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Abstract We describe and analyze a numerical algorithm for computing the homology
(Betti numbers and torsion coefficients) of real projective varieties. Here numerical
means that the algorithm is numerically stable (in a sense to be made precise). Its cost
depends on the condition of the input as well as on its size and is singly exponential
in the number of variables (the dimension of the ambient space) and polynomial in
the condition and the degrees of the defining polynomials. In addition, we show that
outside of an exceptional set of measure exponentially small in the size of the data,
the algorithm takes exponential time.
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1 Introduction

This paper describes and analyzes, both in terms of complexity and numerical stability,
an algorithm to compute the topology of a real projective set.

The geometry of the sets of zeros of polynomials equalities, or more generally solu-
tions of polynomial inequalities, is strongly tied to complexity theory. The problem of
deciding whether such a set is nonempty is the paramount NP -complete problem (i.e.,
NP-complete over the reals) [7]; deciding whether it is unbounded is H3-complete;
and whether a point is isolated on it is HY-complete [9]; computing its Euler char-
acteristic, or counting its points (in the zero-dimensional case), #Pgr-complete [8],

We do not describe complexity classes in these pages. We content ourselves with
the observation that such classes are characterized by restrictions in the use of specific
resources (such as computing time or working space) and that complete problems
are representatives for them. In this sense, the landscape of classes demanding an
increasing amount of resources is paralleled by a collection of problems whose solution
appears to be increasingly difficult.

Among the problems whose complexity is poorly understood, the computation of
the homology of algebraic or semialgebraic sets—and by this we mean the computation
of all their Betti numbers and torsion coefficients—stands out. The use of Cylindrical
Algebraic Decomposition [12,40] allows one to compute a triangulation of the set
at hand (and from it, its homology) with a running time doubly exponential in the
number of variables (the dimension of the ambient space). On the other hand, the
#Pg-hardness of computing the Euler characteristic (a simpler problem) mentioned
above or the PSPACE-hardness of the problem of computing all Betti numbers of
a complex algebraic (or projective) set defined over Z, see [31], makes clear that
the existence of subexponential algorithms for the computation of the homology is
unlikely. The obvious question is whether exponential time algorithms for this task
exist.

A number of results in recent years have made substantial progress toward an answer
to this question. Saugata Basu and collaborators provide algorithms computing the
first Betti number of a semialgebraic set in single exponential time (an algorithm to
compute the zeroth Betti number within these bounds was already known) [4], as well
as an algorithm computing the top ¢ Betti numbers with cost doubly exponential in
£ (but polynomial for fixed ¢) [3]. More recently, Scheiblechner [32] considered the
class of smooth complex projective varieties and exhibited an algorithm computing
all the Betti numbers (but not the torsion coefficients as the paper actually computes
the de Rham homology) for sets in this class in single exponential time.

All the algorithms mentioned above are “symbolic”; they are direct (as opposed
to iterative) and are not meant to work under finite precision. Actually, numerical
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instability has been observed for many of them and very recent results [26] give
some theoretical account for this instability. And partly motivated by this observed
instability, an interest in numerical algorithms has developed in tandem with that on
symbolic algorithms. An example of the former that bears on this paper is the algorithm
in [19] to decide feasibility of semialgebraic sets. The idea was to decide the existence
of the desired solution by exploring a grid. While this grid would have exponentially
many points, the computation performed at each such point would be fast and accurate,
thus ensuring numerical stability in the presence of round-off errors. Both the running
time of the algorithm (directly related to the size of the grid) and the machine precision
needed to ensure the output’s correctness were shown to depend on a condition number
for the system of polynomial inequalities defining the semialgebraic set at hand.

These ideas were extended in [ 15—17] to describe and analyze a numerical algorithm
for the more difficult question of counting points in zero-dimensional projective sets.
Note that in this case the number to be computed coincides with the zeroth Betti
number of the set (number of connected components), while higher Betti numbers are
all zero.

We now extend them once more to solve the (even more difficult) problem of
computing all the homology groups for projective (or spherical) algebraic sets.

In order to state our result, we need to introduce some notation.

Letm <n,dy,...,d, € Nandd = (dy, ..., d,). We will denote by Hg4[m] the
space of polynomial systems f = (fi,..., fin) with f; € R[Xo, ..., X, ] homoge-
neous of degree d;. We may assume here that d; > 2 for | <i < m, since otherwise
we could reduce the input to a system with fewer equations and unknowns. We set
D :=max{d;, 1 <i <m}and N :=dimg Hq[m] =Y /", ("';d"). Note that the last
is the size of the system f in the sense that it is the number of reals needed to specify
this system.

We associate to f € Hg[m] its zero sets Mg := Zs«(f) on the unit sphere
S" ¢ R and Mp := Zp:(f) on the projective space P (R). The former is the
intersection of the cone of zeros Z := Zgu+1 (f) of f in R"*! with " and the latter is
the quotient of Mg by identifying antipodal points. For a generic system f, both Mg
and Mp are smooth manifolds of dimension n —m. We also associate to f a condition
number « (f) (whose precise definition will be given in Sect. 2.1). Finally, we endow
the linear space Hg[m] with the Weyl inner product (also defined in Sect. 2.1) and
consider the unit sphere S¥~! C Hy4[m] with respect to the norm induced by it.

Theorem 1.1 We describe an algorithm that, given f € Hglm], returns the Betti
numbers and torsion coefficients of Ms (or of Mp), with the following properties.

(i) Its cost cost(f) on input f is bounded by (n DK(f))O(”Z).
(ii) Assume SN~V is endowed with the uniform probability measure. Then, with prob-

ability at least 1 — (nD)™" we have cost(f) < (nD)O(n3)_
(iii) Similarly, with probability at least 1 — 2=V we have cost(f) < 20N,
(iv) The algorithm is numerically stable.

We give the proof of Theorem 1.1 in several steps. Part (i) is shown in Proposi-
tions 4.3 and 4.4. Parts (ii) and (iii) are in Corollary 5.4. We devote Sect. 7 to both
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define what we mean by numerical stability (in a context where we are computing
integer numbers) and to sketch why our algorithm is numerically stable.

Remark 1.2 Parts (ii) and (iii) in the statement fit well within the setting of weak
complexity analysis recently proposed in [2] (but see also [23, Theorem 4.4] for a
predecessor of this setting). The idea here is to exclude from the analysis a set of
outliers of exponentially small measure (a probability measure in the space of data
is assumed). This exclusion may lead to dramatic differences in the quantity to be
bounded and provide a better agreement between theoretical analysis and compu-
tational experience. A case at hand, studied in [2], is that of the power method to
compute dominant eigenpairs. It is an algorithm experienced as efficient in practice
(say for symmetric or Hermitian matrices) but whose expected number of iterations
(for matrices drawn from the Gaussian orthogonal or unitary ensembles, respectively)
is known to be infinite [23]. Theorem 1.4 in [2] shows that the expected number of
iterations conditioned to excluding a set of exponentially small measure is polyno-
mially bounded in the dimension n of the input matrix. The authors call this form of
analysis weak average-case. Parts (ii) and (iii) in the statement can be seen as a form
of weak worst-case analysis establishing weak worst-case exponential complexity.

Our algorithm relies on an extension of the ideas in [19]—the use of grids, an
exclusion test, and the use of the a-theory of Smale to detect zeros of a polynomial
system in the vicinity of a point at hand—to construct a covering of Mg by open
balls in R"*! of the same radii. This common radius is chosen to ensure that the
union of the balls in the covering is homotopically equivalent to Msg. The Nerve
Theorem then ensures that this union is homotopically equivalent to the nerve of the
covering, and we can compute the homology groups of Mg by computing those of the
said nerve. We explain the basic ingredients (condition numbers, Smale’s «-theory,
the exclusion lemma, ...) in Sect. 2. Then, in Sect. 3, we describe and analyze the
computation of the covering. Section 4 uses this covering to actually compute the
homology groups (part (i) in Theorem 1.1), and Sect. 5 establishes the probability
estimates (parts (ii) and (iii) in Theorem 1.1). Section 6 is devoted to prove a number
of results which, to allow for a streamlined exposition, are only stated in Sect. 2. One of
them, Theorem 2.9, links the y-invariant of Smale with the injectivity radius v (f) of
the normal bundle of Mg (in turn related to a number of metric properties of algebraic
spherical (or projective) sets). This connection is, to the best of our knowledge, new
and is interesting per se. Finally, and as already mentioned, Sect. 7 deals with issues
of finite precision and numerical stability.

2 The Basic Ingredients
2.1 Condition Numbers

We need a condition number as a complexity (and accuracy) parameter. To define

one we first fix a norm on the space Hg4[m]. We follow the (by now well established)

tradition of using the Weyl norm, which is invariant under the action of orthogonal

transformations in R"*1: for f = (f1,..., fu) with f; = Zm\:d fi.a X%, this is
Elol:;ﬂ
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-1
1fill? = Y jamq [ (%) and then || £]1% := Y i), 1 fil1%. See, e.g., [10, §16.1]
for details.

8 L
For a point £ € R**! we denote by Df (£) = (i(é)) R
ox; 1<i<m,0<j<n
R™ the derivative of f at £&. We also write
g1 =" vy
A§) =
1§ 19m =1 /e

(or simply A, if £ € S*).

The condition of f at a zero £ € R"*1\{0} has been well studied in the series of
papers [33-37]. Itis defined as co when the derivative D f (§) of f at& is not surjective,
and when Df (£) is surjective as

. ey

tnom (£, €) = | F1I| Df &) AE)

where Df(£)" : R — R™**! is the Moore—Penrose inverse of the full-rank matrix
Df (&), ie., Df (&) = DFEYDFE) Df(E))™!, where Df (£)! is the transpose of
Dy (§). This coincides with the inverse of the restricted linear map D ()| er p F ()L
Also, the norm in || Df (€)T A(&)|| is the spectral norm.

Since the expression in the right of (1) is well defined for arbitrary points x € S",
we can define pnorm (f, x) for any such point.

For zero-dimensional homogeneous systems, that is, for systems f € Hg[n], the
quantity inorm (f, x) in (1) is occasionally defined differently, by replacing Df (x)' by
(Df (x)|Tx)_1. Here T denotes the orthogonal complement of x in R"*! and we are
inverting the restriction of the derivative D f (x) to this space (see [10, §16.7]). This
definition only makes sense when m = n as in this case the restriction (Df (x)m)_1 :
Ty — R" is a linear map between spaces of the same dimension. This is not the case
when m # n. Hence the use here of the Moore—Penrose derivative.

To define the condition of a system f, itis not enough to just consider the condition at
its zeros. For points x € R+ where || f (x)|| is nonzero but small, small perturbations
of f can turn x into a new zero (and thus change the topology of Z). Following an
idea going back to [13] and developed in this context in [17] we define

() £l
U 1P snam(f, ) + 1 £ 0112}

where tnorm (f, Xx) is defined as in (1) for x € S”, with the convention that oo l=0
and 0~ ! = 00, and
k(f) = maxk(f, x). (2)
xesn

Remark 2.1 For any A # 0 we have ptnorm (f, X) = Unorm (f, AX), since when Df (x)
ad1—1

is surjective, Df (Ax)T = (ADf(x)) = Df(x)TA~! for A = ,
adm—1

EOE';W
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Similarly, tnorm(f, €) = MUnorm (A f, &) for all A # 0, and consequently, x (Af) =
k(f).

Note that k (f) = oo if only if there exists & € S” suchthat f(§) = 0(i.e.,& € Ms)
and Df (§) is not surjective, i.e., f belongs to the set of ill-posed systems

YR = {f € Hq[m] | 3& € S" such that f(£) = 0 and rank(Df (§)) < m} 3)

The following result is proved in Sect. 6.1. It extends a statement originally shown
for square systems in [16] (see also [10, Theorem 19.3]).

Proposition 2.2 Forall f € Hg[m],

I/ <k(f) < — A
V2dist(f, r) dist(f, Zr)
We prove the following in Sect. 6.2.

Proposition 2.3 Letm <n+ 1. Forall f € Hg[m], 0 <¢e < % and y,z € S" such
that

2¢e
ly—zll £ 55— —
DS/Z:U«norm(fv y)

we have

1 5
5 Hnorm (5 ¥) < Mnorm ([, 2) < (1 + _B)Mnorm(f, y).
1+ §8 2

2.2 Moore-Penrose Newton and Point Estimates

Let f : Rt S R™ m <n+1,be analytic. The Moore—Penrose Newton operator
of f atx € R"*! is defined (see [1]) as

Nyp@):=x = Df ()" f(x).

We say that it is well defined if Df (x) is surjective.

Definition 2.4 Let x € R"t!. We say that x converges to a zero of f if the sequence
(xx)k>0 defined as xo := x and xxy1 := Ny(x;) for k > 0 is well defined and
converges to a zero of f.

Following ideas introduced by Smale in [38], the following three quantities were
associated with a point x € R"+ in [37],

FolCT
s
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B(f,x) == IDfx)" £l

Df (x )T Dkf(x)

a(f, x) = B(f, 1)y (f. x),

y (f, x) := max

when Df(x) is surjective, and o (f,x) = B(f,x) = y(f,x) = oo when Df(x)
is not surjective. The quantity B(f, x) = [[Ns(x) — x| measures the length of the
Newton step at x. The value of y (f, &), at a zero & of f, is related to the radius of the
neighborhood of points that converge to the zero £ of f, and the meaning of o (f, x)
is made clear in the main theorem in the theory of point estimates.

Theorem 2.5 Ler f : R"™' — R™ m < n + 1, be analytic. Set ag = 0.125. Let
x € R witha(f, x) < a, then x convergestoazero& of f and ||x—£&| < 2B(f, x).
Furthermore, ifn + 1 = m and o (f, x) < 0.03, then all points in the ball of center x
and radius y(z'})i j converge 10 the same zero of f.

Proof In [37, Th. 1.4] it is shown that under the stated hypothesis, x converges to a
zero £ of f and

1 2k 1 2k
lxks1 — xkll < (§> lx1 — xoll = <§> B(f, x).

Therefore
1\>! 1
i1 — x| < o§<,» (5) Bf,x) < 2= B, 0).

This implies the first statement. The second is Theorem 4 and Remarks 5, 6 and 7
in [6, Ch. 8]. O

In what follows, we will apply the theory of point estimates to the case of polyno-
mial maps f = (fi, ..., fm). Inthe particular case where the f; are homogeneous, the
invariants &, 8 and y are themselves homogeneousinx. Wehave 8( f, Ax) = AB(f, x),
vy (f, ax) = A7y (f, x), and a(f, Ax) = a(f, x), for all A # 0. This property moti-
vates the following projective version for them:

Boroi (f, X) == IxI7HIDF ()T F0)

DA | T

Df(x)'—3

Aproj (fs X) 1= Bproj (f+ X) Vproj (f, X)),

Vproj(fs x) = ||lx]| max
k>1

These projective versions coincide with the previous expressions when x € S” and
an o-Theorem for them is easily derived from Theorem 2.5 above. Furthermore, Bproj

FoE'ﬂ
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still measures the (scaled) length of the Newton step, and yjpoj Telates to the condition
number via the following bound (known as the Higher Derivative Estimate),

1
Yoroj (fs X) < 503/%0“(]’, X). 4

The proof is exactly the one of [6, Th. 2, p. 267] which still holds for m < n and
Df (x)" instead of Df (x)|7..

We now move to “easily computable” versions o, E and y, which we define for
x e S

_ _ £ @Ol
ﬂ(fv )C) = H/norm(f, x) ||f||
1
7(f7 x) = §D3/2Mnorm(f7 )C)
_ 1
a(f,x) = B(f, 0)7(f,x) = 503/2uﬁorm(f, X) ”ﬂ ;x”) 3 Q)

For x € S", (4) therefore says that y(f,x) < V(f,x). We also observe that
B(f,x) < B(f, x) since

ILf ol
A1l

B0 = |Drot | = |pret| @i = rnpreoal
= B(f, 0.

Therefore a( f, x) < a(f, x).

2.3 Curvature and Coverings

A crucial ingredient in our development is a result in a paper by Niyogi et al. [25,
Prop.7.1]. The context of that paper (learning on manifolds) is different from ours, but
this particular result, linking curvature and coverings, is, as we said, central to us.

Consider a compact Riemannian submanifold M of a Euclidean space R"*!. Con-
sider as well a finite collection of points X = {x1,...,xx}in R*t! and also ¢ > 0.
We are interested in conditions guaranteeing that the union of the open balls

Ue(X) = | ) B(x. )

xeX

covers M and is homotopically equivalent to it. These conditions involve two notions
which we next define.

We denote by t(M) the injectivity radius of the normal bundle of M, i.e., the
largest ¢ such that the open normal bundle around M of radius #

N(M) := {(x,v) € M x R v e NeM, v < t}
Elol:;ﬂ
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is embedded in R"*!. That is, the largest ¢ for which ¢, : N;(M) — R**! (x, v)
x + v, is injective. Therefore, its image Tub;(A¢) is an open tubular neighborhood
of M with its canonical orthogonal projection map 7o : Tub; (A1) — M mapping
every point x € Tub (a4 to the (unique) point in M closest to x. In particular, M is
a deformation retract of Tub;(Aq).

Also, we recall that the Hausdorff distance between two subsets A, B ¢ R"*H s
defined as

du(A, B) := max { sup inf fla — b|l, sup inf |la — b||}.
beB beB A€A

acAbE

If both A and B are compact, we have that dg (A, B) < r if and only if foralla € A
there exists b € B such that ||a — b|| < r and for all b € B there exists a € A such
that |ja — b|| < r.

The following is a slight variation of [25, Prop.7.1].

Proposition 2.6 LetT < t(M)and0 <r < (3 — V8)T. Ifdg (X, M) < r then M
is a deformation retract of Ug(X) for every ¢ satisfying

. ((r+?) VP o6rt r+7) V24T —6r?>
& , .
2 2

O

Remark 2.7 If we start with r > 0 for which 6r < t(M) we can take T := 6r. In this
case, the interval we obtain for the admissible values of ¢ is [3r, 4r].

The quantity (M) is strongly related to the curvature of M as shown in Propo-
sitions 6.1, 6.2, and 6.3 in [25]. Even though we won’t make use of these results, we
summarize them in the following statement.

Theorem 2.8 Let t := t(M).

(1) The norm of the second fundamental form of M is bounded by % in all direc-
tions.

(ii) For p,q € M let ¢(p, q) be the angle between their tangent spaces T, and
T,, and dpq(p, q) their geodesic distance. Then cos(¢(p, q)) > 1 — %dM (p, q).

2 —
(i) Forp.q e M, da(p.q) <7 —7y1 — 22—l O
T

2.4 Curvature and Condition

Theorem 2.8 shows a deep relationship between the curvature of a submanifold M
of Euclidean space and the value of 7(M). One of the main results in this paper is
a further connection, for the particular case where M = Mg, the set of zeros of
f € Hglm] in §", between 7(Ms) and the values of y on Ms. Define

T(f):=t(Mg) and T'(f):= m/%/)l( max{l, y(f, x)}.
xeMg

FoC'T
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In Sect. 6.3 we prove the following.

Theorem 2.9 We have

T(f) = ST
Note that as max{1, y (f, x)} < ¥ (f, x) we obtain
Corollary 2.10
T(f) = ST

where T'(f) := max,epg V(s X).

2.5 Grids and Exclusion Results

Our algorithm works on a grid G, on ", which we construct by projecting onto S"
a grid on the cube C" = {y € R™1 | ||y]lec = 1}. We make use of the (easy to
compute) bijections ¢ : C* — S" and ¢! : S* — C" given by ¢(y) = ﬁ and

¢ ) = s

Given n := 27k for some k > 1, we consider the uniform grid U, of mesh n
on C". This is the set of points in C" whose coordinates are of the form 2% for
i€ {—2", —2k4q,..., 2"}, with at least one coordinate equal to 1 or —1. We denote
by G, its image by ¢ in S". An argument in elementary geometry shows that for

yi, y2 € C,

16 (1) — (3|l < ds(@(y1). p(32)) < %”)’1 —yall < %Jn F 1y —y2llee. (6)

where ds(x1, xp) := arccos({x1,x2)) € [0, ] denotes the angular distance, for
X1, X2 € S
Given ¢ > 0, we denote by B(x,¢) := {y € R* | ly — x| < &}, for x €

R™*1 the open ball with respect to the Euclidean distance, and by Bs(x, ¢) = {y €
S" |ds(y, x) < ¢}, for x € S", the open ball with respect to the angular distance. We
also set from now on

sep(n) :=n~n+1 and 8(f,n) = L1y D@+ DI fln. (7
Lemma 2.11 The union Uycg, B(x, sep(n)) covers the sphere S".

Proof Letz € S"and y = ¢~!(z) € C". There exists y’ € U, such that ||y’ — y|ls <
7.Letx = ¢(y') € G,. Then, Eq. (6) shows that [x —z|| < 2 5 V/n+1 <n/n+1.
|

FolCT
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In [15, Lem. 3.1] and [10, Lem. 19.22], the following Exclusion Lemma is proved
(the statement there is for n = m but the proof holds for general m).

Lemma 2.12 (Exclusion lemma.) Let f € Hg[m] and x,y € S" be such that 0 <
ds(x,y) < ﬁ Then,

If(x) — fFOOIl < IFIVD ds(x, y).

i i ; ; ILf el
In particular, if f(x) # 0, there is no zero of f in the ball Bg (x, WB) O

Corollary 2.13 Let n be such that sep(n) < % and let x € S" satisfy || f(x)|

8(f,n). Then f(y) # 0 on the ball B(x, sep(n)).

\%

Proof Let y € R""! such that ||y — x| < sep(n) < % Define h(e) =

V2 —2+/1—¢2 We have ||¢(y) — x| < h(|lx — y||). Since h(e)/e is monotoni-

cally increasing on [0, 1],
1
o) = xll = 2h(1/D)]ly — x|l < 1.035]ly = x[| < 0.5175 for [ly — x|l < .

Then,

¢ (y) — x|

ds($ (), x) = 2arcsin( .

< 1.1sep(n)

) = 1L.012[¢(y) — x|l < L.1{lx — y|

since arcsin is a convex function on the interval [0, 0.5175]. Therefore, the hypothesis
on || f(x)| implies that

£ ) > L1 flIVDsep(n) > I fIIVD ds(¢(y), x)

i.e., that ds(¢(y), x) < HHJ]‘CH(%' Lemma 2.12 then shows, since f(x) # 0, that

f(@(y)) # 0and we conclude that f(y) # 0 as f is homogeneous. O

3 Computing a Homotopically Equivalent Covering

Set k := [log, 4+/n + 1] so that sep(n) < 4—1L for n = 27X, where sep() is defined

in (7). Our algorithm works on the grid G, on S" constructed in the previous section

and makes use of the quantities E, v and @ introduced in (5) and § ( f, ) defined in (7).
We recall o := 0.125.

EOE';W
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Algorithm 1 Covering

Input: f € Hy[m]
Preconditions: f # 0

let p:=27F
repeat
X =0
roi= «/sep(n)
e:=3.5r

for all xeg,
if a(f,x) <ap and
then
X =X U {x}
elsif || f(x)] =6(f,n) then do nothing
elsif go to (*)
return the pair {X,e} and halt
end for

(*) n:=mn/2

Output: {X, &}

Postconditions: The algorithm halts if f ¢ Xgr. If X = @ then Mg is
empty. Otherwise, the set X is closed by the involution x +— —ux, and the
union of the balls {B(x,¢) | x € &X'} covers Mg and is homotopically
equivalent to it.

—53171(}‘.’)6) >r and 22B(f,x) <r

In the sequel, we use the quantity
5312 3
C:=max{12(n+1)D, T«/n +1D°¢. ®)

Note that we have C = O(n D).

Proposition 3.1 Algorithm Covering is correct (it computes a list {X, e} satisfying
its postconditions). Furthermore, its cost is bounded by

O (logy (C (/) nNQCKA()))") = (DK ()™

and the number K of points in the returned X is bounded by (nDK(f))O(").

The rest of this section is devoted to prove Proposition 3.1.
Lemma 3.2 Let x € S" and y € Z(f) be such that ||x — y|| < 0.7. Then the point
¢ (y) := 3 € Ms satisfies |x —p() < 1.1]lx — y|.

FolCT
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Proof The proof goes exactly as the proof of Corollary 2.13. O

The following two lemmas deal with the correctness of the algorithm.
Assume the algorithm halts for a certain value 1. Let X be the set constructed by
the execution at this stage and set r = /sep(n).

Lemma 3.3 The sets X and Mg satisfy dg (X, Ms) < r. Furthermore, for all y €

Ms, there exists x € X such that ||y — x|| < r?.

Proof The points in G, divide into two groups that satisfy, respectively:

This happens when || f (x)|| > 8(f, n), and therefore, by Corollary 2.13,

there are no zeros of f in the ball B(x, sep(n)) = B(x, r?).
This happens when in particular @ ( f, x) < g, and therefore, by Theorem 2.5,
there exist zeros of f in the ball B(x, 28(f, x)) C B(x,r/1.1) since 2.2E(f, x)<r.
This implies, because of Lemma 3.2, that Mg N B(x, r) # @.

This last sentence shows that for x € X, there exists y € Mg with ||y — x| < r.In
addition, since by Lemma 2.11, Ureg, B(x, r2) covers the sphere S" and there are no

points of Mg in Uyeg,\x B(x, r2), it follows that Ms C U,cx B(x, r?) and therefore

for all y € Mg, there exists x € X such that ||y — x|| < r2 < r. This shows that
dg (X, Mg) <r. O

Lemma 3.4 LetT :=6r. Then T < t(f).

Proof Lety € Mg be such that T(f) = 7 (f, y), for T'(f) defined in Corollary 2.10.
By Lemma 3.3 there exists x € X such that ||x — y|| < r. Hence,

1 2
_ < = '
lx =yl <r =< 5317 (f, x) 531 D3/2Mnorm(f’ x)

By Proposition 2.3 (with ¢ = %) we have pporm(f, y) < (1 + ﬁ)unorm(ﬁ x) <
1.005 penorm (f, x). Consequently, Y (f, y) < 1.005y(f, x) and therefore,

_ 6 6.03 1 1
T=06r < — < — < — =—— <1(f),
531y (f,x) — 531y(f,y)  87y(f,y) 8IT(f)
the last by Theorem 2.9. O

To bound the complexity, we rely on the following.

Lemma 3.5 Let C be defined in (8). Suppose n < C/<+(j) and let X be the set
constructed by the algorithm for this n. Then, for all x € G, either x € X or

ILf Ol > 8(Cf, ).
Proof Let x € G,. By the definition of « () in (2),

IIf(x)IIZ}

1 -
< 2max {,unozrm(f, x), W .

K2(f) ~
EOEE
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We accordingly divide the proof into two cases.

f(x)llz} _ lrw)?
/117 1%

Assume first that max { Uz (f X)), I
In this case

)< L2l
=T S afE

which implies

TR V”Cﬁ”f” . ”@f” > L1/@+ DD | f 1= 8(f. ).

the second inequality since < 1 and the third since C > 12(n + 1) D.

Now assume instead that max {H“norm( fix), ”]”C ;XH)ZH } w2 (fs x).

1 2
n= = .
Ci2(f) = Clidom(f. )
We will show that the condition W > /sep(n) of the algorithm holds true,

and that when any of the other two conditions doesn’t hold, then || f (x)| > §(f, n).
Indeed,

In this case

©)

V2 1 1
D3/2 N2 3
y(fix) = Hnorm (f, X) <) ) «/C_U =< 531ﬁ(n+ L

1
~ 531.4/sep(p)’

the second inequality since +/C > */7553101 + H/4D3/2,
Assume now that @( f, x) > . Then

If Ol
A1

1
oo < 2D3/2 norm(f x)
which implies

2
@I = 1 Gy 2 M 1€ 2 LIVD@ DIl =37,

the last inequality since C > %«/n +1D3 > LivntlD VZ;FIDZ.
Assume finally that 2.2 (£, x) > /sep(n), i.e.,

I/l
A1

2.2 fnorm (f> %) = /n(n + D4,

Fo C 'ﬂ
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This implies

1 1/4 C 1 1/4
IOl = ”f”\/ﬁZZ(n,u—'——)(fx) (%) ||f||77\/_énz—+\/§) > 1L1y(n+DD|flin

=3(f.m),
since C > 12(n + 1)D. O

Proof of Proposition 3.1 Lemmas 3.3, 3.4 and Remark 2.7 show that if the algorithm
halts, then the current value of » when halting and that of T := 6r satisfy the hypoth-
esis of Proposition 2.6. The fact that T = 6r shows that with the choice ¢ := 3.5r
the manifold Mg is a deformation retract of U, (X) and, hence, the two are homo-
topically equivalent. Finally, the fact that X is closed under the involution x +— —x
is straightforward. This shows correctness.

To evaluate the complexity, note that Lemma 3.5 shows that the algorithm halts as

soon as 1

Cr2(f)

This gives a bound of O(log,(Cx (f))) for the number of iterations.

At each such iteration there are at most R, := 2(n + 1)(2)" points in the grid
G,. For each such point x, we can evaluate pnorm (f, x) and || f (x)||, both with cost
O(N) (cf. [10, Prop. 16.45 and Lem. 16.31]). It follows that the cost of each iteration
is O(R,N).

Since at these iterations n > no, we have R, < 2(n + 1)(2C/c2(f))". Using
this estimate in the O(R, N) cost of each iteration and multiplying by the bound
O(log, (Ck (f))) for the number of iterations, we obtain a bound of N (nD« (f ))O(")
for the total cost. The claimed bound follows by noting that N = (n D)o,

Finally, the number of points K of the returned X satisfies

n=no:=

K = Ry, < 2(n + 1)(2C«2())" = D (f)°™.

4 Computing the Betti Numbers and Torsion Coefficients of Spherical
and Projective Algebraic Sets

Let X be a topological space and {U;};<; a collection of open subsets covering X. We
recall that the nerve of this covering is the abstract simplicial complex N (U;) defined
on [ so that a finite set J C I belongs to A/ (U;) if and only if the intersection N jesUj
is nonempty. In general the complex does not reflect the topology of X, except when
intersections are contractible, in which case there is the Nerve Theorem, that we quote
here from [5, Theorem 10.7].

Theorem 4.1 Let X be a triangulable topological space and {U;}ic; a locally finite
family of open subsets (or a finite family of closed subsets) such that X = U;cU,;.

FoC'T
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If every nonempty finite intersection NjcyU; is contractible, then X and the nerve
N (U;) are homotopically equivalent. O

Here we use the Nerve Theorem in the case where the sets U; in the statement
of the theorem are the open balls B(x;, ¢) for x; € X where {X, ¢} is the output of
Algorithm 1 and X is their union. Note that as balls are convex, so is their intersection.
Hence, these intersections, if nonempty, are contractible, and we can apply the Nerve
Theorem. That is, given {X, ¢} we want to compute first its nerve N := N (U;) and
then, the Betti numbers and torsion coefficients of N. Proposition 3.1 and Theorem 4.1
ensure that these quantities coincide for N and Ms.

In what follows, we assume that we have ordered the set X’ so that X = {x; <
X3 < ... < xg}where K = |X] is the cardinality of X. Then, for k > 0, the abelian
group Cy of k-chains of AV is free, generated by the set of k-faces

{J clx..xk} Il =kand (1) Bxj,e) # 0} (10)

xjed

To determine the faces of Cy from {X, €}, we need to be able to decide whether,
given a subset {x;,, ..., x;, } of X, the intersection of the balls B(x,-j ,€),j=1,...,k,
is nonempty. This is equivalent to say that the smallest ball containing all the points
{xi;,...,x;,} has radius smaller than e, and we can do so if we have at hand an
algorithm computing this smallest ball. Since we are looking here for a deterministic
algorithm, we do not apply the efficient but randomized algorithm of [22, pp. 60—
61], whose (expected) cost is bounded by O((n + 2)'k), but we apply a deterministic
quantifier elimination algorithm to the following problem: given x;,, ..., x;, € R**!
and ¢ > 0, decide whether

JzeR"™ st fxi; —zll <& forl<j<k.

This can be solved using for instance [27] in time linear in kO™ Asthere are (I,f ) < K*k
subsets of k elements in /, the following result is clear.

Lemma 4.2 The cost of constructing Cy, is bounded by K* - KO, O

For k > 1 the boundary map 9 : Cy — Cy—_; is defined, for a simplex J € Cg,
J={xi,...,x; ), withi] <iz < ... <, by

k
W)=Y (=D xip, o Ko i)

j=1

where the (k—1)-face {x;,, ..., )?;, ..., Xj, }is obtained by deleting the jth elementin
J. This map is therefore represented by a matrix My with O;_1 rows and O columns
with entries in {—1, 0, 1}, where Oy denotes the number of faces in (10).

FolCT
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Proposition 4.3 We can compute the Betti numbers by(Ms), . .., by—n (Ms) as well
as the torsion coefficients of Mg with cost

(n Dk ()",

Proof Algorithm Covering produces, as shown in Proposition 3.1, a pair {X, ¢} such
that the union U, (X)) of the balls B(x, ¢), for x € X, covers Mg and is homotopi-
cally equivalent to it. Theorem 4.1 then ensures that the nerve A/ of this covering
is homotopically equivalent to U, (X’) (and hence to Ms). It is therefore enough to
compute the Betti numbers and torsion coefficients of A/. To do so, we construct, for

k=0,...,n—m+ 1, the group C (i.e., we determine its faces). This has cost
n—m+1 n—m+1 5
Yo KO0 = 3 Dk ()OO = (nDie (1)
k=0 k=0

by Lemma 4.2 and the bound for K in Proposition 3.1.

With the groups Cy at hand we write down the matrices M) corresponding to the
boundary maps d, fork = 1,...,n —m + 1. Next we compute their Smith normal
forms Dy,

bi1

Dk — bk,l‘k

0

Then, dim Imdy, = rank(Dy) = #, and consequently dim ker 0y = Oy — rank(Dy) =
O — ty. Fork =1, ..., n — m we thus obtain the Betti numbers

br(Ms) = dim (ker Bk/Im8k+1) =0y —ty — Tr+1

and the same formula yields bg(Ms) and b, _,, (Msg) by taking 7o = 0. Furthermore,
it is well known that the kth homology group of A (and hence that of Mg as well)
has the structure

Hy(Ms) ~ ZbMs) @ Zbk+1,1 S Zbk+1,2 S Zbk+l,rk+1 )

that is, its torsion coefficients are bg11,1, bxt1,25 - -+ » Dkt 1,14 -
The cost of this last computations is that of computing the Smith normal forms
D1, ..., D,_;;. The one for Dy can be done (see [39]) with cost

O ((min{Ox. Og—1))° max{Ox. Ox1}) = O(K®") = (n D (f)°""
EOE';W
@Springer ,_ﬁjo'}



Found Comput Math

(here O™ (g) denotes O(g log® g) for some constant ¢) and hence the same bound holds
for the cost of computing all of them. O

The reasoning above extends in a simple manner to compute the homology of Mp.
Indeed, projective space P" is homeomorphic to the quotient S”/ ~ where ~ is the
equivalence relation that identifies antipodal points. Now consider the map

St — P

associating to x its class [x] = {x, —x}. Because the set X’ is closed by taking antipodal
points, its image X under [ ] is well defined and so is the ball in projective space
Bp([x], &) := {B(x, &), B(—x, ¢)}. Then, the retraction from the union of the balls
B(x, ) onto Mg induces a retraction in projective space from the union of the balls
Bp([x], ) onto Mp.

Also, given x;,, ..., x;, in X, the intersection of B([x,-j], &) is nonempty if and only
if there exist representatives of [x; ], ..., [x; ] such that the Euclidean balls centered
at these representatives have nonempty intersection. That is, if and only if there exist
el,...,e, € {—1, 1} such that the balls B(eyx;,, €), B(exxi,, €), ..., B(exx;,, €) have
nonempty intersection. This can be checked by brute force, by checking each of the
2k possibilities. Furthermore, if this is the case we get, since ¢ < 1,

() Belxil. )

1<j<k
= [B(el)cil ,e)N...N Blexxi,, 8)]
= {B(elx,-l, ) N...N B(exxj, €), B(—eix;, &) N...N B(—erxj,, 8)}.

Since if B(ejx;;,€) N ... N B(ekx;,, €) contracts to y € R+ then B(—ex;,e) N
... N B(—exj,, €) contracts to —y, then the intersection of B([x], &) contracts to
{y, —y} = [y] € P" and the Nerve Theorem applies: it implies that the nerve \ of the
family {B([x], &) | [x] € X} is homotopically equivalent to the union of this family.
The reasoning of Proposition 4.3 straightforwardly applies to prove the following
result.

Proposition 4.4 We can compute the Betti numbers bo(Mp), . .., by—n, (Mp) as well
as the torsion coefficients of Mp with cost

(nDr(£)°.

5 On the Cost of Computing Coverings for Random Systems

The following result is a part of Theorem 21.1 in [10].
FolCT
u
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Theorem 5.1 Let ¥ C RPH! be contained in a real algebraic hypersurface, given as
the zero set of a homogeneous polynomial of degree d and, for a € RPT!, a # 0,

_ llall
C@) = @)

Then, forallt > (2d + 1) p,
1
Prob{€(a) >t} < 4dedp —
aesSp t

and
ESP (log, € (a)) < log, p + log, d + log, (4¢).

ae

]

Remark 5.2 For condition numbers over the complex numbers, one can improve the
tail estimate in Theorem 5.1 to show a rate of decay of the order of 1 ~2(P*1=0 where
£ is the (complex) dimension of ¥ C CP*t! (see [21, Theorem 4.1]). Over the reals,
such an estimate (with the 2 in the exponent removed) has only been proved in the
case where ¥ is complete intersection [24]. We suspect that a similar estimate holds

for k (f).
We define

Sc= {f € Hqlm]|3x € C™! such that

3 & =1, f(x) = 0and rank(Df (x)) < m}

0<j<n

The set of ill-posed systems Xk defined in (3) is contained in 2.

Proposition 5.3 Let U be a set of N = dimp Hg[m] variables. Then there exists a
polynomial G € Q[U\{O} such that G|z, = 0 and deg(G) < m" 2 (n + 1) D"t
(Here G(f) for f € X means specializing G at the coefficients of the polynomials
in f.)
Proof Observe that for generic f = (f1, ..., fm) € Hqlm]themapx — Df(x),x €
C"+! | is surjective, that is rank (D f (x)) = m, and that the condition rank (Df (x)) < m
is equivalent to the vanishing of all maximal minors of the matrix Df (x) € C"*"+D,
For convenience, we write U = {u; o | i = 1,...,m, || = d;}. We consider the
general (n + 1)-variate polynomials of degree d;,

F; = Z uioX* € QUIX], 1<i<m.
|o|=d

Let DF(U, X) € Q[U][X]™*"*D be the Jacobian matrix of F = (Fi, ..., Fy)

w.r.t. X, and denote by My (U, X), 1 < k < ¢, all its maximal minors. We consider
the polynomials

EOE';W
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Y XL R X), MU.X), 1<i<m 1<ks<t (D

0<j=<m

These polynomials have no common zeros in Q(U )n+1 because they have no common
zeros for a generic specialization of U as mentioned at the beginning of the proof, and
we can apply [20, Cor.4.20]. We have

degy (F)) = di < D, degy (fo — 1) — 2, degy (My) < m(D — 1),
deg, (F) = 1, degy (Zx§ - 1) =0, degy (My) < m,

and therefore there exists G € Q[U]\{0} such that G belongs to the ideal in Q[U, X]
generated by the polynomials in (11) with

degy(G) < mDY"™' >~ m <m"(n 4+ D"

0<t<n

Clearly this polynomial G vanishes on all f € 2. O

Corollary 5.4 Let costs(f) and costp(f) denote the costs of computing the Betti

numbers and torsion coefficients of Mg and Mp, respectively. For f drawn from the

uniform distribution on S(Hg[m]) = SY ! we have the following:

(1) With probability at least 1 — (nD)™" we have costs(f) < (nD)O(”3). Similarly
for costp(f).

(ii) With probability at least 1 — 27N we have costs(f) < 200V, Similarly for
costp(f).

Proof For all t > (2(n + Hm"™2D" ™! + 1)N, it follows from Theorem 5.1 and

Propositions 2.2 and 5.3, that we have

1
Prob {k(f) >t} < 4em"?(n+ 1)D"F'N —.
fesN-1 t

By taking t = (nD)“" for a constant ¢ large enough, we have

Péob (k(f) = mD)"} < dem™>(n + 1)D"''N nD)~" < nD)™".
fE N-—1

By Propositions 4.3 and 4.4, for f with« (f) < (nD)“" we have costs(f), costp(f) <
(nD)O(”3). This proves (i).
To prove part (ii) we take = 2¢V for c large enough. Then,

Prob {x(f) = 2Ny < de (n+ 1Ym" PP D HIN2TN < 27N,
feSN—

Using Propositions 4.3 and 4.4 again, we have that for f such that x(f) < 2N,

costs(f), costp(f) < (nD)C@ 200> N) < 2ON?) the Jagt as N > % o
Elol:;ﬂ
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6 Remaining Proofs
6.1 Proof of Proposition 2.2
We start by defining a fiber version of . For x € S" we let
Tr(x) := {g € Halm] : g(x) = 0 and rank (Dg(x)) < m}.

Note that, for all x € S", Xr(x) is a cone in R". In particular, 0 € Xg(x). The
following result is the heart of our proof.

Proposition 6.1 Forall f € Hg[m] and x € S”,

£ e(fix) < £
V2 dist(f, ZR(x)) = dist(f, Zr(x))

Proof We only need to prove the statement for f ¢ Xr(x). As we saw in Remark 2.1,
k(Af, x) = k(f, x) for all A #£ 0, and also dist(Lf, Zr(x)) = |Aldist(f, Zr(x)). We
can therefore assume, without loss of generality, that || f|| = 1.

Because the orthogonal group ' (n + 1) in n + 1 variables acts on Hg[m] x S"
and leaves wnorm, K and the distance to X invariant, we may assume without loss of
generality that x = ¢ := (1,0, ...,0).

For1 <i < m write

d,‘ di
di— d; di—
i) =Y Xg T fig(Xua . X)) = XG fio+ D XG fig(Xi L Xp)

q9=0 q=1

=X fiteo) + X7 Y —(eo)x +0i(X) (12)

l<j<n J

where in the first line f; , is a homogeneous polynomial of degree g, and in the second,
degy, (Q) < d; — 2.In particular f; = 3",_-, E;’Tffj(eo)x,-.
We first prove that « (f, eg) < 1/dist(f, £r(ep)), or equivalently,

dist(f, Zr(€0))* < k(f, €0) "> = pem (f: €0) + I £ (€0)|I*.

Write f;1(X1, ..., Xn) = Vdiain X1 + - - - + /diain X, for suitable a;;. Therefore,
3ﬁ ( o) = d; fi(eg) ifj=0
Vdiaij if j > 1.

Define

d;
hi=fi— X§ fro= D Xg U fig(Xi..... Xn)
qg=1
FoE'ﬂ
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for 1 <i < m. Then

If=hlI>=Y" fo=_ fileo)* =l (el (13)

i<m i<m

In addition ;(eg) = 0 and for 0 < j < n,

_(60) 3f, (e )—\/_al] if j > 1.

h; 3% (e0) = di fi(eo) = 0 if j =0
8X

Therefore, we have (recall the definition of A from Sect. 2.1)

Vdi fileo) ai ... am
Vdy fr(e0) ax ... an

A™'Df (o) =
Ny fm(eo) ami ... amn
and
0 anr ... a
_1 0 ay) ... dzp
A7 " Dh(ey) =
0 an1 ... amn

Let A = (a;;) € R™*" so that A=' Dh(eg) = [0 A]. We know that rank (A) < m.
If rank(A) <m — 1, then h € r(eo) and hence, by (13)

dist(f, Sr(e0)* < If —hl* = 1 £ ) I* < K (f> €0) + Il £ (€0) I

If rank(A) = m, then (the inequality by [14, Lemma 3]),

tnorm (fs €0) = (AT Df (eo)) Il < (AT Dh(eo)T || = ptnorm (B, e0).  (14)

Because of the Condition Number Theorem [10, Corollaries 1.19 and 1.25], there
exists a matrix P € R™*" such that A + P is a nonzero matrix of rank less than m
and

IPIlF = IATI7 = 110 ATT ™" = (AT DR(ep) 17" = pgm (55 €0)-

Let E = (e;;) = AP € R™*" and consider the polynomials

n
gi(X) = hi(X)+ X5 ' eX;, 1<i<m.
j=1
Fol:'ﬂ
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Then g; are not all zero, g; (eg) = hi(eg) = 0, E)XO L (eg) = axo L(ep) =0, and g’ (eo)
W’j(eo) + eij = cij +eij = v/diaij + e;j for 1 < j < n. It follows that

Dg(ep) =[0 A A+ E]=[0 A(A+ P)]
and therefore rank(Dg(ep)) < m. Hence, g € Xr(ep). In addition,

. —1
lg—hl= (d, - 1) A=Y a'd =3 =P
1 )

1<i<m 1<i<m 1<i<m
1<j<n 1<j<n 1<j<n

=l (11, €0).

We conclude as

lg = £ = llg = hlI> + Ik — f|| = Mnorm(h e0) + |1 f (eo)II? < Mnorm(f, €o)
+1 (eo) I,

and hence, dist(f, Zr(e0))? < | f — glI> < tpem(fse0) + I f (o).

We now prove that « (f, eg) > Tidn onen)” or equivalently, that

2dist(f, Zr(€0))? = tpam (f: €0) + |1 f (e0) I

Let g € Tr(ep) be such that dist(f, Zr(eg))> = || f — glI>. As in Identity (12), write

g =x4""3" —(eo>x + 0i(X),

1</<n

where we used that g(ep) = 0. From this equality and (12), it follows that

) - dfi 8i
fi— g =X{ fite) + | X¢ 7 Y <8 (€)X — Xj(eo)xj)

I1<j<n

+[0:(X) - 0;(X)].

As the three terms in this sum do not share monomials,

dg
Ifi — &il? = fite)* + Y. (—( )—i< ))

1<j<n

1 111 1 dfi
> > fieo)’ + 5 d—l_fi(eo)erd—i > (i< )——(e ))

1<j<n

FoE'ﬂ
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)

But rank (diag(%)Dg (eo)) < m, and therefore, by the Eckart—Young theorem,

and hence,

If—gl* =

1
Df (eo) — diag(—

d1ag< ! NG

(Ilf(EO)II + NG

\_/

) Dg(eo)

| =

> O,

) D (eo) — ding(—— le

dlag( ) Dg (60)

Vd;

the smallest singular value of dlag( )D f (eo). On the other hand,

-2 t1s N\ —2 -2
nom (f. €0) > = | D (eo) ding(v/di) | = | (diag( \/_)Df(eo)) |

(NP _ 2
- (am) = a2

This concludes the proof since
1 1

If—gl* > 5(||f(eo>||2 o) = 5(||f<eo)||2 + Lnom ([, €0) )
as desired. O

Proof of Proposition 2.2 We can assume again || f|| = 1. We note that
dist(f, Xr) = min{dist(f, g) : g € Tr} = min{dist(f, Tr(x)) : x € S"},
since g = | J esn ZR(x). Then, using Proposition 6.1,

1 1
xeS" dist(f, Zr(x)) miSn dist(f, Tr(x))
X€E n

k(f) = maXK(f x) <
. 1
~dist(f, Tr)
Analogously,

1 1

K =0 = s i  Ta ) V2 min dist(f, Tz (x))

1
- V2dist(f, Sg)

Fo C 'ﬂ
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6.2 Proof of Proposition 2.3

The following simple quadratic map, which was introduced by Smale in [38], is useful
in several places in our development,

v [0,00) > R, u > 1—4du+2u’ (15)
It is monotonically decreasing and nonnegative in [0, 1 — ‘/TE].

Lemma 6.2 Letu := ||z — y|ly(f, y). Forall e € (0,1/2], ifu < & then

5
Mnorm (f5 2) < (1 + Eg)ﬂnorm(fv y).
Proof As Df (y)Df(y)" = Idgn we have

tnom (f> 2) = I FIIDF@TAI = IIFIIDF ) DfF)DF (T A

1— 2
< I IIDF @ DFWIIDF Al < L=

Wﬂnorm(ﬁ y)

the last inequality by [37, Lemma 4.1(11)]. We now use that

(1—u)2=1+u<—2—u )§1+§s

v(u) 1 —4u +2u? 2
thelastasu < ¢ < % and the fact that ﬁ < % in the interval [0, %]. O

Proposition 2.3 Because of (4) we have

ly —zll < 2 = <
D32 pnorm (£, ) V(i y) ~ v (fiy)

Hence, we can apply Lemma 6.2 to deduce the inequality on the right. For the inequality
on the left, assume it does not hold. That is,

1
Mnorm ([ 2) < 5 Mnorm (fs ¥) < Mnorm (f, ¥)-
1+ 28

& & :
Then, ||y — z|| < pr— f(’,{v) = o (7D and we can use Lemma 6.2 with the roles of
uc

y and z exchanged to deduce that

Hnorm (f5 ¥) < (1 + gg)ﬂnorm(fv 2)

which contradicts our assumption. O
FoC'T
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6.3 Proof of Theorem 2.9

Recall that Z denotes f~'(0) ¢ R**! and Mg = Z N S". The idea of the proof is
to show that if p,q € Ms, p # g, then there are fixed radius balls around p and ¢
such that the normals at p and g to Mg, i.e., the normal spaces of their tangent spaces
at Mg, do not intersect in the intersection of the two balls. Either the two points
are so far that there will be no intersection between the two balls, or there are close
and in that case, Mg around p can be described as an analytic map by the implicit
function theorem. This enables us to analyze the normals at p and ¢ and their possible
intersection.

For the rest of this section, we fix an arbitrary point p € Ms,i.e.,suchthat f(p) =0
and || p|| = 1, with a full-rank derivative Df (p) and we set y,, := max{y (f, p), 1}.

For any & > 0 and any linear subspace H C R"*! we denote by B, g (0) the open
e-ball in H centered at 0 and by B, g (p) := p + B, g (0) the same but centered at p.
In the special case that H = R*t! we simply write B;(0) and B;(p).

We recall that, because of Euler’s formula, p € ker Df (p). We define

T := (p)J‘, Hy:=kerDf(p)NT, Hy := keer(p)J‘ CT,Hs:=H+ (p),

and consider the orthogonal projections ; : R+l H; fori = 1, 2, 3. Note that H;,
H;, Hj are linear spaces of dimension n — m, m, and m + 1, respectively. In addition,
T = Hy L Hy and R"*' = H| L H; = ker Df(p) L H», where the symbol L
denotes orthogonal direct sum.

Proposition 6.3 Define ci = 0.024. Then Z N Bcl 7(p) is contained in the graph
of a real analytic map w : Bq H (p) — H; satlsfymg w(p) =0, | Do(p+x)| <
2.3 || xllyp and |lw(p + x) || 5 1.15 ||x|| Yp, forallx € B H 0).

vp’

Figure 1 attempts to summarize the situation described in Proposition 6.3.

Proof The general idea is to first apply (and get explicit bounds for) the Implicit
Function Theorem to get a real analytic map wo : Bey .. p () (p) — H satisfying
vp’

that Z N B¢ (p) is contained in the graph of wg with wo(p) = 0, || Dwo(p + x)|| <
p

2.3|lx]lyp and [wo(p + x)|| < 1.15)/‘,,||x||2 forall x € Be Df(p)(O). We then
vp’
restrict B¢ (p) to Bep p(p) and wp to Hy C ker Df (p) to obtain w satisfying all the
Y vp’
stated concliitions. '

The process is involved and we describe it as a sequence of claims.
Claim 1. For all z € R""! such that u = u(z) = ||zlly(f,p) < 1 — */75 the
derivative Df (p + z)|n,of f with respect to Hyat p + z is invertible.
Indeed,
Fol:'ﬂ
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T+p

ker D (p)

Hy / " =
T

Fig. 1 Situation in Proposition 6.3

IDF (P Df (P + DIy — Wdm, || < IDF(p) D (p +2) — ma|
1

———1<1
<(1—u)2 <

the first inequality by properties of Moore—Penrose inverse and the second by [37,
Lem. 4.1(9)]. Therefore, by [10, Lem. 15.7], Df(p)lgz1 Df(p + 2)|n, is invertible,
which implies Df (p + z)|n, invertible as desired. This proves Claim 1.

From now on, since R"*! = ker Df (p) ® H,, we write indistinctly f(p)or f(p, 0)

as p e ker Df(p), and forz = (x,y) e ker Df (p) @ Ha, f(p+2z)or f(p+x,Y).
Let

Q= {z = (x,y) eker Df(p) © Hz | |Izll = (1 B g)y(;, p)}'

For all z = (x0, yo) € 2, Claim 1 ensures that Df (p + xo, yo)|n, is invertible. If
f(p + z) = 0, the Analytic Implicit Function Theorem ensures the existence of an
openset U C ker Df (p) around xo, an open set V C H around yo and a real analytic
map w; : p+ U — V such that

{(p+x, 0:(p+x)) [x e U} ={(p+x,y) € (p+U)xV | f(p+x,y) =0}. (16)
EOE';W
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Recall the decreasing map i defined in (15) and consider also the function

(1 —uw)? 1 _ 2u(l— %)
v =" e )=

We observe that ¢ (u) < 2.2u foru < 0.024 =: ¢;.
Claim 2. Letz = (xo, y0) € Qand u = u(z) = zlly(f, p). If f(p +z) = 0 then
[ Dwz(p + xo0)ll < ¢ (u).

This is Lemma 5.1 in [37] (with x, y and o there corresponding to p, p + z and
Dw; in our context, and in the particular case where f(p + z) = 0).

Let now wg be w, for z = (0,0), and denote by 0 € Uy C ker Df(p) and
0 € Vo C H, the open sets given by the Implicit Function Theorem in last paragraph.
We observe that by Claim 2, we have Dwg(p) = 0 since ¢ (0) = 0.
Claim 3. We have

ID?>wo(p)ll < 2y (f, p).

First note that by the Implicit Function Theorem, Dwo(p) = —(Df(p, 0)] Hz)’1 o
Df(p,0)lerpf(p)y = 0and f o (Id, wp) = 01in (p + Up) x Vo, so

0 = D*(f o (Id, w))(p)
= D% f((1d, 0), (Id, 0))(p) + (DS (Id, w0)(0, D>wp))(p)
= D?£((1d, 0), (Id, 0))(p) + Df (p)| 1, D*wo(p).

Note we have removed the symbol o in the compositions from the second line above.
We have done, and keep doing, this to make the notation lighter.
So, D?wo(p) = —Df(p)" D% f((1d, 0), (Id, 0))(p) and we obtain the inequality
1/k—1
D*fp)|"”
k!

| D%w0(p)ll = IDf (p)' D? (14, 0), Ad, 0)(p)]| = 2max | Df (p)'

=2y(f.p)

from the definition of y (f, p). Claim 3 is proved.

Claim4. Recallci = 0.024. The analytic map wqo : p+Uy — Vo can be analytically
tended on th ball B« , and Il € B¢ , it

extended on the open ba ﬁ’keer(p)(p) and for all p + x ﬁ,keer(p)(p) its

extension—also denoted by wo—satisfies the following:

@ [1Dwo(p +x)|| <2.3|x]yp, and

(i) lwo(p + )| < 115 ||x[?y, < 0.())/(])’07'

Since wy is defined in p + Uy, there exists r, 0 < r < ;—1 such that wy is defined on

P
By xer Df(p)(p) and satisfies Conditions (i) and (ii). To see (i) we note that the equality
| Dwo(p)|l = 0 along with Claim 3, the Mean Value Theorem and the fact that wy is
defined and C? on p + Uy imply that

[Dwo(p + )1l < 2.3x]lyp 17
Elol:;ﬂ
@ Springer Lﬁjog



Found Comput Math

for x sufficiently close to 0. For (ii), from (17) and the Fundamental Theorem of
Calculus, we have

1
llwo(p +x)Il = llwo(p + x) — wo(p)ll < /0 [Dewo(p + tx)x||dt

1 1
f 1Don(p + Lol xldr < / 231 |xIPy, di
0 0

<
5 ¢ 0.0007
= 1.15||x[]*y, < 1.15-L < . (18)
Yp VYp

Let us show that the supremum rg of all 0 < r < ;—' such that wo(p + x) can be

analytically extended to B, ker pf(p)(p) and satisfies anditions (1) and (ii) is exactly
ro = <L. We assume the contrary, that ro < ;—]", and show that in that case wg can be
extended a little further.

Let x¢ be any point in ker D f (p) with ||xg|| = ro. We note that the continuous map
wy 1s bounded on the ball B, ker pr(p)(p) because Condition (i) holds there. Thus, we

can consider the limit yp := lim wo(p + tx¢). Then, reasoning as in (18)
t—1-

1 2

0.0007
lIyoll S/ IDwo(p + txo)xolldr < 1.15 |xolPy, < 1.15 9. .
0

Yp Yp

Using the inequality above and the triangle inequality, we obtain

o, 307, < (1ol + 115 Ix01%y ) 7

V2
= ||x0||y,,(1 115 ||xo||y,,) < cl<1 + 1.15c1) < (1 - —)

<o
<y,

19)

Hence, z := (xg, yo) € @ and f(xg, yo) = 0. This implies that there exist an open
ball U C ker Df (p) and an open set V C H, around xo and yy, respectively, and a
real analytic w; : p + U — V such that (16) holds.

Since || yoll < 1.15 ||xo ||2y,,, by taking a smaller ball U we can further ensure that
wz(p+x) C By 15y 2y,.1,(0) forx € U. So, (ii) holds for w; on p+ U . Furthermore,
we may use Claim 2, Inequality (19), and the fact that ¢ (1) < 2.2 u forall0 < u < ¢
to deduce

|Dw(p + x0)1 < 22050llyp (14 115 ¢1) < 23 lxollyp,

so that w, also satisfies (i) on p + U, possibly taking an even smaller U.

Finally, since the analytic maps wy, defined on p + x € By xer Df(p)(P), and w,,
defined on p+xo+x forx —xo € U, coincide by (16) on By ker pf(p)(P)NU, which s
nonempty and connected, w; is an analytic continuation of wg on p+ U around p + xp.

EOE';W
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Letus denote by U, this open ball around x forx € So := {x € ker Df (p) | ||lx|| = ro}
and let U := Uyeg,Uy. Consider the function ¢ : So — R defined by

e(x) =sup{t e R | [x,1tx)) C U}.

Note that by construction ¢ > 1 for every x. As ¢ is continuous and Sy is compact and
connected the image ¢(Sp) is a closed interval [¢, £'] with 1 < ¢ < ¢’. Furthermore,
there exists x, € Sg such that ¢(x,) = £ and, hence, ¢ > % > 1, where r,. is the
radius of Uy, . It follows that we can extend w to the open ball in ker D f (p) centered
at p with radius rg + r, > ro and both (i) and (ii) hold in this ball, a contradiction.
This finishes the proof of Claim 4.

Claim 4 shows that for all x € B ;Tl> ker DF(p) (0) the point y = wo(p + x) satisfies

(p+x,y) € Zand ||y|] < %. We will next see that it is the only point in

H, satisfying these two conditions. To do so, for each x € ker Df(p), we define
v . Hy — R™ as the restriction of f to {p + x} x H, so that g,(0) = f(p + x).
2

is

_2
invertible. In particular, Dg,(0) = Df (p + x)|#, is invertible for | x| < ! yp2 .

Claim 5. Forall x € ker Df(p) such thatu = u(x) = ||x||ly(f,p) <1 — ‘/Ti, we
have a(gy,0) < W

To show this claim we adapt the proof of [6, Prop. 3, p. 160]. First we verify that
v(80.0) = ¥ (fl{pyx > P) < ¥ (f, p). To do this we note that

y(f, p) = max | Df (p y 2L
k
= max max HDf( )' f(p)(wl,...,wk)
k>1 wy,..., wy eS"

and

1
Dkf|p><H2(P) ~

Y (Flipt, P) 2 = max | Df |ppcrn (p)~

k!
DFf(p)lu
_ 1= J /A
= max | Df (P, —
1
DX £(p)n, =
= D 1— PR ]
P e T

Modulo an orthogonal change of basis (that does not modify norms), we can write

0
F_ .
Df(p)' = (Df(l’”;l; ) This proves that y (go, 0) < y(f, p). Also,

B8, 0) = [ Dg.(0)" g (0| < [IDf (p +x)|;,21 Df(P)|H2||||Df(P)|;I; fp 4+l
FoE'ﬂ
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By [37, Lem. 4.1(10)],

IDF(p + 0005 DF I = L=

p+x p < —
H =" W

while by the multivariate version of [6, Lem. 4(b), p. 161],

llx]| < i
— Xy (flipyxcms p) — 1 —u’

IDf (D), £(p+ 0] = 5

since B(f, p) = 0. This implies B(gx, 0) < 1},;;; llx]l.
Also, in the same way that we verified that y (gg, 0) < y(f, p) we can check that
y(gx,0) < y(f, p+ x), and therefore, as in the proof of [6, Prop. 3, p. 162], one gets

y(fs p)

0) < ———"— 20
)_1//()(1—14) <0

v (&x>

Multiplying B(gx, 0) and y (g, 0) we conclude that as long as u = ||x||y (f, p) <
1-— ‘/TE we have

u
a(gy,0) < W

This proves Claim 5.
Claim 6. Recall ¢y = 0.024. For all x € ker Df (p) with || x| < ;—;, there is at most
one zero of the map gy in the ball ||y|| < %.

For 0 < u < ¢ one has 0.905 < (1) < 1 and W < 0.03. Thus, by Claim 5,
a(gx,0) < 0.03 for all x € ker Df (p) with |x|| < ;—I" The second statement in

Theorem 2.5 applied to g, tells us that O converges to a zero of g, and that all points

in the ball of radius y? 050) converge to the same zero. This implies that there is at

most one zero of g, in the ball of radius

0.05 005y @)1 —u) _ 0.05y(0.024)(1 —0.024) _ 0.044
v (gx,0) 20) y(f. p) - vy (f, p) ~y(f.p)

which proves Claim 6.
We can now finish the proof of the proposition. Since B Ll (p) CB c. Ker Df (p) (p) x

Bo.osu 044 o (0), it follows from Claims 4 and 6 that ZN B q ( p) is 1ncluded in the graph
Gr(a)o) of wp. We finally restrict Z N Bq (p) to Z ﬂ B<1 7P, and therefore wq
restricts to @ : B<1 o, (p) = H, as explamed at the begmmng of the proof. The
bounds for ||Da)(p + x)|| and [|lw(p + x)|| follow from Claim 4. O

FoE'ﬂ
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Lemma 6.4 Let w be the map of Proposition 6.3 and define the following continuous

map
X

I(p+x,0(p+x)|

®: B HI(O) C Hi — H;, dkx)=
vp’

Then @ is a bijection onto its image and satisfies

@) )]l = 0.9997]|x]|,
(i) |D®(x)~'| < 1.0013.

Proof If we define the map

S:Be g 0) =R, S&) =I[(p+x, op+x))l 21

Yp

then ®(x) = ﬁ, which implies that ® maps rays to themselves. To see that ® is
bijective, it is therefore sufficient to see that it is monotone increasing along rays, so
we study its derivative along rays and show it is positive.

Let x = rv with v a unit vector and differentiate ®(tv) = % w.r.t.  to obtain
e - At e+l —(Dolp + v, op )
dt N S(tv)3 '
As we have

tI{Dw(p + tv)v, w(p + tv))|
<t|Do(p +t)lllo(p+t)| = 232y,llwp+ 1)
Prop. 6.3

2
C
< 23 V—‘nw(p + )| < 2[lw(p + )|

since ¢; = 0.024 and y,, > 1, it follows that

L+ lo(p + t)|* = 1(Da(p + tv)v, w(p + 1v)
> 1+ [o(p+t)lI* = 2lle(p + )|
= (1 —llo(p + 1)) = 0,
since [lw(p + tv)|| < 1.15t%y, < 1.15¢7 < 1 by Proposition 6.3 for [¢| < ;—;. This
shows that @ restricted to {tv}‘t| < % is strictly monotone, as wanted.
To show the bounds (i—ii) we first note that for any x with ||x|| < ;—;, by Proposi-
tion 6.3, we have
FoCT
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2 4
2 204 ‘] 2 €
Sx) =0+ |x)I”+ lo(p+x)|7)2 < 1+_)/2 +1.15 —

1z Vp
< /14l + 1.15%¢} < 1.0003,

and hence [|®(x)|| = £k > 0.9997||x]|. This shows (i).

Also, forany y € Hy,

DS}y = (x, ) +((p J;(?) Do(p + x>y>.

As (x,y) < |lx|llly|l and by Proposition 6.3,

(@(p+x), Dw(p+x)y) < llo(p + ) ||| Do (p + )| Iy
<2.65|x Py, vl < 2.65ctlxllIyll,

lxll<b
we deduce that
1 1.0016{x [yl
DS < — (142652 < -7
DSy < S (L T 265Dl < 56
5o 1.0016
IDS)| < LOoT6]xf < 1.0016]|x|| (22)
S(x)

since S(x) > 1.
We now use that ®(x) = ﬁ to derive that, for any y € Hj,

S(x) —xDS(x)

Do (x)y = S()2

and, consequently,

S(x) — 1.0016]x |12 1—1.0016¢2

>
S(x)2 o see

1 —1.0016¢2
1.00032

|D@ )y = MNE Iyl

the last inequality since S(x) < 1.0003. Therefore,
[D®(x)y| = 0.9988]y].

It follows that the smallest singular value o of D®(x) satisfies o > 0.9988 and
therefore

|D@ ()~ = — < 0.0013.

Q|-

This shows (ii). O
FoCT
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Fig. 2 Worst situation in Lemma 6.5

In what follows, we denote by ¢ the map ¢ : Rrt! \{0} = S, ¢(z) =
did in Sect. 2.5.

Lemma 6.5 Foralls € (0, 1), p(ZNBe.17(p)) = MsN$(Bhe)(p)), where h(e) :=

Z
m, as we

_£&

1462°
Proof The worst possible situation corresponds to a point z € Z N B, r(p) with
llz — pll = e. This situation is depicted in Fig. 2.

If o denotes the angle at the origin in the figure, then ¢ = tan(«) and A (e) = sin(«)

so that h(e) = sinarctan(e) = ——=. O
I+

Proposition 6.6 Define c; = 0.023 and let © be the map defined in Lemma 6.4. Then
Msn ¢(Bc72 (p)) is contained in the graph of a real analytic map
rp

9 p+c1>(13(-7l HI(O)) Cp+H — Hs
vp’

satisfying 0(p) = 0, | DY (p + x)|| < 3.4||x|ly, and |9 (p + )|l < 1.7||x|*y,, for
all x € CI>(BL] Hi (O)). Moreover, By ) c @(Bi Hi (0)).
vp’ vp’ vp’

Proof Write B = CIJ(BLI H (O)). By Lemma 6.4, ® is a bijection onto 5. Let w be
yp’

the map defined in Proposition 6.3. We recall H3 = Hj + (p) and 73 is the projection
onto H3 and define

Vv:p+B—> H

p+x > (medd w)(p+ @~ () - p,
where ¢ (p + x/, y) = for (x’, y) € H| x Hj.
Note that 9 (p) =
Forx’ := ! (x) we have

H(p+x y)H

?(p+x) =m¢(p+x 0(p+x)—p

Also note that x = ®(x') = m =m¢(p+x', w(p + x’)) implies that,

for each x € B (or, equivalently, for each x’ € ®~1(B) = B, H1 0)),
vp’

Fo C 'ﬂ
@ Springer |_|_ :‘0 E|



Found Comput Math

(P+x.9(p+x)=(p+xm¢(p+x,0(p+x))—p)
= (x. m¢(p+x", 0(p +x)))
= (1. 13)0(p + X 0(p+x)) =¢(p+x w(p+x))
(23)

modulo the identification H; x Hy = H; & Hy = R*T1 Identity (23) shows that
Gr(?) = ¢(Id, w)(Bcl 1, (P)).

Now, from Proposmon 6.3 we know that

ZnN B%‘T(P) C Gr(w) = (Id, 60)(19%1,[11 (p)
14 P
and therefore, by Lemma 6.5,

MsN¢(B_q_ () =#(ZNBa 1 (p) S $(d.0)(Bar y,(p) = Gr().

Ypteq

C o—
= > V_i for ¢y := 0.023.

As yp, > 1 we have yg + c1 1. 0006yp and therefore
J/]%Jrcl

This shows that Mg N ¢( o (p)) C Gr(®).

We now show the bounds By definition, for all x € B one has ¥ (p + x) =
(Y3 0 @ 1)(x), where /3 : Be. H (0) — Hj is defined as
Yp’

Y3(x") 1= m3¢(Id, w)(p + x') — p

- w(g(;r/)x} - (1 - S(L/))p

where S(x) is defined in (21). Hence, for x € B,
DY (p 4+ x) = Dy3 (@~ (x)) o DO~ (x). (24)

For x’ € B%}’Hl (0) and any y € H; we have

Do(p+x)y DS&)yw(p+x)) _DS(x’)y)f

Py = ( S(x') S(x")? CS()?

Therefore,

[IDo(p+xDI | IDSEOllw(p + DI IDSE)]
S(x’) S(x')? S(x")?

< 2.3|xlly, + 1.0016]x'[[1.15]1x" |y, + 1.0016]x"]|
SGH>1

< I/ lyp (2.3 4+ 1.0016 - 1.15 - ¢f + 1.0016) < 3.303|1x"[|y

c
I\x/\lsﬁ,ypzl

IDY3 (N <

FoE'ﬂ
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by Proposition 6.3 and Inequality (22).
Going back to (24), using that DO~ (x) = (D® (P~ (x))) !, the above inequality
and Lemma 6.4(i, ii), we obtain for any x € B,

IDY(p + )l < IDY3(@ I DD~ ()
< IDY3(@ eIl (DD(@ ' )7
<3.303107 " (x)|ly, - 1.0013
<3.303 - 1.0004x [y, - 1.0013 < 3.4|x|y,.

Now, we deduce that
19 (p + 01 < L7]x]1y,.

the same way we deduced the bound for ||w(p + x)|| in Proposition 6.3.
Finally, Lemma 6.4 also implies that B ¢, H O co (B g, (O)), since for || x| =
vp’ yp’

cr "N > 0.9997¢; S @
o o@)) 2 227 > o, 0

Lemma 6.7 Let ¢ : Hl — H3 be any linear map and E C Hy x Hj3 be the graph of
¢. Then,

i) E* = {(—¢*(v),v) | v € H3} C Hi X Hs.
(i) Letw € H3 N ((p +x,0(p+x))+ EL) for ¥ the map of Proposition 6.6 and

xe (D(Bq a0 (0)) C Hy. Then llw — pl| = L — 9 (p + 01l
Proof (i) Forall x € Hy and v € H3 we have

(Cr, 0(x0)), (9™ (), V) =(x, =" (1)) + (p(x), V)= — (x, 9" (1)) + (x,¢"(v)) =0

This shows that the linear space {(—¢*(v), v) | v € H3}, of dimension dim(H3), is
included in E-. The reverse inclusion follows as both spaces have the same dimension.
(i) As w € ((p +x,9(p +x)) + EJ‘) = ((x, p+0(p+x)+ EJ‘), we use
Lemma 6.7(i) to deduce the existence of v € H3 such that w = (x, p + 9 (p + x)) +
(—¢*(v),v) € H| x H3. Hence, since w € H3, x — ¢*(v) =0, i.e.,, x = ¢*(x), and
w=p+3(p+x)+v,ie,w—p=1(p+x)+v. We deduce

o L _ Il
=Tl ~ Tiell
and, consequently, [[w — p|| = [[v]l = [9(p + )| = b — [9(p + ). o

Proof of Theorem 2.9 We show that for all points p, g € Mg the normals N, and
Ny of Mg at p and g, i.e., the normal spaces to their tangent planes at M, either
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do not intersect or, if they do, the intersection points lie outside B 2 (p)NB 2 (9).
Yp Yp

Therefore,

c 1

©(f)= min -2 = > ,
peMs2yp 2 maXpepmgVp - 8TL(S)

since Mg is compact and ¢ = 0.023.

To prove this statement, we take p to be the point in the preceding development
(which is arbitrary on Mg) and divide by cases.
O Ifllg—pll = ;—2, then B;sz(p) N B% (¢) = ¥, which implies that the normals N,

and N, cannot intersect at any point in the intersection of these two balls.
W)1flg—pll < &, theng e Mgﬂq‘)(BLz ( p)) is in the hypothesis of Proposition 6.6.
vp

2
Letxg € CD(Bm H (0)) C H; be such that g = (p + xo, ¥ (p + x0)). Then (C—2) >
lg — pl> = ||xo||2 + 19 (p + x0) 11> = llxo|* implies xo € Bg g, (0). and hence, by

the last statement in Proposition 6.6, p + xo belongs to the domam of ¥ and we may
consider its derivative

¢ :=D%(p+x9): H — Hj.

Then the graph E := Gr(g) is a linear subspace of R"*! and the normal Ny to E at
g = (p+x0, ¥(p + x0)) equals (p + xo, ¥ (p + x0)) + E*. Analogously the normal
N, of/\/lgatpequalsp+Hll = p + Hz = Hj.

Suppose now that N, = (p + xo, 9 (p + x0)) + E- intersects N, = Hj3 at a point
w. Applying Lemma 6.7(ii) and Proposition 6.6 we obtain

10l llxol 5
lw—pll > ————— — [0+ x| = ——— — LTy, lx0ll
DY (p + x0)|l 3.4ypllxoll b
. 1 B l.7c2 _ c_z( 1 _3.4C2) . kel
3.4y Yp 2yp \1.7 ¢ 2yp

the third inequality as ||xo] < ;—2 This shows that N, and N, do not intersect in
P
B« (p). o
2yp

7 On Numerical Stability

In this last section, we deal with the numerical stability of our algorithms. Part (iv) of
Theorem 1.1 claims that our algorithms are numerically stable. We now give a precise
meaning to this claim.

Numerical stability refers to the effects of finite precision arithmetic in the final
result of a computation. During the execution of such computation, real numbers x
are systematically replaced by approximations £1(x) satisfying that

FoE'ﬂ
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f1(x) = x(1 +9), with |§] < emach

where emach € (0, 1) is the machine precision. If the algorithm is computing a function
¢ : R? — R? a common definition of stability says that the algorithm is forward
stable when, for sufficiently small emach and for each input @ € R”, the computed

point ;(\65 € RY satisfies

[¢@ = ¢@] = emacn 9@ cond@ P (p, ). 25)

Here P is a polynomial (which in practice should be of small degree) and cond(a) is
the condition number of a given by

cond(@ e Tim sup 1@ =@ _lal 6)

5>01G—al<s  lld—all  le@I

We observe that cond(a) depends on ¢ and a but not on the algorithm and that
inequality (25) is satisfied in first order whenever the algorithm is backward stable,
that is, whenever it satisfies that

¢(@) = ¢(@, forsome @ satisfying |d — al| < llallemach P(p,q).  (27)

These notions are appropriate for a continuous function ¢ (such as in matrix inver-
sion, the solution of linear systems of equations, the computation of eigenvalues, ...)
but not for discrete-valued problems: if the range of ¢ is discrete (as in deciding the
feasibility of a linear program, counting the number of solutions of a polynomial sys-
tem, or computing Betti numbers), then definition (26) becomes meaningless (see [10,
Overture, §6.1, and §9.5] for a detailed exposition of these issues). For these, a now
common definition of condition number, pioneered by Renegar [28-30], consists of
identifying the set X of ill-posed inputs and taking the condition of a as the relativized
inverse of the distance from a to X. That is, one takes

s e N4l
" dist(a, )

(28)
Proposition 2.2 shows that our condition number « (f) is bounded by such an expres-
sion (with respect to the set of ill-posed inputs Xp).

The idea of stability changes together with the definition of condition. The issue
now is not the one underlying (25)—given &mach, how good is the computed value—
but a different one: how small does emacnh need to be to ensure that the computed
output is correct? The answer to this question depends on the condition of the input
at hand, a quantity that is generally not known a priori, and stability results can be
broadly divided in two classes. In a fixed-precision analysis, the algorithm runs with
a pre-established machine precision and the users have no guarantee that the returned
output is correct. They only know that if the input a is well conditioned (i.e., smaller
than a bound depending on emach) then the answer is correct. In a variable-precision
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analysis, the algorithm has the capacity to adjust its machine precision during the

execution and returns an output which is guaranteed to be correct. Needless to say, not

all algorithms may be brought to a variable-precision analysis. But in the last decades,

a number of problems such as feasibility for semialgebraic systems [19] or for linear

programs [18], real zero counting of polynomial systems [15], or the computation of
optimal bases for linear programs [11] have been given such analysis.

In all these cases, it is shown that the finest precision &y . used by the algorithm

satisfies
1
8r*nach = O
(p€(a)©M

where p is the size of the input and ¥ (a) is the condition number defined in (28). We
can (and will) consider algorithms satisfying (29) to be stable as this bound implies
that the number of bits in the mantissa of the floating-point numbers occurring in the
computation with input a € R? is bounded by O(log, p + log, € (a)).

It is in this sense that our algorithms are stable.

(29)

Proposition 7.1 The algorithms in Propositions 4.3 and 4.4 computing the homology
groups of spherical and projective sets, respectively, can be modified to work with
variable-precision and satisfy the following. Their cost, for an input f € Hgl[m],
remain

(nDic ()P
and the finest precision &% . . used by the algorithm is

1
ek = .
Mach ™ (nDic (f) log N)OW)

Sketch of proof. A key observation for the needed modification is that only the routine
Covering needs to work with finite precision. Indeed, we can modify this routine to
return a pair {X', ¢} where all numbers, coordinates of points x in X and ¢, are rational
numbers (expressed as quotients of integers in binary form). Furthermore, we can do
so such that the differences ||x — X|| and |¢ — | between the real objects and their
rational approximations are small. Sufficiently small actually for Proposition 2.6 to
apply to (X, %) (recall that Remark 2.7 gives us plenty of room to do so).

From this point on, the computation of the nerve A" and then of the homology
groups of either Mg or Mp is done symbolically (i.e., with infinite precision). The
complexity of the whole procedure, that is, its cost, which now takes account of the
size of the rational numbers occurring during the computation, remains within the
same general bound in the statement.

We therefore only need to show that a variable-precision version of Covering can be
devised that returns an output with rational components and that satisfies the bounds
in the statement. This version is constructed, essentially, as the variable-precision
version of the algorithm for counting roots in §5.2 of [15] is constructed in §6.3 of
that paper. We do not give all the details here since these do not add anything new
to our understanding of the algorithm: we just “make room” for errors by weakening
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the desired inequalities by a factor of 2; in our case, the inner loop of the algorithm
becomes

for all x €G,
if @(f.,x) < 3 and m > r and 4.48(f x) <
r then
X =X U{x}
elsif || f(x)| =25(f,n) then do nothing
elsif go to (*)
return the pair {X,e} and halt
end for

Also, as Proposition 2.6 does neither require the points of X to belong to the sphere,
nor a precise value for ¢, there is no harm in returning points (with rational coefficients)
close to the sphere and to work with a good (rational) approximation ¢ of 3.5./Sep(n).

O

We close this section by recalling that the biggest mantissa required in a floating-

point computation with input f has O(log,(n Dk (f)log N)) bits. If f is randomly

drawn from S¥ !, this is a random variable. Using the second bound in Theorem 5.1

along with Propositions 2.2 and 5.3, it follows that the expectation for the number of
bits in this longest mantissa is of the order of

O(nlogy(Dm) +log, N + log, n).

This is a relatively small quantity compared with (and certainly polynomially bounded
in) the size N of input f.
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