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Given a complex polynomial f
(2) +ooot ay and a complex

d
=z +ad—l z
b :
number z, we can attempt to find a root of f by locally inverting f at f(z.)
0 ]

to fz taking f(zo) to 2y and analytically continuing fz -

0
This process usually works (see Smale for a discussion of

along the ray
from f(zo) to 0.
this and the history) and defines a curve leading from z0 Lo ja ‘root ¢ of £.

This curve is given by

=

£, 7 ((A-h)E(zy))
0 -

where 0 < h < 1. We may think of h as a complex variable and then

fz = ((l-h)f(zo)) is an analytic function. Let hl=h1(f,zo) be the radius

0
of convergence of this function considered as a power series around h=0. If
hl > 1 then substituting h=1 in the power series expansion of fz _1((l—h)f(zo))
0
gives a power series expansion for r. But h1 may not be bigger than one, and

even if it is it is not usually computationally practical to evaluate an

infinite series, so we truncate this series at some finite power of h. Let

~1

where tk stands for truncation of a power series at degree k

o ; k :
i i ;
(Ik( Z a; *z ) = .z a; * 2 Y Thus zg > Ek(h,f)(zo) for 0« h ie
i=0 i=0
a curve which has kEh order contact with fz -1 ((1—h)f(zo)) at z. Our

0
plan is to iterate Ek for small values of h obtaining = Ek(zn_l) which

stay close to the curve fZ < ((1—h)f(z0)) and approach the root ¢. As in
0
Smale we rely heavily on the theory of shlicht functions. A full detailed

account of the work described here may be found in Shub-Smale which is in



The power series expansion of r was given by Euler and he iterated E

k
with h=1 and 1 < k < 35 to solve equations see Euler. Thus we call our

iterative algorithms, kEh-incremental Euler.

It is not difficult to compute that

" f(z) 2 2 3
EA(h,f)(z) I i (h=9,h" + (20, - o )h” - (5023 = Boym, & aa)hé)_

where o = -yt 1 ()5 fi-:'L(z)
11 (27T

of h, k = 1,2,3 we obtain Ek for those values. In particular E

» By keeping only the first k powers

i j t
1 1s jus

incremental Newton which was studied in Smale.
The first main result is the following:

Theorem 1  There is a universal constant B, 1 < B < 1.07 such that for any

polynomial f, complex number z with £'(z) # 0, f(z) # 0, z' =
k+1

f(z') h

* —= 4 =1 -h + f — d

(*) £(z) £ h Q(hs $2) . k an
1

Ek(h,f)(z)

]Q| < Bk(y) where

B(k+1) (1-v) .
[@-n2-s] [a-n ey s aeny’]

Here y= %—-and is assumed to satisfy 0 < y < Vi where Vi is the first positive
1

number for which the denominator of Bk(y) vanishes.

B, (V) =

i i . i s rapidl
Computation shows that Y, is approximately ?-and that Y, increase pidly

; i . : of applicability of the
to 3 - V8 which is approximately % Thus the range PP
h
estimate is around 7

£lz')
We may rewrite (*) ?%;5— =1 -h+ T(h,f,2)h

where |T| i_Bk(T)Yk = o (1)

. < T Computation of
Thus to make sure that lf(z')l < ]f(z)] we want “k(T)

- ique Yy, 0 < Y. < ¥
. i there is a unique Y, , k k
m y) shows that a, (y) is increasing: s k

v, O .< < ;.-
such that ak(Yk) = 1 and uk(Y) < 1 for vy K



Theorem 1 admits the following Corollary. Let pe = min lf(e)’f .
e

£!(0)=0 -
Corollary: Let k > 0. Suppose a polynomial f and a complex number z satisfy
?
£(2)] = b (X 5
l-l-'yk

£ for some b < 1.

Then with h = 1, (Ek)ﬂ(z) = z£ is defined for all £ and z =+ z%¥ ag £ +

with f(z*) = 0. Moreover, ]f(zz)l < c]f(zzfl)1k+1 alt £ = 0
(" (k+1)=E ord ") with emlr——s)
) order convergence") with c (TE?EESTO 2

Finally

£y _
!f(z£)| f_b((kﬂ) )Ik_pf'

1+?k

We will call z an approximate zero of f relative to k if

|f(z)! < ?k. i ;
_k o An approximate zero of f relative to all k > 0 will simply

1+7k
be called an approximate zero of f
§L
. N -]-._';?Y__- increases with k.
1 ., % 1 5 Y,
—=  >——2= >= fork>5 and 'k 1
12 1— Y 7 = T‘CE For: alkl k.
it e e

Thus if ]f(z)] < i%—, z is an approximate zero of f.

- - Qur goal is to find approximate zeros of f!

For 0 < a < -g— let -Wf,z,a = {WGC”W' iz[f(z)l, ]arg ;E_Z)I < a}

w1 )
Define w be the largest of the We to which fz may be analytically

£ 2

continued and Gf . to be the corresponding o. Since the Ve o o 2T® simply
2 3 3

connected, this definition makes sense.
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k.
Let K(k) = (K*1)

1) _ 1
k Vi (l—vk)k

2' u V a CO ZO SuCh that

£
|(z0)l>pf>L>0and . , > 0. LetC=§1— log If(zﬂ.

0 f,2, L
sin ©
Then there is an h. > f,z
0 = _ ‘l. with this property. For each 0 < h E-hO
R(k) (c+1)k
; ) £l O,z
and any s > =—
y &2 g (log — b e
£ <
[£(z )| <L
1 .
K(k) decrease to — which is less than 6.
3-v8
k = Al 2 3 4 5 6 7 8 9 10
K(k) < (47.1 2Ll 14 .7 12,1 107 9.9 9.3 8.9 8.6 8.4

Smale gives a better result for Newton's method than the K(1) achieved here.
Thus the problem of finding approximate zeros becomes the problem of

controlling pf and ef’zO.
This is done in the next two propositions

zd_l +...+ a, vhere \ai{i_l,‘i=9,..., d-1}

Let P,(1) = {£]£(2) = 2" + 244 0

Proposition 1 (Smale)

; 2
Vol {f € pd(l)]pf < a} < (d-1)a
where Vol means normalized Lebesgue measure.
Let s1 be the circle of radius r around 0 in C.
)

- i U T );. tnvﬂ(ﬂ FeP (1‘



The last ingedient in the theory is a checking procedure. Let R(f 2:9
’d

E! £
be the resultant of f and g See Lang. R(f,aﬁais computable from the
coefficients of f alone.
1 - ;
Let L(f) = iz-min (1,pf )

Lemma Let f& Pd(l), then

1
R(E,S )
a) P,
£ = (g+3)29-1

b) If |f(z)| < L(f) then

f‘
L Y R(f,d )
£ B q, 5y N < W (20

for £ = |“1ogk+1(3d log d) |= £(k,d).

a) is a fairly naive estimate and b) follows from the Corollary.

The use of the lemma is the follow
If we suspect that

|£¢z)| < L(£f) then

ing.

£! .
| £ Eﬁ(z)l <« = R(f,E—- which is checkable by direct calculation. If this

14y

(d+3)2d'1

last inequality holds then Ef(z) is an approximate zero of f.

We use the results above to prove the following theorems.

Lebesgue measure on Si x Pd(l).

Let u be normalized

Theorem 3 Given 0 < y < 1, d > 1 there is an iterative algorithm

k= E(k(v;d),h(u,d)) and an r = T (u.d)

such that:

1+ =
for (z;,f) in si x P (1) and s = le(119§—219 Mog-dl 4+ Lys

- o= 'F'S{-r \ ie am annravimatse zern far f with nrohahilitvy

1 - u.



The i i
€xponents in Theorem 3 1mprove considerably on those of the Main

Theorem of §
male, Yet it seems paradoxical that part of the improvement is

achieved by making r

. 1 :
(u,d) increase like E; which contributes the factor d in

the t i
heorem. It would Seem more sensible to Pick r small, close to 1. T 4%k

an exc
ellent problem to €arry out the analysis in this case; it becomes more

difficult,

By attempting to find a "good" starting point zy for each given f we

m n ) . .
Prove “average” theorems for iterative algorithms based on the kil incremental

Euler algorithms. By "average" we mean the integral with respect to normalized

Lebesgue measure on Pd(l).
Theorem 4: There are probabilistic and deterministic iterative algorithms
for finding approximate zeros for f Pd(l), with the average number of steps
required 0(d) and O(d2 log d) respectively.

The algorithms in Theorem 3 and 4 may be executed in 0(d log d) arithmetic
operations for each step in exact arithmetic with log and real kEE-roots.

They are robust.

References
L. Euler, Institutiones Calculi Differentialis, exp IX, Opera Omnia, série I,
vol. X, -pp. 422-455.

S. Lang, Albegra, Addison Wesley, Reading, Mass.

M. Shub and S. Smale, Computational Complexity: On the geometry of polynomials
and a theory of cost: Part I and II, to appear.
S. Smale, 1981, The Fundamental Theorem of Algebra and Complexity Theory, Bull.

Amer. Math. Soc.,Vol. 4, No. 1 pp. 36.



