields which are
the origins of the subject. Much of what we say is taken from Smale’s
surveys.$ .

Diff((M) is a complete metrizable space, and by “‘most” we shall
mean at least a Baire set in Diff"(M), i.e., the countable intersection of
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open w.mﬁ mobmo.mnam. although open and dense would Q.wnﬁmmb_% be more
satisfying. A Baire set of diffeomorphisms will be called generic, and
a property P om. diffeomorphisms which holds for all &mﬂaoBo_‘wwmmBm
ina .w»:.o mo.e %S: also be called generic. Basically we are interested not
only in awmoagsm a generic set but also in the changes in the orbit struc-
Emmw Mm diffeomorphisms g in a small neighborhood U of f in Diffr(a1)
which are called perturbations of f, hence we will be 1 i ions
o bt 1 e wi | e am.no various notions

If f € Diff((M) and x € M, then (f*(x is i
) th nez is the orb :

have two types of orbits: v e 3 " orbit of . fnay

(1) {f™x)}nez is finite, ie., In € Z — {0} such th :
. € y 2ol . t f» —
which case we call x periodic; {0} ha (%) = x, in

(2) {f"(*)}nez is infinite, i.e., —Hn € Z — {0} such that f(x) = x.

Up to the time of this conference the best general picture of the orbit
structure .o_,. diffeomorphisms that we have is provided by the conclusions
of Smale’s spectral decomposition theorem. So proceeding from an

Mr_wﬂo:nu_ womaomimééaém:vnomn:aﬂvnoosn_cmmozwomﬂvmwﬂrmo:wa
rst. . : -

DerFINITION  Let f € Difff(M) and let x € M. x is a nonwandering point

of \.. x m Q(f) or x € Q, if for every open neighborhood U of x there
exists an n € Z — {0} such that f»(U) n U # @.

‘Hro bomo&o.woms,ﬁm of f are, of course, nonwandering, and in some sense
a.ﬂ.o. bo.,ﬁém:ann_:m points contain all the behavior at infinity. More pre-
cisely, if x e M: v .

a(x) = {y € M| dn; > —oo such that Fo(x) >y},
‘and , o

o(x) = {y € M| dm; — oo such that £ m(x) — ).
The ¢ and w limits ow »3& int x . .
point x € M, a(x) and
also easily seen to be in Q. () and e(x), respectively, are

Umﬁzmﬁoz We say that a diffeomorphism f has an b-mnoo.BvOmmmou
if Q(f) may be written as the finite disjoint union of closed invariant sets
for f, 2(f)=120,0 - U Q. Moreover, if f| £, is topologically
transitive for all 7, i.e., f| £2; has a dense orbit for all 7, then we say that
S has a spectral decomposition. . !
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If f has an Q-decomposition then it is easily seen, as in Smale [34],
that a(x) < £; for some fixed 7, and w(x) = 2; for some fixed j.

DerINITION Let f € Difff(M) have an 2-decomposition. Then
, We(2) = {x € M| o(x) < 23}

is called the stable set of 2;, and .
Wu(2,) = {x € M| a(x) = ;}

is called the unstable set of £;.

From the remarks above, we see:

ProposITION Let fe Difff(M) have an £-decomposition, 2(f )
=0,U--- U Then M is the disjoint union of the Ws(82,),
i=1, ...,k and Misalso the disjoint union of the we(,), ﬂ =1,...,k

Thus we are beginning to have some picture of the orbit structure of
diffeomorphisms f with 2 decompositions, 2(f) =2, U --- U 2.
Any wandering point x has its past history near some £;, and its future
history near some £;,i.e., x € W¥(2;) N W*(LQ)) for unique ¢ and j;
and if f has a spectral decomposition, each 0, is held together by a dense

orbit. : : . .
Now given f e Difff(M) with an £2-decomposition, we may define a

relation on the ©; as follows: Q; > Q; if (W*(;) — ;) N (W)

— 2,)#9, i.e., there is an x which comes from Q; and goes to £;.

DerINITION Let f € Difff(M) have an Q-decomposition, 2(f) = 2,
U -+ U 2. We say that f has no cycles if 2; > Q; > --- > Q;
= 0, is impossible for any j=1

If f has an 2-decomposition and no cycles we may reorder the Q; by
defining Q; > Q; iff there exists a sequence 2; > Q> >0, >0
and finally we may reindex the £; such that 2 =02, U --- U 2, and
i <j=0;% Q;. Henceforth, we will assume that the Q; are indexed
as above for any f with an ©-decomposition and the no cycle property.
Following Newhouse [15], we call this a filtration ordering of the Q;.

A diffeomorphism f with an 2-decomposition and the no-cycle property
has a somewhat understandable orbit picture as shown in Figure 1.
The arfows indicate directions in which points are proceeding under
positive iterations of f.
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N2

Emﬂ.no 1

We remark that this picture has very little to do with the 2, them-
selves. It would be equally as valid for any k-disjoint closed invariant sets
A4, «-+ A whose union contains £, or as Newhouse pointed out to the
author, such that the ¢ and  limits of any point x lie in the union of the
A;. M would still be the disjoint union of the W3(A;)s and Wu(,)s, and
the definition of no-cycles would still make sense, etc.

We have concentrated on 2 because £2 has been one of the main oLjects
of study in dynamical systems, and we have singled out the topological
transitivity because it seems important to us in terms of m::um the
£; some unifying property. Of course, one might be interested in prop-
erties between 2-decomposition and spectral decomposition ; for example,
one might wish to assume that Q; is indecomposable, i.e., it is not the
union of two closed disjoint invariant sets.

DeFINITION  Let f € Diftr(M) a filtration for \ is a sequence of oonmof

manifolds with boundary M= M; > M;_, > --- o M, > M, = 0,
such that f(M,;) < Interior M;. Given a filtration K;= (\,czf™(M;
— Interior M;_,) is the maximal invariant set contained in M; — M,_,.
If K;= Q2 n (M; — M), for all 7, we say that the filtration is a fine
filtration for f. Finally, if we are given closed invariant disjoint sets
\r,....\_? we mmwg EaUNS.uU...UENUE O is a
filtration for 4,, ..., \_a if 4;,="K

.mwowoadoz Let M — NSU.NSHU...UNS S M,= Ggmm_-
tration for f € U&AE )- Then:

a 0c VL K
b. M is the m_&o:: union of 90 S\ANA ) and WY(K));
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c. there are no cycles and 7 >j = K; 3 K;;

Q g < Cuhe .—N\A.va. -

e. given arbitrarily small neighborhoods U; of K, msa and n; > 0 such
that f™M; — f - (Interior ET_V < U;.

Proof (a) If x¢ UL, K;, then x € M; — Interior M; ;-1 for some j,
and there exists an # such that f7(x) ¢ NS — Interior M;_;. So either
f™(x) € Interior M;_,, in which case x is wandering, or f *(x) € comple-
ment of M;, which is invariant by f -1, so x is wandering once again.
(b) follows from (a) and the above remarks.

(c) = Since f(M;) < Interior M;, K; is in the interior of M; — Interior
M;_,, so Wi(K,) is contained in" M;, so if W¥K;) n W¥K;) # 0,

>l
\av Hm x€ E: then SAxv Uj<i K, so that M; < C\.ma. W(K;).
(€) As NVnezf™(M; — Interior(M;_,)) = K;, dny, n, > 0 such that .

U; > ) (f™(M; — Interior(M;_,))
_ 0 (M) — fe(interior M)

> fra(M,) — f -»(Interior M;_,).
>m m.m.w immediate corollary, w_,.o<nb as by Pugh msm Shub [24], we have

COROLLARY " Let f € Difff(M). Let 4,, ..., 4; have a filtration. Then
given neighborhoods U; of 4; in M, there exists a neighborhood U of f
in Difff(M) such that g € U == 2(g) = U%, U;. In particular, if: f has
a fine filtration, then for any neighborhood U, of Q( f) in M there exists
a E&wwvo%oom Q» of f in UEAEV such that g€ U, = Q(g) = U,.

This no_qo:mn% is valid for a C°-neighborhood in the ranoBogngm
of M and for fine filtrations says that f has no b-oxw_oﬂobm. which is a
weak sort of stability. :

As a converse to the proposition we have:

.Huwomoﬂ.zoz Let 4;,i=1, ... .. k, be closed disjoint invariant sets for
f € Diff((M). Let .

a(x) U SA.&V c C 4;,

i=1

4&m~§.

and let the A; have no cycle. Let 4,, ..., 4; be a filtration ordering
of the A;. Then A,, ..., 4; has a filtration.
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The proof of this proposition is a combination of arguments in Smale
[34], Palis [17], and Pugh and Shub [24]. We will present it in [29)],
If we specialize these theorems to 2 we get

TueoreM Let f € Difff(M). Then f has a fine filtration if and only if \
has an £ decomposition with no cycles.

As a corollary first proven in [24] we have

CoroLLARY Let fe Diff"(M) have an £-decomposition, 2 = Q,
Uy £2; with no cycles. Then given open sets U; of 2; there exists
a neighborhood U of f in Diff"(M) such that g € U = 2(g) = Ui, U;.

E_.:wmgm mS., sets A = A, U -+ U A, where A was not assumed :.V
be 2, were considered by Newhouse [15]. The above theorem was proven
before the word fine filtration was invented by Smale at this conference.
The idea was that the fine filtration or - -decomposition and no-cycle
diffeomorphisms and especially the spectral decomposition and no-cycle
diffeomorphisms were good objects to study. For example, one should be
able to determine the Cech cohomology of the 2; from the filtration data,
and the work of Conley and Easton [5] and Smale [32] is relevant here.
Since filtrations are stable, i.e., a filtration for f is a filtration for all nearby

& one should have the same sort of information for the K for g. At the

start of the conference the author oo&.mogn& that spectral decomposition
and no-cycle diffeomorphisms were generic in Diff"(M), even though
we said this conjecture might be ridiculous. Since then, Newhouse has

produced a counterexample to this conjecture in Diff"(S?), » > 2. Smale

came up with the notion of a fine sequence of filtrations, (see [29],
which still has many of the properties of a fine filtration and seems to
include Newhouses example, so it stands a chance of being a generic
property. Finally, let us say that many of these ideas are the outgrowth of
conversations with Smale in Rio and Salvador. Newhouses paper [15]
provides added background for the above theorems and he kindly checked
through the proofs. The diffeomorphisms with the spectral moooEvo.mmmon
and no-cycle properties by themselves describe a large class of diffeo-
morphisms and are still very interesting to study, so in the tradition
of these survey talks we will still make the following, wﬂ.rmwm ridiculous,
conjecture.. )

DEFINITION Let -F < Diff"(M) be the diffeomorphisms with a fine
filtration and let S < Diff"(M) be the spectral decomposition and co-o%&o
properties a_m.ooBo%Emb.
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CoNJECTURE S is-dense in F.

The spectral decomposition property was first considered as'a conse-
quence of Axiom A by Smale in [34], and in [35] he used Axiom A and
the no-cycle property to prove the Q-stability theorem (see below).

So far we have deemphasized stability properties. Historically this is
somewhat backward, and we do not mean to neglect them. As late as
Smale’s survey article in 1967, he posed the problem of dynamical
systems as follows: Let r be an o@:E&nbom relation on Diffr(M) which is
reasonable as far as orbit structure is concerned. Define a diffeomorphism
f to be r stable if its 7 equivalence class contains a neighborhood of f.
The problem then was to find an 7 relation whose stable elements are open
and dense. This formulation was motivated by a previous statement of the
?dEoS which was to find a generic or open and dense set U of elements
in Diffr(M) such that the orbit structure of U could somehow be described
@cs_;ﬁ:\m_% by discrete numerical and m_movqm_o invariants. Since
Diff"(M) is separable, the later formulation would give hope of finding
the invariants, since an open and dense set of diffeomorphisms would have
a countable number of 7 equivalence classes. Since then Smale has restated
the problem [36] as each equivalence relation has failed to have an open
and dense set of stable elements. Of course, the stronger the equivalence
relation the more well behaved the stable elements under perturbation
and in some sense the more “physical” the system described, because
one cannot be sure of one’s initial data. The first such equivalence
relation comes from Andronov-Pontryagin; it is an isomorphism of the
orbit. structure.

DeriNiTION Let f € Difff(M), g € Diff"(N); then f and g are topo-
logically conjugate if there exists a homeomorphism A: M — N such that
hf = gh. The elements in Difff(M) which are stable for the topological
conjugacy equivalence relation are called structurally stable.

When Smale showed that structurally stable diffeomorphisms were not
dense, he introduced a weaker equivalence relation which is an isomor-
phism of the orbit structures on £, “where the action is.”

'DeriNiTION  Let f € Difff(M), g € Diff'(N). Then f and g are £ con-
jugate if there exists a homeomorphism &: Q(f)— Q(g) such that
hf = gh. The elements in Diff"(M) which are stable for the 2-conjugacy
op:Em_n:oo relation are called Q-stable.
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In the Spring of 1968, Abraham and Smale [1], showed that the O-
stable diffeomorphisms are not open and dense.

We will delay giving any examples, especially as they are readily found
in the literature (see Smale [34] and Palis [19]), and will instead give an
abstract presentation of some of these systems. Since &EQE&.mQUEQ
implies £2-stability, we will begin with Smale’s Q-stability theorem.

DerINITION  Let f € Difff(M) and let A be a closed 551».:&%” for b
Then A is hyperbolic if TM| 4 = Es@ EY, Tyf: E*—E®, and T,f:
Ev — Eu Es and E" are continuous subbundles of TM, and there exist
constants C >0, 4 < 1, such that 4

I Tafm|Es|<CA* and ||T,f-"|E"||<Ci* for all =Vc

" So, B¢ is contracted by T, f and E* is expanded by T, f. If A is a periodic
orbit of period p, then A is hyperbolic if and only if 7,7 has no eigen-
.value of absolute value one for x € 4, in which case x is called a hyper-
bolic periodic point. : .

DEFINITION  (Smale) f € Diff"(M) satisfies Axiom A if and only if
a. £ is hyperbolic; : . A |
b. The periodic points of f are dense in 2, Q(f) = Per f

mmmo._.w.»rUmoozm.omdozﬂmmow.mz.AmBm_o. Hﬁ,__v.ﬁ\mﬁmmmom
Axiom A, f has a spectral decomposition. E .

Q-StaBiLiTy THeorem (Smale [34; 35]) If f satisfies Axiom A and
has no cycles, then f is Q-stable. , o

'The proof of this theorem proceeded via the filtration theorem and a
local analysis of hyperbolic 2s. Actually the theorem Smale proved was
somewhat stronger because of his no-cycle condition. Smale stated the
following and it follows from the work of Hirsch et al. [10]. .

ProrosiTioNn  If f satisfies Axiom A, m:m =02,V ... v b\n is ﬂrm
spectral decomposition, then W*(2;) N W*(£2;) = 2, for all 7.

This proposition says that an ?moa A f has no 1-cycle.
Smale has conjectured: - .

,Oo.zumoﬂdwm AmE&oV\mUE.AEVmmb-wnmzo”mmubaon_%mm\mmmwmmm,
Axiom A and has the no-cycle property. : ‘ .
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To this end Palis has proven

Tueorem  (Palis [18]) If f satisfies Axiom A and if fis Q stable,
then f has the no-cycle property.

_Recently Franks has defined a notion of differentiable Q-stability. Let
H(£Q, M) be the set of homeomorphisms of 2 into M with the C° topology
and metric o. Let d(f, g) denote the C°-distance between two elements
of Diffr(M). .

Umﬂzui.oz Let f e U:ﬂAE ). f is differentiably Q2-stable if there exists

.a function ¢: U; — H(R, M), where U is a neighborhood of f, ¢ is

differentiable at f, #( f ) = the inclusion of £, and ¢(g) is an £2-conjugacy
between f and g for any g€ U. ,

TueoreM (Franks [7]) Let f € Diff'(M). Then f satisfies Axiom A
and has the no-cycle property if and only if f is differentiably £-stable
and K > 0 such that o(¢(g), inclp) < K d(f, g)- . .

While this important theorem certainly classifies the Axiom A no-cycle
property diffeomorphisms in Diff'(/) in terms of an £ stability property,
Smale’s conjecture still stands and is still a very interesting problem.
Putting some conditions on the conjugacy is reasonable, and previously
for structural stability one used to ask for a conjugacy function such as
¢ but which was just continuous at f. Another interesting approach to the
conjecture may be found in Franks [6], but we will not go into it here.

Turning our attention to structurally stable diffeomorphisms, we begin
by- defining the stable set of a point as in Smale [33]. We say that for
x,y € M and a fixed diffeomorphism f, x ~ y iff d(f (%), f *(¥)) — 0 as
n — oo, and x ~, y iff d(f*(x), f*(y)) = 0 as n - —oo. We denote by
Ws(x) and W9(x) the equivalence classes of x for these relations. Note
that the WW*s and W' partition the manifold M. :

Tueorem ([34, 10]) - 'If f satisfies Axiom A then the W* and WU
are smooth 1-1 immersed disks.

Smale has raised the following very mao_.nwmmm question.
.Ocmm,ﬂoz ‘Are the W,s generically smooth manifolds Vx € M?

In the case of a periodic point x of period p, W*(x) = {y € M| f"(y)
—>x as n— oo} and we have .
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StaBLE MANIFoLp THEOREM If x is a hyperbolic periodic point of
f € Dift'(M), W(x), (Wu(x)) is a C7 1-1 immersed cell of dimensions
s(x) which is tangent to E* (Ev) at x.

Much of the analysis that goes into the proof of the 2-stability theorem
mz.m the theorem immediately above is concerned with a generalization of
this theorem to hyperbolic sets (see Hirsch and Pugh [8] and Hirsch et al.

[107). A

UmEMS,SZ Let f be Axiom A, then f satisfies the strong transversality
condition if and only if W*(x) and W¥(x) are transversal for all x € M.

IfQ(f v is finite, then it consists of a finite number of periodic points. |

If it satisfies Axiom A, then each of these periodic points is hyperbolic.
The spectral decomposition is then just éach periodic orbit. The stable set
of the orbit (as defined after the 2 decomposition property) is the union
of the stable manifolds of the points in the orbit. The strong transversality
condition then becomes W3(p) only intersects Wu(q) transversally for
any two periodic points p and ¢ of f. Thus we have the usual definition
of Morse-Smale diffeomorphisms, so

DeriNtTiON  f € Difff(M) is Morse-Smale if and only if Q(f ) is finite
and f satisfies Axiom A and the strong transversality property.

We remark that it can be seen that a diffeomorphism which satisfies
Axiom A must satisfy the strong transversality property in order to be
structurally stable. Also the strong transversality property implies the
no-cycle property, and Smale first used a similar property in proving
the Q-stability theorem. . :

There is one case in which the problem of classification of an open and
dense set of diffeomorphisms has been solved. That is the beautiful
theorem of Peixoto which raised so many hopes and questions. .

‘THEOREM -(Peixoto [21]) The Morse-Smale diffeomorphisms are open
and dense in Diff"(S?) and are the structurally stable diffeomorphisms.

This theorem gives the' existence of a countable number of models
which describe the topological conjugacy classes of an open and dense set
~of diffeomorphisms of S, o .

Morse-Smale diffeomorphisms are the simplest- diffeomorphisms to
understand on any manifold. Their existence is assured by the following

N
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constructions: Fix a Riemannian metric on M and let f: M — R be a
differentiable function. Let —grad(f ) be minus the gradient vector field
of f, and let ¢, be its associated one-parameter group of diffeomorphisms.
@y has the property that f(p,(x)) is a strictly decreasing function of ¢
unless x is a critical point of £, in which case ¢,(x) = x, V¢ (see Figure 2).

Figure 2

- Now fix ¢ = 1, and consider the diffeomorphism ¢,: M — M. From

the above, it follows that 2(p,) = the singularities of f = the fixed points

- of g;. Now by a theorem of Morse any f: M — R may be approximated

by one with nondegenerate critical points. A nondegenerate critical point.
is defined as a critical point where D% defines a nondegenerate quadratic
form on T, M. A nondegenerate critical point is isolated and is a hyper-
bolic fixed point of ¢,. So if f: M — R has only nondegenerate critical
points, we have (g, ) is finite and hyperbolic and, in fact, consists of the
fixed points of ¢,. Now it follows from a theorem of Smale that an f:
- M — R which has only nondegenerate critical points may be approxi-
mated by one such that ¢, has the strong transversality property.’
The usual height function on the torus 7%, for example, has four hyper-

" bolic fixed points-for ¢, but fails to satisfy the strong transversality

condition- because W4(x;) — x; = W9(x,) — x, and they are both one-
cells (see Figure 3). By tilting the torus a little we may make them disjoint.
Since the stable and unstable manifolds of periodic points are taken into
stable and unstable manifolds of periodic points by a topological con-
jugacy, we see that the usual height function gives a ¢, that is not struc-
turally stable because of the lack of transversality. It is easy to see,
however, that the ¢, obtained by tilting the torus a little is structurally
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stable. Note that the oEmEm_ @1 is Axiom A and has no o%o_aw. 50 it _m
2-stable.

We have dwelt this Hocm on this example. of a Morse-Smale ¢,, al-
though we have not generally been presenting the rich multitude of ex-
amples, because these p; seem to have motivated the spectral decomposi-
tion picture. What happens is that a fixed point is replaced by a more
complicated £2;. We keep the hyperbolicity and transversality with Axiom
A and strong transversality, drop the transversality for Axiom A and strong
transversality, drop the transversality for Axiom A and no cycles, and
finally drop the hyperbolicity for fine filtrations or the spectral decomposi-
tion and no-cycle property. o

X

o . e . .Figure 3

'We will try to. nmake this more wnaﬁma as follows, but for the best
treatment we will have to speak dbout flows. Recall that a Cr-vector field
X on M is a Cr-séction of the Sbmmba bundle TM. X gives rise to a C*
H-vaBQQ. group om m_mooBo%r_mBm N. o M Iv.g teR, i:.r the
mnovonﬂmm that =~~~

o X) lmo = X (3)

Naoum ;Nui... and
A @Enﬂ,\_,, mE..w.Eﬁm@ for X, if and only if X,(4) = 4, V¢ € R.

DerintrioN “A filtration: for a 1-parameter group of &mooBoGEma.sm

. @¢2 M — M is a sequence of compact submanifolds with smooth boundary

0=M; < My < -+ = M = M:such that ¢ (M,;) < Int(M;) Vt >0,
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and g,(x) is transversal to dM;, Vx € M and 0 < i < k. A filtration for
@, is called fine if

Ki= () @(M; — M) = 2 0 (M; = M;_,).

>0

What we have said about filtrations for diffeomorphisms applies equally
well for one-parameter groups, where if x € M,

o) ={ye E_ dt; — o0, t; € R and g (x) -y},
etc, o

DerINITION Let X be a C7 vector field on M, and let A be a closed in- -
variant set for X,. Ly: M — R, is a Lyapunov function for (X, 4) if the
critical set of Ly equals 4, {grad Ly, X> <0 on M — A for some Rie-
mannian metric on M, and Ly is differentiable of class at least dim M.
If 4 =80 we mmBm_% say Ly is a H&Smcso,q function for X.

.Hfo following theorem was first 5&38& in HNA.“_ and its proof :mSm
[41] is essentially given there.

TarorEM Let X be _m C vector field o.b.g. and let M=M;> -+ > E..V
=0 be a filtration for X,. Then there exists a Lyapunov function Ly
mop. A.N K), érono K= C.L K; and Lx(K;) = 1.

. Asa oon.o:mn% So e have:

CoROLLARY X has a fine filtration if and 05_% if X has a H&Svcbo,\
mcnocoa with a finite HEBUQ of critical values.

In this case the Lyapunov function by [41] can be made C=, In mobonw_
we suppose a vector field will have a H&chsg function iff it has a fine
sequence of filtrations. In particular, if X, is Axiom A’ (see Smale [34]
for definitions) we have the theorem stated by Pugh and Shub- [24].

TueoreM ([24]) - If X, is Axiom A’ and has no cycles, then X has a
0.8 ﬁw»v:zg function with a finite number of critical. values.

The study of H&Svcso,\ functions for vector mnEm. owwmn_»:v« their
bifurcations seems very important. It would be interesting to know if
Axiom A’ and no-cycle vector fields have special Lyapunov functions.
The. energy functions of Meyer [13] are special Lyapunov functions
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for Morse-Smale vector fields. The following is an important and open
problem:

ConjecTURE 'The vector fields which have Lyapunov functions are
. generic.

Now if we think of a diffeomorphism as a section of its suspension we
get: . C u o
DeriniTION * Let f € Diff"(M) and let' 4 be a &8& invariant set for f.
L;: M — R, is a Lyapunov function for (f, A) if the critical set of
NQ > A, Ly( f(x)) < Ly(x), equality holds if and only if x € 4, and L,

is a_m.mno:cmw_o of class at least dim M + 1. If 4 = Q we mzsv_% mmw
NQ is a mevcbo< function for f.

As a consequence we have the following:

Treorem Let f € Diff(M) and let M= My > «-- = M, > M, = §
be a filtration for f, then there exists a C* H%w@::o,\ ?boSc: L; for
(f, K), where K = Uk, K; and L(K;) =i.

Conjecture  The diffeomorphisms S?or have H&S?SE\ mcan:onm are
generic.

Maiié independently is studying similar problems mmwmazm from

. Auslander’s R-set (see [3, 4]). He has a program which could prove the

above conjecture, and talking to him was very interesting. We could have
constructed the Lyapunov function first for an 2-decomposition with no-
cycles and then obtained the filtration from L, by taking regular values,
but the proof of the existence of L, almost gives the filtration. Once
again we suppose that the diffeomorphisms which have Lyapunov func-
tions are the same as those with a fine sequence of filtrations. It would
be interesting to know when, if not always, we could assume that L,
is-critical exactly on A in the definition of a b%mwzag function for
(f, 4).
. Smale first defined go_.mo..msm_n a_mnoBoG?wEw in ?m work [30]

in which he proved the no-cycle property and more from the strong
~ transversality condition. Rosenberg later first isolated the no-cycle condi-
tion [27] in proving a generalization of the Morse inequalities.

Let f € Diffr(M) be Morse-Smale. Let C; be the number of periodic
points x of f with dimension W¥(x) = 7. Let B; be the ith Betti number
of M. :
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THEOREM (Smale [30]) Let f € Diff"(M) be Morse-Smale. Then.

C, > B,,
C, —Cy =B, — B,,

dim M

Y (=1)C= M,A 1)B; = x(M),

1=0

the Euler characteristic of M.

This theorem has previously been one of the few theorems relating
the actual orbit structure of a diffeomorphism to the topology of the
manifold. The finer analysis of the relations of the C; to the B; has
somehow more traditionally been considered differential topology for the
case of gradient fields at least. Of course, Smale’s H-cobordism theorem
is the outstanding example of this. One might ask for Morse type in-
equalities for more general s, or even for Qs with a given filtration.

Returning to Stability properties, Palis proved:

THEOREM . (Palis Tdv The Morse-Smale a_mmoao%?mam are open
in U&AE ).

Then Palis and Smale proved:

- 'THEOREM (Palis and Smale [20]) Let f € Diffr(M) be goaotmau_m.

Then f is ms.:QcS:% stable.

.E:.\% ooe.moﬁc_.om in this paper:
ConjecTURE . (Palis and Smale [20]) f € Diff"(M) is structurally stable .

if and only if f is Axiom A and satisfies the strong transversality con-
dition.

In the case that £ is finite, the theorems of Palis [18], Palis and
Smale [20], and Smale [35], m:& a complete answer to the stability
conjectures.

THEOREM mcnvoma fe U_mﬂﬁ_& and Q(f) is finite. Then:

a. fis Q-stable if and only if fis Axiom A and has the no-cycle vaSQ ;
b. fis structurally stable if and only if f is Axiom A »za satisfies the
strong Qmsménmm_:% condition.
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Last year Robbin proved:

3

THeOREM (Robbin [26]) Let f € Diff}(M) be Axiom A and m»mm@
the strong transversality condition. Then f is quoﬂcnm:% stable in
Diff*(M).

Robbin’s technique is to find a fixed point in a Banach space of func-
tions. Recently, Melo using techniques closer to Palis and Smales original
proof has improved the theorem for 2-manifolds.

Tueorem  (Melo [12]) Let f: M2 — M2 be Axiom A and satisfy the
strong transversality condition, where f € Diff!(M »v Thenfis mnncoﬂcnm:%
mSEo.

- Starting from the Q-stability theorem one can see that the Axiom A
and strong transversality diffeomorphisms are open. But we have said
nothing about examples. Recently, Smale has proven:

THEOREM (Smale [37]) Every f € Difff(M) is isotopic to a C* Axiom
A and strong transversality diffeomorphism, and hence to a ma.cnﬁcnmzw
stable diffeomorphism.

As the proof of this theorem is contained in this volume we will make
no remarks about it except to note that it gives loads of examples of Axiom
A and strong transversality diffeomorphisms which are not Morse-Smale.
In fact, in the light of this theorem Smale has made a conjecture which
was first raised as a problem by him in [34].

We recall that a Morse-Smale diffeomorphism is called gradient-like
if W*(p) N Wi(g) # & implies that dim Wu(g) > dim Wu(p), for mb%
two periodic points p and g of f.

ConNjecTURE  (Smale) f is homotopic (isotopic) to a gradient-like
Morse-Smale diffeomorphisms if and only if f» is homotopic (isotopic)
to the identity of M for some n. Smale has told the author that if f is
homotopic to a gradient-like gon.mmlmaw_m diffeomorphism, then f™ is
homotopic to the identity for some z.

The problem of finding necessary and sufficient conditions for a diffeo-,

morphism to be homotopic (isotopic) to a Morse-Smale diffeomorphism
seems more difficult. In these proceedings we have proven [28]

Taeorem If f is homotopic to a Morse-Smale diffeomorphism then
fx: Hy(M, R)  is quasi unipotent.
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The converse of this theorem mvo:_n_ be true at least in the case where M
is the n-torus T™..

In this Bourbaki seminar talk, Smale restated the problem of &S»B_om_
systems more or less as follows:

Find an increasing sequence ofopensets Uy c Uy, c Uy < --- < Q»
< Diff"(M) such that %k is not too large, the f; in U; have mmonmmm_sm
regularity properties with strong regularity properties for small #, and
U, is generic. He proposed given the state of the subject at that time that:

U, = {f e Diff'(M) | 2(f) is finite and f satisfies Axiom .P and the
strong transversality condition},

U, = { f € Diff"(M) | f satisfies Axiom A and the strong ﬂnmnmﬁnmwrn%
condition},

U, = { f € Diff"(M) | f satisfies Axiom A and has nro no-cycle property},
U, = {f e Diff((M) | f has all the known generic wSﬁanww.

The reader will easily be able to translate the conjectures about struc-
tural and £ stability in terms of elements of Uy, U,, and Uj, as in Smale
[36]. Somehow these inclusions of the U; seem like a filtration of Diff"(M).
On, the other hand, it seems important somehow to uniformize Smale’s.
isotopy at least for almost all diffeomorphisms. Smale’s proof proceeds
by picking a handle decomposition of the manifold. Bob Williams and
the author worked out that if one picks the “wrong” handle decomposi-
tion of T?, for example, his process can isotop a Morse-Smale diffeo-
morphism into an Axiom A and no-cycle diffeomorphism with an infinite
0, which seems like it is complicating the problem. Thus one would

" somehow like to vary the handle decomposition with the diffeomorphism

to give the most natural picture. Although this is not a precise statement
of anything, it certainly seems relavant to the problem of which diffeo-
morphisms are isotopic to Morse-Smale &mmoaoévmmaw and Smale’s
conjecture. -

Conversations with Smale and Palis have been useful in formulating
the following precise

ConjecTURE There exists a ono-vmnm:ﬁnnn group ¢, on U&.AE ) S:r
the following properties:
1. @, has only isolated critical points;

2. there exists an open and dense set U < Diff"(M) such that given
g € U, there exists a ¢, € R with ¢,(g) structurally stable for all z > ¢,.
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Relating this conjecture to the U; of Smale, we think of it as follows:
Is there a positive real-valued function H: U_QAEV — R such that:

1. H has isolated critical points

2. dC; > 0 such that U; is owob and monmo in H-1[0, C{], for i < 3,
and then similarly for other U;?

‘We are thinking of ¢, as the one-parameter group of diffeomorphisms
associated to a “‘gradient vector field” of H (a pseudogradient vector field
in the sense of Palais _”H 6] would be more precise), the ms.:oﬂcnm_q stable
systems as open sets in the stable manifolds of the local minima of H,
and U as these stable manifolds.

We think that a positive answer to this conjecture would be very
important, as difficult and optimistic as it seems. Of course, one could
just as well restrict one’s attention to a single isotopy class in Diff"(M).

One might attack this conjecture something like this: Let I'°(M) be the
Co-sections of M, and f,: (M) 2 be the map o — Dfqgf -. All the
known examples where f is structurally stable coincide with I — f,, being
surjective. Define WS(f,) the weak spectrum of f,, to be the points 4
where AI — £, fails to be surjective. Now —d(WS(f4), 1) is negative
exactly where I — f, is surjective, and one might try to smooth this func-
tion. While a result in this direction would be interesting, it would be
much more interesting if a positive solution were found which gave some
information about the changes in the orbit structure of ¢ ,(x) as ¢ increases,
say in terms of usual bifurcation theory. It might be more reasonable to
take a Sobolev space of diffeomorphisms, instead of Diffr (M), where one
could construct an actual gradient function.! =

Before going on to consider other mSgrQ properties we would like
to talk about the main known generic properties. The first theorem in
this direction that we know of was proven by Kupka [11] and Smale [31].

DeriNiTION  f € Diff"(M) is Kupka—Smale if and only if:

1. every periodic point of f is hyperbolic.
2. for any two periodic points p and g of f, Wu(p) and W(q) only
uznnnmooﬁ transversally.

TrHeoreM (Kupka _”H: and mBm_o [31]) - The Ku upka—Smale diffeo-
morphisms are generic in Diff"(M).

t In fact, the existence of the one-parameter group does follow from general consid-
erations in this case and by itself is not too interesting.

STABILITY AND GENERICITY FOR DIFFEOMORPHISMS 511

The next two theorems were proven by Pugh only for UmmuQS ). The
question of the validity of these theorems for arbitrary 7 seems a moromxw

_ but very important problem. : : -

THEOREM (Pugh [22]) Letf € Diff"(M), and let x be a recurrent point
of f,ie, x € a(x) U 8?& then there is an arbitrarily small C* vo::.&m-
tion of f, g, such that x is a periodic point of g. )

THEOREM ﬁv:mr [23]) Q2(f)=Per(f) is mmnmnmo m:. Diff*(M).

The first theorem is called the C! closing lemma. So there are really
two problems.

PROBLEM ‘(1) Is the Cr-closing _mBBw true? (2) Does bA f)
= wn; f) generically in Diff(M)? ,

Recently Takens [39] has proved some genericity properties &oum‘ﬂrm
lines of Zeaman’s tolerance stability conjecture. In particular, he improves
on a result of mv:mr 23] mb& proves the mo:osanm ﬂrmoﬂng.

TueoreM (Takens [39]) There exists a generic set - in Diffr(M) such
that for Vfin R and E > 0 there exists a neighborhood U of f in Diff"(M)
such that if g € U then Q(f) < Q.mﬁb@vv and Q(g) = Ug(2(f))-

Here Ug(Q(f)) means the m-bn_mzuoﬂroom of 2(f)in M. Of course,

one may combine all these generic properties to describe one generic

“set of diffeomorphisms.

These are some things which we have skipped over in our presentation.
First there is the case of Anosov diffeomorphisms, which historically
preceded Axiom A diffeomorphisms.

DeFINITION  f € ‘Diffr(M) is Anosov if f is hyperbolic on all of M.

THEOREM A>50mo< [2]) Anosov diffeomorphisms are mnncoﬁcnm:%
stable.

The astute reader will notice that this theorem has not been subsumed
by later theorems, because Robbin’s theorem assumes that f is C?, while
on the other hand the Q-stability theorem may not cover this case Vnnwcmo
we have not asserted that Q = M.

However, there is the following still open problem.

ProBLem If f e Diff"(M) is Anosov, does 2(f)= M?
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In the case where E® or E* is a line bundle over M, Newhouse [14]
has ‘answered this question positively. Some other problems about
“ Anosov diffeomorphisms stated in [34] and still unresolved are:

ProBLEM Does every Anosov diffeomorphism of a compact manifold
have a fixed point? and if-M -admits an Anosov diffeomorphism, is the
universal covering space of M diffeomorphic to R?? Warren White [40]
at this conference has found a complete metric on R? with an Anosov-
diffeomorphism with no periodic point.

We will not go into these problems, or the problem of finding all Anosov
diffeomorphisms up to topological conjugacy. Once again we emphasize
that this work is far from complete. Notably, we have excluded the large
amount of analysis that has gone into studying the structure of the
£2;s in Smale’s theorem, and the work done on the ergodic properties of
these ;s and Anosov diffeomorphisms, etc. .

Returning to stability properties, we want to start by pointing out that
the spectral decomposition and no-cycle diffeomorphisms describe a
wider class of diffeomorphisms than the Axiom A and no-cycle diffeo-
morphisms. In fact, large open sets of such examples are constructed
in [9] and [25]; these examples have a stability property which is defined
below. : : ,

DerFINITION  f € Diff'(M) is Svo_ommo,m:% Q-stable if there exists an
open set U of fin Diff"(M) such that for all g € U, 2(g) is homeomorphic
to 2(f). v o A

It is still not known if the topologically Q-stable &mooBo%EmBm

are generic im Diff"(M). Although this is probably false, the novo_ommom:% .

Q-stable diffeomorphisms are interesting. The trouble with asking -if
they are generic right now is that-in order to verify the conjecture one
would have to know all the perturbations of most diffeomorphisms. The
study of perturbations of Lyapunov functions, although far away, might
give some information about this. Still we state:

ProBLEM Are the topologically Q-stable diffeomorphisms generic?

Finally, we would like to end by calling attention to Sotomayor’s work
on bifurcations and his notion of k-stable diffeomorphisms, which may be
found in these proceedings, see [38]. It would seem that the classification
of these diffeomorphisms would be very important from the point of view
of catastrophe theory which received so much attention at this conference.

T
3

-
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- . . I Introduction

Smale [6] studied geometrically the problem.of describing the flow
in a mechanical system of two degrees of freedom with symmetry. In
this situation, the group S* acts on a two-dimensional orientable manifold -
M (configuration space), with the action leaving invariant -a potential
function V': M — &2 and a kinetic energy function (riemannian metric
on M) K: TM — £2. The flow 6f the system is defined on TM (phase
space) by the energy E = K 4+ V on: TM — 7 and Hamilton’s equa-
tions, where w: TM — M is the projection. (For a general reference, see
[1, 3, or 6].) Both the energy function E and the angular momentum
function .\ TM — 22 (defined in general in [6]) are _unmmnm_m of the
Bo:on. i.e., are constant on orbits. Let

Iy = E(e) N J-(p) = (E X J) e, p) = TM.
If Eo action is free and (¢, p) is a regular value of EX ], I ¢,p 18 2 “cylinder”
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