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11(1):95–129, 2011) and Bürgisser and Cucker (AnnMath 174(3):1785–1836, 2011).
In this paper,wewill improve on both approaches and prove an interesting intermediate
result on the average value of the condition number. Our main results are Theorem 1
on the complexity of a randomized algorithm which improves the result of Beltrán
and Pardo (2011), Theorem 2 on the average of the condition number of polynomial
systems which improves the estimate found in Bürgisser and Cucker (2011), and
Theorem 3 on the complexity of finding a single zero of polynomial systems. This last
theorem is similar to the main result of Bürgisser and Cucker (2011) but relies only on
homotopy methods, thus removing the need for the elimination theory methods used
in Bürgisser and Cucker (2011). We build on methods developed in Armentano et al.
(2014).

Keywords Polynomial systems · Homotopy methods · Complexity estimates

Mathematics Subject Classification Primary 65H10 · 65H20 · Secondary 58C35

1 Introduction

Homotopyor continuationmethods to solve a problemwhichmight dependonparame-
ters start with a problem instance and known solution and try to continue the solution
along a path in parameter space ending at the problem we wish to solve. We recall
how this works for the solutions of polynomial systems using a variant of Newton’s
method to accomplish the continuation.

LetHd be the complex vector space of degreed complex homogeneous polynomials
in n + 1 variables. For α = (α0, . . . , αn) ∈ N

n+1 satisfying
∑n

j=0 α j = d, and the

monomial zα = zα0
0 · · · zαn

n , the Weyl Hermitian structure onHd makes 〈zα, zβ〉 := 0,
for α �= β and

〈zα, zα〉 :=
(

d

α

)−1

=
(

d!
α0! · · ·αn !

)−1

.

Now for (d) = (d1, . . . , dn), we let H(d) = ∏n
k=1Hdk . This is a complex vector

space of dimension

N :=
n∑

i=1

(
n + di

n

)

.

That is, N is the size of a system f ∈ H(d), understood as the number of coefficients
needed to describe f .

We endow H(d) with the product Hermitian structure

〈 f, g〉 :=
n∑

k=1

〈 fi , gi 〉,
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where f = ( f1, . . . , fn), and g = (g1, . . . , gn). ThisHermitian structure is sometimes
called the Weyl, Bombieri-Weyl, or Kostlan Hermitian structure. It is invariant under
unitary substitution f �→ f ◦ U−1, where U is a unitary transformation of Cn+1 (see
[9, p. 118] for example).

On Cn+1, we consider the usual Hermitian structure

〈x, y〉 :=
n∑

k=0

xk yk .

Given 0 �= ζ ∈ C
n+1, let ζ⊥ denote the Hermitian complement of ζ ,

ζ⊥ := {v ∈ C
n+1 : 〈v, ζ 〉 = 0}.

For any nonzero ζ ∈ C
n+1, the subspace ζ⊥ is a model for the tangent space,

TζP(Cn+1), of the projective space P(Cn+1) at the equivalence class of ζ (which
we also denote by ζ ). The space TζP(Cn+1) inherits an Hermitian structure from 〈·, ·〉
given by

〈v,w〉ζ := 〈v,w〉
〈ζ, ζ 〉 .

See, for example, [9, Sec. 12.2] for more details on this standard metric structure of
P(Cn+1).

The group of unitary transformations U acts naturally on C
n+1 by ζ �→ Uζ for

U ∈ U, and the Hermitian structure of Cn+1 is invariant under this action.
A zero of the system of equations f is a point x ∈ C

n+1 such that fi (x) = 0,
i = 1, . . . , n. If we think of f as a mapping f : Cn+1 → C

n , it is a point x such that
f (x) = 0.
For a generic system (that is, for a Zariski open set of f ∈ H(d)), Bézout’s theorem

states that the set of zeros consists of D := ∏n
k=1 dk complex lines through 0. These

D lines are D points in projective space P(Cn+1). So our goal is to approximate one
of these points, and we will use homotopy or continuation methods.

These methods for the solution of a system f ∈ H(d) proceed as follows. Choose
g ∈ H(d) and a zero ζ ∈ P(Cn+1) of g (we denote by the same symbol an affine
point and its projective class). Connect g to f by a path ft , 0 ≤ t ≤ 1, in H(d) such
that f0 = g, f1 = f , and try to continue ζ0 = ζ to ζt such that ft (ζt ) = 0, so that
f1(ζ1) = 0 (see [7] for details or [12] for a complete discussion).
So homotopy methods numerically approximate the path ( ft , ζt ). One way to

accomplish the approximation is via (projective) Newton’s method. Given an approx-
imation xt to ζt , define

xt+�t := N ft+�t (xt ),

where for h ∈ H(d) and y ∈ P(Cn+1)we define the projective Newton’s method Nh(y)

following [17]:

Nh(y) := y − (Dh(y)|y⊥)−1h(y).
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Note that Nh is defined on P(Cn+1) at those points where Dh(y)|y⊥ is invertible.
That xt is an approximate zero of ft with associated (exact) zero ζt means that the

sequence of Newton iterations N k
ft
(xt ) converges immediately and quadratically to ζt .

Let us assume that { ft }t∈[0,1] is a path in the sphere S(H(d)) := {h ∈ H(d) :
‖h‖ = 1}. The main result of [16]1 is that the �tk may be chosen so that t0 = 0,
tk = tk−1+�tk for k = 1, . . . , K with tK = 1, such that for all k, xtk is an approximate
zero of ftk with associated zero ζtk , and the number K of steps can be bounded as
follows:

K = K ( f, g, ζ ) ≤ C D3/2
∫ 1

0
μ( ft , ζt ) ‖( ḟt , ζ̇t )‖ dt. (1.1)

Here C is a universal constant, D = maxi di ,

μ( f, ζ ) :=
{‖ f ‖ ∥

∥(D f (ζ )|ζ⊥)−1diag(‖ζ‖di −1√di )
∥
∥ if D f (ζ )|ζ⊥ is invertible

∞ otherwise

is the condition number of f ∈ H(d) at ζ ∈ P(Cn+1), diag(v) is the diagonal matrix
whose diagonal entries are the coordinates of the vector v), and

‖( ḟt , ζ̇t )‖ = (‖ ḟt‖2 + ‖ζ̇t‖2ζt
)1/2

is the norm of the tangent vector to the curve in ( ft , ζt ). The result in [16] is not fully
constructive, but specific constructions have been given, see [3] and [14], and even
programmed [4]. These constructions are similar to those given in [20] and [2] (this
last, for the eigenvalue-eigenvector problem case).

The constructive versions cited above have slightly different criteria to choose the
step length, which is the backbone of the continuation algorithm. However, all these
algorithms satisfy a unitary invariance in the sense that if U is a unitary matrix of size
n + 1 then

K ( f, g, ζ ) = K ( f ◦ U∗, g ◦ U∗, Uζ ). (1.2)

The right-hand side in expression (1.1) is known as the condition length of the path
( ft , ζt ). We will call (1.1) the condition length estimate of the number of steps.

Taking derivatives w.r.t. t in the equality ft (ζt ) = 0, it is easily seen that

ζ̇t = −(D ft (ζt )|ζ⊥
t

)−1 ḟt (ζt ), (1.3)

and with some work (see [9, Lemma 12, p. 231], one can prove that

‖ζ̇‖ζt ≤ μ( ft , ζt )‖ ḟt‖.

1 In [16], the theorem is actually proven in the projective space instead of the sphere, which is sharper, but
we only use the sphere version in this paper.
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It is known that μ( f, ζ ) ≥ √
n ≥ 1, so the estimate (1.1) may be bounded from above

by

K ( f, g, ζ ) ≤ C ′ D3/2
∫ 1

0
μ2( ft , ζt ) ‖ ḟt‖ dt, (1.4)

where C ′ = √
2C is another constant. Let us call this estimate the μ2-estimate.

The condition length estimate is better than theμ2-estimate, but algorithms achiev-
ing the smaller number of steps are more subtle and the proofs of correctness more
difficult.

Indeed in [5] and [10], the authors rely on the μ2-estimate. At the times of these
papers, the algorithms achieving the condition length bound were in development
and [10] includes a construction which achieves the μ2-estimate.

Yet, in a random situation, one might expect the improvement to be similar to the
improvement given by the average of ‖A(x)‖, in all possible directions, compared
with ‖A‖ (here, A : Cn → C

n denotes a linear operator), which according to [1]
should give an improvement by a factor of the square root of the domain dimension.
We have accomplished this for the eigenvalue-eigenvector problem in [2]. Here we
use an argument similar to that of [2] to improve the estimate for the randomized
algorithm in [6].

The Beltrán-Pardo randomized algorithmworks as follows (see [6], and also [10]):
on input f ∈ H(d),

1. Choose f0 at random and then a zero ζ0 of f0 at random. [6] describes a general
scheme to do so (roughly speaking, one first draws the “linear” part of f0, computes
ζ0 from it, and then draws the “nonlinear” part of f0). An efficient implementation
of this scheme, having running time O(nDN ), is fully described and analyzed
in [12, Section 17.6].

2. Then, connect f0/‖ f0‖ to f/‖ f ‖ by an arc of a great circle in the sphere and
invoke the continuation strategy above.

The main result of [6] is that the average number of steps of this procedure is bounded
by O(D3/2nN ), and its total average complexity is then O(D3/2nN 2) (since the
cost of an iteration of Newton’s method, assuming all di ≥ 2, is O(N ), see [12,
Proposition 16.32] and [11, Remark 7.8(1)]).

Our first main result is the following improvement of this last bound.

Theorem 1 (Randomized algorithm) The average number of steps of the randomized
algorithm with the condition length estimate is bounded by

C D3/2nN 1/2,

where C is a universal constant.

The constant C can be taken as π√
2

C ′ with C ′ not more than 400 even accounting
for input and round-off error, cf. [14].
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The randomized algorithm has a nice property as proved in [6]: for every input
system f with no singular zeros, the probability that the algorithm outputs an approx-
imate zero associated with each of theD zeros of f is exactly 1/D. It can thus be used
to generate a zero of f with the uniform distribution.

Remark 1 Theorem 1 is an improvement by a factor of 1/N 1/2 of the bound in [6],
which results from using the condition length estimate in place of the μ2-estimate.

Before proceeding with the proof of Theorem 1, we introduce some useful notation.
We define the solution variety

V := {( f, ζ ) ∈ H(d) × P(Cn+1) | f (ζ ) = 0},

and consider the projections

V
π2π1

H(d) P(Cn+1).

(1.5)

The set of ill-posed pairs is the subset

�′ := {( f, ζ ) ∈ V | D f (ζ )|ζ⊥ is not invertible} = {( f, ζ ) ∈ V | μ( f, ζ ) = ∞}

and its projection� := π1(�
′) is the set of ill-posed systems. The number of iterations

of the homotopy algorithm, K ( f, g, ζ ), is finite if and only if the lifting {( ft , ζt )}t∈[0,1]
of the segment { ft }t∈[0,1] does not cut �′.

1.1 Note Added in Proof

This manuscript was submitted to J. FoCM on July 14, 2015. Just six days later, we
received a note from Pierre Lairez who had found a way to derandomize the main
result of [6], thus finding a deterministic answer to Smale’s 17th problem [15]. The
total complexity O(n2D3/2N 2) of Lairez’s algorithm is very similar to that of the
original randomized version. According to our Theorem 1, the complexity bound of
the randomized version can be lowered by a factor of 1/

√
N . We think that the same

improvement should apply to Lairez’s deterministic algorithm.
We want to thank three anonymous referees for helpful comments.

2 Proof of Theorem 1

2.1 Preliminaries

Let us start this section with a few general facts we will use from Gaussian measures.
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Given a finite-dimensional real vector space V of dimension m, with an inner
product, we define two natural objects.

• The unit sphere S(V ) with the induced Riemannian structure and volume form:
the volume of S(V ) is 2πm/2

�( m
2 )

.

• The Gaussian measure centered at c ∈ V , with variance σ 2

2 > 0, whose density is

1

σmπm/2 e−‖x−c‖2/σ 2
. (2.1)

We will denote by NV (c, σ 2Id) the density given in (2.1). We will skip the notation
of the underlying space when it is understood. Furthermore, we will denote by Ex∈V

the average in the case σ = 1 (that is, variance 1/2).
The following lemma iswell known;we, however, provide a proof because a similar

argument is used later in the manuscript.

Lemma 2 If ϕ : V → [0,+∞] is measurable and homogeneous of degree p > −m,
then

E
x∈V

(ϕ(x)) = �(
m+p
2 )

�(m
2 )

E
u∈S(V )

(ϕ(u)),

where

E
u∈S(V )

(ϕ(u)) = 1

vol(S(V ))

∫

S(V )

ϕ(u) du.

Proof Integrating in polar coordinates, we have

E
x∈V

(ϕ(x)) = 1

πm/2

∫

x∈V
ϕ(x) e−‖x‖2 dx

= 1

πm/2

∫ +∞

0
ρm+p−1e−ρ2

dρ ·
∫

u∈S(V )

ϕ(u) du

= �(
m+p
2 )

2πm/2

∫

u∈S(V )

ϕ(u) du = �(
m+p
2 )

�(m
2 )

E
u∈S(V )

(ϕ(u))

where we have used that
∫ +∞
0 ρke−ρ2

dρ = 1
2�( k+1

2 ). ��
The next results follow immediately from Fubini’s theorem.

Lemma 3 Let E be a linear subspace of V , and let � : V → E be the orthogonal
projection. Then, for any integrable function ψ : E → R and for any c ∈ V , σ > 0,
we have

E
x∼NV (c,σ 2Id)

(ψ(�(x))) = E
y∼NE (�(c),σ 2Id)

(ψ(y)).

��
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When V is a finite-dimensional Hermitian vector space of complex dimension m,
then the complex Gaussian measure on V with variance σ 2 is defined by the real
Gaussian measure with variance σ 2/2 on the 2m-dimensional real vector space asso-
ciated with V , whose inner product is the real part of the Hermitian product.

In this fashion, for any fixed g ∈ H(d) and σ > 0, the Hermitian space (H(d), 〈·, ·〉)
is equipped with the complex Gaussian measure N (g, σ 2Id). The expected value of a
function φ : H(d) → R with respect to this measure is given by

E
f ∼N (g,σ 2Id)

(φ) = 1

σ 2N π N

∫

f ∈H(d)

φ( f )e−‖ f −g‖2/σ 2
d f. (2.2)

Fix any ζ ∈ P(Cn+1). Following [18, Sect. I-4], the space H(d) is orthogonally
decomposed into the sum Cζ ⊕ Vζ , where

Vζ = π−1
2 (ζ ) = { f ∈ H(d) : f (ζ ) = 0}

is the fiber over ζ and

Cζ =
{

diag

( 〈·, ζ 〉di

〈ζ, ζ 〉di

)

a : a ∈ C
n
}

(2.3)

is the set of polynomial systems f ∈ H(d) parametrized by a ∈ C
n such that for

z ∈ C
n+1, fi (z) = 〈z, ζ 〉di /‖ζ‖2di ai , 1 ≤ i ≤ n. Note that Vζ and Cζ are linear

subspaces of H(d) of respective (complex) dimensions N − n and n. Note also that

f0 = f − diag

( 〈·, ζ 〉di

〈ζ, ζ 〉di

)

f (ζ )

is the orthogonal projection �ζ ( f ) of f onto the fiber Vζ .

2.2 Average Condition Numbers

In this section, we revisit the average value of the operator and Frobenius condition
numbers on H(d). The Frobenius condition number of f at ζ is given by

μF ( f, ζ ) := ‖ f ‖
∥
∥
∥
(
D f (ζ )|ζ⊥

)−1 diag(‖ζ‖di −1d1/2
i )

∥
∥
∥

F
, (2.4)

that is, μF is defined as μ but using Frobenius instead of operator norm. Note that
μ ≤ μF ≤ √

n μ. This version of the condition number was studied in depth in [8],
where it was denoted μ̃ instead of μF .

Given f ∈ H(d)\�, the average of the condition numbers over the fiber is

μ2
av( f ) := 1

D
∑

ζ : f (ζ )=0

μ2( f, ζ ), μ2
F,av( f ) := 1

D
∑

ζ : f (ζ )=0

μ2
F ( f, ζ )

(or ∞ if f ∈ �). For simplicity, in what follows we write S := S(H(d)).
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Estimates on the probability distribution of the condition number μ are known
since [19]. The exact expected value of μ2

av( f ) when f is in the sphere S was found
in [6] and the following estimate for the expected value of μ2

av( f ) when f is non-
centered Gaussian was proved in [10]: for all f̂ ∈ H(d) and all σ > 0,

E
f ∼N ( f̂ ,σ 2Id)

μ2
av( f )

‖ f ‖2 ≤ e(n + 1)

2σ 2 . (2.5)

The following result slightly improves (2.5), even though it is computed for μF .

Theorem 2 (Average condition number) For every f̂ ∈ H(d) and σ > 0,

E
f ∼N ( f̂ ,σ 2Id)

μ2
F,av( f )

‖ f ‖2 ≤ n

σ 2 ,

and equality holds in the centered case.

Remark 4 The equality (in the centered case) of Theorem 2 implies from Lemma 2
with p = −2 that

E
f ∈S

μ2
F,av( f ) = (N − 1)n.

Remark 5 In the proof of Theorem 2, we use the double-fibration technique, a strategy
based on the use of the classical coarea formula, see, for example, [9, p. 241]. In order
to integrate some real-valued function over H(d) whose value at some point f is an
average over the fiber π−1

1 ( f ), we lift it to V and then pushforward to P(Cn+1) using
the projections given in (1.5). The original expected value in H(d) is then written
as an integral over P(Cn+1) which involves the quotient of normal Jacobians of the
projections π1 and π2. More precisely,

∫

f ∈H(d)

∑

ζ : f (ζ )=0

φ( f, ζ ) d f

=
∫

ζ∈P(Cn+1)

∫

( f,ζ )∈π−1
2 (ζ )

φ( f, ζ )
NJπ1

NJπ2

( f, ζ ) dπ−1
2 (ζ ) dζ, (2.6)

where

NJπ1

NJπ2

( f, ζ ) = | det(D f (ζ )|ζ⊥)|2

(see [9, Section 13.2], [12, Section 17.3], or [2, Theorem 6.2] for further details and
other examples of use).

We point out that the proof of Theorem 2 can also be achieved using the (slightly)
different method of [6] and [12, Chapter 18] based on the mapping taking ( f, ζ ) to
(D f (ζ ), ζ ) whose normal Jacobian is known to be constant (see [6, Main Lemma]).
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Proof of Theorem 2 By the definition of non-centered Gaussian, and the double-
fibration formula (2.6), we have

E
f ∼N ( f̂ ,σ 2Id)

μ2
F,av( f )

‖ f ‖2 = 1

D
∫

f ∈H(d)

( ∑

ζ : f (ζ )=0

μ2
F ( f, ζ )

‖ f ‖2
)

e
−‖ f − f̂ ‖2

σ2

σ 2N π N
d f

= 1

D
1

(σ 2π)n

∫

ζ∈P(Cn+1)

e
−‖ f̂ −�ζ ( f̂ )‖2

σ2

×
∫

f ∈Vζ

μ2
F ( f, ζ )

‖ f ‖2
∣
∣ det

(
D f (ζ )|ζ⊥

) ∣
∣2 e

−‖ f −�ζ ( f̂ )‖2
σ2

(σ 2π)N−n
d f dζ,

(2.7)

where we have used that ‖ f − f̂ ‖2 = ‖ f − �ζ ( f̂ )‖2 + ‖ f̂ − �ζ ( f̂ )‖2 for every
f ∈ Vζ (note that �ζ ( f̂ ) = f̂ if f̂ ∈ Vζ ).
We simplify now the integral Iζ ( f̂ ) over the fiber Vζ , that is

Iζ ( f̂ ) :=
∫

f ∈Vζ

μ2
F ( f, ζ )

‖ f ‖2
∣
∣ det

(
D f (ζ )|ζ⊥

) ∣
∣2 e

−‖ f −�ζ ( f̂ )‖2
σ2

(σ 2π)N−n
d f.

Let Uζ be a unitary transformation of Cn+1 such that Uζ (ζ/‖ζ‖) = e0. Then, by the
invariance under unitary substitution of each term under the integral sign, we have by
the change of variable formula with h = f ◦ U∗

ζ that

Iζ ( f̂ ) =
∫

h∈Ve0

μ2
F (h ◦ Uζ , ζ )

‖h ◦ Uζ ‖2
∣
∣ det

(
D(h ◦ Uζ )(ζ )|ζ⊥

) ∣
∣2 e

−‖h◦Uζ −�ζ ( f̂ )‖2
σ2

(σ 2π)N−n
dh

=
∫

h∈Ve0

μ2
F (h, e0)

‖h‖2
∣
∣ det

(
Dh(e0)|e⊥

0

) ∣
∣2 e

−‖h−�e0 (ĥζ )‖2
σ2

(σ 2π)N−n
dh

= E
h∼N (�e0 (ĥζ ),σ 2Id)

(
μ2

F (h, e0)

‖h‖2
∣
∣ det

(
Dh(e0)|e⊥

0

) ∣
∣2

)

,

where ĥζ := f̂ ◦ U−1
ζ . We project now h ∈ Ve0 orthogonally onto the vector space

Le0 := {g ∈ H(d) : g(e0) = 0, Dk g(e0) = 0 for k ≥ 2},

obtaining g ∈ Le0 . Since Dh(e0)|e⊥
0
coincides with Dg(e0)|e⊥

0
(see, for example, [12,

Prop. 16.16]), which implies indeed that μF (h, e0)/‖h‖2 = μF (g, e0)/‖g‖2, we
conclude by Lemma 3 that
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Iζ ( f̂ ) = E
g∼N (�L0 (̂hζ ),σ 2Id)

(
μ2

F (g, e0)

‖g‖2
∣
∣ det

(
Dg(e0)|e⊥

0

) ∣
∣2

)

.

By the change of variables given by

Le0 → C
n×n, g �→ A := diag(d−1/2

i )Dg(e0)|e⊥
0
,

which is a linear isometry (see [9, Lemma 17, Ch. 12]), we have
μ2

F,av(g)

‖g‖2 = ‖A−1‖2F
and denoting by Âζ the image of �L0 (̂hζ ), we obtain that

Iζ ( f̂ ) = E
A∈N ( Âζ ,σ 2Idn)

(
‖A−1‖2F | det(A)|2

)
.

We thus conclude from (2.7) that

E
f ∼N ( f̂ ,σ 2Id)

(
μ2

F,av( f )

‖ f ‖2
)

= 1

D
1

(σ 2π)n

∫

ζ∈P(Cn+1)

e
−‖ f̂ −�ζ ( f̂ )‖2

σ2 E
A∈N ( Âζ ,σ 2Idn)

(
‖A−1‖2F | det(A)|2

)
dζ.

(2.8)

If we replace μF,av( f )2/‖ f ‖2 by the constant function 1 onH(d), the same argument
leading to (2.8) now leads to

1 = 1

D
1

(σ 2π)n

∫

ζ∈P(Cn+1)

e
−‖ f̂ −�ζ ( f̂ )‖2

σ2 E
A∈N ( Âζ ,σ 2Idn)

(
| det(A)|2

)
dζ. (2.9)

From Proposition 7.1 of [2], we can bound

E
A∈N ( Âζ ,σ 2Idn)

(
‖A−1‖2F | det(A)|2

)
≤ n

σ 2 E
A∈N ( Âζ ,σ 2Idn)

(
| det(A)|2

)
, (2.10)

with equality if Âζ = 0. By combining (2.8), (2.10), and (2.9) we obtain

E
f ∼N ( f̂ ,σ 2Id)

(
μ2

F,av( f )

‖ f ‖2
)

≤ n

σ 2 ,

as claimed by the theorem. Moreover, equality holds if f̂ = 0 (which implies Âζ = 0
for all ζ ). ��
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2.3 Complexity of the Randomized Algorithm

The goal of this section is to prove Theorem 1. To do so, we begin with some prelim-
inaries.

For f ∈ S we denote by T f S the tangent space at f of S. This space is equipped
with the real part of the Hermitian structure of H(d) and coincides with the (real)
orthogonal complement of f ∈ H(d).

We consider the map φ : S × H(d) → [0,∞] defined for f /∈ � by

φ( f, ḟ ) := 1

D
∑

ζ : f (ζ )=0

μ( f, ζ )
∥
∥( ḟ , ζ̇

)‖, (2.11)

where ζ̇ = −(D f (ζ )|ζ⊥)−1 ḟ (ζ ), and byφ( f, ḟ ) := ∞ if f ∈ �. Note thatφ satisfies
φ( f, λ ḟ ) = λφ( f, ḟ ) for λ ≥ 0.

Suppose that f0, f ∈ S are such that f0 �= ± f and denote by L f0, f the shorter
great circle segment with endpoints f0 and f . Moreover, let α = dS( f0, f ) denote the
angle between f0 and f . If [0, 1] → S, t �→ ft is the constant speed parametrization
of L f0, f with endpoints f0 and f1 = f , then ‖ ḟt‖ = α. We may also parametrize
L f0, f by the arc length s = αt , setting Fs := fα−1s , in which case Ḟs = α−1 ḟt is the
unit tangent vector (in the direction of the parametrization) to L f0, f at Fs . Moreover,

∫ 1

0
φ( ft , ḟt ) dt =

∫ α

0
φ(Fs, Ḟs) ds.

Consider the compact submanifold S of S × S given by

S = {( f, ḟ ) ∈ S × S : ḟ ∈ T f S},
which inherits a Riemannian structure from the product S × S.

Lemma 6 Let V ≡ R
m be a finite-dimensional Hilbert space. Let S(V ) be the unit

sphere and

S(V ) = {(x, y) ∈ S(V ) × S(V ) : y ∈ TxS(V )}
Then, the projection πV : S(V ) → S(V ), (x, y) �→ x, has normal Jacobian 1/

√
2.

Proof Note that S(V ) = {(x, y) ∈ S(V ) × S(V ) : yT x = 0} and from the regular
mapping theorem S(V ) is a hypersurface of S(V ) × S(V ) with tangent space

T(x,y)S(V ) = {(ẋ, ẏ) ∈ x⊥ × y⊥ : ẏT x + yT ẋ = 0}.
The kernel of the derivative is easy to compute: K er(DπV (x, y)) = {(0, ẏ) ∈ x⊥ ×
y⊥ : ẏT x = 0}. The orthogonal complement X of the kernel is then

X = (K er DπV (x, y))⊥ = {(ẋ, ẏ) ∈ T(x,y)S(V ) : ẏ = λx}
= {(ẋ,−(yT ẋ)x) : ẋ ∈ x⊥}.
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Let y = ẋ1, ẋ2, . . . , ẋm−1 be an orthogonal basis of x⊥. The linear mapping
DπV (x, y) |X in the associated orthogonal basis

{(y,−x)/
√
2, (ẋ2, 0), . . . , (ẋm−1, 0)}

of X and {ẋ1, . . . , ẋm−1} of TxS is diagonal with entries 1/
√
2, 1, . . . , 1. The normal

Jacobian is thus 1/
√
2 as claimed. ��

The following lemma has been proven in [2].

Lemma 7 Let

Iφ := E
f0, f ∈S

(∫ 1

0
φ( ft , ḟt ) dt

)

.

Then, we have

Iφ = π

2
E

( f, ḟ )∈S
(
φ( f, ḟ )

)
,

where the expectation on the right-hand side refers to the uniform distribution on S.

We proceed with a further auxiliary result. For f ∈ S, we consider the unit sphere
S f := { ḟ ∈ T f S : ( f, ḟ ) ∈ S} in T f S.

Lemma 8 Fix f ∈ S and ζ ∈ P(Cn+1) with f (ζ ) = 0. For ḟ ∈ S f let ζ̇ = ζ̇ ( ḟ )

be the function of ( f, ḟ ) and ζ given by ζ̇ = (−D f (ζ )|ζ⊥)−1 ḟ (ζ ), that is, ζ is as in
(2.11). Then, we have

E
ḟ ∈S f

(‖ζ̇‖2) = 1

N − 1
2

∥
∥(D f (ζ )|ζ⊥)−1

∥
∥2

F ,

where the expectation is with respect to the uniform probability distribution on S f .

Proof Since the map T f S → R, ḟ �→ ‖ζ̇ ( ḟ )‖2 is quadratic, we get from Lemma 2
(recall that dim T f S = 2N − 1)

E
ḟ ∈T f S

(‖ζ̇ ( ḟ )‖2) =
(

N − 1

2

)
E

ḟ ∈S f

(∥
∥ζ̇ ( ḟ )

∥
∥2

)
.

Recall the definition of Cζ given in (2.3). Note that the mapping H(d) → Cζ given
by ḟ �→ �Cζ ḟ is an orthogonal projection, and furthermore, Cζ → C

n given by
ḟ �→ ḟ (ζ ) is a linear isometry. Then from Lemma 3, and the change of variables
formula, we obtain

E
ḟ ∈T f S

(∥
∥ζ̇ ( ḟ )

∥
∥2

) = E
ẇ∈Cn

∥
∥(D f (ζ )|ζ⊥)−1ẇ

∥
∥2 = ∥

∥(D f (ζ )|ζ⊥)−1
∥
∥2

F ,
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where the last equality is straightforward looking at the singular value decomposition
of (D f (ζ )|ζ⊥)−1. ��
Proof of Theorem 1 The average number of homotopy steps of the randomized algo-
rithm is given by the following integral:

E
f, f0∈S

( 1

D
∑

ζ0: f0(ζ0)=0

K ( f, f0, ζ0)
)
.

From (1.1), using the notation there, we know that the number of Newton steps of the
homotopy with starting pair ( f0, ζ0) and target system f is bounded as

K ( f, f0, ζ0) ≤ C D3/2
∫ 1

0
μ( ft , ζt ) ‖( ḟt , ζ̇t )‖ dt.

Hence, we get for f, f0 ∈ S,

1

D
∑

ζ0: f0(ζ0)=0

K ( f, f0, ζ0) ≤ C D3/2
∫ 1

0

1

D
∑

ζ0: f0(ζ0)=0

μ( ft , ζt ) ‖( ḟt , ζ̇t )‖ dt

= C D3/2
∫ 1

0
φ( ft , ḟt ) dt.

Therefore, by Lemma 7,

E
f, f0∈S

( 1

D
∑

ζ0: f0(ζ0)=0

K ( f, f0, ζ0)
)

≤ C D3/2 π

2
E

( f, ḟ )∈S
(
φ( f, ḟ )

)
. (2.12)

From the coarea formula and Lemma 6, we obtain

E
( f, ḟ )∈S

(
φ( f, ḟ )

) = √
2 E

f ∈S
E

ḟ ∈S f

(
φ( f, ḟ )

)

= √
2 E

f ∈S

( 1

D
∑

ζ : f (ζ )=0

μ( f, ζ ) E
ḟ ∈S f

(∥
∥( ḟ , ζ̇ )

∥
∥
))

.

In order to estimate this last quantity, note first that from the Cauchy–Schwarz inequal-
ity, for f ∈ S,

E
ḟ ∈S f

(∥
∥( ḟ , ζ̇ )

∥
∥
)) = E

ḟ ∈S f

(
(1 + ‖ζ̇‖2) 1

2
) ≤

(
1 + E

ḟ ∈S f

(‖ζ̇‖2)
)1/2

≤
(

1 + 1

N − 1
2

∥
∥(D f (ζ )|ζ⊥)−1

∥
∥2

F

)1/2

,
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the last by Lemma 8. Now we use ‖(D f (ζ )|ζ⊥)−1‖F ≤ μF ( f, ζ ) and μ( f, ζ ) ≤
μF ( f, ζ ) to deduce

1√
2

E
( f, ḟ )∈S

(
φ( f, ḟ )

) ≤ E
f ∈S

(
1

D
∑

ζ : f (ζ )=0

μF ( f, ζ )
(
1 + μ2

F ( f, ζ )

N − 1
2

) 1
2
)

≤ E
f ∈S

(
1

D
∑

ζ : f (ζ )=0

(
(N − 1

2 )
1
2

2
+ μ2

F ( f, ζ )

(N − 1
2 )

1
2

))

= (N − 1
2 )

1
2

2
+ E

f ∈S

(
μ2

F,av( f )

(N − 1
2 )

1
2

)

the second inequality since for all x ≥ 0 and a > 0, we have

x1/2(1 + a2x)1/2 ≤ 1

2a
+ ax .

A call to Remark 4 finally yields

1√
2

E
( f, ḟ )∈S

(
φ( f, ḟ )

) ≤ (N − 1
2 )

1
2

2
+ (N − 1)n

(N − 1
2 )

1
2

≤ √
N

(
1

2
+ n

)

.

Replacing this bound in (2.12) finishes the proof. ��

3 A Deterministic Algorithm

A deterministic solution for Smale’s 17th problem is yet to be found (added in proof:
see Section 1.1). The state of the art for this theme is given in [10] where the following
result is proven.

Theorem 3 There is a deterministic real-number algorithm that on input f ∈ H(d)

computes an approximate zero of f in average time NO(log log N ). Moreover, if we
restrict data to polynomials satisfying

D ≤ n
1

1+ε or D ≥ n1+ε,

for some fixed ε > 0, then the average time of the algorithm is polynomial in the input
size N.

The algorithm exhibited in [10] uses two algorithmic strategies according to whether
D ≤ n or D > n. In the first case, it applies a homotopy method and in the second an
adaptation of a method coming from symbolic computation.

The goal of this section is to show that a more unified approach, where homotopy
methods are used in both cases, yields a proof of Theorem 3 as well. Besides a gain in
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expositional simplicity, this approach can claim for it the well-established numerical
stability of homotopy methods.

In all what follows, we assume the simpler homotopy algorithm in [10] (as opposed
to those in [3,14]). Its choice of step length at the kth iteration is proportional to
μ−2( ftk , xtk ) (which, in turn, is proportional to μ−2( ftk , ζtk )). For this algorithm, we
have the μ2-estimate (1.4) but not the finer estimate (1.1).

To understand the technical requirements of the analysis of a deterministic algo-
rithm, let us summarize an analysis (simpler than the one in the preceding section
because of the assumption above) for the randomized algorithm. Recall, the latter
draws an initial pair (g, ζ ) from a distribution which amounts to first draw g from the
distribution on S and then draw ζ uniformly among theD zeros {ζ (1), . . . , ζ (D)} of g.
Theμ2-estimate (1.4) provides an upper bound for the number of steps needed to con-
tinue ζ to a zero of f following the great circle from g to f (assuming ‖ f ‖ = ‖g‖ = 1
and f �= ±g). Now (1.4) does not change if we reparametrize { ft }t∈[0,1] by arc length,
so we can also write it as

K ( f, g, ζ ) ≤ C ′ D3/2
∫ dS(g, f )

0
μ2( fs, ζs) ds,

where dS(g, f ) is the spherical distance from g to f . Thus, the average number of
homotopy iterations satisfies

E
f ∈S

E
g∈S

1

D
D∑

i=1

K ( f, g, ζ (i)) ≤ C ′ D3/2
E

f ∈S
E

g∈S
1

D
D∑

i=1

∫ dS(g, f )

0
μ2( fs, ζ

(i)
s ) ds

≤ C ′ D3/2
E

f ∈S
E

g∈S

∫ dS(g, f )

0
μ2

F,av( fs) ds. (3.1)

Let Ps denote the set of pairs ( f, g) ∈ S
2 such that dS(g, f ) ≥ s. Rewriting the above

integral using Fubini, we get

E
f ∈S

E
g∈S

∫ dS(g, f )

0
μ2

F,av( fs) ds =
∫ π

0

∫

Ps

μ2
F,av( fs) d f dg ds = π

2
E

h∈S
μ2

F,av(h),

the second equality holding since for a fixed s ∈ [0, π ] and uniformly distributed
( f, g) ∈ Ps , one can show that the system fs is uniformly distributed on S. Summa-
rizing, we get

E
f ∈S

E
g∈S

1

D
D∑

i=1

K ( f, g, ζ (i)) ≤ C ′ D3/2 π

2
E

h∈S
μ2

F,av(h) =
Rmk. 4

C ′ D3/2 π

2
(N − 1)n.

This constitutes an elegant derivation of the previous O(nD3/2N ) bound (but not of
the sharper bound of our Theorem 1).

123

Author's personal copy



Found Comput Math

Proof of Theorem 3 If the initial pair (g, ζ ) is not going to be random we face two
difficulties. First—as g is not random—the intermediate systems ft are not going to
be uniformly distributed on S. Second—as ζ is not random—we will need a bound on
a given μ2( ft , ζt ) rather than one on the mean of these quantities (over theD possible
zeros of ft ), as provided by Theorem 2.

Consider a fixed initial pair (g, ζ ) with g ∈ S and let s1 be the step length of the
first step of the algorithm (see, for example, the definition of Algorithm ALH in [10]),
which satisfies

s1 ≥ c

D3/2μ2(g, ζ )
(c a constant). (3.2)

Note that this boundon the length s1 of the first homotopy step depends on the condition
μ(g, ζ ) only and is thus independent of the condition at the other zeros of g.

Consider also the short portion of great circle contained in S with endpoints g
and f/‖ f ‖, which we parametrize by arc length and call hs (that is, h0 = g and
hα = f/‖ f ‖ where α = dS(g, f/‖ f ‖)), defined for s ∈ [0, α]. Thus, after the first
step of the homotopy, the current pair is (hs1 , x1) and we denote by ζ ′ the zero of hs1
associated with x1. We will focus on bounding the quantity

H := H(g, ζ ) := E
f ∈H(d)

1

D
D∑

i=1

K
(

f/‖ f ‖, hs1 , ζ
(i)),

where the sum is over all the zeros ζ (i) of hs1 . This is the average of the number of
homotopy steps over both the system f and the D zeros of hs1 . We will be interested
in this average even though we will not consider algorithms following a path ran-
domly chosen: the homotopy starts at the pair (g, ζ ), moves to (hs1 , x1), and proceeds
following this path.

From (1.4) applied to (hs1 , ζ
(i)),

K
(

f/‖ f ‖, hs1 , ζ
(i)) ≤ C ′ D3/2

∫ α

s1
μ2(hs, ζ

(i)
s ) ‖ḣs‖ ds, (3.3)

Reparametrizing {hs : s1 ≤ s ≤ α} by { ft/‖ ft‖ : t1 ≤ t ≤ 1}where ft = (1−t)g+t f
and t1 is such that ft1/‖ ft1‖ = hs1 does not change the value of the path integral in
(3.3). ��

Lemma 9 With the notations above, we have

t1 = 1

‖ f ‖ sin α cot(s1α) − ‖ f ‖ cosα + 1
≥ c′

D3/2
√

Nμ2(g, ζ )
,

c′ a constant.
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Proof The formula for t1 is shown in [10, Prop. 5.2]. For the bound, we have

‖ f ‖ sin α cot(s1α) − ‖ f ‖ cosα + 1 ≤ ‖ f ‖ sin α (s1α)−1 + ‖ f ‖ + 1

≤ √
2N

1

s1
+ √

2N + 1

≤ √
2N

(
D3/2μ2(g, ζ )

c
+ 1 + 1√

2N

)

≤
√

N D3/2μ2(g, ζ )

c′

for an appropriately chosen c′. ��
We continue with the proof of Theorem 3. A simple computation shows that

‖ḣt‖ =
∥
∥
∥
∥
d

dt

(
ft

‖ ft‖
)∥

∥
∥
∥ ≤ ‖ f ‖‖g‖

‖ ft‖2 = ‖ f ‖
‖ ft‖2 ,

so we have

K
(

f/‖ f ‖, hs1 , ζ
(i)) ≤ C ′ D3/2 ‖ f ‖

∫ 1

t1

μ2( ft , ζ
(i)
t )

‖ ft‖2 dt. (3.4)

Because of scale invariance, the quantity H satisfies

H = E

f ∈H
√
2N

(d)

1

D
D∑

i=1

K ( f, hs1 , ζ
(i)),

where the second expectation is taken over a truncated Gaussian (that only draws
systems f with ‖ f ‖ ≤ √

2N ) with density function given by

ρ( f ) :=
{

1
P ϕ( f ) if ‖ f ‖ ≤ √

2N

0 otherwise.

Here ϕ is the density function of the standard Gaussian onH(d) and P := Prob{‖ f ‖ ≤√
2N }. Note that (following the same arguments as in the proof of Lemma 2):

P = 1

π N

∫

‖ f ‖≤√
2N

e−‖ f ‖2 d f

= vol(S(R2N ))

π N

∫ √
2N

0
t2N−1e−t2 dt

s=t2= 1

�(N )

∫ 2N

0
s N−1e−s ds ≥ 1

2
,
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the last inequality from [13, Th. 1]. We thus have

ρ( f ) ≤ 2ϕ( f ). (3.5)

Then, using (3.4),

H ≤ √
2NC ′ D3/2

E

f ∈H
√
2N

(d)

1

D
D∑

i=1

∫ 1

t1

μ2( ft , ζ
(i)
t )

‖ ft‖2 dt.

From Lemma 9, we have

t1 ≥ c′

D3/2
√

Nμ2(g, ζ )

for a constant c′ (different from, but close to, c). We thus have proved that there are
constants C ′′, c′ such that

H ≤ C ′′√N D3/2
E

f ∈H
√
2N

(d)

1

D
D∑

i=1

∫ 1

c′
D3/2√

Nμ2(g,ζ )

μ2( ft , ζ
(i)
t )

‖ ft‖2 dt

= C ′′√N D3/2
E

f ∈H
√
2N

(d)

∫ 1

c′
D3/2√

Nμ2(g,ζ )

μ2
av( ft )

‖ ft‖2 dt.

Using (3.5), we deduce that

H ≤ 2C ′′√N D3/2
E

f ∈H(d)

∫ 1

c′
D3/2√

Nμ2(g,ζ )

μ2
av( ft )

‖ ft‖2 dt

≤ 2C ′′√N D3/2
∫ 1

c′
D3/2√

Nμ(g,ζ )2

E
f ∈H(d)

μ2
F,av( ft )

‖ ft‖2 dt.

We next bound the expectation in the right-hand side using Theorem 2 and the fact
that ft ∼ N ((1 − t)g, t2Id) and obtain

H ≤ 2nC ′′√N D3/2
∫ 1

c′
D3/2√

Nμ2(g,ζ )

1

t2
dt

≤ C ′′′ D3nNμ2(g, ζ ), (3.6)

with C ′′′ yet another constant.
Having reached thus far, themajor obstacle we face is that the quantity H , for which

we derived the bound (3.6), is an average over all initial zeros of hs1 (as well as over
f ). None of the two solutions below is fully satisfactory but together they can handle
a broad range of pairs (n, D) with a moderate complexity.
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Case 1: D > n. Consider any g ∈ S, ζ a well-posed zero of g, and let ζ (1), . . . , ζ (D)

be the zeros of hs1 . Note that when f is Gaussian, these are D different zeros almost
surely. Clearly,

E
f ∈H(d)

K ( f, g, ζ ) ≤ 1 + E
f ∈H(d)

D∑

i=1

K ( f, hs1 , ζ
(i))

= 1 + D H = O(DD3Nnμ2(g, ζ ))

the last by (3.6). We now take as initial pair (g, ζ ) the pair (g, e0) where g =
(g1, . . . , gn) is given by

gi =
√

di

n
Xdi −1
0 Xi , for i = 1, . . . , n

(the scaling factor guaranteeing that ‖g‖ = 1) and e0 = (1, 0, . . . , 0) ∈ C
n+1. It is

easy to see that μ(g, e0) = √
n (and that all other zeros of g are ill-posed, but this is

not relevant for our argument). Replacing this equality in the bound above, we obtain

E
f ∈H(d)

K ( f, g, e0) = O(DD3Nn2), (3.7)

which implies an average cost of O(DD3N 2n2) since the number of operations at
each iteration of the homotopy algorithm is O(N ) (see [12, Proposition 16.32]).

For any ε > 0, this quantity is polynomially bounded in N provided D ≥ n1+ε and
is bounded as NO(log log N ) when D is in the range [n, n1+ε] ([10, Lemma 11.1]).

Case 2: D ≤ n. The occurrence of D makes the bound in (3.7) too large when D is
small. In this case, we consider the initial pair (U , z1) where U ∈ H(d) is given by

U1 = 1√
2n

(Xd1
0 − Xd1

1 ), . . . , U n = 1√
2n

(Xdn
0 − Xdn

n ),

(the scaling factor guaranteeing that ‖U‖ = 1) and z1 = (1, 1, . . . , 1). We denote by
z1, . . . , zD the zeros of U .

The reason for this choice is a strong presence of symmetries. More exactly, for
any i �= j there exists a unitary matrix Ui j of size n + 1 such that Ui j zi = z j and
U ◦ (Ui j )

∗ = U . That is,

(U ◦ (Ui j )
∗, Ui j zi ) = (U , z j ).

In particular, from (1.2) and the unitary change of variables f �→ f ◦ (Ui j )
∗, we have

E
f ∈H(d)

K ( f, U , z1) = 1

D
D∑

j=1

E
f ∈H(d)

K ( f, U , z j ).
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These symmetries also guarantee that, for all 1 ≤ i, j ≤ D,

μ(U , zi ) = μ(U , z j ), (3.8)

and, consequently, that the value of s1 is the same for all the zeros of U . Hence,

E
f ∈H(d)

K ( f, U , z1) = 1

D
D∑

j=1

E
f ∈H(d)

K ( f, U , z j ) = E
f ∈H(d)

1

D
D∑

j=1

K ( f, U , z j )

≤ E
f ∈H(d)

1

D
D∑

j=1

(
1 + K ( f, hs1 , ζ

( j))
)

= 1 + 1

D
D∑

j=1

H(U , zi ) = 1 + H(U , z1), (3.9)

the last equality because the unique dependence on j of H(U , z j ) is in the value of
s1, and as said above, this value is independent of j .

Note now that for i �= j , the isometric change of variables f �→ f ◦ (Ui j )
∗ gives

E
f ∈H(d)

1

D
D∑

j=1

(
K ( f, hs1 , ζ

( j))
)

= E
f ∈H(d)

1

D
D∑

j=1

(
K ( f ◦ Ui j , hs1 , ζ

( j))
)

That is, the average (w.r.t. f ) number of homotopy steps with initial system U is
the same no matter whether the zero of U is taken at random or set to be z1. Also,

μ2(U , z1) ≤ 2 (n + 1)D (3.10)

(actually such bound holds for all zeros of U but, again, this is not relevant for
our argument). Both (3.8) and (3.10) are proved in [10, Section 10.2]. It follows
from (3.9), (3.6), and (3.10) that

E
f ∈H(d)

K ( f, U , z1) = O(D3NnD+1). (3.11)

As above, for any fixed ε > 0 this bound is polynomial in N provided D ≤ n
1

1+ε and

is bounded by NO(log log N ) when D ∈ [n 1
1+ε , n]. ��
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