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Abstract. In this paper, we propose a maximum entropy method for predicting dis-
ease risks. It is based on a patient’s medical history with diseases coded in Interna-
tional Classification of Diseases, tenth revision, which can be used in various cases.
The complete algorithm with strict mathematical derivation is given. We also present
experimental results on a medical dataset, demonstrating that our method performs
well in predicting future disease risks and achieves an accuracy rate twice that of the
traditional method. We also perform a comorbidity analysis to reveal the intrinsic re-
lation of diseases.
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1 Introduction

Disease prediction is an effective way to assess a person’s health status. Studies [1,3] have
shown that in many cases, there are identifiable indicators or preventable risk factors
before the onset of the patient’s disease. These early warnings can effectively reduce
the individual’s risk of disease. Theoretically, this can reduce the number of treatments
needed and increase the necessary effective interventions. However, the combination of
problem factors caused by different diseases and the patient’s past medical history are so
complicated that no doctor can fully understand all of this. Currently, doctors can use
family and health history and physical examinations to estimate the patient’s risk and
guide laboratory tests to further evaluate the patient’s health. However, these sporadic
and qualitative “risk assessments” are usually only for a few diseases, depending on the
experience, memory and time of the particular doctor. Therefore, the current medical
care is after the fact. Once the symptoms of the disease appear, it is involved, rather than
actively treating or eliminating the disease as soon as possible.
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Today the prevailing model of prospective heath care is firmly based on the genome
revolution [14,16]. Indeed, technologies ranging from linkage equilibrium and candidate
gene association studies to genome wide associations have provided an extensive list
of disease-gene associations, offering us detailed information on mutations, single nu-
cleotide polymorphisms (SNPs), and the associated likelihood of developing specific dis-
ease phenotypes [10, 18]. The basic assumption behind the research is that once we have
classified all disease-related mutations, we can use various molecular biomarkers to pre-
dict each individual’s susceptibility to future diseases, thus bringing us into a predictive
medicine era [2]. However, these rapid advances have also revealed the limitations of
genome-based methods. Considering that the signals provided by most disease-related
SNPs or mutations are very weak, it is becoming increasingly clear that the prospect of
genome-based methods may not be realized soon [4, 9]. Does this mean that prospective
disease prediction methods must wait until genomics methods are sufficiently mature?
Our purpose is to prove that the method based on medical history provides hope for the
prospective prediction of disease.

In this paper, we mainly study the disease prediction and comorbidity of diseases.
Our approach is distinctly different in that we are trying to build a general predictive
system which can utilize a less constrained feature space by taking into account all avail-
able demographics and previous medical history. Moreover, we rely primarily on Inter-
national Classification of Diseases, tenth revision, Clinical Modification (ICD-10) codes
(see Section 2) for making predictions to account for the previous medical history, rather
than specialized test results.

2 Data

Our database comprises the medical records of 354,552 patients in China with a total
of 2,904,257 hospital visits. The data was originally compiled from Insurance claims
during 2007 to 2017. Such medical records are highly complete and accurate, and they
are frequently used for epidemiological and demographic research.

The input for our methods consists of each patient’s personal information, such as
gender, birthday, treatment-date, and diagnosis history, provided per patient’s visit. Each
data record consists of a hospital visit, represented by a patient ID and a diagnosis code
per visit, as defined by the International Classification of Diseases, tenth revision, Clinical
Modification. The International Statistical Classification of Diseases and Related Health
Problems provides codes to classify diseases and a wide variety of signs, symptoms,
abnormal findings, social circumstances, and external causes of injury or disease. It is
published by the World Health Organization. Each disease or health condition is given
a unique code, and can be up to 6 characters long, such as A01.001. The first character
is a letter while the others are digits. ICD-10 codes are hierarchical in nature, so the 6
characters codes can be collapsed to fewer characters identifying a small family of related
medical conditions. For instance, code A01.001 is a specific code for typhoid fever. This
code can be collapsed to A01.
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Moreover, we classify diseases of the same category into one class. For example, A90
is the code for Dengue fever (classical dengue) and A91 is the code for Dengue hemor-
rhagic fever. We classify them into the same class named F A90. Thus, the 20 thousand
origin ICD-10 codes are classified into 429 classes. A sample patient medical history is
shown in Table 1. Each line represents one hospital visit. Demographic data are also
available.

In our medical database, the number of visits per patient ranges from 1 to 491, with
a median of 4. Also, the average is 8.19. Table 2 shows the 20 most prevalent diseases in
our database.

Table 1: Medical history sample.

patient id Gender treatment date Code

14532 F 2011-10-15 F M47
14532 F 2011-11-19 F N91
14532 F 2012-10-09 F L20
14532 F 2012-10-19 F N60
14532 F 2013-05-08 F B37
14532 F 2013-06-04 F H10
14532 F 2013-06-15 F K04
14532 F 2013-08-23 F L20

Table 2: 20 Most prevalent diseases.

Disease Prevalence

Acute upper respiratory infection 20.88%
Hypertension and its complications 7.35%
Dermatitis and pruritus 3.75%
Gastritis and duodenitis 3.49%
Chronic bronchitis 3.28%
Pulp, gum, and alveolar ridge diseases 3.15%
Hard tissue disease of teeth 2.73%
Abnormal uterine and vaginal bleeding 2.42%
Chronic rhinitis, nasopharyngitis and pharyngitis 1.99%
Non-infectious gastroenteritis and colitis 1.97%
Chronic ischemic heart disease 1.93%
Inflammation of the vagina and vulva 1.72%
Pneumonia 1.63%
Abnormal thyroid (parathyroid) function 1.62%
Other diabetes 1.56%
Backache 1.54%
Acute lower respiratory infection 1.51%
Cervical disc disease 1.44%
Type II diabetes 1.37%
Female pelvic inflammatory disease 1.18%
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2.1 Quantifying the strength of comorbidity relationships

In order to measure the correlation from disease comorbidity, we need to quantify the
intensity of disease comorbidity by introducing the concept of distance between the two
diseases. One difficulty of this method is that there are biases in different statistical mea-
sures, which overestimate or underestimate the relationship between rare or epidemic
diseases. Given that the number of diagnoses (prevalence) for a particular disease fol-
lows a long tail distribution, these biases are important, which means that although most
diseases are rarely diagnosed, a small number of diseases have been diagnosed in a large
part of the population. Therefore, quantifying comorbidity usually requires us to com-
pare diseases that affect dozens of patients with diseases that affect millions of patients.

Following [6], we will use two comorbidity measures to quantify the distance be-
tween two diseases: The absolute logarithmic relative risk (ALRR) and φ-correlation(φ).
The empirical relative risk of observing a pair of diseases i and j affecting the same patient
is given by

ERRij =
CijN

PiPj
,

where Cij is the number of patients with a diagnosis of disease j simultaneously or af-
ter disease i, N is the total number of patients in the population and Pi and Pj are the
prevalences of diseases i and j,

ERRij=
Cij/N

Pi/N ·Pj/N
.

Thus, the relative risk (RR) is defined as

RRij=
pij

pi pj
.

Here, pij is the transition probability from disease i to disease j and pi is the incidence
probability of disease i. The absolute logarithmic relative risk is defined as

Mij =

∣

∣

∣

∣

log

(

pij

pi pj

)∣

∣

∣

∣

.

The empirical φ-correlation, which is Pearson’s correlation for binary variables, can be
expressed mathematically as

CijN−PiPj
√

PiPj(N−Pi)(N−Pj)
=

Cij/N−Pi/N ·Pj/N
√

Pi/N ·Pj/N(1−Pi/N)(1−Pj/N)
.

Therefore, the φ-correlation is defined as

φij=
pij−pi pj

√

pi pj(1−pi)(1−pj)
.
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These two comorbidity measures are not completely independent of each other, as
they both increase with the number of patients affected by both diseases, yet both mea-
sures have their intrinsic biases. Since RR is a ratio, it can be highly sensitive to changes
when the denominator is very small. Meanwhile, in the case of highly prevalent diseases,
pi and pj are large. This leads to a large denominator pi ·pj. Thus, RR overestimates re-
lationships involving rare diseases and underestimates the comorbidity between highly
prevalent illnesses. Recall that φ-correlation is Pearson’s correlation for binary variables.
When two diseases have similar prevalence rates, the distribution of cases and non-cases
is more balanced. This balance allows Pearson’s correlation to capture the relationship
more accurately, as the variation in both diseases can be more evenly assessed. On the
other hand, when one disease is rare and the other is common, the data becomes im-
balanced. The rare disease may have very few cases, leading to a lack of variation that
Pearson’s correlation can detect. This can result in misleadingly low correlation values.
Therefore, φ accurately discriminates comorbidities between pairs of diseases of simi-
lar prevalence but underestimates the comorbidity between rare and common diseases
(see [6] for more details).

3 Methodology

In this section, we will formulate the main method we use for disease prediction. The
patient’s disease records are used for modeling. The data related to a specific patient are
actually two sequences, one is the disease sequence (h1,h2,··· ,hT) and another is the time
sequence (t1,t2,··· ,tT). Here, hi is a disease and ti was the time when the patient was
diagnosed with hi at first time. Our goal is to fully utilize the patient’s disease data to es-
timate the transition probability matrix and the stationary distribution between diseases.
We adopt a maximum entropy approach.

3.1 Some notations

Suppose there are totally n diseases occurring in the records of all patients. Let us use di to
denote disease i, 1≤i≤n. If tu≤tv, then (hu,hv) is called a record. In other words, a record
is a pair of diseases (di,dj) such that there is a patient with a diagnosis of disease dj

simultaneously or after disease di. Note that if a patient is diagnosed with disease di and
disease dj simultaneously, then both (di,dj) and (dj,di) will occur in the records. Suppose
the total number of records is N. Let us use Sk to denote record k (1≤ i≤ n, 1≤ k≤N).
Assume that Sk=( f (k),g(k)). Here, f and g are maps

f ,g : {1,2,.. . ,N} → {1,2,.. . ,n},
f (k) is called the first disease and g(k) is called the second disease in record k. In this
paper, we assume that f and g are surjective. If f is not surjective, we can remove the dis-
eases with indexes in {1,2,.. . ,n}\Range( f ) from the medical history. Then the surjective
assumption can be satisfied for f . The same can be done for g.
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Assume that

Xik =

{

1, f (k)= i,

0, f (k) 6= i,
Ykj =

{

1, g(k)= j,

0, g(k) 6= j.

Denote by

χC =

{

1, x∈C

0, x /∈C.

Let A=XY , B=YX. Then

Aij=
N

∑
k=1

XikYkj =
N

∑
k=1

χ{ f (k)=i,g(k)=j}

is the number of patients who suffer from disease i before disease j,

Bkm =
n

∑
j=1

YkjXjm =
n

∑
j=1

χ{ f (m)=j,g(k)=j}.

For each k, there is exactly one j∗∈{1,2,.. . ,n} such that j∗= g(k). Hence,

χ{ f (m)=j,g(k)=j}=0, j 6= j∗.

Thus,

Bkm =
n

∑
j=1

χ{ f (m)=j,g(k)=j}=χ{ f (m)=j∗,g(k)=j∗}∈{0,1}.

So B is a matrix with entries ranged in {0,1}. Bkm = 1 if and only if there is a disease j
such that the patient in record k suffer a second disease j and the patient in record m suffer
a first disease j. Our task is to evaluate the transition probability from record k to record m
using all available records. To achieve this goal, we turn to the principle of maximum
entropy. The principle of maximum entropy states that the probability distribution which
best represents the current state of knowledge about a system is the one with largest
entropy (see, e.g. [5, 7]). Next, we introduce some basic concepts of maximum entropy.

3.2 Entropy for Markov chains

Suppose M is a non-negative matrix. If for each k,m∈{1,2,.. . ,N}, there exists l≥1 such
that (M l)k,m>0, then M is said to be irreducible.

Now we define the entropy for Markov chains following [8]. A matrix B is called
a skeleton matrix if its entries are either 0 or 1. A non-negative matrix P is called a Markov
transition matrix if

N

∑
m=1

Pk,m=1, ∀k=1,2,.. . ,N.
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Moreover, if Pk,m >0⇔ Bk,m=1, then P is called the Markov transition matrix associated
with the skeleton matrix B.

For a non-negative vector p=(p1,··· ,pN), if

N

∑
k=1

pk =1, pP= p,

then p is called a stationary distribution of P.
For a non-negative matrix W =(wk,m), if

N

∑
k,m=1

wk,m=1,

and for all 1≤ k≤N,
N

∑
m=1

wm,k=
N

∑
m=1

wk,m,

then W is called a Markov weight matrix.
Here are some connections between Markov transition matrix and Markov weight

matrix. For a Markov transition matrix P with stationary distribution p, define

wk,m = pkPk,m.

Then it is easy to verify that W = (wk,m) is a Markov weight matrix. On the contrary,
given a Markov weight matrix W =(wk,m), set

pk =
N

∑
m=1

wk,m, Pk,m =
wk,m

pk
.

Then W is the Markov weight matrix associated with P.
Now we define the entropy for a Markov transition matrix. First, let us consider the

chain with length l

Hl(P)=−
N

∑
i0=1

N

∑
i1=1

···
N

∑
il=1

pi0 Pi0,i1 ···Pil−1,il
log(pi0 Pi0,i1 ···Pil−1,il

)

=−
N

∑
i0=1

pi0 log(pi0)−l
N

∑
k=1

N

∑
m=1

pkPk,m log(Pk,m).

So the entropy for a chain with unit length is defined as

H(P)= lim
l→∞

Hl(P)

l
=−

N

∑
k=1

N

∑
m=1

pkPk,m log(Pk,m).
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3.3 Maximum entropy theorem

The principle of maximum entropy is a basic principle in information theory (see, e.g.
[15]). It states that the probability distribution which best represents the current state
of knowledge is the one with largest entropy. Since the distribution with the maximum
entropy is the one that makes the fewest assumptions about the true distribution of data,
the principle of maximum entropy can be seen as an application of Occam’s razor (see,
e.g. [11]).

Theorem 3.1. Suppose B is irreducible, λ is the maximum eigenvalue of B, and l=(l1,··· ,lN),
r=(r1,··· ,rN)

⊤ are the corresponding left and right eigenvectors with

N

∑
k=1

lkrk =1.

Then the entropy of the Markov chain associated with the skeleton matrix B attains the maximum
logλ when

wk,m=
1

λ
Bk,mlkrm, 1≤ k,m≤N.

Here, W =(wk,m) is the weight matrix for B.

Proof. See Appendix A.

Theorem 3.2. Suppose A is irreducible. λ is the maximum eigenvalue of A, and L=(L1,··· ,Ln),
R=(R1,··· ,Rn)⊤ are the corresponding left and right eigenvectors with

n

∑
j=1

LjRj=1.

Then the entropy of the Markov chain associated with the skeleton matrix B attains the maximum
logλ when

vij =
1

λ
AijLiRj, 1≤ i, j≤n.

Here, V =(vij) is the weight matrix for A.

Proof. See Appendix A.

Remark 3.1. Recall that we have assumed that f and g are surjective. Therefore, X and Y
have rank n. Since A=XY ,B=YX , we have that

det(λIN−YX)=λN−n det(λIn−XY).

Therefore, the eigenvalues of A and B are the same except for the zeros. In particular,
the largest eigenvalue of A and B are the same. Moreover, Y A= BY . Suppose a is an
eigenvector of A with eigenvalue µ, then

µYa=Y Aa=BYa.

Since a 6=0 and Y is injective as a map from R
n to R

N,Ya 6=0. Hence, Ya is the eigenvector
of B with eigenvalue µ.
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3.4 Algorithm for probability estimation

Following is the algorithm for estimating the related probability.

Algorithm 1: Probability Estimation.

Input. Disease records.
Step 1. Compute the matrix A using the disease records according to the

procedure in Section 3.1.
Step 2. Use power method to compute the maximum eigenvalue λ of A with the

corresponding left and right eigenvectors L0 and R0. Let

L=
L0√

L0 ·R0
, R=

R0√
L0 ·R0

.

Step 3. Compute the weight matrix V as follows:

vij =
1

λ
AijLiRj, 1≤ i, j≤n.

Step 4. Compute the transition probability as follows:

pij =
vij

∑
n
l=1vil

.

Step 5. Compute the stationary distribution as follows:

pi = LiRi.

Output. Estimated transition matrix P=(pij) and stationary distribution p=(pi).

3.5 Method for disease prediction

The prediction task is to predict the diseases that a person is most likely to have if we
know that he has already suffered from diseases (di1 ,di2 ,··· ,diT

) which are ordered by
occurrence.

We first calculate the probability by Algorithm 1. Then we construct the following
quantity:

rj =
1

T

T

∑
l=1

pil ,j, 1≤ j≤n.

Then we sort the rj and choose the top 5 disease as the predicted diseases for a person.

We also make an additional assumption, that is, the latest disease take a highest
weight. Thus, some modifications are made. We first construct a decreasing sequence
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{an}n≥1 such that an >0 (for example, an =1/n2). Then we modify rj as

rj =
∑

T
l=1 aT+1−l ·pil ,j

∑
T
l=1 al

.

And we use the modified rj to choose the top 5 disease as the predicted diseases for
a person.

4 Experiments

4.1 Data cleaning

The diseases are classified by F-code as described in Section 2, and there are 429 F-coded
diseases in total. If someone suffered from the same disease for many times, then we
keep the earliest record and remove the others. For example, for the patient with pa-
tient id=123770, she suffered from mucopurulent conjunctivitis on 2015-12-09 and 2016-
03-08, then the record with 2016-03-08 is removed from the history.

We clean the data and collect the records of the same patient together into one record.
The history column recorded the patient’s disease history and the diseases are sorted by
time and separated by a comma. Table 3 is a sample of the cleaned data.

Table 3: Sample of cleaned data.

patient id History

123770 F H10, F H00

135086 F M65, F J00, F K29, F K01, F K04

400195 F J00, F K29
3218331 F J00, F J40

119151 F J00, F N60
102519 F J00, F L50, F E34, F E01

1503387 F K29, F K01, F I83

7044682 F J00, F J20, F J40
182660 F E01, F J00, F J20

1888934 F K31, F K29, F K22, F K50, F J00, F J40, F J20, F M70, F J30, F J34

4.2 Calculate the probability

We construct the matrix A as follows. First, we initialize a 429×429 matrix with entries
equal to 0. We also construct a map ϕ : F-codes→{0,1,2,.. . ,428} to index the diseases.
Next, for history (h1,h2,··· ,hT), we set

Aϕ(hi),ϕ(hj) ← Aϕ(hi),ϕ(hj)+1, 1≤ i≤ j≤T.

Thus, we establish the matrix A.
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Next, we use the power method to calculate the maximum eigenvalue λ of A and
the corresponding left and right eigenvectors L and R. After that, we derive the Markov
weight matrix and the transition probability as described in Algorithm 1. Finally, we can
calculate rj as described in Section 3.5 and derive the related disease prediction.

4.3 Results of accuracy

To compare the result, We use a method used previously by the insurance company as
the benchmark. This method is called the empirical methods, that is, to calculate the
incidence rate of diseases and use the top 5 prevalent diseases as prediction for each
person.

We use 300,000 people’s records to calculate pij and also the top 5 diseases. For an-
other 10,000 people, we use their records from 2007-2014 to calculate the diseases with
the highest rj which is described in the previous section and choose the 5 diseases with
highest rj-score as prediction, which is known as the maximum entropy method.

Then we examine the diseases they suffer from during 2015-2017 to see how many
diseases is accurately predicted by these two methods. The measurement we use is called
the hit rate. It is defined as follows:

H=
|A∩B|
|B| ,

where A is the disease set predicted by the model and B is the disease set that a per-
son suffer from during 2015-2017. If we predict 5 diseases using the maximum entropy
method, the hit rate is 31.89%. As a contrast, the hit rate is 16.55% for the empirical
method.

We also compare the hit rate with 1/2/3/4/5 predictions for the two methods. The
result is summarized in Table 4. We can see from Table 4 that the hit rate of the maximum
entropy method is approximately twice that of the empirical method.

Table 4: Comparisons of hit rate.

Number of predictions Maximum entropy method Empirical method

1 15.01% 7.54%

2 20.50% 10.67%

3 25.21% 13.55%

4 29.01% 14.92%

5 31.89% 16.55%
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4.4 Comorbidity analysis

We first study the ALRR. Recall that M is calculated as follows:

Mij =

∣

∣

∣

∣

log

(

pij

pi pj

)∣

∣

∣

∣

.

If disease i and disease j are independent, then Mij is close to 0. So if Mij is large, then
disease i and disease j are highly correlated. If disease i is high blood pressure and disease
j is type II diabetes. Then

Mij =2.17, Mji =2.39.

It indicates that high blood pressure and type II diabetes are highly correlated. This result
is consistent with the findings of existing literature (see, e.g. [13]). The diseases with high
ALRR are listed in Table 5. We also find the asymmetric results for Mij, which means that
Mij and Mji are usually different. The result is listed in Table 6.

Next, we consider the φ-correlation. Recall that

φij=
pij−pi pj

√

pi pj(1−pi)(1−pj)
.

20 disease pairs with high φ-correlation are displayed in Table 7.

We can see from Table 5 that many disease pairs with large Mij, such as type II di-
abetes and hypertension and its complications, have intrinsic relations which are sup-
ported by research literature. Tedesco [17] have mentioned that hypertension is fre-
quently associated with diabetes mellitus and its prevalence doubles in diabetics com-
pared to the general population. This high prevalence is associated with increased stiff-
ness of large arteries. Our result is consistent with their medical research.

5 Conclusions

In this paper, we propose a maximum entropy method for predicting disease risks. It is
based on a patient’s medical history with diseases coded in ICD-10 which can be used in
various cases. The complete algorithm with strict mathematical derivation is given. We
also present experimental results on a medical dataset, demonstrating that our method
performs well in predicting future disease risks and achieves an accuracy rate twice that
of the traditional method. We also perform a comorbidity analysis to reveal the intrinsic
relation of diseases.
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Table 5: ALRR of maximum entropy method.

Disease i Disease j Mij

Type II diabetes Type I diabetes 3.40

Pulmonary heart disease Acute ischemic heart disease 3.35

Type II diabetes Atherosclerosis 3.18

Diseases of lip,

tongue and oral mucosa

Malignant tumors of the lip,

mouth and pharynx
2.98

Heart failure Arrhythmia 2.96

Metabolic disorders Renal failure 2.84

Emphysema Asthma 2.80

Pneumonia Bronchiectasis 2.67

High blood pressure Type II diabetes 2.47

High blood pressure Renal failure 2.46

Alopecia Seborrheic keratosis 2.41

Heart failure Anal and rectal disorders 2.41

Type II diabetes High blood pressure 2.39

Heart failure Peptic ulcer 2.38

High blood pressure Atherosclerosis 2.36

Alzheimer disease Sleep disorders 2.33

High blood pressure
Cerebral hemorrhage or

infarction and its sequelae
2.33

Over nutrition Other diabetes 2.27

Pulmonary heart disease Arrhythmia 2.22

High blood pressure Heart failure 2.21

Pituitary hyperfunction Joint disorder 2.12

Pulmonary heart disease Arthritis 2.08

Appendix A.

Proof of Theorem 3.1. Suppose W = (wk,m) is the weight matrix. Then the entropy of the
Markov chain can be rewritten as

H(W)=−
N

∑
k=1

N

∑
m=1

wk,m

(

log(wk,m)−log

(

N

∑
m=1

wk,m

))

=−
N

∑
k=1

N

∑
m=1

wk,m log(wk,m)+
N

∑
k=1

(

N

∑
m=1

wk,m

)

log

(

N

∑
m=1

wk,m

)

.
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Table 6: Asymmetric ALRR of maximum entropy method.

Disease i Disease j Mij Mji

Female pelvic inflammatory disease Trichomoniasis 1.13 3.40

Nephritic nephrotic syndrome Heart failure 1.51 3.35

Metabolic disorders Malignant tumor of skin 1.37 3.19

Esophageal diseases Splenic diseases 3.40 1.58

Anemia Hypotension 2.89 1.30

Other diabetes Central nervous system diseases 1.26 2.84

Benign tumor of uterus
Tumors with undetermined
or unknown endocrine gland dynamics

2.89 1.31

Arrhythmia Mental and behavioral disorders 2.58 1.03

Arthrosis Epilepsy 0.71 1.89

Arrhythmia Diseases of autonomic nervous system 2.63 1.47

Headache syndrome Other diseases of arteries and arterioles 1.58 2.74

Acute pancreatitis and other
diseases of pancreas

Type II diabetes 2.78 1.70

Asthma Emphysema 1.73 2.80

Ankylosis and other spondylosis Hypopituitarism 1.87 0.80

Arthrosis
Myasthenia and primary muscle
diseases

2.71 1.65

Malignant tumors of digestive
organs

Hemangioma and lymphangioma 3.40 2.33

Refractive and accommodative
disorders

Glaucoma 2.41 1.35

Other diabetes Optic neuropathy 1.71 2.74

Chronic ischemic heart disease Pericardial disease 1.26 2.28

Type II diabetes Over nutrition 0.82 1.83

Let us construct the Lagrangian

L=−
N

∑
k=1

N

∑
m=1

wk,m log(wk,m)+
N

∑
k=1

(

N

∑
m=1

wk,m

)

log

(

N

∑
m=1

wk,m

)

+
N

∑
k=1

hk

(

N

∑
m=1

wm,k−
N

∑
m=1

wk,m

)

+µ

(

1−
N

∑
k=1

N

∑
m=1

wk,m

)

.

If wk,m 6=0, we have that

∂L

∂wk,m
=−1−log(wk,m)+log

(

N

∑
m=1

wk,m

)

+1−hk+hm−µ=0,

wk,m

∑
N
m=1wk,m

= e−µ ehm

ehk
.
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Table 7: φ-correlation of maximum entropy method.

Disease i Disease j φ

Mania, bipolar, depression, and

anxiety disorders
Sleep disorder 68.23

Type II diabetes Hypertension and its complications 67.75

Headache syndrome
Pulp, gums and edentulous alveolar

ridge diseases
60.72

Arrhythmia Hypertension and its complications 58.55

Muscle disorders Backache 57.28

Shingles Dermatitis and pruritus 55.30

Headache syndrome Backache 53.33

Benign uterine tumor
Abnormal uterine and

vaginal bleeding
46.75

Upper respiratory tract diseases such

as chronic laryngitis and laryngotracheitis

Chronic rhinitis, nasopharyngitis

and pharyngitis
42.54

Other disorders of kidney and ureter Other disorders of the urinary system 42.30

Anemia
Pulp, gums and edentulous alveolar

ridge diseases
40.85

Cellulitis
Dermatophytes and other superficial

fungal diseases
40.74

Other disorders of male reproductive organs Prostatic hyperplasia and prostatitis 40.69

Urethral disorders Other disorders of the urinary system 39.66

Other disorders of bone
Osteoporosis without pathological

fracture
34.96

Upper respiratory tract diseases such

as chronic laryngitis and laryngotracheitis
Chronic bronchitis 33.39

Other diseases of the digestive system Gastritis and duodenitis 29.68

Type II diabetes Metabolic disorders 27.51

Type II diabetes Dermatitis and pruritus 27.16

Arrhythmia Sleep disorder 27.11

If wk,m=0, then Bk,m=0. Therefore,

wk,m

∑
N
m=1wk,m

= e−µ Bk,mehm

ehk
.

Set λ= eµ, then
N

∑
m=1

Bk,mehm =λehk .
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By the Perron-Frobenius theorem (see, e.g. [12]), There are no nonnegative eigenvectors
for B other than the Perron vector r and its positive multiples. Hence,

ehm

ehk
=

rm

rk
,

Pk,m=
wk,m

∑
N
m=1wk,m

=
1

λ
Bk,m

rm

rk
.

On the other hand,

λ
wk,m

rm
=Bk,m

pk

rk
⇒ λ

pm

rm
=

N

∑
k=1

Bk,m
pk

rk
.

Therefore, there exists t>0 such that

pk

rk
= tlk,

N

∑
k=1

lkrk =1 ⇒ t=1.

Hence,

pk = lkrk, wk,m=
1

λ
lkBk,mrm.

Recall that

H=−
N

∑
k=1

N

∑
m=1

pkPk,m log(Pk,m),

and 0·log0= limx→0+xlogx=0. It follows that

H=−
N

∑
k=1

N

∑
m=1

lkrk
1

λ
Bk,m

rm

rk
log

(

1

λ
Bk,m

rm

rk

)

=−
N

∑
k=1

N

∑
m=1

lk
1

λ
Bk,mrm(logBk,m+logrm−logrk−logλ).

Since Bk,m∈{0,1}, Bk,m logBk,m=0,

H=−
N

∑
k=1

N

∑
m=1

lk
1

λ
Bk,mrm(logrm−logrk)+logλ

=−
N

∑
m=1

lmrm logrm+
N

∑
k=1

lkrk logrk+logλ

= logλ.

The proof is complete.



M. Shub, Q. Xu and X. Xuan / CSIAM Trans. Life. Sci., x (2024), pp. 1-19 17

Next, we will prove Theorem 3.2. We first prove an auxiliary lemma.

Lemma A.1. Suppose λ is the maximum eigenvalue of B and X ,Y are matrices in Section 3.1.
l=(l1,··· ,lN),r=(r1,··· ,rN)

⊤ are the corresponding left and right eigenvectors with

N

∑
k=1

lkrk =1.

Then






(lY)1

. . .

(lY)n






A







(Xr)1

. . .

(Xr)n






=λ2X







l1r1

. . .

lNrN






Y . (A.1)

Proof. Recall that
f ,g : {1,2,.. . ,N} → {1,2,.. . ,n},

and

Xi,k =χ{ f (k)=i}, Yk,j =χ{g(k)=j},

Ai,j=
N

∑
k=1

Xi,kYk,j= ∑
k: f (k)=i,g(k)=j

1= | f−1(i)∩g−1(j)|.

Here, |S| denote the number of elements in S.

Bk,m=
n

∑
j=1

Yk,jXj,m =
n

∑
j=1

χ{g(k)=j, f (m)=j}=χ{g(k)= f (m)}.

Since Br=λr, we have that

N

∑
m=1

Bk,mrm =λrk ⇒
N

∑
m=1

χ{g(k)= f (m)}rm =λrk.

Since lB=λl, we have that

N

∑
k=1

Bk,mlk =λlm ⇒
N

∑
k=1

χ{g(k)= f (m)}lk =λlm.

The (i, j) element of the left-hand side in (A.1) is

(lY)i Ai,j(Xr)j = | f−1(i)∩g−1(j)|
(

N

∑
k=1

lkYk,i

)(

N

∑
m=1

rmXj,m

)

= | f−1(i)∩g−1(j)|
(

N

∑
k=1

lkχ{g(k)=i}

)(

N

∑
m=1

rmχ{ f (m)=j}

)
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Assume that
f−1(i)∩g−1(j)={u1,u2,··· ,uq}.

Then
f (u1)= f (u2)= ···= f (uq)= i, g(u1)= g(u2)= ···= g(uq)= j.

(lY)i Ai,j(Xr)j =q

(

N

∑
k=1

lkχ{g(k)=i}

)(

N

∑
m=1

rmχ{ f (m)=j}

)

=
q

∑
t=1

(

N

∑
k=1

lkχ{g(k)= f (ut)}

)(

N

∑
m=1

rmχ{ f (m)=g(ut)}

)

=λ2
q

∑
t=1

lutrut .

The (i, j) element of the right-hand side in (A.1) is

λ2
N

∑
k=1

Xi,klkrkYk,j =λ2
N

∑
k=1

lkrkχ{ f (k)=i,g(k)=j}=λ2 ∑
k∈ f−1(i)∩g−1(j)

lkrk

=λ2
q

∑
t=1

lutrut .

Thus, we complete the proof.

Proof of Theorem 3.2. Suppose V is the weight matrix of A, then

V =X







l1r1

. . .

lNrN






Y .

By the above lemma, we have that

V =
1

λ2







(lY)1

. . .

(lY)n






A







(Xr)1

. . .

(Xr)n






.

Set

L=
lY√

λ
, R=

Xr√
λ

.

Then L,R are the left and right eigenvectors of A corresponding to the eigenvalue λ. And

n

∑
j=1

LjRj =LR=
1

λ
lYXr= lr=1.
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Hence,

vi,j =
1

λ
Li Ai,jRj.

The proof is complete.
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