

extend enough of the analysis to give a proof of the theorem in the case of the principal bundle.

REFERENCES:

- [1] Anosov, D.V. and J.G. Sinai. Some smooth ergodic systems, Russian Mathematical Surveys 22 (1967) 103-167.
- [2] Hopf, E. Statistik der Lösungen geodätischer Probleme von instabilen Typus, II, Math. Ann. 117 (1940) 590-608.

(16) Instability

M. Shub

Diffeomorphisms $f : X \rightarrow X$, $g : Y \rightarrow Y$ are topologically conjugate if there is a homeomorphism $h : X \rightarrow Y$ such that $hf = gh$. Let M be a C^∞ manifold with $\partial M = \emptyset$, and $\text{Diff}^r(M)$ the space of C^r diffeomorphisms of M , with the C^r topology: then $f \in \text{Diff}^r(M)$ is structurally stable if there is a neighbourhood U_f of f in $\text{Diff}^r(M)$ such that $g \in U_f \implies f, g$ topologically conjugate. It was conjectured but proved to be false [2] that structurally stable diffeomorphisms were always dense in $\text{Diff}^r(M)$.

Define $\Omega(f) = \{x \mid \text{given open } U \ni x \text{ there exists } m > 0 \text{ with } f^m(U) \cap U \neq \emptyset\}$. Then $f \in \text{Diff}^r(M)$ is Ω -stable if $\exists U_f$ with $g \in U_f \implies f|_{\Omega(f)}, g|_{\Omega(g)}$ topologically conjugate. An example due to Abraham and Smale in 1967 [1] showed that Ω -stable functions also fail to form an open dense set in $\text{Diff}^r(M)$.

However, we may define a weaker property: $f \in \text{Diff}^r(M)$ is topologically Ω -stable if $\exists U_f$ with $g \in U_f \implies \Omega(f)$ homeomorphic to $\Omega(g)$.

Problem: Do topologically Ω -stable diffeomorphisms form an open dense set in $\text{Diff}^r(M)$?

The following shows that topological Ω -stability is weaker than Ω -stability:

THEOREM. There exists an open set $U \subset \text{Diff}(T^2 \times T^2)$ with $g \in U \implies g$ topologically Ω -stable but not Ω -stable.

The set U is constructed using an Anosov diffeomorphism $A : T^2 \rightarrow T^2$ and a related 'deformed' diffeomorphism DA defined by splitting a saddle of A into a sink and two saddles by a large C^1 -isotopy. A diffeomorphism $G : T^2 \times T^2 \rightarrow T^2 \times T^2$ is defined by $G(x,y) = (A^2x, \phi(x)y)$ where $\phi : T^2 \rightarrow \text{Diff}(T^2)$ is constructed so that $\phi(x) = A$ outside a small disc of T^2 , $\phi(x) = DA$ inside a smaller disc, and ϕ gives the isotopy $A = DA$ in between. Then $\Omega(G) = T^2 \times T^2$, which is $\Omega(G')$ for all G' close enough to G by the "equivariant fibration theorem" (p. 40). But G is not structurally stable and so not Ω -stable.

REFERENCES:

- [1] Abraham, R. and S. Smale. (To appear in Proceedings of AMS Summer Institute on Global Analysis, Berkeley 1968.)
- [2] Smale, S. Structurally stable systems are not dense, Amer. J. Math. 88 (1966) 491-496.

(17) One-parameter families of diffeomorphisms P. Brunovksý

We give some results concerning the generic behaviour of periodic points of C^r maps ($1 < r < \infty$) $f : P \times M \rightarrow M$, where P and M are C^r manifolds, $\dim P = 1$, and the map $F_\mu : M \rightarrow M$ given by $f_\mu(x) = f(\mu, x)$ is a diffeomorphism for each $\mu \in P$. For given P, M we denote by \mathcal{J} the set of all such f 's with the Whitney C^r topology.

Similar problems have been studied by J. Sotomayor (two-dimensional flows) in [2] and K. Meyer (two-dimensional