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Abstract Smale’s 17th problem asks for an algorithm which finds an approximate
zero of polynomial systems in average polynomial time (see Smale in Mathematical
problems for the next century, American Mathematical Society, Providence, 2000).
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11(1):95-129, 2011) and Biirgisser and Cucker (Ann Math 174(3):1785-1836, 2011).
In this paper, we will improve on both approaches and prove an interesting intermediate
result on the average value of the condition number. Our main results are Theorem 1
on the complexity of a randomized algorithm which improves the result of Beltran
and Pardo (2011), Theorem 2 on the average of the condition number of polynomial
systems which improves the estimate found in Biirgisser and Cucker (2011), and
Theorem 3 on the complexity of finding a single zero of polynomial systems. This last
theorem is similar to the main result of Biirgisser and Cucker (2011) but relies only on
homotopy methods, thus removing the need for the elimination theory methods used
in Biirgisser and Cucker (2011). We build on methods developed in Armentano et al.
(2014).

Keywords Polynomial systems - Homotopy methods - Complexity estimates

Mathematics Subject Classification Primary 65H10 - 65H20 - Secondary 58C35

1 Introduction

Homotopy or continuation methods to solve a problem which might depend on parame-
ters start with a problem instance and known solution and try to continue the solution
along a path in parameter space ending at the problem we wish to solve. We recall
how this works for the solutions of polynomial systems using a variant of Newton’s
method to accomplish the continuation.

Let H,4 be the complex vector space of degree d complex homogeneous polynomials
in n + 1 variables. For ¢ = (g, ..., a,) € Nrtl satisfying Z?:o aj = d, and the
monomial z% = z;° - - - z,", the Weyl Hermitian structure on Hy4 makes (z%, zf) := 0,

for o # B and
a\ ! d! -1
e () ()
o apl---ap!

Now for (d) = (dy, ..., d,), welet Hgy = szl ‘Hg, . This is a complex vector
space of dimension

N = Z (n —;di).
i=1

That is, N is the size of a system f € H4), understood as the number of coefficients
needed to describe f.
We endow H gy with the product Hermitian structure

n

(f.8) =D (fi. )

k=1
FolCT
s
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where f = (f1,..., fn),and g = (g1, . .., &n). This Hermitian structure is sometimes
called the Weyl, Bombieri-Weyl, or Kostlan Hermitian structure. It is invariant under
unitary substitution f +> f o U~!, where U is a unitary transformation of C"*! (see
[9, p. 118] for example).

On C"*t! we consider the usual Hermitian structure

n
(x.y) =D x k-
k=0

Given 0 # ¢ € C**!, let ¢ denote the Hermitian complement of ¢,
tti={veCt: (v,2) =0

For any nonzero ¢ € C"*!, the subspace ¢* is a model for the tangent space,
TgIP’((C"‘H), of the projective space P(C"*1) at the equivalence class of ¢ (which
we also denote by ¢). The space T; P(C"*1) inherits an Hermitian structure from (-, -)
given by

See, for example, [9, Sec. 12.2] for more details on this standard metric structure of
]P’((C’H_l).

The group of unitary transformations U acts naturally on C"*! by ¢ > U¢ for
U € U, and the Hermitian structure of C"*! is invariant under this action.

A zero of the system of equations f is a point x € C"*! such that f;(x) = 0,
i =1,...,n.If we think of f as a mapping f : C*t! — C”, it is a point x such that
f(x)=0.

For a generic system (that is, for a Zariski open set of f € Hg)), Bézout’s theorem
states that the set of zeros consists of D := [];_, dx complex lines through 0. These
D lines are D points in projective space P(C"*1). So our goal is to approximate one
of these points, and we will use homotopy or continuation methods.

These methods for the solution of a system f € H 4 proceed as follows. Choose
g € H) and a zero { € P(C"*+1) of g (we denote by the same symbol an affine
point and its projective class). Connect g to f by a path f;, 0 <t < 1, in Hg) such
that fo = g, f1 = f, and try to continue {y = ¢ to ¢ such that f;(¢) = 0, so that
f1(21) = 0 (see [7] for details or [12] for a complete discussion).

So homotopy methods numerically approximate the path (f;, ¢;). One way to
accomplish the approximation is via (projective) Newton’s method. Given an approx-
imation x; to ¢;, define

Xt+At = Nf,+m (x1),

whereforh € Hyandy € P(C"*1) we define the projective Newton’s method Ny, (y)
following [17]:
Ni(y) :=y — (DR()],1) " h(y).
EOE';W
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Note that N}, is defined on P(C"*!) at those points where Dh(y)ly1 is invertible.

That x; is an approximate zero of f; with associated (exact) zero ¢; means that the
sequence of Newton iterations N 2 (x7) converges immediately and quadratically to ;.

Let us assume that {f;};c[0,17 is a path in the sphere S(Hy)) = {h € H) :
2]l = 1}. The main result of [16]' is that the Az may be chosen so that #p = 0,
ty =tr1+Affork =1, ..., K withtg = 1, such that for all &, x;, is an approximate
zero of f;, with associated zero ¢, and the number K of steps can be bounded as
follows:

1
K =K(f.g.0) < CD¥? /0 (i €0 ICF ED 1 d. (L1
Here C is a universal constant, D = max; d;,

£ [(Df @), ) " diag(|g |4~ V)| if Df )]+ is invertible
w(f,¢) = o

otherwise

is the condition number of f € H) at¢ € P(C"+1), diag(v) is the diagonal matrix
whose diagonal entries are the coordinates of the vector v), and

ICf 2ol = ALAIP + 150>

is the norm of the tangent vector to the curve in (f;, ¢;). The result in [16] is not fully
constructive, but specific constructions have been given, see [3] and [14], and even
programmed [4]. These constructions are similar to those given in [20] and [2] (this
last, for the eigenvalue-eigenvector problem case).

The constructive versions cited above have slightly different criteria to choose the
step length, which is the backbone of the continuation algorithm. However, all these
algorithms satisfy a unitary invariance in the sense that if U is a unitary matrix of size
n + 1 then

K(f,g,0)=K(foU* goU* UQ). 1.2)
The right-hand side in expression (1.1) is known as the condition length of the path

(ft, &r). We will call (1.1) the condition length estimate of the number of steps.
Taking derivatives w.r.t. ¢ in the equality f;({;) = O, it is easily seen that

& = —(Df ol fi o), (1.3)

and with some work (see [9, Lemma 12, p. 231], one can prove that

Ille, < w(fes SOl Fll.

! In [16], the theorem is actually proven in the projective space instead of the sphere, which is sharper, but
we only use the sphere version in this paper.

FolCT
s
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It is known that u(f, £) > 4/n > 1, so the estimate (1.1) may be bounded from above
by

1
K(f.3.¢) < C D /0 2 g0 Ll dt, (1.4)

where C' = \/EC is another constant. Let us call this estimate the Mz-estimate.

The condition length estimate is better than the ;>-estimate, but algorithms achiev-
ing the smaller number of steps are more subtle and the proofs of correctness more
difficult.

Indeed in [5] and [10], the authors rely on the u2-estimate. At the times of these
papers, the algorithms achieving the condition length bound were in development
and [10] includes a construction which achieves the uz-estimate.

Yet, in a random situation, one might expect the improvement to be similar to the
improvement given by the average of ||A(x)]|, in all possible directions, compared
with ||A|l (here, A: C" — C" denotes a linear operator), which according to [1]
should give an improvement by a factor of the square root of the domain dimension.
We have accomplished this for the eigenvalue-eigenvector problem in [2]. Here we
use an argument similar to that of [2] to improve the estimate for the randomized
algorithm in [6].

The Beltran-Pardo randomized algorithm works as follows (see [6], and also [10]):
oninput f € Hg),

1. Choose fy at random and then a zero ¢y of fp at random. [6] describes a general
scheme to do so (roughly speaking, one first draws the “linear” part of fj, computes
o from it, and then draws the “nonlinear” part of fj). An efficient implementation
of this scheme, having running time O(nDN), is fully described and analyzed
in [12, Section 17.6].

2. Then, connect fy/ll foll to f/|lfIl by an arc of a great circle in the sphere and
invoke the continuation strategy above.

The main result of [6] is that the average number of steps of this procedure is bounded
by O(D3?nN), and its total average complexity is then O(D3?nN?) (since the
cost of an iteration of Newton’s method, assuming all d; > 2, is O(N), see [12,
Proposition 16.32] and [11, Remark 7.8(1)]).

Our first main result is the following improvement of this last bound.

Theorem 1 (Randomized algorithm) The average number of steps of the randomized
algorithm with the condition length estimate is bounded by

CDY2nN2,

where C is a universal constant.

The constant C can be taken as LZC " with C’ not more than 400 even accounting
for input and round-off error, cf. [14].

FoC'T
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The randomized algorithm has a nice property as proved in [6]: for every input
system f with no singular zeros, the probability that the algorithm outputs an approx-
imate zero associated with each of the D zeros of f is exactly 1/D. It can thus be used
to generate a zero of f with the uniform distribution.

Remark 1 Theorem 1 is an improvement by a factor of 1/N!/2 of the bound in [6],
which results from using the condition length estimate in place of the y2-estimate.

Before proceeding with the proof of Theorem 1, we introduce some useful notation.
We define the solution variety

Vi={(f,¢) € Hwy x PC"™YY | f(¢) =0},

and consider the projections

W/ NTQ »

The set of ill-posed pairs is the subset

== {(£.0) € V| Df ()], is not invertible} = {(f. ¢) € V | u(f. £) = o0}

and its projection ¥ := 71 (X) is the set of ill-posed systems. The number of iterations
of the homotopy algorithm, K (£, g, ¢), is finite if and only if the lifting {( f7, /) }se[0,1]
of the segment { f;}¢[0.1] does not cut ¥'.

1.1 Note Added in Proof

This manuscript was submitted to J. FOCM on July 14, 2015. Just six days later, we
received a note from Pierre Lairez who had found a way to derandomize the main
result of [6], thus finding a deterministic answer to Smale’s 17th problem [15]. The
total complexity O (n>D3?N?) of Lairez’s algorithm is very similar to that of the
original randomized version. According to our Theorem 1, the complexity bound of
the randomized version can be lowered by a factor of 1/4/N. We think that the same
improvement should apply to Lairez’s deterministic algorithm.
We want to thank three anonymous referees for helpful comments.

2 Proof of Theorem 1
2.1 Preliminaries

Let us start this section with a few general facts we will use from Gaussian measures.
FolCT
e,
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Given a finite-dimensional real vector space V of dimension m, with an inner
product, we define two natural objects.
e The unit sphere S(V) with the induced Riemannian structure and volume form:

the volume of S(V) is 27,,:,”/2.
NES)

. . . 2 o
e The Gaussian measure centered at ¢ € V, with variance "7 > 0, whose density is

1 112 /02
e lle=cll®/o (2.1)
We will denote by Ny (¢, o2Id) the density given in (2.1). We will skip the notation
of the underlying space when it is understood. Furthermore, we will denote by E,cy
the average in the case o = 1 (that is, variance 1/2).
The following lemma is well known; we, however, provide a proof because a similar
argument is used later in the manuscript.

Lemma 2 If¢: V — [0, 400] is measurable and homogeneous of degree p > —m,

then
E (¢( ))_r(m;rl’) E (o)
oy )= L(5) uesv) L
where
1
= du.
Llegv)(¢(u)) vl S(V)) S(V)fp(u) u

Proof Integrating in polar coordinates, we have
B 00 = o [ poe
xevV /2 xeV

1 O el
—om e [

ueS(v)
52 rs2)
= ou)du = E (o))
27M/2 Juesv) L(F) ues(v)
2
where we have used that f0+°° pke="" dp = %F(l%l). O

The next results follow immediately from Fubini’s theorem.

Lemma 3 Let E be a linear subspace of V, and let T1 : V. — E be the orthogonal
projection. Then, for any integrable function v : E — R and foranyc € V, o > (,
we have

E  (YdIx)) = E W ().

x~Ny (c,021d) y~Ng (T1(c),021d)

O

FoC'T
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When V is a finite-dimensional Hermitian vector space of complex dimension ,
then the complex Gaussian measure on V with variance o> is defined by the real
Gaussian measure with variance 0% /2 on the 2m-dimensional real vector space asso-
ciated with V, whose inner product is the real part of the Hermitian product.

In this fashion, for any fixed g € Hg) and o > 0, the Hermitian space (H ), (-, -))
is equipped with the complex Gaussian measure N (g, o>Id). The expected value of a
function ¢ : H ) — R with respect to this measure is given by

1 22
B O= /,» L eneVe gy 22)
~ 8,0 ASIAT0))

Fix any ¢ € P(C"*1). Following [18, Sect. I-4], the space H(q) is orthogonally
decomposed into the sum C; & V;, where

Ve=m' @) =1{f € Hay: f(§) =0}

is the fiber over ¢ and

C- = 1di (" §>di . n
¢ = 1diag TR a:aeC 2.3)

is the set of polynomial systems f € H(y) parametrized by a € C" such that for
z € C* i) = (2, O)% /)% a;, 1 < i < n. Note that V, and C; are linear
subspaces of H 4y of respective (complex) dimensions N — n and n. Note also that

(o)
(¢, ¢)d

fo=f—diag( )f(;“)

is the orthogonal projection I, (f) of f onto the fiber V.

2.2 Average Condition Numbers

In this section, we revisit the average value of the operator and Frobenius condition
numbers on H ). The Frobenius condition number of f at ¢ is given by

172

we (£ =11 (DF©)le) ™ diagiel1a) )| 2.4)

that is, pF is defined as p but using Frobenius instead of operator norm. Note that
w < wr < /n . This version of the condition number was studied in depth in [8],
where it was denoted t instead of uf.

Given f € Hg)\ X, the average of the condition numbers over the fiber is

1 1
pa(D =5 D0 WA wpa(D =g DL uE(D)
¢ f(¢)=0 ¢ f(0)=0
(or oo if f € X). For simplicity, in what follows we write S := S(Hq)).
FoCT
b
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Estimates on the probability distribution of the condition number p are known
since [19]. The exact expected value of Mgv( f) when f is in the sphere S was found
in [6] and the following estimate for the expected value of ,uﬁv( f) when f is non-
centered Gaussian was proved in [10]: for all f € Hyandallo > 0,

pa(f) _ e+ 1)
FeNGongy IFIZ T 202

(2.5)

The following result slightly improves (2.5), even though it is computed for pF.

Theorem 2 (Average condition number) For every f € Hy and o > 0,

M%:,av(f) n
~N(Foay 17 T 0%

and equality holds in the centered case.

Remark 4 The equality (in the centered case) of Theorem 2 implies from Lemma 2
with p = —2 that

E iy (f) =N = Dn.
fesS

Remark 5 In the proof of Theorem 2, we use the double-fibration technique, a strategy
based on the use of the classical coarea formula, see, for example, [9, p. 241]. In order
to integrate some real-valued function over H ) whose value at some point f is an
average over the fiber 7|~ I f), we lift it to V and then pushforward to P(C"*!) using
the projections given in (1.5). The original expected value in H g is then written
as an integral over P(C"*!) which involves the quotient of normal Jacobians of the
projections 1 and ;. More precisely,

/f S erodf

Tl ¢: f(6)=0

= / / BRITAS
¢eP(C Y J(f,0)emy (§)

nl(}’g)d;lll(g)dér (26)
NJ”Z ’
Where

NI,
NIy,

(f. &) = det(Df ()|

(see [9, Section 13.2], [12, Section 17.3], or [2, Theorem 6.2] for further details and
other examples of use).

We point out that the proof of Theorem 2 can also be achieved using the (slightly)
different method of [6] and [12, Chapter 18] based on the mapping taking (f, {) to
(Df(¢), ¢) whose normal Jacobian is known to be constant (see [6, Main Lemmal).

EOE';W
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Proof of Theorem 2 By the definition of non-centered Gaussian, and the double-
fibration formula (2.6), we have

Wra(H) 1 V2 (F0) g—n.fn—z_/u2 )
SN 0?1 W D feHa (c:f(o_o I£1% ) o2NgN f
_1_ 1 I DI
D (o2m)n /;ep((cnﬂ) €
PEUO) Lo
* /fevg e }det (Df(§)|§¢) | Wdfdf,

2.7)

where we have used that || f — ]"\||2 =|f - 1'I;(j/‘\)||2 + IIf— H;(f)nz for every
f €V, (note that T, (f) = £ if f € V).
We simplify now the integral I ( f ) over the fiber V¢, that is

e —Ir=n A

A :bLF 7( 2¢€ o

I = ——— |det (D —df.
«() /fevg e e PrOl) [y df

Let U, be a unitary transformation of €™+ such that U:(¢/11¢11) = eo. Then, by the
invariance under unitary substitution of each term under the integral sign, we have by
the change of variable formula withh = f o U ; that

—llhoUg —T (D)2

2
- 1y (hoUg, §) 20~
"(f)‘/heveo oy 1% (PUo Uo@les) | =y dh

—[|h=Teq (i)

2

wg(h, eo) 2e o?
= B2 | det (Dheg)|,. ) |" —————dh
/heveo e ( ol (oZm)N

2
h,e
E_ wr . €0) 20) | det (Dh(eo)lel) ”).
h~N (TN (hy).021d) Al 0

where Z; = fo Uo ' we project now h € V,, orthogonally onto the vector space

Ley :={g € H() : g(e0) = 0, D*g(ep) = 0 for k > 2},

obtaining g € L,. Since Dh(ep)| o coincides with Dg(eq)| p (see, for example, [12,

Prop. 16.16]), which implies indeed that wup(h, eo)/||h||> = nr(g,e0)/llgl?, we
conclude by Lemma 3 that

FolCT
s
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2
I(f) = M |det (Dg(e())|eé) }2)

gNN(HLO@),aZId)( lell?
By the change of variables given by

Loy > TV gi> A= diag(d;l/z)Dg(eoﬂeé’

M%’,av(g) _ ||A—1||2
- F

which is a linear isometry (see [9, Lemma 17, Ch. 12]), we have T

and denoting by X; the image of Iy, (iz}), we obtain that

rh= B (IA7F 1dea)?).

AeN(A¢,021d,)

We thus conclude from (2.7) that

13 o ()
B Tz
f~N(Foiy \ IS

1 1 / —17-T (DI? - )
LN e a D (||A— 12| det(A))| ) dz.
D (02m)" Jiepcrt) AEN (A,021d,) d

2.8)

If we replace (o av(f )2 /I f ||2 by the constant function 1 on H ), the same argument
leading to (2.8) now leads to

1 1 —I7=11 (D12
1 = —ﬁ/ e o E (Idet(A)Iz) d¢. (2.9
D (0°m)" Jeep@r+ly AeN(A;01d,)

From Proposition 7.1 of [2], we can bound

E (a3 daP) < 5 B (1P, @10
AeN (A ,0%1dy) 0% AeN(A;,021d,)

with equality if X; = 0. By combining (2.8), (2.10), and (2.9) we obtain

2
E —MF’aV(zf) < 2
F~N(f.021d) £ o

as claimed by the theorem. Moreover, equality holds if f: 0 (which implies X; =0
for all ¢).

O

oC
o4

FolCT
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2.3 Complexity of the Randomized Algorithm

The goal of this section is to prove Theorem 1. To do so, we begin with some prelim-
inaries.

For f € S we denote by TS the tangent space at f of S. This space is equipped
with the real part of the Hermitian structure of H ) and coincides with the (real)
orthogonal complement of f € H ).

We consider the map ¢: S x H ) — [0, oo] defined for f ¢ X by

. 1 ..
o(f. =5 2 w0l 0. 2.11)
¢ f()=0

where { = —(Df(§)|§i)"f(g“),andbyqb(f, f) := o0if f € =.Note that ¢ satisfies

¢ f) =2rp(f, f) for i = 0.

Suppose that fp, f € S are such that fo # & f and denote by Ly, r the shorter
great circle segment with endpoints fy and f. Moreover, let « = ds(fo, f) denote the
angle between fp and f.If [0, 1] — S, t — f; is the constant speed parametrization
of Ly, r with endpoints fp and f| = f, then || fill = a. We may also parametrize
L s, r by the arc length s = at, setting F := f,-1,, in which case Fy =a~ ' f; is the
unit tangent vector (in the direction of the parametrization) to £ ,, ¢ at Fy. Moreover,

1 o
[ oundnar= [ o fos
0 0
Consider the compact submanifold S of S x S given by

S={(f,f)eSxS: feTsS}

which inherits a Riemannian structure from the product S x S.

Lemma 6 Let V = R™ be a finite-dimensional Hilbert space. Let S(V) be the unit
sphere and

SV) ={(x,y) € S(V) x S(V) : y € T:S(V)}

Then, the projection y : S(V) — S(V), (x, y) — x, has normal Jacobian 1/~/2.

Proof Note that S(V) = {(x,y) € S(V) x S(V) : yI'x = 0} and from the regular

mapping theorem S(V) is a hypersurface of S(V) x S(V) with tangent space
TaynS(V) = {(,3) e xt x yt:yTx +yT5 = 0).

The kernel of the derivative is easy to compute: Ker(Dmy (x, y)) = {(0, y) € xt x
y* : yTx = 0}. The orthogonal complement X of the kernel is then

= (Ker Dy (x, )" = {(%, §) € T pS(V) : § = Ax})
={(x,—(To)x) : x e xt).

Fo C 'ﬂ
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Let y = X|,%,...,%u_1 be an orthogonal basis of x'. The linear mapping
Dmy(x,y) |x in the associated orthogonal basis

(v, =) /2, (52,0), ..., Gim—1, 0)}

of X and {x1, ..., X;;—1} of T;:S is diagonal with entries l/ﬁ, 1, ..., 1. The normal
Jacobian is thus 1/+/2 as claimed. O

The following lemma has been proven in [2].

Iy = (/ ¢(ft’ft)dt)
fo, fGS

Lemma 7 Let

Then, we have

ls=3 £ ($(f ),

(f.f)eS

where the expectation on the right-hand side refers to the uniform distribution on S.

We proceed with a further auxiliary result. For f € S, we consider the unit sphere
={feTsS:(f, f)eS}inT,S.

Lemma 8 Fix f € Sand ¢ € P(C") with f(¢) = 0. For f € Sy let { = ¢(f)
be the function of (f, f) and ¢ given by { = (—Df(§)|§L)71f'(§), that is, ¢ is as in
(2.11). Then, we have

|2 ! —1)2
— D ’
(B 06D = S lor@l ™I

where the expectation is with respect to the uniform probability distribution on Sy.

Proof Since the map T/S — R, f — ||§'(f) 12 is quadratic, we get from Lemma 2
(recall that dim T¢S = 2N — 1)

E WHP=(N=-3) E (EH]).
feTsS resy

Recall the definition of C; given in (2.3). Note that the mapping H ) — Cg given
by f ¢, f is an orthogonal projection, and furthermore, C; — C" given by
f + f(¢) is a linear isometry. Then from Lemma 3, and the change of variables
formula, we obtain

(eHIP) = E D@10 = [(Drol0~" 5
fersS weCr
FoE'ﬂ
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where the last equality is straightforward looking at the singular value decomposition

of (Df(O)];1)™" o

Proof of Theorem 1 The average number of homotopy steps of the randomized algo-
rithm is given by the following integral:

(5 > KU fow)

E
ffosS %0+ fo(¢0)=0

From (1.1), using the notation there, we know that the number of Newton steps of the
homotopy with starting pair ( fp, {o) and target system f is bounded as

1
K(f, fo.c0) < CDY? /0 Wi € G £l di

Hence, we get for f, fo € S,

1
5 2 K(Ufodo <CD3/2/ > wfin ) I &l de
¢o: fo(50)=0 ¢o: fo(%0)=0

1
= CD¥? /O ¢ (fi, fr)dt.

Therefore, by Lemma 7,

1 T .
E (= K(f. fo,.¢0)) < CD?= E (o(f. ). (2.12)
F.foeS <D o foz@:‘))zo ) 2 <f,f)es( )

From the coarea formula and Lemma 6, we obtain

E (6(f, ) = fIE E (¢(f. )
(f.N)es fGSf

-2 E (5 X w0 E (1G-0])

T2 1 =0 fess

In order to estimate this last quantity, note first that from the Cauchy—Schwarz inequal-
ity, for f € S,

. . 172
(I4.00) = E (515 < (1+ E z1®)

Sy feSy

{

fGS/

. 172
— ||<Df<;)|;n‘1|li) ,
2

Fo C 'ﬂ
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the last by Lemma 8. Now we use ||(Df(g“)|§¢)_lllp < ur(f,¢) and u(f,¢) <
wr(f, ¢) to deduce

! ; 1 W (f OV
— E ¢(f,f)§]E(— wrlh (14 PO )
ﬁ(f,f)es( ) fes D;;f%:o F ( N—%)
N — L3 2
< E (% D (( 22)2 N Mp(f,IC)I))
TSN ¢ i =0 (N—1)2

the second inequality since for all x > 0 and a > 0, we have
1/2 2.\1/2 1
x/“(I+ax)'” < — +ax.
2a

A call to Remark 4 finally yields

1 . (N=H7 (N =1n 1
— B (@) < + < Jﬁ(-+ )
V2 (1. fres ( ) 2 (N -1z !

Replacing this bound in (2.12) finishes the proof. O

3 A Deterministic Algorithm

A deterministic solution for Smale’s 17th problem is yet to be found (added in proof:
see Section 1.1). The state of the art for this theme is given in [10] where the following
result is proven.

Theorem 3 There is a deterministic real-number algorithm that on input f € H )
computes an approximate zero of f in average time NCU€IeN) Moreover, if we
restrict data to polynomials satisfying

1
Trs 14
D <ni+ or D>n s

for some fixed ¢ > 0, then the average time of the algorithm is polynomial in the input
size N.

The algorithm exhibited in [10] uses two algorithmic strategies according to whether

D < nor D > n.In the first case, it applies a homotopy method and in the second an
adaptation of a method coming from symbolic computation.

The goal of this section is to show that a more unified approach, where homotopy

methods are used in both cases, yields a proof of Theorem 3 as well. Besides a gain in

EOE';W
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expositional simplicity, this approach can claim for it the well-established numerical
stability of homotopy methods.

In all what follows, we assume the simpler homotopy algorithm in [10] (as opposed
to those in [3,14]). Its choice of step length at the kth iteration is proportional to
w2( fu» Xy, ) (which, in turn, is proportional to w2( Su» C)). For this algorithm, we
have the u%-estimate (1.4) but not the finer estimate (1.1).

To understand the technical requirements of the analysis of a deterministic algo-
rithm, let us summarize an analysis (simpler than the one in the preceding section
because of the assumption above) for the randomized algorithm. Recall, the latter
draws an initial pair (g, ¢) from a distribution which amounts to first draw g from the

distribution on S and then draw ¢ uniformly among the D zeros {¢(V, ..., ™)} of g.
The p2-estimate (1.4) provides an upper bound for the number of steps needed to con-
tinue ¢ to a zero of f following the great circle from g to f (assuming || /|| = ||gll = 1

and f # +g). Now (1.4) does not change if we reparametrize { f;};¢[0,1] by arc length,
so we can also write it as

ds(g.f)

K(f.g.0)<C D”/O 12 (fs, ¢5) ds,

where ds(g, f) is the spherical distance from g to f. Thus, the average number of
homotopy iterations satisfies

(i) 32 1 BED 5 e 0
ZK(fg;‘)<CD EE—Z/O 12(f e D) ds

feSgeSD feSgeSD

cepe g g [ e G
- feSgeSJo HFayJs) G- .

Let Py denote the set of pairs (f, g) € S? such that ds(g, f) > s. Rewriting the above
integral using Fubini, we get

ds(g, f) ) b ) T 5
E E / 12 (fo)ds = / / 1 () dfdgds = = E (),
feSgeSJo 0 Jps 2 nes

the second equality holding since for a fixed s € [0, 7] and uniformly distributed
(f, g) € P, one can show that the system f; is uniformly distributed on S. Summa-
rizing, we get

K 0y < ¢'pr L h cpPEin-1
fesgegpz (f8:¢") 5 Erra®) = SN =Dn.

This constitutes an elegant derivation of the previous O (nD3/>N) bound (but not of
the sharper bound of our Theorem 1).

Fo C 'ﬂ
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Proof of Theorem 3 1f the initial pair (g, ¢) is not going to be random we face two
difficulties. First—as g is not random—the intermediate systems f; are not going to
be uniformly distributed on S. Second—as ¢ is not random—we will need a bound on
a given w2 (f:, ;) rather than one on the mean of these quantities (over the D possible
zeros of f;), as provided by Theorem 2.

Consider a fixed initial pair (g, ¢) with g € S and let s; be the step length of the
first step of the algorithm (see, for example, the definition of Algorithm ALH in [10]),
which satisfies

c
> — tant). 3.2
s1 > D25 0) (c a constant) (3.2)

Note that this bound on the length s of the first homotopy step depends on the condition
n(g, ¢) only and is thus independent of the condition at the other zeros of g.

Consider also the short portion of great circle contained in S with endpoints g
and f/|| f1l, which we parametrize by arc length and call i (that is, hgp = g and
hy = f/Il fll where « = ds(g, f/Il f1l)), defined for s € [0, «]. Thus, after the first
step of the homotopy, the current pair is (%, , x1) and we denote by ¢’ the zero of Ay,
associated with x;. We will focus on bounding the quantity

D

1 .
H=Hgo:= E = K(f/Ifll ks, D),
g.¢ fen(d)D,; (f71F1 hsys 6)

where the sum is over all the zeros ¢ ) of hy,. This is the average of the number of
homotopy steps over both the system f and the D zeros of hy,. We will be interested
in this average even though we will not consider algorithms following a path ran-
domly chosen: the homotopy starts at the pair (g, £), moves to (hg,, x1), and proceeds
following this path.

From (1.4) applied to (hy,, ¢@),

o
K(f/If1, ks, ¢V) < €' D / 12 (s, ¢ ) Il ds, 3.3)

51
Reparametrizing {hs : s1 < s < a}by{fi/|lfill : t1 <t < 1}where f; = (1—-1)g+tf
and 1 is such that f;, /|| fi, || = hs, does not change the value of the path integral in
(3.3). O

Lemma 9 With the notations above, we have

1 c

= = ’
Il sinecot(siar) — [ fllcosa +1 7 D3/2{/Npu(g, ¢)

n

¢’ a constant.

FoC'T
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@Springer TeLE|



Found Comput Math

Proof The formula for #1 is shown in [10, Prop. 5.2]. For the bound, we have

I £l sinecot(sier) — || fllcosa + 1 < || fll sina (s1) ™" + || f]| + 1
1
<~V2N— ++2N +1
s1

D312 (g, ¢) 1
V2N (— +1+ —)
= c V2N

- VND3212(g, ¢)

c/

for an appropriately chosen ¢’. O

We continue with the proof of Theorem 3. A simple computation shows that

( )” A1l LAl
12 (NP e

1 Mz(fta t(l))
0o A2

el =

so we have

K(f/IfIl, by, ¢D) < ' D72 1) dr. (3.4)

Because of scale invariance, the quantity H satisfies
H= ZK(f hyy £ D),

where the second expectation is taken over a truncated Gaussian (that only draws
systems f with || f|| < +/2N) with density function given by

() [%w(f) if I fIl < V2N

0 otherwise.

Here ¢ is the density function of the standard Gaussian on H ;) and P := Prob{]| | <
+/2N}. Note that (following the same arguments as in the proof of Lemma 2):

po L T,
I FI=v2N

_ vol(S®2Y)) /F 0

2N
szt 1 / sV=le ™S ds > l,
TN Jo 2

Fo C 'ﬂ
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the last inequality from [13, Th. 1]. We thus have

p(f) =20(f). (3.5)
Then, using (3.4),
H<VaNC' D E - 3 /1 L i
= jen DSy AR
From Lemma 9, we have
¢

hn> ——
D32/ Nu(g, ¢)

for a constant ¢’ (different from, but close to, ¢). We thus have proved that there are
constants C”, ¢’ such that

D

1 1 2(f, (@)
H<C'VND* E 52/ AR S (”f’ ”‘;’ ) dr
rery™ P S s

1 2
=C'VND* E / HanlJ1) g,

o 2
1 ey 111

Using (3.5), we deduce that

1 2
H<2C'YND¥? E / HaJ) g,

/ 2
feHa 703/2«/%;12@.:) Il £l

143 oy (1)

< T
s fHa 1l

<2C"V/N D*? dr.

We next bound the expectation in the right-hand side using Theorem 2 and the fact
that f; ~ N((1 —t)g, t*1d) and obtain

1
H <2nC"V/N D . e
D32 YNu2(g.0)

< C" D3nNp*(g, 0), (3.6)

with C” yet another constant.

Having reached thus far, the major obstacle we face is that the quantity H, for which
we derived the bound (3.6), is an average over all initial zeros of &, (as well as over
f). None of the two solutions below is fully satisfactory but together they can handle
a broad range of pairs (n, D) with a moderate complexity.

EOE';W
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Casel: D > n. Considerany g € S, ¢ a well-posed zero of g, and let ¢V, . . ., c®@
be the zeros of hy,. Note that when f is Gaussian, these are D different zeros almost
surely. Clearly,

E K(fg¢) <1+ E ZK(fhsl,C(’))

feHwy feRa i,

=1+DH= (9(DD3Nn,u2(g, )

the last by (3.6). We now take as initial pair (g, ¢) the pair (g, ep) where g =
(g1, -.-,8,) 1s given by

Idi 4
g = —lX(d)’ le-, fori=1,...,n
n

(the scaling factor guaranteeing that ||g|| = 1) and ¢g = (1,0,...,0) € C**! Itis
easy to see that (g, ep) = +/n (and that all other zeros of g are ill-posed, but this is
not relevant for our argument). Replacing this equality in the bound above, we obtain

E K(f.8. e0) = O(DD’Nn?), (3.7)
feHw)

which implies an average cost of O(DD3N?n?) since the number of operations at
each iteration of the homotopy algorithm is O(N) (see [12, Proposition 16.32]).

For any ¢ > 0, this quantity is polynomially bounded in N provided D > n'*¢ and
is bounded as N9@0g1ogN) when D is in the range [n, n' 7] ([10, Lemma 11.1]).

Case 2: D < n. The occurrence of D makes the bound in (3 7) too large when D is
small. In this case, we consider the initial pair (U, z;) where U € H(q) is given by

— 1 — 1
Up= —X3 =X, ..., Uy = — (X — x),

V2n 0 b 2n
(the scaling factor guara&teeing that |[U| = 1)and z; = (1, 1, ..., 1). We denote by
Z1,...,2p the zeros of U.

The reason for this choice is a strong presence of symmetries. More exactly, for
any i # j there exists a unitary matrix U;; of size n + 1 such that U;;z; = z; and
U o (U;j)* =U.Thatis,

(U o (Uip)*, Uijzi) = (U, z;).

In particular, from (1.2) and the unitary change of variables f — f o (U;;)*, we have

E K(fUz)=— Z E K(f.U,z).
feHa ] 1 feH@

Fo C 'ﬂ
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These symmetries also guarantee that, forall 1 <i, j <D,
nWU,z;)) = nU,z;), (3.8)

and, consequently, that the value of s; is the same for all the zeros of U. Hence,

_ 1 2 _ 1 2 _
fGI%(d)K(f, U.z)) = 5§f€%d)1<(f, U,zj) = feI7E-[(d) —Z%K(f, U.z))
< E li(lJrK(f By e D))
= feHw pe s Mgy
D
=1+ lZH(U, z)=14+HU,z), (3.9)
D4

the last equality because the unique dependence on j of H(U,z ;) is in the value of
s1, and as said above, this value is independent of ;.
Note now that for i # j, the isometric change of variables f +— f o (U;;)* gives

i (K(fo Uijvhsl,f(j)))

j=1

D
=3 (Kb e ) =

f€H<d> D =1

fE'H(d)

That is, the average (w.r.t. f) number of homotopy steps with initial system U is
the same no matter whether the zero of U is taken at random or set to be z;. Also,

w2, z1) <2+ 1P (3.10)

(actually such bound holds for all zeros of U but, again, this is not relevant for
our argument). Both (3.8) and (3.10) are proved in [10, Section 10.2]. It follows
from (3.9), (3.6), and (3.10) that

E K(f,U,z1) = O(D’NnP*). G.11)
feHw)

As above, for any fixed ¢ > 0 this bound i 1s polynomial in N provided D < n$ and
is bounded by NOUoglogN) when D € [nTHe T ,nl. O

References

1. D. Armentano. Stochastic perturbation and smooth condition numbers. Journal of Complexity 26
(2010) 161-171.
2. D. Armentano, C. Beltrdn, P. Biirgisser, F. Cucker, M. Shub. A stable, polynomial-time algorithm for
the eigenpair problem (2015). Preprint, available at arXiv:1410.0116.
FoE'ﬂ

@ Springer L|.. jO E|


http://arxiv.org/abs/1410.0116

Found Comput Math

11.

12.

13.

14.

15.

16.

18.

19.

20.

21.

a

. C. Beltran. A continuation method to solve polynomial systems and its complexity. Numer. Math. 117
(2011), no. 1, 89-113.

. C. Beltran and A. Leykin. Robust certified numerical homotopy tracking. Found. Comput. Math.,
13(2):253-295, 2013.

. C. Beltrdn and L. M. Pardo. Smale’s 17th problem: average polynomial time to compute affine and
projective solutions. J. Amer. Math. Soc. 22 (2009), no. 2, 363-385.

. C. Beltran and L. M. Pardo. Fast linear homotopy to find approximate zeros of polynomial systems.
Found. Comput. Math. 11 (2011), no. 1, 95-129.

. C. Beltran, M. Shub. The complexity and geometry of numerically solving polynomial systems. Con-
temporary Mathematics, volume 604, 2013, pp. 71-104.

. C. Beltran, M. Shub. On the Geometry and Topology of the Solution Variety for Polynomial System
Solving. Found. Comput. Math. 12 (2012), 719-763.

. L. Blum, F. Cucker, M. Shub, and S. Smale. Complexity and real computation, Springer-Verlag, New
York, 1998.

. P. Biirgisser and F. Cucker. On a problem posed by Steve Smale, Ann. of Math. (2) 174 (2011), no. 3,

1785-1836.

P. Biirgisser, M. Clausen and A. Shokrollahi. Algebraic Complexity Theory, volume 315 of Grundlehren

der mathematischen Wissenschaften, Springer-Verlag, Berlin, 1996.

P. Biirgisser and F. Cucker. Condition, volume 349 of Grundlehren der mathematischen Wissenschaften.

Springer-Verlag, Berlin, 2013.

K.P. Choi. On the medians of gamma distributions and an equation of Ramanujan, Proc. Amer. Math.

Soc. 121 (1994), no. 1, 245-251.

J-P. Dedieu, G. Malajovich, and M. Shub. Adaptative step size selection for homotopy methods to solve

polynomial equations. IMA Journal of Numerical Analysis 33 (2013), no. 1, 1-29.

P. Lairez. A deterministic algorithm to compute approximate roots of polynomial systems in polynomial

average time. Preprint, available at arXiv:1507.05485.

M. Shub. Complexity of Bezout’s theorem. VI. Geodesics in the condition (number) metric. Found.

Comput. Math. 9 (2009), no. 2, 171-178.

. M. Shub. Some remarks on Bezout’s theorem and complexity theory. In From Topology to Computation:

Proceedings of the Smalefest (Berkeley, CA, 1990), 443—455, Springer, New York, 1993.

M. Shub and S. Smale. Complexity of Bézout’s theorem. I. Geometric aspects. J. Amer. Math. Soc. 6

(1993), no. 2, 459-501.

M. Shub and S. Smale. Complexity of Bézout’s theorem. II: volumes and probabilities. Computational

Algebraic Geometry. Progress in Mathematics Volume 109, 1993, pp 267-285

M. Shub and S. Smale. Complexity of Bézout’s theorem. V: Polynomial time. Theoretical Computing

Science, Vol 133, 1994, pag 141-164.

S. Smale. Mathematical problems for the next century, Mathematics: frontiers and perspectives, Amer.

Math. Soc., Providence, RI, 2000, pp. 271-294.

FolCT
s
Springer |03


http://arxiv.org/abs/1507.05485

	Condition Length and Complexity for the Solution of Polynomial Systems
	Abstract
	1 Introduction
	1.1 Note Added in Proof

	2 Proof of Theorem 1
	2.1 Preliminaries
	2.2 Average Condition Numbers
	2.3 Complexity of the Randomized Algorithm

	3 A Deterministic Algorithm
	References




