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1 Introduction

1.1 The problem

The quotation from Demmel opening this article, though possibly puzzling for those
who day-to-day satisfactorily solve eigenvalue problems, summarizes a long-standing
open problem in numerical linear algebra. The first algorithm that comes to mind
for computing eigenvalues —to compute the characteristic polynomial χA of A and
then compute (i.e., approximate) its zeros— has proved to be numerically unstable.
The so called Wilkinson’s polynomial,

w(x) :=
20∏
i=1

(x− i) = x20 + w19x
19 + · · ·+ w1x+ w0

is often used to illustrate this fact. For a diagonal matrix D with diagonal entries
1, 2, . . . , 20 (and therefore with χD(x) = w(x)) an error of 2−23 in the computation
of w19 = −210 produces, even if the rest of the computation is done error-free,
catastrophic variations in the zeros of χD. For instance, the zeros at 18 and 19
collide into a double zero close to 18.62, which will unfold into two complex conjugate
zeros if the error in w19 is further increased. And yet, there is nothing wrong in
the nature of D (in numerical analysis terms, as we will see below, D is a well-
conditioned matrix for the eigenvalue problem). The trouble appears to lie in the
method.

Barred from using this immediate algorithm due to its numerical instability,
researchers devoted efforts to come up with alternate methods which would appear
to be stable. Among those proposed, the one that is today’s algorithm of choice is
the iterated QR with shifts. This procedure behaves quite efficiently in general and
yet, as Demmel pointed out in 1997 [25, p. 139],

after more than 30 years of dependable service, convergence failures of this

algorithm have quite recently been observed, analyzed, and patched [. . . ]. But

there is still no global convergence proof, even though the current algorithm is

considered quite reliable.

Our initial quotation followed these words in Demmel’s text. It asked for an algo-
rithm which will be numerically stable and for which, convergence, and if possible
small complexity bounds, can be established. Today, 17 years after Demmel’s text,
this demand retains all of its urgency: it is not known if any of the standard nu-
merical linear algebra algorithms satisfies the properties above. For example:

• The unshifted QR algorithm terminates with probability 1 but is probably
infinite average cost if approximations to the eigenvectors are to be output
(see [32]).

• The QR algorithm with Rayleigh Quotient shift fails for open sets of real input
matrices (see [8, 9]).
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• We do not know whether the Francis (double) shift algorithm converges gen-
erally on real or complex matrices, nor an estimate of its average cost.

• Other algorithms in modern texts are analyzed but don’t estimate the (nec-
essarily infinite in the worst case) number of iterations, which usually relies
on experimental results, see for example [40] which uses a divide and conquer
algorithm or [26] which is on turn based on the algorithm in [6].

Algorithms which output approximate eigenvalues without accompanying ap-
proximate eigenvectors might be easier to analyze. The experimental evidence of [41]
for symmetric matrices suggests that many of the algorithms in use are of average
finite cost and even that there is some universality. An informal explanation of this
fact is that the eigenvalues of symmetric matrices are very well conditioned, see for
example [56, eq. (1.5)]. But eigenvectors are another matter. When the matrices
are close to having multiple eigenvalues the condition of the eigenvector tends to
infinity. For example, even for 2 × 2 symmetric matrices, any pair of orthogonal
vectors (a, b) and (−b, a) are the eigenvectors of a matrix(

1 + ε1 ε3

ε3 1 + ε2

)
for |εi|, i = 1, 2, 3, arbitrarily small.

The only goal of this paper is to give a positive answer to Demmel’s question.
The set of our main results can be informally stated as follows.

Main results We exhibit algorithms which on input a complex matrix A with
complex Gaussian entries generate (with probability 1) an “excellent” approximation
to one of (or all) the (eigenvalue, eigenvector) pairs of A. Some of these algorithms
are deterministic while some are randomized. Their running time (expected running
time for the randomized case) is polynomial in n on average (w.r.t. A) as well as
under a standard smoothed analysis.

More precisely, the average complexity bounds we prove, for n × n matrices,
are O(n7) —for the computation of a single eigenpair with either a deterministic or
a randomized algorithm— and O(n9) —for the computation of all eigenpairs with
a deterministic algorithm. Note that these are just upper bounds: the practical
performance of the algorithms might be better (see §2.10). The precise statements
of the main results are in Theorems 2.25, 2.28, and 2.35.

1.2 A few words on approximations

It must be said upfront that we do not think the algorithm we propose will out-
perform, in general, iterated QR with shifts. It nonetheless possesses some worthy
features which we want to describe in this introduction. The key one, we already
mentioned, is that both convergence and complexity bounds can be established for
it. It is also numerically stable. But in addition, it is strongly accurate.
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A starting point to understand the meaning of this last claim, is the observation
that there are two different obstructions to the exact computation of an eigenpair.
Firstly, the use of finite precision, and the ensuing errors accumulating during the
computational process. The expression numerically stable is usually vested on al-
gorithms for which this accumulated error on the computed quantities is not much
larger than that resulting from an error-free computation on an input datum which
has been read (and approximated) with machine precision. Secondly, the nonlinear
character of the equations defining eigenvalues and eigenvectors in terms of the given
matrix. For n ≥ 5, we learned from Abel and Galois, we cannot write down these
eigenvalues in terms of the matrix’ entries, not even using radicals, and the same
remains true for eigenvectors. Hence, we can only compute approximations of them
and this is so even assuming infinite precision in the computation.

The expression strongly accurate refers to the quality of these approximations. It
is common to find in the literature (at least) three notions of approximation which
we next briefly describe. To simplify, we illustrate with the computation of a value
ζ ∈ C from a datum A ∈ CN (and the reader may well suppose that this computation
is done with infinite precision). We let ζ̃ be the quantity actually computed and we
consider the following three requirements on it:

Backward approximation. The element ζ̃ is the solution of a datum Ã close to A.
Given ε > 0, we say that ζ̃ is an ε-backward approximation when ‖A− Ã‖ ≤ ε
(resp. ‖A− Ã‖ ≤ ε‖A‖ if we are interested in relative errors).

Forward approximation. The quantity ζ̃ is close to ζ. Given ε > 0, we say that ζ̃
is an ε-forward approximation when |ζ − ζ̃| ≤ ε (resp. |ζ − ζ̃| ≤ ε|ζ|).

Approximation à la Smale. An appropriate version of Newton’s iteration, starting
at ζ̃, converges immediately, quadratically fast, to ζ, either in absolute or
relative error.

These requirements are often, but not always, increasingly demanding. For instance,
if ζ is an ε-backward approximation then the forward error |ζ − ζ̃| is bounded,
roughly, by ε cond(A). Here cond(A) is the condition number of A, a quantity usu-
ally greater than 1. So, in general, ε-backward approximations are not ε-forward
approximations, and if A is poorly conditioned ζ̃ may be a poor forward approxima-
tion of ζ (we note, however, that backward approximations do not necessarily exist,
and that condition numbers smaller than 1 do occur). We also observe that if ζ̃ is
an approximation à la Smale we can obtain an ε-forward approximation from ζ̃ by
performing O(log | log ε|) Newton’s steps (see for example Theorem 1.1 below). To
obtain an approximation à la Smale from an ε-forward approximation we need, in
contrast, that ε will be of the order of the inverse of the condition of the zero (see
Theorem 2.12 below).

When we say that our algorithm is strongly accurate, we refer to the fact that
the returned eigenpairs are approximations à la Smale of true eigenpairs.
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In our case, we can not only efficiently compute ε-forward approximations as
above but also with respect to relative error. These are pairs (ζ, w) satisfying

dP(w, v) ≤ ε and |ζ − λ| ≤ ε|λ|

for some true eigenpair (λ, v) of A. Here dP(w, v) denotes the angle between w
and v (note that here the scaling of eigenvectors renders the relativization of the
error moot).

Theorem 1.1 We exhibit an algorithm that, given a matrix A ∈ Cn×n, an approx-
imate eigenpair (ζ, w) returned by any of the algorithms in the main results, and an
accuracy ε ∈ (0, 1/2), produces an ε-forward approximation (in relative error) of the
approximated true eigenpair (λ, v). The algorithm terminates provided λ 6= 0. Its
average cost over Gaussian matrices A (independently of the chosen approximate
eigenpair) is O(n3 log2 log2(n/ε)).

Combining our main results with Theorem 1.1 we can thus compute ε-forward
approximations (in relative error) of all eigenpairs of random Gaussian matrices with
average running time O(n9 +n3 log2 log2(n/ε)). See §11 for a proof of Theorem 1.1.

1.3 A few words on complexity

The cost, understood as the number of arithmetic operations performed, of com-
puting an approximation of an eigenpair for a matrix A ∈ Cn×n, depends on the
matrix A itself. Actually, and this is a common feature in numerical analysis, it
depends on the condition cond(A) of the matrix A. But this condition is not known
a priori. It was therefore advocated by Smale [51] to eliminate this dependency
in complexity bounds by endowing data space with a probability distribution and
estimating expected costs. This idea has its roots in early work of Goldstine and
von Neumann [57].

In our case, data space is Cn×n, and a common probability measure to endow it
with is the standard Gaussian. Expectations of cost w.r.t. this measure yield expres-
sions in n usually referred to as average cost. A number of considerations, including
the suspicion that the use of the standard Gaussian could result in complexity
bounds which are too optimistic compared with “real life”, prompted Spielman and
Teng to introduce a different form of probabilistic analysis, called smoothed analysis.
In this, one replaces the average analysis’ goal of showing that

for a random A it is unlikely that the cost for A will be large

by the following

for all Â, it is unlikely that a slight random perturbation A = Â + ∆A
will require a large cost.
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The expectations obtained for a smoothed analysis will now be functions of both
the dimension n and some measure of dispersion for the random perturbations (e.g.,
a variance).

Smoothed analysis was first used for the simplex method of linear program-
ming [54]. Some survey expositions of its rationale are in [53, 55, 17]. One may
argue that it has been well accepted by the scientific community from the fact that
Spielman and Teng were awarded the Gödel 2008 and Fulkerson 2009 prizes for it
(the former by the theoretical computer science community and the latter by the
optimization community). Also, in 2010, Spielman was awarded the Nevanlinna
prize, and smoothed analysis appears in the laudatio of his work.

In this paper we will exhibit bounds for the cost of our algorithm both for average
and smoothed analyses.

1.4 A few words on numerical stability

The algorithm we deal with in this paper belongs to the class of homotopy contin-
uation methods. Experience has shown that algorithms in this class are very stable
and stability analyses have been done for some of them, e.g. [16, 11, 23]. Because
of this, we will assume infinite precision all along this paper and steer clear of any
form of stability analysis. We nonetheless observe that such an analysis can be easily
carried out following the steps in the papers mentioned above.

1.5 Previous and related work

Homotopy continuation methods go back, at least, to the work of Lahaye [33]. A
detailed survey of their use to solve polynomial equations is in [35]. More explicit
focus in eigenvalue computations is considered in [21, 36, 37, 38] but we do not know
of any serious attempt to implement them.

In the early 1990s Shub and Smale set up a program to understand the cost of
solving square systems of complex polynomial equations using homotopy methods.
In a collection of articles [45, 46, 47, 48, 49], known as the Bézout series, they
put in place many of the notions and techniques that occur in this article. The
Bézout series did not, however, conclusively settle the understanding of the cost
above, and in 1998 Smale proposed it as the 17th in his list of problems for the
mathematicians of the 21st century [52]. A probabilistic solution to this problem
was found in [12, 13], then a deterministic quasipolynomial solution was described
in [18]. Finally, a deterministic polynomial solution was recently found by Lairez
in [34] and is now considered fully answered by the community.

The results in these papers cannot be directly used for the eigenpair problem
since instances of the latter are ill-posed as polynomial systems. But the intervening
ideas can be reshaped to attempt a tailor-made analysis for the eigenpair problem.
A major step in this direction was done by Armentano in his PhD thesis (see [3]
and its precedent [24]), where the condition number µ for the eigenpair problem was
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exhaustively studied. A further step was taken in [5] where µ was used to analyze
a randomized algorithm for the Hermitian eigenpair problem.

Our paper follows this stream of research.
Since the appearance of our work, Paul Breiding has successfully generalized

the ideas of our paper to the computation of eigenpairs of homogeneous polynomial
systems, see [15].

1.6 Structure of the exposition

The remainder of this paper is divided into two parts. In the first one, §2 below, we
introduce all the technical preliminaries, we describe with details the algorithms, and
we state our main results (Theorems 2.25, 2.28, and 2.35). The condition number µ,
Newton’s method, the notion of approximate eigenpair, and Gaussian distributions
are among these technical preliminaries. The second part, which occupies us in the
subsequent sections, is devoted to proofs. Some short proofs are included in §2 as
well.

2 Preliminaries, Basic Ideas, and Main Result

2.1 Spaces and Metric Structures

Let Cn×n be the set of n×n complex matrices. We endow this complex linear space
with the Frobenius Hermitian product 〈 , 〉F and the associated Frobenius norm
‖ · ‖F given by

〈A,B〉F := trace (B∗A) =
n∑

i,j=1

aij bij , ‖A‖F = 〈A,A〉1/2F ,

where A = (aij) and B = (bij). The unit sphere will be denoted by S(Cn×n)
or simply by S. We endow the product vector space Cn×n × C with the canonical
Hermitian inner product structure and its associated norm structure and (Euclidean)
distance.

The space Cn is equipped with the canonical Hermitian inner product 〈 , 〉. We
denote by P(Cn) its associated projective space. This is a smooth manifold which
carries a natural Riemannian metric, namely, the real part of the Fubini-Study metric
on P(Cn). The Fubini-Study metric is the Hermitian structure on P(Cn) given in
the following way: for x ∈ Cn,

〈w,w′〉x :=
〈w,w′〉
‖x‖2

, (1)

for all w, w′ in the Hermitian complement x⊥ = {v ∈ Cn | 〈x, v〉 = 0} of x in Cn.
We denote by dP the associated Riemannian distance. An explicit formula for that
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distance (see for example [14, p. 226]) is

dP(v, w) = arccos
|〈v, w〉|
‖v‖ · ‖w‖

. (2)

Note that this formula makes sense for v, w ∈ Cn (as the distance between the
respective projective classes).

The space Cn×n×C×P(Cn) is endowed with the Riemannian product structure.
The resulting distance equals

dist((A, λ, v), (A′, λ′, v′))2 := ‖A−A′‖2F + |λ− λ′|2 + dP(v, v′)2.

We will only use this distance on S×C×P(Cn). Note that for A,A′ ∈ S, the distance
dist((A, λ, v), (A′, λ′, v′)) is smaller than or equal to the natural geodesic (product)
distance in S × C × P(Cn). For any nonzero matrix A ∈ Cn×n (not necessarily of
unit norm) we will write

distA((λ, v), (λ′, v′))2 :=
|λ− λ′|2

‖A‖2F
+ dP(v, v′)2.

Note that for any nonzero A ∈ Cn×n, distA is a distance function in C× P(Cn) and
if A ∈ S, then distA((λ, v), (λ′, v′)) = dist((A, λ, v), (A, λ′, v′)).

2.2 The Varieties V, W, Σ′ and Σ

We define the solution variety for the eigenpair problem as

V = Vn :=
{

(A, λ, v) ∈ Cn×n × C× P(Cn) : (A− λId)v = 0
}
.

Proposition 2.1 The solution variety V is a smooth submanifold of Cn×n × C ×
P(Cn), of the same dimension as Cn×n.

Proof. See [3, Proposition 2.2]. �

The set V inherits the Riemannian structure of the ambient space. Associated
to it there are natural projections:

V

π2π1

Cn×n C× P(Cn).

(3)

Because of Proposition 2.1, the derivative Dπ1 at (A, λ, v) is a linear operator be-
tween spaces of equal dimension. The subvariety W of well-posed triples is the
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subset of triples (A, λ, v) ∈ V for which Dπ1(A, λ, v) is an isomorphism. In par-
ticular, when (A, λ, v) ∈ W, the projection π1 has a branch of its inverse (locally
defined) taking A ∈ Cn×n to (A, λ, v) ∈ V.

Let Pv⊥ : Cn → v⊥ be the orthogonal projection. Given (A, λ, v) ∈ Cn×n × C×
P(Cn), we let Aλ,v : v⊥ → v⊥ be the linear operator given by

Aλ,v := Pv⊥ ◦ (A− λId)|v⊥ . (4)

If we choose a representative such that ‖v‖ = 1 and we assume that Aλ,v is invertible,
then we have

iCnAλ,vPv⊥ = (Id− vv∗)(A− λId)(Id− vv∗), (5)

and
iCnA

−1
λ,vPv⊥ =

(
(Id− vv∗)(A− λId)(Id− vv∗)

)†
, (6)

where iCn : v⊥ → Cn is the inclusion and † denotes Moore–Penrose pseudoinverse.
The set of well-posed triples is exactly

W = {(A, λ, v) ∈ V : Aλ,v is invertible}, (7)

see [3, Lemma 2.7]). We define Σ′ := V \ W to be the variety of ill-posed triples,
and Σ = π1(Σ′) ⊂ Cn×n the discriminant variety, i.e., the subset of ill-posed inputs.

Remark 2.2 From (7) it is clear that the subset Σ′ is the set of triples (A, λ, v) ∈ V
such that λ is an eigenvalue of A of algebraic multiplicity at least 2. Hence
Σ is the set of matrices A ∈ Cn×n with multiple eigenvalues, and for A ∈
Cn×n \Σ, the eigenvalues of A are pairwise different and π−1

1 (A) is the set of triples
(A, λ1, v1), . . . , (A, λn, vn), where (λi, vi), i = 1, . . . , n, are the eigenpairs of A.

Proposition 2.3 The discriminant variety Σ ⊂ Cn×n is a complex algebraic hy-
persurface. Consequently, for all n ≥ 2, we have dimR Σ = 2n2 − 2.

Proof. See [19, Proposition 20.18]. �

2.3 Unitary invariance

Let Un be the group of n×n unitary matrices. The group Un naturally acts on P(Cn)
by U ·w := Uw. In addition, Un acts on Cn×n by conjugation (i.e., U ·A := UAU−1),
and on Cn×n × C by U · (A, λ) := (UAU−1, λ). These actions define an action on
the product space Cn×n × C× P(Cn), namely,

U · (A, λ, v) := (UAU−1, λ, Uv). (8)

Remark 2.4 The varieties V, W, Σ′, and Σ, are invariant under the action of Un
(see [3] for details).
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2.4 Condition of a triple

In a nutshell, condition numbers measure the worst possible output error resulting
from a small perturbation on the input data. More formally, a condition number is
the operator norm of the derivative of a solution map such as the branches of π−1

1

mentioned in §2.1 above, (see [19, §14.1.2] for a general exposition).
In the case of the eigenpair problem, one can define two condition numbers for

the eigenvalue and the eigenvector, respectively, and formulas for both of them have
been known at least since [56]. Armentano has shown that one can merge the two
in a single one (see §3 in [3] for details). Deviating slightly from [3], we define the
condition number of (A, λ, v) ∈ Cn×n × C× Cn as

µ(A, λ, v) := ‖A‖F ‖A−1
λ,v‖, (9)

(or ∞ if Aλ,v is not invertible) where ‖ · ‖ is the operator norm. This coincides with
µv(A, λ, v) in [3]. Note that from (6), if (A, λ, v) is such that µ(A, λ, v) < ∞, and
‖v‖ = 1 then:

µ(A, λ, v) = ‖A‖F
∥∥∥((Id− vv∗)(A− λId)(Id− vv∗))†

∥∥∥ . (10)

Remark 2.5 The condition number µ is invariant under the action of the unitary
group Un, i.e., µ(UAU−1, λ, Uv) = µ(A, λ, v) for all U ∈ Un, and scale invariant on
the first two components, i.e., µ(sA, sλ, v) = µ(A, λ, v) for all s ∈ C \ {0}.

Lemma 2.6 (Lemma 3.8 in [3]) For (A, λ, v) ∈ V we have µ(A, λ, v) ≥ 1√
2
. �

The essence of condition numbers is that they measure how much may outputs
vary when inputs are slightly perturbed. The following result, which we will prove
in §3, quantifies this property for µ.

Proposition 2.7 Let Γ : [0, 1]→ V, Γ(t) = (At, λt, vt) be a smooth curve such that
At lies in the unit sphere of Cn×n, for all t. Write µt := µ(Γ(t)). Then we have, for
all t ∈ [0, 1],

|λ̇t| ≤
√

1 + µ2
t ‖Ȧt‖, ‖v̇t‖ ≤ µt ‖Ȧt‖.

In particular, ∥∥Γ̇(t)
∥∥ ≤ √6 µt ‖Ȧt‖.

Condition numbers are generally associated to input data. In the case of a
problem with many possible solutions (of which returning an eigenpair of a given
matrix is a clear case) one can derive the condition of a data from a notion of
condition for each of these solutions. A discussion of this issue is given in [19, §6.8].
For the purposes of this paper, we will be interested in two such derivations: the
maximum condition number of A,

µmax(A) := max
1≤j≤n

µ(A, λj , vj),

10



and the mean square condition number of A,

µav(A) :=

 1

n

n∑
j=1

µ2(A, λj , vj)

 1
2

=

 1

n

n∑
j=1

‖A‖2F ‖A−1
λj ,vj
‖2
 1

2

.

Condition numbers themselves vary in a controlled manner. The following Lip-
schitz property and its corollary make this statement precise.

Theorem 2.8 Let A,A′ ∈ S, let v, v′ ∈ Cn be nonzero, and let λ, λ′ ∈ C. Suppose
that

µ(A, λ, v) dist((A, λ, v), (A′, λ′, v′)) ≤ ε

4
√

3
for some ε ∈ (0, 1).

Then we have

1

1 + ε
µ(A, λ, v) ≤ µ(A′, λ′, v′) ≤ 1

1− ε
µ(A, λ, v).

Corollary 2.9 Let A ∈ S, A 6∈ Σ, and let A′ ∈ S be such that

‖A−A′‖F ≤
ε

50µ2
max(A)

, for some ε ∈ (0, 1/2).

Then, A′ 6∈ Σ and (1 + ε)−1µmax(A) ≤ µmax(A′) ≤ (1− ε)−1µmax(A).

We give the proofs of Theorem 2.8 and Corollary 2.9 in §4 below.
We close this paragraph observing that restricted to the class of normal matrices,

the condition number µ admits the following elegant characterization.

Lemma 2.10 (Lemma 3.12 in [3]) Let A ∈ Cn×n \ Σ be normal, and let
(λ1, v1), . . . , (λn, vn) be its eigenpairs. Then

µ(A, λ1, v1) =
‖A‖F

min2≤j≤n |λj − λ1|
. �

2.5 Newton’s method and approximate eigenpairs

For a nonzero matrix A ∈ Cn×n, we define the Newton map associated to A,

NA : C× (Cn \ {0})→ C× (Cn \ {0}),

by

NA

(
λ

v

)
=

(
λ

v

)
−
(
λ̇

v̇

)
, where

(
λ̇

v̇

)
=
(
DFA(λ, v) |C×v⊥

)−1
FA

(
λ

v

)
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and FA(λ, v) = (A− λId)v is the evaluation map. This is a rational map (it is only
defined on an open subset of C× (Cn \ {0})). It was introduced in [3] as a Newton-
like operator associated to the evaluation map FA, and the following formulas were
obtained for v̇ and λ̇ (recall the definition of Aλ,v from (4)):

v̇ = iCnAλ,v
−1 Pv⊥Av, λ̇ =

〈(λ Id−A)(v − v̇), v〉
〈v, v〉

. (11)

The map NA is defined for every (λ, v) ∈ C× (Cn \ {0}) such that Aλ,v is invertible.
It is inmediate to check that for k ≥ 0 and z ∈ C we have

Nk
zA

(
zλ

v

)
=

(
z 0
0 1

)
Nk
A

(
λ

v

)
, (12)

where the superindex k means k iterations. See [3, Sec. 4] for more details.
The notion of approximate solution as a point where Newton’s method con-

verges to a true solution immediately and quadratically fast was introduced by
Steve Smale [50]. It allows to elegantly talk about approximations without depen-
dencies on pre-established accuracies. In addition, these approximate solutions are
“excellent approximations” (as mentioned in the statement of the main results) in a
very strong sense: the distance to the exact solution dramatically decreases with a
single iteration of Newton’s method. In the context of eigenpair computations this
concept is settled as follows.

Definition 2.11 Given (A, λ, v) ∈ W we say that (ζ, w) ∈ C × (Cn \ {0}) is an
approximate eigenpair of A with associated eigenpair (λ, v) when for all k ≥ 1 the
kth iterate Nk

A(ζ, w) of the Newton map at (ζ, w) is well defined and satisfies

distA
(
(Nk

A(ζ, w)), (λ, v)
)
≤
(

1

2

)2k−1

distA
(
(ζ, w), (λ, v)

)
.

The following result estimates, in terms of the condition of an eigenpair, the radius
of a ball of approximate eigenpairs associated to it. For a complete proof see [3,
Theorem 5].

Theorem 2.12 There is a universal constant c0 > 1/5 with the following property.
Let (A, λ, v) ∈ W with ‖A‖F = 1 and let (ζ, w) ∈ C× (Cn \ {0}). If

distA
(
(λ, v), (ζ, w)

)
≤ c0

µ(A, λ, v)
,

then (ζ, w) is an approximate eigenpair of A with associated eigenpair (λ, v).

It is a simple exercise to check that for any nonzero z ∈ C, (ζ, w) is an approx-
imate zero of A with associated zero (λ, v) if and only if (zζ, w) is an approximate
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zero of zA with associated zero (zλ, v). So from the point of view of analyzing the
effect of the Newton methods we may pick whatever scaling is convenient. For us it
will be convenient to assume that ‖A‖F = 1 which we will do in the following.

Proof of Theorem 2.12. Note that [3, Theorem 5] is the same result with
c0 = 0.2881, but the definition of the condition number in [3] is slightly different
from ours. More exactly, if we denote by κ(A, λ, v) the condition number defined in
[3] then we have κ(A, λ, v) = max(1, µ(A, λ, v)). Theorem 2.12 is hence true with
κ in the place of µ and c0 = 0.2881. However, from Lemma 2.6 we know that
µ(A, λ, v) ≥ 2−1/2 which readily implies κ(A, λ, v) ≤

√
2µ(A, λ, v). Theorem 2.12

now follows from the fact that 0.2881 >
√

2/5. �

Remark 2.13 We note that NA(ζ, w) can be computed from the matrix A and the
pair (ζ, w) in O(n3) operations, since the cost of this computation is dominated by
that of inverting a matrix (or simply solving a linear system).

2.6 Gaussian Measures on Cn×n

Let σ > 0. We say that the complex random variable Z = X +
√
−1Y has distribu-

tion NC(0, σ2) when the real part X and the imaginary part Y are independent and

identically distributed (i.i.d.) drawn from N (0, σ
2

2 ), i.e., they are Gaussian centered

random variables with variance σ2

2 .
If Z ∼ NC(0, σ2) then its density ϕ : C → R with respect to the Lebesgue

measure is given by

ϕ(z) :=
1

πσ2
e−
|z|2

σ2 .

We will write v ∼ NCn(0, σ2) to indicate that the vector v ∈ Cn is random with
i.i.d. coordinates drawn from NC(0, σ2). Also, we say that A ∈ Cm×n is (isotropic)
Gaussian and we write A ∼ NCm×n(0, σ2), if its entries are i.i.d. Gaussian random
variables. The resulting probability space is sometimes called the Ginibre ensemble.

If Â ∈ Cm×n and G ∼ NCm×n(0, σ2), we say that the random matrix A = G+ Â
has the Gaussian distribution centered at Â, and we write A ∼ NCm×n(Â, σ2). The
density of this distribution is given by

ϕÂ,σm×n(A) :=
1

(πσ2)mn
e−
‖A−Â‖2F

σ2 .

For conciseness, we will sometimes write A ∼ NCm×n in the particular case where
Â = 0 and σ = 1.

Crucial in our development is the following result giving a bound on the average
condition for Gaussian matrices arbitrarily centered. Its statement is similar to the
main technical result in [19, Thm. 3.6]. We will prove it in §7.
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For technical reasons we will be interested in the following variation of µ:

µF (A, λ, v) := ‖A‖F ‖A−1
λ,v‖F

(note, we only replaced ‖A−1
λ,v‖ by ‖A−1

λ,v‖F ) and the corresponding

µF,av(A) :=

 1

n

n∑
j=1

µ2
F (A, λj , vj)

 1
2

.

Theorem 2.14 For Â ∈ Cn×n and σ > 0 we have

E
A∼NCn×n (Â,σ2)

(µ2
F,av(A)

‖A‖2F

)
≤ n

σ2
.

Moreover, for A chosen with the uniform distribution U (S) in the unit sphere S of
Cn×n we have:

E
A∼U (S)

(
µ2
F,av(A)

)
≤ n3.

Remark 2.15 (i) We note that no bound on the norm of Â is required in the first
claim of Theorem 2.14. Indeed, using µF,av(sA) = µF,av(A), it is easy to see

that the assertion for a pair (Â, σ) implies the assertion for (sÂ, sσ), for any
s > 0.

(ii) It is remarkable that if we change Gaussian matrices to some classes of struc-
tured matrices, the expected value of the condition number can be very high,
see for example [10] and references therein.

2.7 Truncated Gaussians and smoothed analysis

For T, σ > 0, we define the truncated Gaussian NCn×n,T (0, σ2) on Cn×n to be the
distribution given by the density

ρσT (A) =

{
ϕ0,σ
n×n(A)

PT,σ
if ‖A‖F ≤ T ,

0 otherwise,
(13)

where PT,σ := ProbA∼NCn×n (0,σ2){‖A‖F ≤ T}, and, we recall, ϕ0,σ
n×n is the density of

NCn×n(0, σ2). For the rest of this paper we fix the threshold T :=
√

2n. The fact
that ‖A‖2F is chi-square distributed with 2n2 degrees of freedom, along with [20,
Corollary 6] yields the following result.

Lemma 2.16 We have PT,σ ≥ 1
2 for all 0 < σ ≤ 1. �
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The space Cn×n of matrices with the Frobenius norm and the space Cn2
with the

canonical Hermitian product are isomorphic as Hermitian product spaces. Hence,
the Gaussian NCn×n(0, σ2) on the former corresponds to the Gaussian NCn2 (0, σ2)
on the latter, and we can deduce invariance of NCn×n(0, σ2) under the action of Un2

(in addition to that for conjugation under Un discussed in §2.3), and the same is true
for the truncated Gaussian. In particular, the pushforward of both distributions for
the projection Cn×n\{0} → S, A 7→ A

‖A‖F , is the uniform distribution U (S) (see [19,

Chapter 2] for details) and we have

E
A∼NCn×n (0,σ2)

F (A) = E
A∼NCn×n,T (0,σ2)

F (A) = E
A∼U (S)

F (A), (14)

for any measurable scale invariant function F : Cn×n → [0,∞).

Complexity analysis has traditionally been carried out either in the worst-case
or in an average-case. More generally, for a function F : Rm → R+ (some measure
for the computational cost of solving an instance in Rm), the former amounts to the
evaluation of supa∈Rm F (a) and the latter to that of Ea∼D F (a) for some probability
distribution D on Rm. Usually, D is taken to be the standard Gaussian in the input
space. With the beginning of the century, Daniel Spielman and Shang-Hua Teng
introduced a third form of analysis, smoothed analysis (see [53, 55] or [19, §2.2.7]),
which is meant to interpolate between worst-case and average-case.

The idea is to replace the two operators above (supremum and expectation) by
a combination of the two, namely,

sup
â∈Rm

E
a∼D(â,σ)

F (a)

where D(â, σ) is a distribution “centered” at â having σ as a measure of dispersion.
A typical example is the Gaussian N (â, σ2). Another example, used for scale invari-
ant functions F , is the uniform measure on a spherical cap centered at â and with
angular radius σ on the unit sphere S(Rm) (reference [19] exhibits smoothed anal-
yses for both examples of distribution). In this paper we will perform a smoothed
analysis with respect to a truncated Gaussian. More precisely, we will be interested
in quantities of the form

sup
Â∈Cn×n

E
A∼NCn×n,T (Â,σ2)

F (A)

where F will be a measure of computational cost for the eigenpair problem. We note
that, in addition to the usual dependence on n, this quantity depends also on σ and
tends to ∞ when σ tends to 0. When F is scale invariant, as in the case of µav or
µmax, it is customary to restrict attention to matrices of norm 1. That is, to study
the following quantity:

sup
Â∈S

E
A∼NCn×n,T (Â,σ2)

F (A). (15)

15



2.8 The eigenpair continuation algorithm

We are ready to describe the main algorithmic construct in this paper. When
dealing with algorithms it will be more convenient to view the solution variety as
the corresponding subset of Cn×n×C× (Cn \{0}), which, abusing notation, we still
denote by V.

Given two matrices B0, B ∈ S, B 6= ±B0, let α := dS(B0, B) ∈ (0, π) be the
spherical distance (i.e. the angle) from B0 to B, and let

LB0,B = {Bs : 0 ≤ s ≤ α} (16)

be the portion of the great circle in S, parametrized by arc-length, joining B0 and
B, so Bα = B. By abuse of notation, for any A0, A ∈ Cn×n such that A0, A are not
R-linearly dependent, we simply write

dS(A0, A) := dS

(
A0

‖A0‖F
,

A

‖A‖F

)
and LA0,A := L A0

‖A0‖F
, A
‖A‖F

.

The following definition plays a distinguished role in the continuation algorithm. It
uses a constant c∗ which we will later take to be 10−4 (cf. §5.1).

Definition 2.17 If (A, λ, v) ∈ W, (ζ, w) ∈ C×(Cn\{0}) with distA((ζ, w), (λ, v)) ≤
c∗

µ(A,λ,v) , then we say that (ζ, w) is a certified approximate eigenpair of A (with

associated eigenpair (λ, v)). The initial neighborhood of the set W is the set

W̃ :=
{

(A, ζ, w) | ∃(λ, v) s.t. (A, λ, v) ∈ W and distA((ζ, w), (λ, v)) ≤ c∗
µmax(A)

}
.

The term certified in Definition 2.17 is justified by Theorem 2.12.
Suppose that we are given an initial triple (B0, ζ0, w0) ∈ W̃, B0 ∈ S and an

input matrix B ∈ S \ {±B0}. Let (λ0, v0) ∈ C × P(Cn) be the exact eigenpair
of B0 associated to (ζ0, v0). As a consequence of the inverse function theorem, if
(LB0,B \ {B0}) ∩ Σ = ∅, then the map s 7→ Bs can be uniquely extended to a
continuous map

[0, α]→ V, s 7→ (Bs, λs, vs), (17)

We call this map the lifting of LB0,B with origin (B0, λ0, v0). We can try to approx-
imate the eigenpair (λα, vα) of B by following the lifting of LB0,B. To this end we
can differentiate Bsvs − λsvs = 0 w.r.t. s. This produces an Initial Value Problem
(IVP) whose solution can be approximated by any standard numerical ODE solver.
The main ingredient for the complexity estimate is the number of points in the
discretization of [0, α] needed to approximate the solution of the IVP.

Formalizing this idea to get an actual guarantee of convergence is a nontrivial
task; only a non-constructive method has been described in [3] following the ideas
in [44]. We now describe how to algorithmically construct a numerically stable

16



method for this task: subdivide the interval [0, α] into subintervals with extremities
at 0 = s0 < s1 < · · · < sK = α and successively compute approximations (ζi, wi)
of (λsi , vsi), starting with (ζ0, w0) and then using Newton’s method. To ensure that
these are good approximations, we actually want to ensure that for all i, (ζi, wi) is
an approximate eigenpair of Bsi+1 . Figure 1 attempts to convey the general idea.

(λ0, v0)

(λ1, v1)

B0 B = BαBsi

(λsi , vsi)

(ζi, wi)

Bsi+1

(λsi+1 , vsi+1)

(ζi+1, wi+1)

C× Cn

Figure 1: The continuation of the solution path.

The algorithmic counterpart of this idea is the following.
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Algorithm 1 Path-follow

Input: A,A0 ∈ Cn×n \ {0}, and (ζ0, w0) ∈ C× Cn

Preconditions: ‖w0‖ = 1, RA0 6= RA, (ζ0, w0) is a certified approxi-
mate eigenpair of A0 (with some associated eigenpair (λ0, v0)).

redefine A0 := A0/‖A0‖F, A1 := A/‖A‖F
α := dS(A0, A1), s0 := 0, B := A0, i = 0

repeat

Ȧ := unit tangent vector (in the direction of the

parametrization) to LA0,A1 at B

∆s := Choose step(B, Ȧ, ζi, wi)

si+1 := min{α, si + ∆s}
B := point in LA0,A1 with dS(A0, B) = s

(ζi+1, wi+1) := N3
B(ζi, wi) (three Newton iterations)

if |ζi+1| > 1 then ζi+1 = ζi+1/|ζi+1|.
i := i+ 1

until s = α

return (ζ ′, w′) = (‖A‖F ζi, wi)

Output: (ζ ′, w′) ∈ C× Cn

Postconditions: The execution halts if the lifting (At, λt, vt), 0 ≤ t ≤
d§(A0, A), of LA0,A at (λ0, v0) doesn’t meet Σ′. In this case, (ζ ′, w′) is a
certified approximate eigenpair of A with associated eigenpair (λ1, v1).

Remark 2.18 Note that in particular any triple (A0, λ0, v0) ∈ W is an acceptable
starting point for Path-follow for generic A ∈ Cn×n.

Algorithm Path-follow is unambiguous except for the subroutine Choose step,
which will be described at the end of §5.2 below. We next state the main results for
it. Recall, the point s` ∈ [0, α] is the value of s generated by Path-follow at the `th
iteration. For K ∈ R we denote by dKe the smallest integer which is greater than
or equal to K.

Theorem 2.19 Suppose that LA0,A = {Bs}s∈[0,α] (so B0 = A0/‖A0‖F and Bα =
A/‖A‖F ) and assume that LA0,A ∩ Σ = ∅. Then the algorithm Path-follow stops
after at most dKe steps where K is given by

K := K(A,A0, ζ0, w0) := C

∫ α

0
µ(Bs, λs, vs)‖(Ḃs, λ̇s, v̇s)‖ ds.

Here the pairs (λs, vs) are given by (17).
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More generally, let q ∈ Z, q ≥ 0. Then algorithm Path-follow stops after at most
(the smallest integer greater than or equal to)

q + C

∫ α

sq

µ(Bs, λs, vs)‖(Ḃs, λ̇s, v̇s)‖ ds

steps. The returned pair (ζ, w) is an approximate eigenpair of A with associated
eigenpair (λα, vα). Here, C ≤ 3000 is a universal constant.

For 0 ≤ a < b ≤ α, the quantity

Lµ,a,b(Bs, λs, vs) =

∫ b

a
µ(Bs, λs, vs)‖(Ḃs, λ̇s, v̇s)‖ ds (18)

in Theorem 2.19 is the length of the curve {(Bs, λs, vs) : a ≤ s ≤ b} in the so-
called condition metric. This is the metric that is obtained by pointwise multiplying
the natural metric in S × C × P(Cn) by the condition number squared. We call
Lµ,a,b(Bs, λs, vs) the condition length of this curve.

The proof of Theorem 2.19 is given in §5.3.

Remark 2.20 From Proposition 2.7 , we have

Lµ,sq ,α(Bs, λs, vs) ≤
√

6

∫ α

sq

µ2(Bs, λs, vs) ds.

The following result gives an alternative bound to the number of steps.

Corollary 2.21 Let A0, A ∈ Cn×n be R-linearly independent and consider the
path At = (1 − t)A0 + tA which satisfies A1 = A. If LA0,A ∩ Σ = ∅ then, for any
q ∈ Z, q ≥ 0, the algorithm Path-follow stops after at most dKe steps where

K := q +
√

6C‖A0‖F ‖A1‖F
∫ 1

tq

µ2(At, λt, vt)

‖At‖2F
dt

steps, with

tq :=
‖A0‖F

‖A1‖F (sinα cot sq − cosα) + ‖A0‖F
.

Here, λt, vt are the eigenvalue and eigenvector of At defined by continuation.

Proof. From Theorem 2.19 and Remark 2.20, letting C ′ =
√

6C, the number
of steps is at most the smallest integer greater than or equal to

q + C ′
∫ α

sq

µ2(Bs, λBs , vBs) ds = q + C ′
∫ α

sq

µ2(Bs, λBs , vBs)‖Ḃs‖F ds,
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where λBs and vBs are the eigenvalue and eigenvector of Bs defined by continuation.
Now, reparametrizing that spherical segment by Ct = At/‖At‖F , t ∈ [0, 1], the
integral does not change. The quantity above is thus equal to

q+C ′
∫ 1

tq

µ2(Ct, λCt , vCt)‖Ċt‖F dt =
Rmk. 2.5

q+C ′
∫ 1

tq

µ2(At, λt, vt)

∥∥∥∥ ddt
(

At
‖At‖F

)∥∥∥∥ dt.
Substituting Ȧt = A1 − A0 and At = (1− t)A0 + tA1 in this last formula and with
some elementary computations (see [19, Lemma 17.5]) we conclude that∥∥∥∥ ddt

(
At
‖At‖F

)∥∥∥∥ ≤ ‖A0‖F ‖A1‖F
‖At‖2F

.

The corollary follows (the value of tq is obtained by the reparametrization from sq).
�

The inequality of Remark 2.20 implies that (up to constants) the upper bound
for the number of steps by an algorithm in terms of the condition length as in The-
orem 2.19 is smaller than the upper bound in terms of the integral of the squared
condition number as in Corollary 2.21. A similar situation applies in the context of
polynomial system root finding. In this case implementations exist in both contexts
see [49, 18, 11, 23]. The condition length algorithm is more subtle and the proof
of correctness more difficult, both for the polynomial system and eigenpair cases.
So the temptation is to present condition number squared algorithms. Here for the
first time we present a quantitative estimate of the improvement which is significant
and which justifies presenting the more complex condition length algorithm (an-
other estimate of this kind was established shortly after in [4]). In Theorem 2.29 a
randomized algorithm is studied. The upper bound given by the condition length al-
gorithm is O(n2) while an algorithm with complexity given by the condition number
squared would give O(n3).

In our main results we are interested in the cost of our algorithms over random
matrices A. The following quantity —the expected number of iterations of Path-
follow for a given initial triple (A0, λ0, v0) ∈ W— becomes essential,

Avg Num Iter(A0, λ0, v0) := E
A∼NCn×n

K(A,A0, λ0, v0).

We can also consider the smoothed number of iterations of Path-follow that results
by drawing instead the input matrix A from NT (Â, σ2) where Â ∈ S is arbitrary.
We thus define

Smd Num Iter(A0, λ0, v0, σ) := sup
Â∈S

E
A∼NCn×n,T (Â,σ2)

K(A,A0, λ0, v0).

Proposition 2.22 For (A0, λ0, v0) ∈ W we have

Avg Num Iter(A0, λ0, v0) = O(n4µ2(A0, λ0, v0))
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and, for all σ ∈ (0, 1],

Smd Num Iter(A0, λ0, v0, σ) = O
(n4µ2(A0, λ0, v0)

σ2

)
.

Remark 2.23 Note that Proposition 2.22 ensures that Path-follow halts in finite
time with probability 1 even if A0 ∈ Σ, as long as µ(A0, λ0, v0) is finite. The
algorithm does a first step that depends on µ(A0, λ0, v0) only and advances to Bs1
with s1 > 0. After that, the fact that the real codimension of Σ in Cn×n is 2
(shown in Proposition 2.3) ensures that, almost surely, (LA0,A \ {A0}) ∩ Σ = ∅.
Therefore, with probability 1, none of the matrices Bs is in Σ and the integral over
[s1, α] in Theorem 2.19 is finite. Also, note that one needs not to have the exact
eigenpair (λ0, v0), but it suffices to have a certified approximate eigenpair of A0 with

associated eigenpair (λ0, v0). In particular, it suffices to have (A0, λ0, w0) ∈ W̃.

To compute all the eigenpairs from an initial matrix A0 ∈ Cn×n \ Σ and its
eigenpairs (λ(1), v(1)), . . . , (λ(n), v(n)) we may proceed by following the n paths cor-
responding to taking these eigenpairs in the initial triples. In this case, we will be
interested in the quantities

Avg Num Iter All(A0) :=
n∑
i=1

Avg Num Iter(A0, λ
(i), v(i))

= E
A∼NCn×n

n∑
i=1

K(A,A0, λ
(i), v(i)),

and

Smd Num Iter All(A0, σ) := sup
Â∈S

E
A∼NCn×n,T (Â,σ2)

n∑
i=1

K(A,A0, λ
(i), v(i)).

For these quantities we prove the following result.

Proposition 2.24 For A0 ∈ Cn×n \ Σ we have

Avg Num Iter All(A0) = O(n4µ2
max(A0))

and, for all σ ∈ (0, 1],

Smd Num Iter All(A0, σ) = O
(n4µ2

max(A0)

σ2

)
.

We prove Propositions 2.22 and 2.24 in Section 8. Note that the latter does not
inmediately follow from the former since in general

n∑
i=1

µ2(A0, λ
(i), v(i)) >> µ2

max(A0).
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2.9 Initial triples and global algorithms

The Path-follow routine assumes an initial triple (A0, λ0, v0) at hand. We next deal
with this issue. We first consider the case of computing a single eigenpair. In this
case we consider the diagonal matrix H whose diagonal entries are (1, 0, . . . , 0) and
its well-posed eigenpair (1, e1).

Algorithm 2 Single Eigenpair

Input: A ∈ Cn×n

(ζ, w) := Path-follow(A,H, 1, e1)

Output: (ζ, w) ∈ C× Cn

Postconditions: The execution halts if the lifting of LH,A at (1, e1)
doesn’t meet Σ′. In this case, the returned (ζ, w) is a certified approxi-
mate eigenpair of A.

We can formally state (and prove) the first of our main results. To this end, we
define the average cost Avg Cost(n) of Single Eigenpair to be the average (over the
input matrix A) of the number of arithmetic operations performed by the algorithm.
We similarly define its smoothed cost Smd Cost(n, σ).

Theorem 2.25 Algorithm Single Eigenpair returns (almost surely) an approximate
eigenpair of its input A ∈ Cn×n. Its average cost satisfies

Avg Cost(n) = O(n7).

For every 0 < σ ≤ 1, its smoothed cost satisfies

Smd Cost(n, σ) = O
(n7

σ2

)
.

Proof. Lemma 2.10 and the fact that ‖H‖F = 1 imply that µ(H, 1, e1) = 1. The
statement is then a consequence of Proposition 2.22 and the fact that the average
cost is obtained by multiplying Avg Num Iter(H, 1, e1) by the cost O(n3) of each
iteration. �

Remark 2.26 The triple (H, 1, e1) is the version, in our context, of the initial pair
proposed by Shub and Smale in [49] for the computation of zeros of polynomial
systems. In this later context, the problem of showing that one can efficiently follow
linear homotopies with this initial pair remains open.
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The fact that any other eigenpair of H is ill-posed prevents us from using them
to compute other eigenpairs of A. If we want to compute all the eigenpairs of A we
will need to consider a different approach.

To do so, for any fixed n ≥ 2, let

D = diag(η1, . . . , ηn), (19)

where the ηi are points in the unit side hexagonal lattice chosen in such an order
that 0 = |η1| ≤ · · · ≤ |ηn|. We recall, the hexagonal lattice is the set of points of the
form

Q

(
a

b

)
, where Q =

(
1 1/2

0
√

3/2

)
, a, b ∈ Z.

Lemma 2.27 We have µmax(D) ≤
√

3/2

π n+ o(n).

Proof. We first find a real number r > 0 with the property that the disk D(r)
of radius r contains at least n points in the hexagonal lattice. To do so, note that
a lattice point Q

(
a
b

)
is in D(r) if and only if(

a

b

)
∈ Q−1D(r).

Now, the singular values of Q−1 are
√

2 and
√

2/3, so Q−1D(r) is an ellipse of
area 2πr2/

√
3 and maximal radius

√
2r. Dividing by the smallest integer N that is

greater than 2
√

2r and translating the resulting ellipse to have center (1/2, 1/2), we
look for points of the form (a/N, b/N) with a, b ∈ {0, . . . , N − 1} which lie inside an
ellipse of area

2πr2

√
3N2

contained in [0, 1]2. This is a particular instance of the problem of counting lattice
points in semialgebraic sets, a well studied problem for which a quite complete
solution is for example [14, Th. 3, p. 327]. We conclude that the number of points
in the hexagonal lattice in D(r) is at least

2πr2

√
3
− 2N ≥ 2πr2

√
3
− 4
√

2r − 2.

In particular, we can find n lattice points in a disk of radius r = 31/4/(2π)1/2n1/2 +
o(n1/2). Moreover, around each lattice point we can place a circle of radius 1/2
without overlappings. From the mean value equality for analytic functions, for any
z ∈ C and ε > 0 we have,

|z|2 = |z2| =

∣∣∣∣∣ 1

πε2

∫
|y−z|<ε

y2 dy

∣∣∣∣∣ ≤ 1

πε2

∫
|y−z|<ε

|y|2 dy.
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We thus have

‖D‖2F =

n∑
j=1

|ηj |2 ≤
∑
z

|z|2 ≤ 4

π

∑
z

∫
|y−z|<1/2

|y|2 dy ≤ 4

π

∫
|y|<r+1/2

|y|2 dy,

where z runs over all lattice points contained in D(r). Solving the last integral yields

‖D‖2F ≤ 2r4 + o(r4) =
3n2

2π2
+ o(n2).

Finally, from Lemma 2.10 we conclude that

µ2
max(D) = ‖D‖2F ≤

3n2

2π2
+ o(n2). �

We now put together the continuation algorithm Path-follow and this specific
initial triple.

Algorithm 3 All Eigenpairs

Input: A ∈ Cn×n

compute D and ηj as defined in (19)

for j ∈ {1, . . . , n} do

(ζj , wj) := Path-follow(A,D, ηj , ej)

Output:
(
(ζ1, w1), . . . , (ζn, wn)

)
∈ (C× Cn)n

Postconditions: The algorithm halts if LD,A ∩ Σ = ∅. In this case,
the pairs (ζj , wj) are certified approximate eigenpairs of A with pairwise
different associated eigenpairs.

We can now state (and prove) the second of our main results.

Theorem 2.28 Algorithm All Eigenpairs returns (almost surely) n approximate
eigenpairs of its input A ∈ Cn×n, with pairwise different associate eigenpairs. Its
average cost satisfies

Avg Cost(n) = O(n9).

For every σ ≤ 1 its smoothed cost satisfies

Smd Cost(n, σ) = O
(n9

σ2

)
.

Proof. It easily follows from Lemma 2.27 and Proposition 2.24. As in the proof
of Theorem 2.25, we recall that the cost of each iteration is O(n3). �
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2.10 Computer experiments

Algorithm Single Eigenpair was implemented in Matlab by Liu Yiting, and this im-
plementation was used to get an empirical estimate of its average number of itera-
tions and average cost.

To estimate these averages she generated 200 random complex matrices Aj ∈
Cn×n for n = 4, 8, 16, 32. For each n and each j she computed an eigenpair for Aj and
recorded the number Inj of iterations performed by Single Eigenpair to do so. Then
she computed the (empirical) average number of iterations Iter(n) = 1

200

∑200
j=1 Inj .

She did the same for n = 64 but only with 30 matrices. She obtained, respectively,
1571.4, 3464.9, 6410.4, 9390.6, and 13941.

In order to estimate the growth of Iter(n) with n she did a linear regression
between log2 Iter(n) and log2 n for n = 4, 8, 16, 32 and 64. The regression line
obtained was log2 Iter(n) ≈ 0.7737(log2 n) + 9.3026. The value of the regression
coefficient, close to 1, shows that this line is a very good fit to the functional de-
pendence log2 Iter(n) = f(log2 n). Taking exponential with base 2 on both sides,
we get Iter(n) ≈ 632 n0.78, and therefore, an empirical estimate of O(n3.78) for
Avg Cost(n), substantially better than the O(n7) in Theorem 2.25 (but still worse
than the empirical behavior of the eigensolvers currently used).

2.11 Randomized algorithms

In this section we follow the ideas in [13] adapting them to the case of eigenpair
computations. Consider the probability distribution D in the solution variety V
defined via the following procedure:

randomly choose A0 ∼ NCn×n

randomly choose one eigenpair (λ0, v0) of A0
(20)

Next assume that we have a routine draw from D to draw triples (A0, λ0, v0) from
the distribution D on V. Then we can consider the following algorithm.

Algorithm 4 Random initial triple (scheme)

Input: A ∈ Cn×n

(A0, λ0, v0) := draw from D
(ζ, w) := Path-follow(A,A0, λ0, v0)

Output: (ζ, w) ∈ (C× Cn)n

Postconditions: The execution halts if the lifting of LA0,A at (λ0, v0)
doesn’t meet Σ′. In this case, (ζ, w) is an approximate eigenpair of A.
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The interest of this algorithmic scheme is that we can prove better bounds (than
those in Theorem 2.25) for the number of iterations of Path-follow.

Theorem 2.29 The expected average number of homotopy steps of Path-follow in
Algorithm 4 satisfies

E
A∼NCn×n

E
(A0,λ0,v0)∼D

K(A,A0, λ0, v0) ≤ 4Cn2,

where C is as in Theorem 2.19.

Theorem 2.29, which will be proved in Section 9, brings to focus the need of
an implementation of draw from D. It must be noted though that a direct imple-
mentation is not possible since the second line in (20) (choosing (λ0, v0) at random)
implicitly requires solving an EVP problem, the very question that this article is
attempting to solve! This is a similar situation to that solved in [12, 13], where a
random polynomial system and one of its zeros at random had to be chosen. It is
also similar to that dealt with in [5] for the computation of eigenpairs of Hermitian
matrices. A version of the proof of Theorem 2.29 with the Gaussian Unitary En-
semble replacing the Gaussian distribution, actually yields an improvement over the
main result in [5]. (We note in passing that the case of Hermitian matrices is one
of the few instances where a proof of convergence of a practical eigensolver, such as
the Francis-Kublanovskaya’s QR, is actually known [7].)

It must also be noted that following the method in [34] for the polynomial system
case Algorithm 4 can probably be de–randomized without increasing the complexity.

Corollary 2.30 In the case of Hermitian matrices, the expected average number
of homotopy steps of Path-follow in Algorithm 4 (with the randomization algorithm
in [5] in place of draw from D) is O(n2). This yields an expected cost of O(n5) for
the computation of one eigenpair and of O(n6) for the computation of all of them.
Here the input matrix H is drawn from the Gaussian Unitary Ensemble. �

Following the ideas in those papers, we note that Theorem 2.29 would yield
an algorithm with average running time O(n5) if we could find some collection of
probability spaces Ωn and functions ψn : Ωn → Vn, n ≥ 2, such that:

1. Choosing ω ∈ Ωn can be done starting with a number of random choices of
numbers with the NC distribution, and performing some arithmetic operations
on the results, the total expected running time being at most O(n5).

2. Given ω ∈ Ωn, ψn(ω) is computable in average time O(n5), that is, the ex-
pected number of arithmetic operations for computing ψn(ω) must be O(n5).

3. Choosing ω at random in Ωn and computing (A0, λ0, v0) = ψn(ω) is equivalent
to choosing A0 ∼ NCn×n at random and choosing at random (λ0, v0) such that
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Av0 = λ0v0. That is, for any measurable mapping φ : Vn → [0,∞] we must
have

E
ω∼Ωn

(φ(ψn(ω))) = E
A0∼NCn×n

 1

n

∑
λ0,v0:A0v0=λ0v0

φ(A0, λ0, v0)

 , (21)

so that we can apply this equality to

φ(A0, λ0, v0) = E
A∼NCn×n

(K(A,A0, λ0, v0))

and apply Theorem 2.29.

Unfortunately, we are not able to produce a collection of probability spaces Ωn

and functions ψn as described above. However, we will prove that relaxing (21)
to the following less restrictive situation is actually possible: instead of demanding
the equality in (21) we can just demand an inequality where the right-hand term
is multiplied by some polynomial in n. Moreover, we do not need (21) to hold
for every measurable function φ since all the interesting functions for the EVP
problem are projective functions, invariant under the action of the unitary group.
We can thus relax (21) to hold only with a polynomially bounded inequality, and
for unitary invariant projective functions. Proving that this can actually be done is
our goal now. (Meanwhile our ideas have been adapted to the more general setting
of eigenpairs of polynomial systems in [15].)

We start by defining Ωn and ψn. Consider the classical Stiefel manifold consisting
of orthonormal (n− 1)-frames in Cn, given by

Sn−1(Cn) = {Q ∈ Cn×(n−1) : Q∗Q = In−1},

endowed with its natural probability measure given by the restriction of the Frobe-
nius Hermitian structure to the tangent bundle.

For every n ≥ 2, let

An := {(M,Q) : ker(M) = ker(Q∗)} ⊆ C(n−1)×n × Sn−1(Cn). (22)

In other words, An consists of pairs of matrices M,Q such that the columns of Q
form an orthonormal basis of the complement of ker(M). The set An has a natural
probability measure µAn given by

µAn(X) := E
M∼NC(n−1)×n

(
E

Q:(M,Q)∈An
(1lX(M,Q) dQ)

)
,

for measurable sets X ⊆ An. Here, Q has the uniform distribution in the compact
manifold {Q ∈ Sn−1(Cn) : (M,Q) ∈ An} and 1lX is the indicator function of X.
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Definition 2.31 Let

Ωn := {(λ,w, (M,Q)) : 2<(λ̄tr(MQ)) ≤ 1− |λ|2(n− 1)} ⊆ C× Cn−1 ×An

be endowed with the product measure µΩn , normalized to have total unit mass (see
Remark 2.32 below). Then, let

ψn(λ,w,M,Q) =

((
λ w∗

0 MQ+ λIn−1

)
, λ, e1

)
.

Remark 2.32 An explicit description of the product measure µΩn is as follows:

µΩn(Y ) := Cn E
λ,w

(µAn({(M,Q) : (λ,w,M,Q) ∈ Y })) ,

for measurable sets Y ⊆ Ωn, where λ ∼ NC, w ∼ NCn×1 and Cn is a normalizing
constant given by

C−1
n = Prob

(λ,M,Q)∈C×An

(
2<(λ̄tr(MQ)) ≤ 1− |λ|2(n− 1)

)
. (23)

Our last main result (see Section 10 for a proof) is the following.

Theorem 2.33 Let Ωn and ψn be as in Definition 2.31 for all n ≥ 2. Then:

1. Choosing ω ∈ Ωn can be done by choosing 2n2 − 2n + 1 numbers with the
NC distribution, checking a test which involves the computation of a Moore-
Penrose inverse and computing two QR decompositions. This process may be
repeated as a function of the test’s outcome, but the expectation of the number
of times the test is performed is at most Cn. The total expected running time
is O(n3Cn).

2. Given ω ∈ Ωn, computing ψn(ω) can be done with running time O(n3).

3. For any unitarily invariant measurable mapping φ : V → [0,∞] we have:

E
ω∼Ωn

(φ(ψn(ω))) ≤ e nCn E
A0∼NCn×n

 1

n

∑
λ0,v0:A0v0=λ0v0

φ(A0, λ0, v0)

 . (24)

Note that (24) can be understood as follows: let m1 be the push-forward measure
of ψn in V and let m2 be the measure in V given by

m2(X) = E
A0∼NCn×n

(
1

n
]
{

(λ0, v0) : A0v0 = λ0v0, (A0, λ0, v0) ∈ X
})

,

for any measurable set X ⊆ V. Then, the Radon-Nikodim derivative dm1/dm2 is
bounded above by enCn.
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Problem 2.34 Describe an alternative collection (Ωn, ψn) which satisfies a sharper
version of (24), with a constant in the place of nCn. This would improve the running
time of Algorithm Random initial triple below by a factor of O(nCn).

We are now prepared to describe our random homotopy algorithm.

Algorithm 5 Random initial triple

Input: A ∈ Cn×n

Randomly choose ω ∈ Ωn

(A0, λ0, v0) := ψn(ω) (note that v0 = e1)

(ζ, w) := Path-follow(A,A0, λ0, v0)

Output: (ζ, w) ∈ (C× Cn)n

Postconditions: The execution halts if the lifting of LA0,A at (λ0, v0)
doesn’t meet Σ′. In this case, (ζ, w) is an approximate eigenpair of A.

From Theorem 2.33, the expected running time of the computation of (A0, λ0, v0)
is O(n3Cn). Moreover, the expected number of homotopy steps in the execution of
Path-follow(A,A0, λ0, v0) is

S = E
A∼NCn×n , ω∼Ωn

(K(A,ψn(ω))) = E
ω∼Ωn

(
E

A∼NCn×n
(K(A,ψn(ω)))

)
,

where K(A,ψn(ω)) is as in Theorem 2.19. From (24), we have

S ≤ e nCn E
A0∼NCn×n

 1

n

∑
λ0,v0:A0v0=λ0v0

E
A∼NCn×n

(K(A,A0, λ0, v0))


≤

Th. 2.29
O(n3Cn).

We multiply the number of steps by O(n3) to get the following complexity bound.

Theorem 2.35 Algorithm Random initial triple returns (almost surely) an approx-
imate eigenpair of its input A ∈ Cn×n. Its average cost satisfies

Avg Cost(n) = O(n6Cn) ≤
Lemma 10.1

O(n7). �
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3 Some properties of the condition number µ

There is a general geometric framework for defining condition numbers, see [19,
§14.3]. In our situation, this framework takes the following form.

If (A, λ, v) ∈ W, then from the inverse function theorem the projection π1 : V →
Cn×n (cf. (3)), around (A, λ, v), has a local inverse U → V, B 7→ (B,G(B)), that is
defined on an open neighborhood U of A in Cn×n. We call G the solution map. The
map G decomposes as G = (Gλ, Gv), where

Gλ : U → C and Gv : U → P(Cn)

associate to matrices B ∈ U an eigenvalue and the corresponding eigenvector. Let

DGλ(A) : Cn×n → C and DGv(A) : Cn×n → v⊥

be the derivatives of these maps at A. The condition numbers for the eigenvalue λ
and the eigenvector v of A are defined as follows:

µλ(A, λ, v) := ‖DGλ(A)‖ and µv(A, λ, v) := ‖DGv(A)‖,

where the norms are the operator norms with respect to the chosen norms (on Cn×n
we use the Frobenius norm and on v⊥ the norm given by (1)).

Lemma 14.17 in [19] gives explicit descriptions of DGλ and DGv. Before stating
it, we recall that if λ is an eigenvalue of A there exists u ∈ P(Cn) (the left eigenvector)
such that (A− λId)∗u = 0. Recall the linear map Aλ,v : v⊥ → v⊥ introduced in (4).

Lemma 3.1 Assume that Av = λv and λ has multiplicity 1. Then, the associated
left eigenvector is

u = v − iCnA−∗λ,vPv⊥A
∗v. (25)

Here we denoted A−∗λ,v :=
(
A−1
λ,v

)∗
. Note that 〈u, v〉 = ‖v‖2.

Proof. Take a representative such that ‖v‖ = 1 and let

z := iCnA
−∗
λ,vPv⊥A

∗v =
(6)

(
(Id− vv∗)(A− λId)∗(Id− vv∗)

)†
A∗v.

From the definition of the Moore–Penrose pseudoinverse, z is the unique element in
v⊥ that minimizes ‖(Id − vv∗)(A − λId)∗z − A∗v‖, that is we have (Id − vv∗)(A −
λId)∗z = Pv⊥(A∗v) = (Id− vv∗)A∗v or equivalently

(A− λId)∗z = A∗v + tv for some t ∈ C.

Premultiplying both sides by v∗ we have

v∗(A− λId)∗z = v∗A∗v + t‖v‖2 ⇒ 0 = (λv)∗v + t‖v‖2 = (λ̄+ t)‖v‖2,
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so we have t = −λ̄ and then

(A− λId)∗(v − z) = (A− λId)∗v −A∗v + λ̄v = 0,

that is, v− z is a left eigenvector of A with associated (left) eigenvalue λ̄ as wanted.
�

The following is Lemma 14.17 in [19].

Lemma 3.2 Let (A, λ, v) ∈ W and let u be a left eigenvector of A with eigenvalue λ̄.
Then:

(a) We have 〈v, u〉 6= 0.

(b) The derivative of the solution map is given by DG(A)(Ȧ) = (λ̇, v̇), where

λ̇ =
〈Ȧv, u〉
〈v, u〉

, v̇ = −A−1
λ,v Pv⊥Ȧv. �

The following result, which follows directly from Lemma 3.2, was already pointed
out in [56] (see also [19, Prop. 14.15]).

Proposition 3.3 Choosing the Frobenius norm on TACn×n = Cn×n and 1
‖v‖ ‖·‖ on

v⊥, the condition numbers µv for the eigenvector problem and µλ for the eigenvalue
problem satisfy:

µλ(A, λ, v) = ‖DGλ(A)‖ =
‖u‖‖v‖
|〈u, v〉|

=
(25)

‖u‖
‖v‖
≤
√

1 + µ2(A, λ, v)

and

µv(A, λ, v) = ‖DGv(A)‖ =
∥∥A−1

λ,v

∥∥ =
µ(A, λ, v)

‖A‖F
. �

Proof of Proposition 2.7. The first two inequalities are immediate from
Proposition 3.3. For the third one, note that

‖Γ̇(t)‖ = ‖(Ȧ, λ̇, v̇)‖ ≤ ‖Ȧ‖
√

1 + µ2
t + (1 + µ2

t ) ≤ ‖Ȧ‖
√

6µ2
t

the last inequality since µt ≥ 1√
2

(Lemma 2.6). �

Our last lemma is a version of Lemma 2.6 without the assumption that our point
lies on W.

Lemma 3.4 For A ∈ Cn×n, w ∈ Cn and ζ ∈ C with |ζ| ≤ ‖A‖F we have

µ(A, ζ, w) ≥ 1

1 +

√
1− ‖w∗A‖2

‖w‖2‖A‖2F

≥ 1

2
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Proof. W.l.o.g we can assume that w = e1 and write

A =

(
λ a∗

b Â

)
,

where λ ∈ C and a, b ∈ Cn−1. Then, Aζ,w ≡ Â− ζIdn−1 and

µ(A, ζ, e1)

‖A‖F
= ‖(Â− ζIdn−1)−1‖ ≥ 1

‖Â− ζIdn−1‖
≥ 1

‖Â‖+ |ζ|

≥ 1√
‖A‖2F − ‖e∗1A‖2 + ‖A‖F

.

The lemma follows.
�

4 Proofs of Theorem 2.8 and Corollary 2.9

It will be handy to use the definition of µ given in (10). We start with a very simple
linear algebra lemma about the Moore-Penrose pseudoinverse.

Lemma 4.1 Let R,R′ ∈ Cn×n be such that R has rank n − 1. Assume moreover
that det(R′) = 0 and

‖R−R′‖ ≤ ε

‖R†‖
, for some 0 ≤ ε < 1.

Then, R′ has rank n− 1 and

‖R†‖
1 + ε

≤ ‖R′†‖ ≤ ‖R
†‖

1− ε
.

Proof. Let σ and σ′ be the smallest nonzero singular values of R and R′,
respectively. Note that σ − ‖R − R′‖ ≤ σ′ ≤ σ + ‖R − R′‖ (this is a classical
fact proved for the first time in [58], see also [29, Cor. 8.6.2]). In particular,
σ′ ≥ σ − ‖R −R′‖ = ‖R†‖−1 − ‖R −R′‖ > 0, so R′ has rank at least n− 1 and by
hypothesis it has rank n− 1. Moreover, we have

‖R†‖ =
1

σ
=

1

σ′
σ′

σ
≤ ‖R′†‖σ + ‖R−R′‖

σ
≤ (1 + ε)‖R′†‖.

The upper bound follows from a similar argument. �

Proof of Theorem 2.8. Choose representatives such that ‖v‖ = ‖v′‖ = 1
and let

Q := (Id− vv∗)(A− λId)(Id− vv∗), Q′ := (Id− v′v′∗)(A′ − λ′Id)(Id− v′v′∗).
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We have rank(Q) = n − 1 since µ(A, λ, v) < ∞ by our assumption, cf. (10). We
claim that

‖Q−Q′‖ ≤ ε

‖Q†‖
, (26)

which from Lemma 4.1 implies that Q′ has rank n− 1 and

‖Q†‖
1 + ε

≤ ‖Q′†‖ ≤ ‖Q
†‖

1− ε
,

that is (recall ‖A‖F = ‖A′‖F = 1),

µ(A, λ, v)

1 + ε
≤ µ(A′, λ′, v′) ≤ µ(A, λ, v)

1− ε
,

as wanted.
It remains to prove the claim. To do so, let (At, λt, vt) be a geodesic in Cn×n×C×

P(Cn), parametrized by arc-length, joining (A, λ, v) and (A′, λ′, v′), so by hypothesis
we have t ∈ [0, ε/(4

√
3‖Q†‖)] and we can choose representatives vt in such a way

that

v̇t ⊥ vt, , ‖vt‖ = 1, ‖Ȧt‖2F + |λ̇t|2 + ‖v̇t‖2 = 1, for all t ∈ [0, ε/(4
√

3‖Q†‖)].

Let Qt := (Id − vtv∗t )(At − λtId)(Id − vtv∗t ). In order to bound ‖Q̇t‖ we first note
that for x ∈ Cn,

‖(v̇tv∗t + vtv̇
∗
t )(x)‖ =‖v̇t〈x, vt〉+ vt〈x, v̇t〉‖ =

√
‖v̇t‖2|〈x, vt〉|2 + ‖vt‖2|〈x, v̇t〉|2

=‖v̇t‖

√
|〈x, vt〉|2 +

∣∣∣∣〈x, v̇t
‖v̇t‖
〉
∣∣∣∣2 ≤ ‖v̇t‖ ‖x‖,

that is ‖v̇tv∗t + vtv̇
∗
t ‖ ≤ ‖v̇t‖. On the other hand,

‖At − λtId‖ ≤ ‖At‖+ |λt| ≤ ‖At‖+ ‖At‖ ≤ 2‖At‖F = 2,

so computing the derivative of Qt we see that

‖Q̇t‖ ≤ 2‖v̇tv∗t + vtv̇
∗
t ‖‖At − λtId‖+ ‖Ȧt − λ̇tId‖

≤ 4‖v̇t‖+ ‖Ȧt − λ̇tId‖ ≤ 4(‖v̇t‖+ ‖Ȧt‖+ |λ̇t|)
≤ 4
√

3(‖v̇t‖2 + ‖Ȧt‖2 + |λ̇t|2)1/2 = 4
√

3.

Thus, we have ‖Q − Q′‖ ≤
∫ ε/(4√3‖Q†‖)

0 4
√

3 dt ≤ 4
√

3ε/(4
√

3‖Q†‖), finishing the
proof of (26) and that of Theorem 2.8. �

Proof of Corollary 2.9. Consider the portion LA,A′ = {At} of the great
circle defined for t ∈ [0, α] where α = dS(A,A′). Let (λ, v) be any eigenpair of A.
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From the inverse function theorem, the map t 7→ Γ(t) = (At, λt, vt) ∈ W (given by
the local inverse of π1) is defined and, denoting dist(t) := dist((A, λ, v), (At, λt, vt)),
satisfies

dist(t) <
ε

4
√

3µ(A, λ, v)
, t ∈ [0, δ) (27)

for some maximal δ ∈ (0, α]. From Theorem 2.8 this implies

µ(Γ(t)) ≤ µ(A, λ, v)

1− ε
, t ∈ [0, δ), (28)

giving a global bound for the norm of the derivative of the solution map. Thus, Γ(t)
can be continuously extended to [0, δ] and from maximality of δ, either δ = α or
δ < α and (27) must become an equality when changing t to δ. In this last case,
which we will rule out by contradiction, note that from Proposition 2.7 and (28)

dist(δ) ≤
∫ δ

0
‖Γ̇(t)‖ dt ≤

√
6

∫ δ

0
µ(Γ(t)) dt ≤

√
6 δ

µ(A, λ, v)

1− ε
.

Now, in our range of values we have α = dS(A,A′) = 2 arcsin(‖A − A′‖F /2) <
1001
1000‖A−A

′‖F which, together with δ < α, implies

dist(δ) <
1001‖A−A′‖F

√
6µ(A, λ, v)

1000(1− ε)
≤ 1001ε

√
6

50000(1− ε)µ(A, λ, v)
<

ε

4
√

3µ(A, λ, v)
,

which is a contradiction (note that we have used the bound ‖A−A′‖F µ2(A, λ, v) ≤
ε/50 and the fact that ε < 1/2). We thus conclude that δ = α and the corollary
follows from (27) and Theorem 2.8. �

5 Condition-length homotopy continuation

The goal of this section is to fully describe the routine Choose step (with which
algorithm Path-follow will be complete) and to prove Theorem 2.19.

To do so, it will be useful to denote by β(A, ζ, w) the length (in the tangent
space) of the Newton step with matrix A ∈ S and input (ζ, w) ∈ C × P(Cn). That
is, if we take a representative such that ‖w‖ = 1,

β(A, ζ, w)2 :=
∥∥∥(DFA(ζ, w)|C×w⊥

)−1
FA(ζ, w)

∥∥∥2
=

∥∥∥∥(λ̇v̇
)∥∥∥∥2

= |λ̇|2 + ‖v̇‖2,

where λ̇, v̇ are given in (11). When ‖v̇‖ is small β approximates the length of the
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Newton step also under the distance dist. Indeed,

distA((ζ, w), (NA(ζ, w)))2 = |λ̇|2 + dP(w,w − v̇)2

=
(2)
|λ̇|2 +

(
arccos

|〈w,w − v̇〉|
‖w‖‖w − v̇‖

)2

= |λ̇|2 +

(
arccos

1√
1 + ‖v̇‖2

)2

.

It is easy to check that

9

10
x2 ≤

(
arccos

1√
1 + x2

)2
≤ x2 for x ≤ 1

3 ,

so we have proved that whenever ‖v̇‖ ≤ 1/3,

9

10
β(A, ζ, w) ≤ distA((ζ, w), (NA(ζ, w))) ≤ β(A, ζ, w). (29)

(The upper bound inequality is valid regardless of the value of ‖v̇‖). The knowledge
of β allows us to bound the distance from an approximate eigenpair to the associated
exact eigenpair.

Lemma 5.1 Assume that (ζ, w) is an approximate eigenpair of A ∈ S with as-
sociated eigenpair (λ, v). Then, distA((ζ, w), (λ, v)) ≤ 2β(A, ζ, w). Moreover, if
β(A, ζ, w) ≤ 1/3 we also have

1

2
β(A, ζ, w) ≤ distA((ζ, w), (λ, v)) ≤ 2β(A, ζ, w).

Proof. We have

distA((ζ, w), (λ, v)) ≤ distA((ζ, w), (NA(ζ, w))) + distA((NA(ζ, w)), (λ, v))

≤
(29)

β(A, ζ, w) +
1

2
distA((ζ, w), (λ, v)),

the last from the definition of approximate eigenpair. The upper bound in the
statement follows. Using a similar argument,

distA((ζ, w), (λ, v)) ≥ distA((ζ, w), (NA(ζ, w)))− distA((NA(ζ, w)), (λ, v))

≥
(29)

9

10
β(A, ζ, w)− 1

2
distA((ζ, w), (λ, v)),

and the lower bound follows as well. �
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5.1 The Lipschitz property of β

To describe Choose step we need a set of constants satisfying a few relations.
Not all of them are used in the description of Choose step. Some only oc-
cur in the proof of the correctness of Path-follow. We will consider constants
c1, c

′
1, cu, c

′
u, c∗, c4, c5, c6, c7,K. These are any collection of positive numbers sat-

isfying the following:

√
3c′1 ≤ c1 <

1

3
,

√
3c′u ≤ cu −

3
2c

2
1(
√

3− 1)

1− 3c1

4
√

3c∗ < 1, c4 = c∗ + (1 + 4
√

3c∗)(c1 + 2cu), 4
√

3c4 < 1,

2(1 + 4
√

3c∗)

1− 4
√

3c4

cu < Kc∗ <
1

5
, c5 = c′u(1− 4

√
3c∗)− 2

2c∗ + 3
2c

2
1(1 + 4

√
3c∗)

(1− 3c1)
,

c6 =
c5(1− 3c1)− 2(1 + 3c1)c∗

2(1 + 3c1)(1 + 4
√

3c4)
, c7 = min

(
c′1(1− 4

√
3c∗)

(1 + 4
√

3c4)
, c6

)
.

A collection of parameters satisfying these constraints is shown in Table 1.

c′1 10−3 c4 0.005306 . . .

c1

√
3c′1 c5 0.00099 . . .

c′u 10−3 c6 0.00038 . . .

cu
√

3c′u +
3c21(
√

3−1)
2(1−3c1) K 64

c∗ 10−4 c7 0.00038 . . .

Table 1: Our choice of constants for Path-follow

In addition to these constants, for the sake of clarity, we spell out a working
hypothesis that we will repeatedly use.

Hypothesis 5.2 We have (A, λ, v) ∈ V, ‖A‖F = 1, and (ζ, w) an approximate
eigenpair of A satisfying |ζ| ≤ 1 and

µ(A, λ, v)distA((λ, v), (ζ, w)) < c∗.

Also, θ : [0, π)→ S, θ(s) = As is some arc-length parametrized half-great circle with
A0 = A.

It is easy to see from Theorem 2.12 that under hypotheses 5.2 we have β(A, ζ, w) <
1/3 and in particular we can apply Lemma 5.1.

The main goal of this section is to prove the following result. Recall that we
have defined

FA(λ, v) = (A− λId)v.
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Lemma 5.3 Under Hypothesis 5.2, let s ≤ c1/µ(A0, ζ, w) where 0 ≤ c1 < 1/3. Let

Φ =
∥∥∥(DFA0(ζ, w)|C×w⊥

)−1
Ȧ0w

∥∥∥ .
Then,

β−(s) ≤ β(As, ζ, w) ≤ β+(s),

where

β−(s) =
sΦ− β(A0, ζ, w)− 3

2c
2
1/µ(A0, ζ, w)

1 + 3c1
, β+(s) =

sΦ + β(A0, ζ, w) + 3
2c

2
1/µ(A0, ζ, w)

1− 3c1
.

For the proof we need some stepping stones.

Lemma 5.4 Let A ∈ S, ζ ∈ C, |ζ| ≤ 1, w ∈ Cn, ‖w‖ = 1. Then,∥∥∥(DFA(ζ, w)|C×w⊥
)−1
∥∥∥ ≤ 3µ(A, ζ, w).

Proof. This result is similar to [3, Proposition 6.6], but our assumptions are
weaker and our definition of condition number is slightly different (see the proof of
Theorem 2.12). We can assume that w = e1 for the proof and write

A =

(
λ a∗

b Â

)
,

where λ ∈ C and a, b ∈ Cn−1. Then, for ζ̇ ∈ C and ẇ ∈ Cn−1,

DFA(ζ, e1)

(
ζ̇,

(
0

ẇ

))
= (A− ζId)

(
0

ẇ

)
− ζ̇e1

=

(
λ− ζ a∗

b Â− ζIdn−1

)(
0

ẇ

)
− ζ̇e1

=

(
−1 a∗

0 Â− ζIdn−1

)(
ζ̇

ẇ

)
.

We thus have∥∥∥(DFA(ζ, w)|C×w⊥
)−1
∥∥∥ =

∥∥∥∥∥
(
−1 a∗

0 Â− ζIdn−1

)−1
∥∥∥∥∥

=

∥∥∥∥(−1 a∗(Â− ζIdn−1)−1

0 (Â− ζIdn−1)−1

)∥∥∥∥
≤
∥∥∥∥(0 0

0 (Â− ζIdn−1)−1

)∥∥∥∥+

∥∥∥∥(−1 a∗(Â− ζIdn−1)−1

0 0

)∥∥∥∥
≤ ‖A−1

ζ,w‖+
√

1 + ‖a‖2‖A−1
ζ,w‖2

= µ(A, ζ, w) +
√

1 + ‖a‖2µ(A, ζ, w)2,
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the last two claims in this chain by definition of Aζ,w and the fact that ‖A‖F = 1.

Now, from Lemma 3.4 we know that µ(A, ζ, w) ≥ (1 +
√

1− ‖a‖2)−1 which implies

µ(A, ζ, w) +
√

1 + ‖a‖2µ(A, ζ, w)2

µ(A, ζ, w)
= 1 +

√
‖a‖2 +

1

µ(A, ζ, w)2

≤ 1 +

√
‖a‖2 + (1 +

√
1− ‖a‖2)2

= 1 +

√
2 + 2

√
1− ‖a‖2 ≤ 3,

the last inequality due to 0 ≤ ‖a‖ ≤ ‖A‖F = 1. We have proved that∥∥∥(DFA(ζ, w)|C×w⊥
)−1
∥∥∥ ≤ µ(A, ζ, w) +

√
1 + ‖a‖2µ(A, ζ, w)2 ≤ 3µ(A, ζ, w),

and the bound claimed in the lemma follows.
�

Lemma 5.5 Under Hypothesis 5.2, let s > 0 satisfy 3µ(A0, ζ, w) s < 1. Then,∥∥∥[(DFAs(ζ, w)|C×w⊥
)−1 (

DFA0(ζ, w)|C×w⊥
)]∥∥∥ ≤ 1

1− 3µ(A0, ζ, w) s

and ∥∥∥[(DFA0(ζ, w)|C×w⊥
)−1 (

DFAs(ζ, w)|C×w⊥
)]∥∥∥ ≤ 1 + 3µ(A0, ζ, w) s.

Proof. Note that

DFA0(ζ, w)|C×w⊥(η̇, ẋ) = DFAs(ζ, w)|C×w⊥(η̇, ẋ) + (A0 −As)ẋ,

hence ∥∥∥Id− (DFA0(ζ, w)|C×w⊥
)−1 (

DFAs(ζ, w)|C×w⊥
) ∥∥∥

≤
∥∥∥(DFA0(ζ, w)|C×w⊥

)−1
∥∥∥ ‖As −A0‖ ≤

Lemma 5.4
3µ(A0, ζ, w) s

where we used that ‖As−A0‖ ≤ ‖As−A0‖F ≤ s. The second claim in the statement
is now obvious and the first one follows from the Banach lemma, ‖(Id + ∆)−1‖ ≤
(1− ‖∆‖)−1, valid for ‖∆‖ < 1. �

Lemma 5.6 Under Hypothesis 5.2, let s > 0 satisfy 3µ(A0, ζ, w) s < 1 and let

Φaux(s) =
∥∥∥(DFA0(ζ, w)|C×w⊥

)−1
(A0 −As)w

∥∥∥ .
Then,

Φaux(s)− β(A0, ζ, w)

1 + 3µ(A0, ζ, w) s
≤ β(As, ζ, w) ≤ Φaux(s) + β(A0, ζ, w)

1− 3µ(A0, ζ, w) s
.
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Proof. From the definition,

β(As, ζ, w) =
∥∥∥(DFAs(ζ, w)|C×w⊥

)−1
FAs(ζ, w)

∥∥∥
=

∥∥∥ [(DFAs(ζ, w)|C×w⊥
)−1 (

DFA0(ζ, w)|C×w⊥
)]

(30)(
DFA0(ζ, w)|C×w⊥

)−1
(FA0(ζ, w) + (As −A0)w)

∥∥∥.
Thus,

β(As, ζ, w) ≤
∥∥∥(DFAs(ζ, w)|C×w⊥

)−1 (
DFA0(ζ, w)|C×w⊥

)∥∥∥ (Φaux(s) + β(A0, ζ, w)).

Similarly, we have

β(As, ζ, w) ≥ Φaux(s)− β(A0, ζ, w)∥∥∥(DFA0(ζ, w)|C×w⊥
)−1 (

DFAs(ζ, w)|C×w⊥
)∥∥∥ .

The statement now follows from Lemma 5.5. �

Proof of Lemma 5.3. We claim that we can write

As = A0 + sȦ0 +
s2

2
B,

for some B with ‖B‖F ≤ 1. Indeed, this is an elementary observation which follows
from the fact that As is a great circle in the sphere (w.l.o.g. one can choose As to
be the circle parametrized by (cos s, sin s, 0 . . . , 0) to prove it). As a consequence we
have

|Φaux(s)− sΦ| ≤
∥∥∥(DFA0(ζ, w)|C×w⊥

)−1
(A0 −As + sȦ0)w

∥∥∥
≤ s2

2

∥∥∥(DFA0(ζ, w)|C×w⊥
)−1
∥∥∥ ≤

Lemma 5.4

3

2
s2µ(A0, ζ, w).

The upper and lower bounds for β(As, ζ, w) in Lemma 5.3 now follow from this last
estimate and Lemma 5.6. �

5.2 The step’s length in the homotopy continuation

The following result is crucial for the understanding of the homotopy algorithm. Its
proof follows a logic which is similar to that of the proof of Corollary 2.9.

Proposition 5.7 Under Hypothesis 5.2, let s′ > 0 be any number such that

c′1 ≤ µ(A, ζ, w)s′ ≤ c1

and let s′′ be any number such that

c′u ≤ µ(A, ζ, w)β+(s′′) ≤ cu,

where β+ is as in Lemma 5.3. Let s̄ = min(s′, s′′). Then,
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I. The (continuous) branch of the solution map π−1
1 ◦ θ : [0, s̄] → V with π−1

1 ◦
θ(0) = (A, λ, v) is well defined.

II. For every s ∈ [0, s̄], let (As, λs, vs) := π−1
1 ◦ θ(s). Then,

1

1 + 4
√

3c4

µ(A, λ, v) < µ(As, λs, vs) <
µ(A, λ, v)

1− 4
√

3c4

(31)

and

distAs((λs, vs), (ζ, w)) <
Kc∗

µ(As, λs, vs)
. (32)

In particular, (ζ, w) is an approximate eigenpair of As with associated eigenpair
(λs, vs) for every s ∈ [0, s̄].

Finally, the condition length Lµ,0,s̄(π
−1
1 (As)) (see (18)) of the curve π−1

1 (As) is
at least c7.

Before we prove Proposition 5.7 we make a few comments on how the proof of the
proposition and Theorem 2.19 proceed. The hypotheses β+(s′′) give us a bound on
the distance from (ζ, w) to (λs, vs) and ultimately (λ, v) to (λs, vs). Together with
the bound on s′ this allows us to invoke Theorem 2.12 and Theorem 2.8 to prove
conclussions I and II of the proposition. The tricky part will be to prove the last
statement that Lµ,0,s̄(π

−1
1 (As)) ≥ c7. This last statement gives us the upper bound

on the number of steps in Theorem 2.19 as the condidion length divided by c7. Now
to see that ∫ s̄

0
µ(As, λs, vs)‖(Ȧs, λ̇s, v̇s)‖ ds = Lµ,0,s̄(π

−1
1 (As)) ≥ c7

it will suffice to prove that∫ s̄

0
‖(Ȧs, λ̇s, v̇s)‖ ds ≥

constant

µ(A, λ, v)
,

since µ is almost constant on the interval. For this it will suffice to prove that one
of ∫ s̄

0
‖Ȧs‖ ds or

∫ s̄

0
‖v̇s‖ ds

is greater than constant/µ(A, λ, v). The first integral is s̄. We will see that if s̄ is
small then distA(vs, v) is greater than or equal to some constant over µ(A, λ, v), and
so is the integral of ‖v̇s‖ which is the length of a path between v and vs.

Proof of Proposition 5.7. We prove the first part of the proposition.
From the inverse function theorem and the continuity of µ, there exists a maximal
s∗ ≤ s̄ such that I and II hold changing [0, s̄] to [0, s∗). The global upper bound for
µ(π−1

1 (As)) shown in (31) is in turn an upper bound for the derivative of the solution
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map, for s ∈ [0, s∗). A standard limit argument in compact sets then implies that
π−1

1 ◦θ can be extended in a continuous manner to [0, s∗], and because (31) and (32)
are open conditions we must have one of the two following scenarios:

i) s∗ = s̄ and both (31) and (32) hold changing s to s∗, or

ii) At least one of (31) and (32) does not hold changing s to s∗.

We now discard the second option. Note that from Hypotheses 5.2 and Theorem 2.8,

1

1 + 4
√

3c∗
µ(A, λ, v) < µ(A, ζ, w) <

µ(A, λ, v)

1− 4
√

3c∗
. (33)

Then, we have for every s ∈ [0, s∗]

dist((A, ζ, w), (As, ζ, w)) = ‖A−As‖F < s∗ ≤ s′ ≤ c1

µ(A, ζ, w)
≤ (1 + 4

√
3c∗)c1

µ(A, λ, v)
,

and because s∗ ≤ s′′, from Lemma 5.3 we have

β(As, ζ, w) ≤ β+(s) ≤ cu
µ(A, ζ, w)

<
(1 + 4

√
3c∗)cu

µ(A, λ, v)
.

From Lemma 5.1 (recall that from II and Theorem 2.12, (ζ, w) is an approximate
eigenpair of As with associated eigenpair (λs, vs) for s ≤ s∗), this last inequality
implies

distAs((ζ, w), (λs, vs)) ≤ 2β(As, ζ, w) <
2(1 + 4

√
3c∗)cu

µ(A, λ, v)
. (34)

We have thus proved that for every s ∈ [0, s∗],

dist((A, λ, v), (As, λs, vs)) ≤ distA((λ, v), (ζ, w)) + dist((A, ζ, w), (As, ζ, w))

+ distAs((ζ, w), (λs, vs))

<
c∗

µ(A, λ, v)
+

(1 + 4
√

3c∗)c1

µ(A, λ, v)
+

2(1 + 4
√

3c∗)cu
µ(A, λ, v)

=
c4

µ(A, λ, v)
.

Then, from Theorem 2.8 (note the strict inequality in the displayed formula above),

1

1 + 4
√

3c4

µ(A, λ, v) < µ(As∗ , λs∗ , vs∗) <
µ(A, λ, v)

1− 4
√

3c4

. (35)

Thus, (31) holds at s∗ and moreover

distAs∗ ((λs∗ , vs∗), (ζ, w)) <
(34),(35)

2(1 + 4
√

3c∗)cu

(1 + 4
√

3c4)µ(As∗ , λs∗ , vs∗)
<

Kc∗
µ(As∗ , λs∗ , vs∗)

.
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That is, (32) holds at s∗ and we can discard option ii), proving the first part of the
proposition.

For the last claim of the proposition, note that the condition length of the curve
π−1

1 (As) is

Lµ,0,s̄(π
−1
1 (As)) =

∫ s̄

0
µ(π−1

1 (As))
∥∥∥Dπ−1

1 (As)Ȧs

∥∥∥ ds
≥

(31)

µ(A, λ, v)

1 + 4
√

3c4

∫ s̄

0

∥∥∥Dπ−1
1 (As)Ȧs

∥∥∥ ds.
If s̄ = s′ then using that the integrand is greater than or equal to 1 and (33) we

have

Lµ,0,s̄(π
−1
1 (As)) ≥

µ(A, λ, v)

1 + 4
√

3c4

s′ ≥ c′1
1 + 4

√
3c4

µ(A, λ, v)

µ(A, ζ, w)
≥ c′1(1− 4

√
3c∗)

(1 + 4
√

3c4)
.

Assume now that s̄ = s′′. Then we have

Lµ,0,s̄(π
−1
1 (As)) ≥

µ(A, λ, v)

1 + 4
√

3c4

∫ s̄

0

∥∥∥Dπ−1
1 (As)Ȧs

∥∥∥ ds
≥ µ(A, λ, v)

1 + 4
√

3c4

dist((A0, λ0, v0), (As̄, λs̄, vs̄)).

Now, note that (recall (A0, λ0, v0) = (A, λ, v))

dist((A0, λ0, v0),(As̄, λs̄, vs̄))

≥ dist((A0, ζ, w), (As̄, λs̄, vs̄))− distA0((λ0, v0), (ζ, w))

≥ distAs̄((ζ, w), (λs̄, vs̄))−
c∗

µ(A, λ, v)
.

We need a lower bound for this last term. We first note that from Lemma 5.1 and
Hypothesis 5.2,

β(A, ζ, w) ≤ 2c∗
µ(A, λ, v)

≤ 2c∗

(1− 4
√

3c∗)µ(A, ζ, w)
, (36)

the last by (33). Using this last bound and, again, Lemmas 5.1 and 5.3, we have

2
1 + 3c1

1− 3c1
distAs̄((ζ, w), (λs̄, vs̄)) ≥

1 + 3c1

1− 3c1
β(As̄, ζ, w)

≥ 1 + 3c1

1− 3c1
β−(s̄) = β+(s̄)− 2

β(A, ζ, w) + 3
2c

2
1/µ(A, ζ, w)

1− 3c1

≥ c′u
µ(A, ζ, w)

− 2
β(A, ζ, w) + 3

2c
2
1/µ(A, ζ, w)

1− 3c1

≥ c′u(1− 4
√

3c∗)

µ(A, λ, v)
− 2

2c∗ + 3
2c

2
1(1 + 4

√
3c∗)

(1− 3c1)µ(A, λ, v)
=

c5

µ(A, λ, v)
.
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For the inequality in the third line we used the assumption in the statement and
s = s′′. For the inequality in the fourth line, we used (33) and (36). For the equality
in the fourth line we used the definition of c5.

We have thus shown that if s̄ = s′′, then

Lµ,0,s̄(π
−1
1 (As)) ≥

µ(A, λ, v)

1 + 4
√

3c4

(
c5(1− 3c1)

2(1 + 3c1)µ(A, λ, v)
− c∗
µ(A, λ, v)

)
=

c5(1− 3c1)− 2(1 + 3c1)c∗

2(1 + 3c1)(1 + 4
√

3c4)
= c6.

Since c7 ≤ c6 the proof is complete. �

We can finally describe the subroutine Choose step. It is important to note that
given any matrix A ∈ Cn×n, one can compute in O(n3) arithmetic operations, for
example by first reducing A to tridiagonal Hessenberg form and then using the main
result of [31], a number r such that ‖A‖ ≤ r ≤

√
3‖A‖. That is, we can compute

operator norms within a factor of
√

3 and, consequently, we can compute µ within
a factor of

√
3.

Algorithm 6 Choose step

Input: B, Ȧ ∈ S, and (ζ, w) ∈ C× Cn, ‖w‖ = 1

compute r > 0 such that µ(B, ζ, w) ≤ r ≤
√

3µ(B, ζ, w)

s′ := c1/r

Φ :=
∥∥∥(DFB(ζ, w)|C×w⊥

)−1
Ȧw
∥∥∥

compute s′′, the solution of the following linear equation

Φ s′′ + β(B, ζ, w) + 3
2c

2
1

√
3/r

1− 3c1
=
cu
r

s̄ := min(s′, s′′)

Output: ∆s = s̄ ∈ [0, π]

The step size computed by Choose step cannot be too small, as we show now.

Proposition 5.8 The value ∆s returned by Choose step(B, Ȧ, ζ, w) satisfies

∆s ≥ R

µ2(B, ζ, w)

with R = c7(1− 4
√

3c4)2/6 > 0.
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5.3 Proof of Theorem 2.19 and Proposition 5.8

We now prove Theorem 2.19, and the proof of Proposition 5.8 will follow straigh-
forward from our arguments.

From the definition of Path-follow it is clear that we can assume that ‖A0‖F =
‖A‖F = 1. We further assume that the constants c′1, c1, c

′
u, cuc∗, c4, c5, c6, c7 and K

take the values in Table 1 and denote by π−1
1 (LA0,A) the lift of LA0,A with origin

(A0, λ0, v0). Note that this lift is well-defined since, by hypothesis, LA0,A ∩ Σ = ∅.
Let Bi be the matrix B at the beginning of the ith iteration of Path-follow. Also,

let (λi, vi) be such that (Bi, λi, vi) is the (unique) triple in π−1
1 (LA0,A) above Bi.

We first prove that for all i ≥ 0, (ζi, wi) is an approximate zero of Bi with
associated eigenpair (λi, vi) and satisfies

distBi ((ζi, wi), (λi, vi)) <
c∗

µ(Bi, λi, vi)
.

We reason by induction. The step i = 0 is true by hypothesis (recall Definition
2.17). For the induction step, note that the s′ defined by Choose step satisfies (we
omit the subindices i in (Bi, ζi, wi) in the next few lines)

c′1
µ(B, ζ, w)

≤ c1√
3µ(B, ζ, w)

≤ s′ ≤ c1

µ(B, ζ, w)
.

Moreover, s′′ satisfies

β+(s′′) =
Φ s′′ + β(B, ζ, w) + 3

2c
2
1/µ(B, ζ, w)

1− 3c1

≤
Φ s′′ + β(B, ζ, w) + 3

2c
2
1

√
3/r

1− 3c1
=

cu
r
≤ cu
µ(B, ζ, w)

,

and

β+(s′′) =
Φ s′′ + β(B, ζ, w) + 3

2c
2
1/µ(B, ζ, w)

1− 3c1
≥

Φ s′′ + β(B, ζ, w) + 3
2c

2
1/r

1− 3c1

=
cu − 3

2c
2
1(
√

3− 1)/(1− 3c1)

r
≥

cu − 3
2c

2
1(
√

3− 1)/(1− 3c1)
√

3µ(B, ζ, w)
≥ c′u

µ(B, ζ, w)
.

We are thus under the hypothesis of Proposition 5.7 with s̄ = ∆s (by construction
in Choose step), which guarantees that (ζi, wi) is an approximate eigenpair of the
matrix Bi+1. Moreover, Proposition 5.7 also implies

distBi+1((ζi, wi), (λi+1, vi+1)) <
Kc∗

µ(Bi+1, λi+1, vi+1)
.

Since Kc∗ < 1/5 we deduce (using Theorem 2.12) that (ζi, wi) is an approximate
eigenpair of Bi+1 with associated eigenpair (λi+1, vi+1). Consequently, after three
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steps of Newton iteration, we have that (ζi+1, wi+1) satisfies (recall, K = 64)

distBi+1((ζi+1, wi+1), (λi+1, vi+1)) <
1

223−1

64c∗
µ(Bi+1, λi+1, vi+1)

=
c∗

2µ(Bi+1, λi+1, vi+1)
. (37)

If |ζi+1| ≤ 1, this finishes the induction step. Otherwise, the algorithm divides ζi+1

by its norm, in that case we have

distBi+1

((
ζi+1

|ζi+1|
, wi+1

)
, (λi+1, vi+1)

)
≤ distBi+1

((
ζi+1

|ζi+1|
, wi+1

)
, (ζi+1, wi+1)

)
+

distBi+1((ζi+1, wi+1), (λi+1, vi+1))

≤ |ζi+1| − 1 +
c∗

2µ(Bi+1, λi+1, vi+1)

On the other hand, from (37) we have (use |λi+1| ≤ ‖Bi+1‖F = 1)

|ζi+1 − λi+1| <
c∗

2µ(Bi+1, λi+1, vi+1)
⇒ |ζi+1| < 1 +

c∗
2µ(Bi+1, λi+1, vi+1)

,

so we have

distBi+1

((
ζi+1

|ζi+1|
, wi+1

)
, (λi+1, vi+1)

)
<

c∗
µ(Bi+1, λi+1, vi+1)

,

and the induction step is finished also in the case that |ζi+1| > 1.
The induction step is complete. In particular, this shows the last part of the

statement.
To show the complexity bounds, assume Path-follow has performed q+` iterations

and let 0 = s0 < s1 < . . . < sq < . . . < sq+` be the corresponding values of s. Then
we have

Lµ,sq ,sq+`(π
−1
1 (Bs)) =

∑̀
i=1

∫ sq+i

sq+i−1

µ(As, λs, vs)‖(Ȧs, λ̇s, v̇s)‖ ds

=
∑̀
i=1

Lµ,sq+i−1,sq+i(π
−1
1 (As)) ≥ `c7

the inequality by the last claim of Proposition 5.7. But the algorithm halts as soon
as sq+` = α, i.e., as soon as

Lµ,sq ,sq+`(π
−1
1 (As)) = Lµ,sq ,α(π−1

1 (As)),

which occurs as soon as ` ≥ c−1
7

∫ α
sq
µ(As, λs, vs)‖(Ȧs, λ̇s, v̇s)‖ ds, as claimed in the

theorem (note that C := c−1
7 ≤ 3000).
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We finally prove Proposition 5.8. From Proposition 5.7 we have

µ2(B, ζ, w)∆s ≥
(31)

(1− 4
√

3c4)2

∫ ∆s

0
µ2(As, λs, vs) ds

≥
Prop. 2.7

(1− 4
√

3c4)2

6
Lµ,0,∆s(π

−1
1 (As)) ≥

c7(1− 4
√

3c4)2

6
,

so Proposition 5.8 follows. �

6 Integration in the solution variety

6.1 The coarea formula

On a Riemannian manifold M there is a well-defined measure volM obtained by
integrating the indicator functions 1lA of Borel-measurable subsets A ⊆ M against
the volume form dM of M ,

volM (A) :=

∫
M

1lA dM.

Dividing 1lA by volM (M) if volM (M) <∞, this leads to a natural notion of uniform
distribution on M , which we will denote by U (M). More generally, we will call any
measurable function f : M → [0,∞] such that

∫
M f dM = 1 a probability density

on M . We abuse notation and sometimes denote Ex∈M instead of Ex∼U (M).
The coarea formula (a modern classical formula due to Federer [28], see the

Appendix of [30] for a smooth version) is an extension of the transformation formula
to not necessarily bijective smooth maps between Riemannian manifolds. In order
to state it, we first need to generalize the notion of Jacobians.

Suppose that M,N are Riemannian manifolds of dimensions m, n, respectively
such that m ≥ n. Let ψ : M → N be a smooth map. By definition, the derivative
Dψ(x) : TxM → Tψ(x)N at a regular point x ∈M is surjective. Hence the restriction
of Dψ(x) to the orthogonal complement of its kernel yields a linear isomorphism.
The absolute value of its determinant is called the normal Jacobian (sometimes
called normal determinant in the context of Linear Algebra, see [1]) of ψ at x and
is denoted by NJψ(x). We set NJψ(x) := 0 if x is not a regular point.

If y is a regular value of ψ, then the fiber Fy := ψ−1(y) is a Riemannian sub-
manifold of M of dimension m−n, and it makes sense to integrate functions on Fy.
Moreover, Sard’s lemma states that almost all y ∈ N are regular values.

We can now state the coarea formula.

Theorem 6.1 (Coarea formula) Suppose that M,N are Riemannian manifolds
of dimensions m, n, respectively, and let ψ : M → N be a surjective smooth map
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such that Dψ is surjective a.e. Put Fy = ψ−1(y). Then we have for any function
χ : M → R that is integrable with respect to the volume measure of M that∫

M
χdM =

∫
y∈N

(∫
Fy

χ

NJψ
dFy

)
dN,

and the integrals involved are well-defined. �

It should be clear that this result contains the change of variables formula as a
special case. Moreover, if we apply the coarea formula to the projection π2 : M ×
N → N, (x, y) 7→ y, we retrieve Fubini’s theorem since NJπ2 = 1.

6.2 Coarea formula and double fibrations

The coarea formula can be readily applied to the following situation. Assume that
three Riemannian manifolds M , N1, N2 are equipped with surjective smooth map-
pings π1 : M → N1 and π2 : M → N2 whose derivatives are a.e. surjective, so NJπ1

and NJπ2 are a.e. nonzero. Let χ : M → [0,∞) be a measurable mapping. From
Theorem 6.1 applied to π1 we have (here dx and dy stand for the volume forms in
M and N1, respectively)∫

x∈M
χ(x)NJπ1(x) dx =

∫
y∈N1

∫
x∈π−1

1 (y)
χ(x) dx dy.

On the other hand, Theorem 6.1 applied to π2 yields∫
x∈M

χ(x)NJπ1(x) dx =

∫
z∈N2

∫
x∈π−1

2 (z)

NJπ1(x)

NJπ2(x)
χ(x) dx dz.

We thus have the following result.

Theorem 6.2 Let M , N1, N2 be Riemannian manifolds equipped with surjective
smooth mappings π1 : M → N1 and π2 : M → N2 whose derivatives are a.e. surjec-
tive. Let χ : M → [0,∞) be a measurable mapping. Then,∫

y∈N1

∫
x∈π−1

1 (y)
χ(x) dx dy =

∫
z∈N2

∫
x∈π−1

2 (z)

NJπ1(x)

NJπ2(x)
χ(x) dx dz.

(Note that when M and N1 have the same dimension, one can replace the inner
integral in the left-hand side by a (finite or enumerable) sum). �

In the next sections we shall apply this result in two different contexts. A linear
algebra argument simplifies the computation of the quotient of Normal Jacobians.
Let E and F be finite dimensional, complex Euclidean vector spaces and let ϕ : E →
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F be a surjective linear mapping. Consider the graph Γ := {(x, ϕ(x)) | x ∈ E} of ϕ.
Then, Γ is a linear subspace of E × F and the two projections

p1 : Γ→ E, (x, ϕ(x)) 7→ x, p2 : Γ→ F, (x, ϕ(x)) 7→ ϕ(x)

are linear maps. Note that p1 is an isomorphism and p2 is surjective as ϕ is.

Lemma 6.3 Under the above assumptions, we have

NJp1

NJp2
= |det(ϕϕ∗)|−1.

Proof. This result is [14, Lemma 3b), p. 242], although we rewrite it for complex
vector spaces here (note the comment in the proof of [14, Theorem 5, p. 243]).

�

6.3 The solution variety for the eigenpair problem

Recall from §2.2, we have the two projections

π1 : V → Cn×n, (A, λ, v)→ A and π2 : V → C× P(Cn), (A, λ, v)→ (λ, v)

and, for (A, λ, v) ∈ V, the linear operator Aλ,v : v⊥ → v⊥ given by Pv⊥(A−λ Id)|v⊥ .
In order to apply Theorem 6.2 we first need to compute the quotient of normal
Jacobians there.

Proposition 6.4 Let p := (A, λ, v) ∈ W and choose a representative such that
‖v‖ = 1. Then, the derivative Dπ1(p) : TpW → TACn×n is an isomorphism, the
derivative Dπ2(p) : TpW → T(λ,v)(C× P(Cn)) is surjective, and we have

NJπ1(p)

NJπ2(p)
= | detAλ,v|2 = det(Aλ,vA

∗
λ,v).

Proof. By unitary invariance, we may assume without loss of generality that
v = e1 = (1, 0, . . . , 0), and then

A =

(
λ c∗

0 B

)
, c ∈ Cn−1, B ∈ C(n−1)×(n−1),

so Aλ,v = B−λIdn−1. Let Γ = {(Ȧ,DG(A)Ȧ) : Ȧ ∈ Cn×n} ⊆ Cn×n×C× v⊥ where
G is the appropriate branch of the solution map defined in some open neighborhood
of A. We are under the hypotheses of Lemma 6.3 so we have

NJπ1(p)

NJπ2(p)
=

NJ(Dπ1(p))

NJ(Dπ2(p))
= det(DG(A, λ, v)DG(A, λ, v)∗)−1.
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From Lemmas 3.1 and 3.2, we have

DG(A, λ, v)Ȧ =

(〈Ȧv, v − iCnA−∗λ,vPv⊥A∗v〉
−A−1

λ,vPv⊥Ȧv

)
=

(
v∗ − v∗AiCnA−1

λ,vPv⊥

−A−1
λ,vPv⊥

)
Ȧv = RȦv,

where, in the last displayed formula, we are denoting by R : Cn → C× v⊥ ≡ Cn the
linear operator multiplying by Ȧv in the previous formula. A standard linear algebra
argument then shows that det(DG(A, λ, v)DG(A, λ, v)∗) = det(RR∗) = | det(R)|2.
Now, we can identify

iCn ≡
(

0

Idn−1

)
, Pv⊥ ≡

(
0 Idn−1

)
,

which implies that in standard basis we have

R =

(
1 ∗
0 −A−1

λ,v

)
,

thus showing that |det(R)|2 = | detA−1
λ,v|

2, and the proposition follows. �

We are now ready to rewrite Theorem 6.2 in this setting. The following is an
important technical result that we will use several times.

Proposition 6.5 Let χ : V → [0,∞) be a measurable mapping. Then,∫
A∈Cn×n

∑
λ,v:Av=λv

χ(A, λ, v)dA =

∫
(λ,v)∈C×P(Cn)

∫
A:Av=λv

χ(A, λ, v) | det(Aλ,v)|2 dAd(λ, v).

Moreover, assume that χ is unitarily invariant in the sense that χ(A, λ, v) =
χ(UAU∗, λ, Uv) for any unitary matrix U ∈ Un. Fix any a.e. continuous map-
ping Cn \ {0} → Un, v 7→ Uv such that Uve1 = v/‖v‖ for all v. Then, for every
Â ∈ Cn×n and σ > 0,

E
A∼NCn×n (Â,σ2)

 ∑
λ,v:Av=λv

χ(A, λ, v)

 (38)

=
1

Γ(n)σ2(n−1) Ev E
(λ,w,B)

(
e−
‖ŷv‖2

σ2 χ

((
λ w∗

0 B

)
, λ, e1

) ∣∣ det(B − λIn−1)
∣∣2) ,

where v ∈ P(Cn) has the uniform distribution, ŷv = Pv⊥Âv/‖v‖, and λ ∼ NC(λ̂, σ2),
w ∼ NCn−1(ŵ, σ2), and B ∼ NC(n−1)×(n−1)(B̂, σ2) are independent Gaussian random
variables centered at

λ̂ :=
〈Âv, v〉
‖v‖2

; ŵ := J∗U∗v Â
∗Uve1; B̂ := J∗U∗v ÂUvJ.

Here, J is the n × (n − 1) matrix whose columns are e2, . . . , en (and, hence, J∗ =
(0 Idn−1) is the matrix of Pe⊥1

: Cn → e⊥1 ). In particular, if Â = 0 then ŷv = 0,

λ̂ = 0, ŵ = 0 and B̂ = 0, so v can be removed from the expected value in (38).

49



Proof. The first claim of the theorem follows directly from Theorem 6.2 and
Proposition 6.4.

For the second claim, let I be the left-hand side of (38). Change χ(A, λ, v) to

(σ2π)−n
2
χ(A, λ, v)e−

‖A−Â‖2F
σ2 in the first formula to get

I =
1

(σ2π)n2

∫
(λ,v)∈C×P(Cn)

∫
A:Av=λv

χ(A, λ, v) |det(Aλ,v)|2e−
‖A−Â‖2F

σ2 dAd(λ, v).

Note that {A : Av = λv} can be parametrized by

(w,B) 7→ A = Uv

(
λ w∗

0 B

)
U∗v ,

where w ∈ Cn−1, B ∈ C(n−1)×(n−1). This parametrization preserves distances;
moreover |det(Aλ,v)| = |det(λIn−1 − B)| and from the fact that χ is unitarily
invariant, we have

I =
1

(σ2π)n2

∫
(λ,v,w,B)

χ

((
λ w∗

0 B

)
, λ, e1

)
|det(λIn−1−B)|2e−

‖A−Â‖2F
σ2 d(λ, v, w,B),

where A is given by the formula above. Note now that we can write

‖A− Â‖2F =

∥∥∥∥(λ w∗

0 B

)
− U∗v ÂUv

∥∥∥∥2

F

=|λ− e∗1U∗v ÂUve1|2 + ‖w∗ − e∗1U∗v ÂUvJ‖2 + ‖B − J∗U∗v ÂUvJ‖2F
+ ‖J∗U∗v ÂUve1‖2

=

∣∣∣∣∣λ− v∗Âv

‖v‖2

∣∣∣∣∣
2

+
∥∥∥w − J∗U∗v Â∗Uve1

∥∥∥2
+ ‖B − J∗U∗v ÂUvJ‖2F + ‖ŷv‖2,

and the second claim of the theorem follows noting that the volume of P(Cn) is
πn−1/Γ(n). �

6.4 The linear solution variety

It will be useful to consider a geometrical scheme similar to that of §6.3 for the case
of solving linear systems: we consider

V lin = {(M, v) ∈ C(n−1)×n × P(Cn) : Mv = 0}.

The linear solution variety V lin is a n(n − 1)-dimensional smooth submanifold of
C(n−1)×n × P(Cn), and again it inherits the Riemannian structure of the ambient
space (cf. [19, (17.14)]).
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The linear solution variety is equipped with two projections

πlin1 : V lin → C(n−1)×n

(M,v) 7→ M
and πlin2 : V lin → P(Cn)

(M,v) 7→ v.
(39)

Note that πlin2 is regular at every (M,v) ∈ V lin and πlin1 is regular at (M,v) ∈ V lin if
and only if M is of maximal rank.

For M ∈ C(n−1)×n, (πlin)−1(M) is a copy of the projective linear subspace cor-
responding to the kernel of M in P(Cn), and for v ∈ P(Cn), (πlin2 )−1(v) is a copy of
the linear subspace of C(n−1)×n consisting of the matrices A such that Av = 0.

We can apply Theorem 6.2 for integrating functions in V lin using the projections
in (39). The tangent space to V lin at a regular point (M,v) can be identified with

{(Ṁ, v̇) : Ṁv +Mv̇ = 0, v∗v̇ = 0} = {(Ṁ, v̇) : v̇ = ϕ(Ṁ)}, ϕ(Ṁ) = −M †Ṁv.

Note that ϕ is a linear mapping defined from C(n−1)×n to v⊥. A routine computation
shows that, if ‖v‖ = 1, then ϕϕ∗ : v⊥ → v⊥ satisfies ϕϕ∗(w) = Pv⊥M

†(M †)∗iCnw.
Writing down the singular value decomposition of M , it follows that det(ϕϕ∗) =
det(MM∗)−1. From Lemma 6.3 it follows that

NJ(πlin)(M,v)

NJ(πlin2 )(M,v)
= |det(MM∗)|. (40)

Proposition 6.6 Let φlin : V lin → [0,∞] be a measurable unitarily invariant func-
tion in the sense that φlin(M,v) = φlin(MU∗, Uv) for any unitary matrix U ∈ Un.
Then,

E
M∼NC(n−1)×n

(φlin(M, ker(M)) =
1

Γ(n)
E

B∼NC(n−1)×(n−1)

(φlin((0 B), e1) | det(B)|2).

Proof. Let χ(M) = φlin(M, ker(M))e−‖M‖
2
F . Theorem 6.2 and (40) imply that∫

M∈C(n−1)×n
χ(M) dM =

∫
v∈P(Cn)

∫
M :Mv=0

| det(MM∗)|χ(M) dM dv.

Now, | det(MM∗)|2χ(M) = | det(MU(MU)∗)|2χ(MU∗) for all U ∈ Un by hypoth-
esis. Hence, by parametrizing {M : Mv = 0} by {(0 B)U∗v : B ∈ C(n−1)×(n−1)}
where Uv ∈ Un is any matrix satisfying Uve1 = v (we are assuming ‖v‖ = 1), we
conclude that the inner integral in the right-hand side of the formula above does
not depend on v. We thus have∫

M∈C(n−1)×n
χ(M) dM = vol(P(Cn))

∫
B∈C(n−1)×(n−1)

|det(B)|2χ((0, B)) dB.

The proposition follows from the form of the Gaussian density (recall §2.6) by noting
that vol(P(Cn)) = πn−1/Γ(n). �
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Assume now that we are given an a.e. continuous function α : C(n−1)×(n−1) →
[0,∞]. We can produce a unitarily invariant function defined on V lin as follows

φlin(M,v) = E
Q:(M,Q)∈An

(α(MQ)),

where An is given in (22). Note that

φlin((0 B), e1) = E
U∈Un−1

(α(BU)).

It is a simple exercise to check that φlin is unitarily invariant in the sense of Propo-
sition 6.6. Applying Proposition 6.6 to φlin then yields

E
M∼NC(n−1)×n

E
Q:(M,Q)∈An

(α(MQ)) =
1

Γ(n)
E
B

E
U∈Un−1

(α(BU)| det(B)|2).

(The expected value in the unitary group is again with respect to the uniform
distribution coming from its Riemannian structure). Finally, using Fubini’s theorem,
we can interchange the integration order in the right-hand term, and then note that
the isometry B 7→ BU preserves the value of the integral inside. We obtain the
following corollary.

Corollary 6.7 Let α : C(n−1)×(n−1) → [0,∞] be an a.e. continuous function. Then,

E
M∼NC(n−1)×n

E
Q:(M,Q)∈An

(α(MQ)) =
1

Γ(n)
E

B∼NC(n−1)×(n−1)

(α(B)|det(B)|2).

�

7 Proof of Theorem 2.14

We begin with the following result.

Proposition 7.1 The following inequality holds for every Â ∈ Cm×m and σ > 0.

E
A∼NCm×m (Â,σ2)

(
‖A−1‖2F |det(A)|2

)
≤ m

σ2 E
A∼NCm×m (Â,σ2)

(| det(A)|2).

Furthermore, equality holds if and only if Â = 0. In particular,

E
A∼NCm×m (0,σ2)

(
‖A−1‖2F |det(A)|2

)
= m!mσ2m−2.

Proof. Expanding the determinant of A by the kth column we have

det(A) =
m∑
j=1

(−1)j+kaj,k detAj,k,
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where Aj,k denotes the matrix that results from the matrix A by removing the jth
row and kth column. Hence,

|det(A)|2 = det(A)det(A) =
m∑

j,j′=1

(−1)j+j
′+2kaj,k aj′,k detAj,k detAj′,k.

Observe that the random variables aj,k and aj′,k are independent of detAj,k and
detAj

′,k. Then,

E
A∼NCm×m (Â,σ2)

|det(A)|2 =
m∑

j,j′=1

(−1)j+j
′+2k E(aj,k aj′,k) E(detAj,k detAj′,k).

Now observe that

E(aj,k aj′,k) =

{
âj,k âj′,k if j 6= j′;
σ2 + |âj,k|2 otherwise.

We conclude that for k = 1, . . . ,m,

E
A∼NCm×m (Â,σ2)

| det(A)|2 = E |det([A; k; Âk])|2 + σ2
m∑
j=1

E |detAj,k|2, (41)

where [A; k; Âk] is the matrix formed by replacing the (random) kth column of A
by the (deterministic) kth column of Â. Summing on k we get

mE
A
|det(A)|2 =

m∑
k=1

E | det([A; k; Âk])|2 + σ2
m∑

j,k=1

E | detAj,k|2. (42)

On the other hand, from a direct application of Cramer’s Rule and (42), we
deduce that

σ2 E
A∼NCm×m (Â,σ2)

‖A−1‖2F | det(A)|2 = σ2
m∑

j,k=1

E |detAj,k|2

= m E | det(A)|2 −
m∑
k=1

E |det([A; k; Âk])|2,

and the first claim of the proposition follows. Moreover, when Â = 0, the last term
in the sum above is zero. We leave the proof of the converse to the reader. Using
(41) and the fact that the matrices Aj,k are NC(m−1)×(m−1)(0, σ2)-distributed, one
can prove working by induction the equality

E
A∼NCm×m (0,σ2)

|det(A)|2 = σ2mm!.

The second claim of the proposition follows. �
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Corollary 7.2

E
M∼NC(n−1)×n

(‖M †‖2F ) = n− 1.

Proof. From Proposition 6.6 with φlin(M, ζ) = ‖M †‖2F , we have

E
M∼NC(n−1)×n

(‖M †‖2F ) =
1

Γ(n)
E

B∼NC(n−1)×(n−1)

(‖B−1‖2F | det(B)|2) =
Prop. 7.1

n− 1

as claimed. �

Corollary 7.3 For any B̂ ∈ C(n−1)×(n−1), σ > 0, and λ ∈ C, we have

E
B

(∥∥(B − λIn−1)−1
∥∥2

F
| det(B − λIn−1)|2

)
≤ n− 1

σ2 E
B

(
| det(B − λIn−1)|2

)
,

where B ∼ NC(n−1)×(n−1)(B̂, σ2).

Proof. Note that

E
B

(‖(B − λIn−1)−1‖2F |det(B − λIn−1)|2) = E
C∼NC(n−1)×(n−1) (Ĉ,σ2)

(‖C−1‖2F | detC|2),

where Ĉ = B̂ − λIn−1. The proof readily follows from Proposition 7.1. �

Proof of Theorem 2.14. Fix any a.e. continuous mapping v 7→ Uv such that
for v ∈ P(Cn), Uv is a unitary matrix with Uve0 = v/‖v‖. From (38) applied to
χ(A, λ, v) = 1

nµ
2
F (A, λ, v)/‖A‖2F = 1

n‖A
−1
λ,v‖

2
F we have

E
A∼NCn×n (Â,σ2)

(
µ2
F,av(A)

‖A‖2F

)
(43)

=
1

nΓ(n)σ2(n−1) Ev E
(λ,w,B)

(e−
‖ŷv‖2

σ2 ‖(B − λIn−1)−1‖2F |det(B − λIn−1)|2),

where ŷv = Pv⊥Âv/‖v‖, v ∈ P(Cn) has the uniform distribution, and λ ∼ NC(λ̂, σ2),
w ∼ NCn−1(ŵ, σ2), and B ∼ NC(n−1)×(n−1)(B̂, σ2) for some λ̂, ŵ, B̂ which depend
uniquely on Â and v.

From (43) and Corollary 7.3 we have

E
A∼NCn×n (Â,σ2)

(
µ2
F,av(A)

‖A‖2F

)

≤ n− 1

σ2σ2(n−1)Γ(n+ 1)
E
v

E
(λ,w,B)

(e−
‖ŷv‖2

σ2 |det(B − λIn−1)|2).
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Now, if we apply again (38) to the constant function χ ≡ 1/n we get

1 = E
A∼NCm×m (Â,σ2)

(1) =
1

Γ(n+ 1)σ2(n−1) Ev E
(λ,w,B)

(e−
‖ŷv‖2

σ2 | det(B − λIn−1)|2),

and we have thus proved that

E
A∼NCn×n (Â,σ2)

(
µ2
F,av(A)

‖A‖2F

)
≤ n− 1

σ2
≤ n

σ2
,

as claimed.
This proves the first part of Theorem 2.14. For the second part of the theorem,

let
I = E

A∼U (S)
µ2
F,av(A)

be the quantity we want to compute. From the first part of the theorem (with Â = 0
and σ = 1) we have

1

πn2

∫
A∈Cn×n

µ2
F,av(A)

‖A‖2F
e−‖A‖

2
F dA ≤ n. (44)

On the other hand,

1

πn2

∫
A∈Cn×n

µ2
F,av(A)

‖A‖2F
e−‖A‖

2
F dA =

1

πn2

∫ ∞
0

e−ρ
2

ρ2

∫
A:‖A‖F=ρ

µ2
F,av(A) dAdρ. (45)

Now, because µF,av(A) is invariant under multiplication of A by nonzero complex
numbers, denoting νρ = vol(A : ‖A‖F = ρ), we have

1

νρ

∫
A:‖A‖F=ρ

µ2
F,av(A) dA = I, 0 < ρ <∞. (46)

We deduce from (44–46) that

I

πn2

∫ ∞
0

νρe
−ρ2

ρ2
dρ ≤ n.

Note now that

νρ =
2πn

2

Γ(n2)
ρ2n2−1

to conclude that

I ≤ nΓ(n2)

2
∫∞

0 ρ2n2−3e−ρ2 dρ
=

nΓ(n2)

Γ(n2 − 1)
= n(n2 − 1) ≤ n3.

The theorem follows. �
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8 Proof of Propositions 2.22 and 2.24

8.1 Proof of Proposition 2.22

First note that Path-follow starts by normalizing the input, so from (14) we can as-
sume that ‖A0‖F = 1 and A ∼ NCn×n,T (0, 1) where T =

√
2n. From Remark 2.23,

for integration purposes we can also assume that (LA0,A \ {A0}) ∩ Σ = ∅. Corol-
lary 2.21 with q = 1 implies that

Avg Num Iter(A0, λ0, v0) = E
A∼NCn×n,T

dK(A,A0, λ0, v0)e

≤ 2 +
√

6C E
A∼NCn×n,T

‖A‖F
∫ 1

t1

µ2(At, λt, vt)

‖At‖2F
dt (47)

≤ 2 +
√

6C E
A∼NCn×n,T

‖A‖F
∫ 1

t1

n∑
j=1

µ2(At, λ
(j)
t , v

(j)
t )

‖At‖2F
dt,

where At = (1 − t)A0 + tA, the pairs (λ
(j)
t , v

(j)
t ) are defined by continuation for all

the eigenpairs of At, and

t1 = inf
‖A‖F≤T

1

‖A‖F (sinα cot(Choose step(A0, Ȧ0, λ0, v0))− cosα) + 1
.

We therefore have (use T =
√

2n)

Avg Num Iter(A0, λ0, v0) ≤ 2 +
√

6CnT E
A∼NCn×n,T

(∫ 1

t1

µ2
av(At)

‖At‖2F
dt

)
≤ 2 +

√
48Cn2 E

A∼NCn×n

(∫ 1

t1

µ2
av(At)

‖At‖2F
dt

)
. (48)

We have used (13) and Lemma 2.16 for the last inequality. In order to bound the
last term in the previous expression, we interchange the order of integration,

E
A∼NCn×n

(∫ 1

t1

µ2
av(At)

‖At‖2F
dt

)
=

∫ 1

t1

E
A∼NCn×n

(
µ2
av(At)

‖At‖2F

)
dt.

Now, for fixed t, if A ∼ NCn×n then At = (1− t)A0 + tA satisfies At ∼ NCn×n((1−
t)A0, t

2) and from Theorem 2.14 we have

E
A∼NCn×n

(
µ2
av(At)

‖At‖2F

)
≤ n

t2
,

which implies

E
A∼NCn×n

(∫ 1

t1

µ2
av(At)

‖At‖2F
dt

)
≤
∫ 1

t1

n

t2
dt ≤ n

t1
. (49)
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We are thus left with the task of evaluating t1. Note that s1 =
Choose step(A0, Ȧ0, λ0, v0) (the length of the first step in the execution of Path-

follow) is at least R
µ2(A0,λ0,v0)

by Proposition 5.8. Hence cot s1 ≤ 1
s1
≤ µ2(A0,λ0,v0)

R

and it follows that

t1 ≥
1

T (cot s1 + 1) + 1
≥ Ω

(
1

nµ2(A0, λ0, v0)

)
.

Putting together this bound and inequalities (48) and (49) we deduce the claimed
bound for Avg Num Iter(A0, λ0, v0).

We next prove the smoothed analysis bounds. Reasoning as in (47) we see that
the smoothed number of iterations Smd Num Iter(A0, λ0, v0, σ) is bounded by

2 +
√

6C sup
Â∈S

E
A∼NCn×n,T (Â,σ2)

n∑
j=1

‖A‖F
∫ 1

t1

µ2(At, λ
(j)
t , v

(j)
t )

‖At‖2F
dt.

The rest of the argument is almost exactly as above, the only difference being the
bound ‖A‖F ≤ T + ‖Â‖F =

√
2n+ 1. �

8.2 Proof of Proposition 2.24

We are now following all the n paths (each starting with a different eigenpair of A0).
Applying Corollary 2.21 with q = 1 to each of them we obtain

Avg Num Iter(A0) = E
A∼NCn×n,T

n∑
j=1

K(A,A0, λ
(j), v(j))

≤ 2n+
√

6C E
A∼NCn×n,T

‖A‖F
n∑
j=1

∫ 1

t
(j)
1

µ2(At, λ
(j)
t , v

(j)
t )

‖At‖2F
dt (50)

≤ 2n+
√

6C E
A∼NCn×n,T

‖A‖F
∫ 1

t∗1

n∑
j=1

µ2(At, λ
(j)
t , v

(j)
t )

‖At‖2F
dt,

where t∗1 = min{t(1)
1 , . . . , t

(n)
1 }. We can now reason as in the preceding proof to

deduce that

Avg Num Iter(A0) = O
(n3

t∗1

)
as well as the fact that, for j = 1, . . . , n, t

(j)
1 ≥ Ω

(
1

nµ2(A0,λ(j),v(j))

)
. It follows from

these bounds that

t∗1 ≥ Ω

(
1

nµ2
max(A0)

)
.

The rest of the proof follows as in the preceding proposition. �
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9 Proof of Theorem 2.29

We begin with an auxiliary result. For simplicity, in what follows we write S :=
S(Cn×n). We also consider the manifold

S = {(A, Ȧ) ∈ S× S : Ȧ ∈ TAS}

and denote by U (S) the normalized product distribution on it, that is, the probabil-
ity distribution coming from the product structure. Given any measurable mapping
φ : S → [0,∞], let

Iφ := E
A0,A∈S

(∫ dS(A0,A)

0
φ(As, Ȧs) ds

)
, (51)

where, as usual, the As are such that {As : 0 ≤ s ≤ dS(A0, A)} = LA0,A, and Ȧs is
the unit tangent vector (in the direction of the parametrization) to LA0,A at As.

Lemma 9.1 For any measurable mapping φ : S× S→ [0,∞] we have

Iφ =
π

2
E

(A,Ȧ)∼U (S)

φ(A, Ȧ). (52)

Proof. We consider the manifoldR = {(A0, A, s) ∈ S×S×(0, π) : s < dS(A0, A)}
with the product structure and let

ψ : R → S
(A0, A, s) 7→ (As, Ȧs).

We can then write Iφ = vol(S)−2
∫
R φ ◦ ψ. Applying the coarea formula (Theo-

rem 6.1) yields

Iφ =
1

vol(S)2

∫
(A,Ȧ)∈S

φ(A, Ȧ)q(A, Ȧ) d(A, Ȧ), (53)

where

q(A, Ȧ) =

∫
(B0,B,s)∈ψ−1(A,Ȧ)

1

NJ(ψ)(B0, B, s)
d(B0, B, s).

Our goal now is to prove that q(A, Ȧ) is a constant (independent of A, Ȧ). It shall
be useful to consider the two diagonal matrices ∆ = E11 and ∆̇ = E22 where Eij
denotes the standard basis of Cn×n. Note that (∆, ∆̇) ∈ S.

We now fix (A, Ȧ) ∈ S. Let σ : Cn×n → Cn×n be an isometric change of basis
such that σ(A) = ∆ and σ(Ȧ) = ∆̇. Denoting σS = σ × σ and σR = σ × σ × IdR,
where IdR is the identity mapping in R, it is easy to check by writing down the
formula for As that ψ ◦σR = σS ◦ψ. We are under the hypothesis of [14, Lemma 4,
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p. 244] (which holds for surjective maps in general, not only for projections), proving
that

NJ(ψ)(σ−1
R (C0, C, s)) = NJ(ψ)(C0, C, s), ∀ (C0, C, s) ∈ R. (54)

Moreover, the mapping σR |ψ−1(A,Ȧ) is an isometry from ψ−1(A, Ȧ) to ψ−1(∆, ∆̇),
which from the change of variables theorem implies

q(A, Ȧ) =

∫
(B0,B,s)∈ψ−1(A,Ȧ)

1

NJ(ψ)(B0, B, s)
d(B0, B, s)

=
(54)

∫
(B0,B,s)∈ψ−1(A,Ȧ)

1

NJ(ψ)(σ−1
R (B0, B, s))

d(B0, B, s)

=

∫
(B0,B,s)∈ψ−1(∆,∆̇)

1

NJ(ψ)(B0, B, s)
d(B0, B, s) = q(∆, ∆̇),

which proves that q(A, Ȧ) is equal to some constant Ĉ.
Since this holds for any measurable function φ, we can take the latter to be

constant with value 1 to derive the value of Ĉ. Then (53) becomes

Iφ =
1

vol(S)2

∫
(A,Ȧ)∈S

Ĉ d(A, Ȧ) =
vol(S)

vol(S)2
Ĉ.

And it follows from (51) (always with φ ≡ 1) that

Iφ = E
A,A0∈S

dS(A0, A).

Hence,

E
A,A0∈S

dS(A,A0) = Ĉ
vol(S)

vol(S)2
.

Note that the change of variables A0 7→ −A0 does not change the expected value in
this last formula. Moreover, dS(A,A0) + dS(A,−A0) = π for all A,A0 ∈ S. Thus,

vol(S)

vol(S)2
2Ĉ = E

A,A0∈S
dS(A,A0) + E

A,A0∈S
dS(A,−A0)

= E
A,A0∈S

(dS(A,A0) + dS(A,−A0)) = π.

proving that

Ĉ =
vol(S)2π

2vol(S)
,

From (53) we conclude that for any measurable nonnegative function φ we have

Iφ =
π

2
E

(A,Ȧ)∼U (S)

φ(A, Ȧ),

as wanted. �
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Proof of Theorem 2.29. Consider the measurable function φ : S → [0,∞]
defined by

φ(A, Ȧ) =
1

n

∑
(λ,v):Av=λv

µ(A, λ, v)
∥∥(Ȧ, λ̇, v̇

)
‖,

for A ∈ S and Ȧ ∈ TAS such that A 6∈ Σ, where λ̇, v̇ are the functions of (A, Ȧ) and
(λ, v) given in Lemma 3.2. (If A ∈ Σ we set φ(A, Ȧ) =∞.)

From Theorem 2.19, denoting I = Iφ, we have (for some constant C > 1) that

E
A,A0∼NCn×n

 1

n

∑
λ0,v0:A0v0=λ0v0

K(A,A0, λ0, v0)

 ≤ C I. (55)

Note that the left–hand side of (55) is the quantity to be bounded in Theorem 2.29.
It is therefore enough for us show that I ≤ 4n2. To do so, write SA := {A′ :
(A,A′) ∈ S} ⊆ TAS, for A ∈ S. First note that SA is just the unit sphere in TAS, so
it has a natural volume form inherited from Cn×n and vol(SA) is independent of A.
Moreover, the Normal Jacobian of the projection S → S, (A, Ȧ) 7→ A, is constant
and equal to 1/

√
2 (this is easy to prove: check that for Ȧ ∈ TAS the pair of the

form (Ȧ, Ȧ′) in T(A,A′)S which is orthogonal to the kernel of the derivative of the

projection is (Ȧ,−Re〈A′, Ȧ〉A), then note that the vectors of that form obtained
from any o.g. basin of TAS whose first element is A′ are orthogonal and only one
of them, (A′,−A), changes its norm by

√
2), so we have vol(S) =

√
2vol(S)vol(SA).

From Lemma 9.1 and Theorem 6.1, we then have

I =
π

2
E

(A,Ȧ)∼U(S)

φ(A, Ȧ)

=
π√
2

E
A∈S

 1

n

∑
(λ,v):Av=λv

µ(A, λ, v) E
Ȧ∈SA

(
∥∥(Ȧ, λ̇, v̇)

∥∥)

 . (56)

In order to estimate this last quantity we shall use Lemma 9.2 below. Note first
that from Cauchy-Schwartz,

E
Ȧ∈SA

(
∥∥(Ȧ, λ̇, v̇)

∥∥) ≤

(
1 + E

Ȧ∈SA
(|λ̇|2 + ‖v̇‖2)

)1/2

≤
Lemma 9.2

(
1 +

1

n2 − 1
2

(
1 + 2µF (A, λ, v)2

))1/2

≤
n≥2

1√
7

(
9 +

16

n2
µF (A, λ, v)2

)1/2

.
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It is a simple exercise to check that for positive x ∈ R we have x(9 + 16x2/n2)1/2 ≤
9n/8 + 4x2/n. Using this inequality we get from the equations above:

I ≤ π√
14

E
A∈S

 1

n

∑
(λ,v):Av=λv

(
9n

8
+

4

n
µF (A, λ, v)2

) .

We next use Theorem 2.14 (averaging over A ∈ S) and bound this last quantity by

I ≤ π√
14

(
9n

8
+

4

n
n3

)
=

π√
14

(
9n

8
+ 4n2

)
≤
n≥2

4n2, (57)

which finishes the proof. �

We have used the following technical lemma which is in the spirit of [2]. Note
that as pointed out in the proof of Theorem 2.29, SA is just the unit sphere in the
tangent space TAS and thus has a natural measure inherited from the inner product
in Cn×n.

Lemma 9.2 Let (A, λ, v) ∈ V, ‖A‖F = 1. Define SA := {A′ : (A,A′) ∈ S} ⊆ TAS
as in the proof of Theorem 2.29 (that is, SA is the unit sphere of TAS) and, for
Ȧ ∈ SA, let λ̇, v̇ be as in Lemma 3.2. Then,

E
Ȧ∈SA

(|λ̇|2) =
1

n2 − 1
2

(
µλ(A, λ, v)2 − |λ|

2

2

)
,

and

E
Ȧ∈SA

(‖v̇‖2) =
1

n2 − 1
2

‖A−1
λ,v‖

2
F .

In particular, from Proposition 3.3,

E
Ȧ∈SA

(|λ̇|2 + ‖v̇‖2) ≤ 1

n2 − 1
2

(
1 + 2‖A−1

λ,v‖
2
F

)
=

1

n2 − 1
2

(
1 + 2µF (A, λ, v)2

)
.

Proof. Note that TAS coincides with the (real) orthogonal complement, with
respect to <〈·, ·〉F , of A ∈ Cn×n. Thus dimR(TAS) = 2n2 − 1. On this space we
consider the push-forward measure of the standard Gaussian distribution on Cn×n
by the orthogonal projection Cn×n → TAS.

Since TAS may be split in the (real) orthogonal decomposition R
√
−1A ⊕ A⊥,

where R
√
−1A is the linear real subspace generated by

√
−1A, in particular we

conclude that the Gaussian distribution on TAS coincides with the distribution
t
√
−1A+ Ḃ ∈ TAS where t ∼ N (0, 1

2) and Ḃ ∼ NA⊥ are independent.

Claim I: Given a linear operator L : TAS→ Ck, we have

E
Ȧ∈TAS

(‖L(Ȧ)‖2) =

(
n2 − 1

2

)
E

Ȧ∈SA
(‖L(Ȧ)‖2);
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The claim follows integrating in polar coordinates. More precisely,

E
Ȧ∈TAS

(‖L(Ȧ)‖2) =
1

πn
2− 1

2

∫
Ȧ∈TAS

‖L(Ȧ)‖2 e−‖Ȧ‖2 dȦ

=
1

πn
2− 1

2

∫ +∞

0
ρ2n2

e−ρ
2
dρ ·

∫
Ȧ∈SA

‖L(Ȧ)‖2 dȦ

=

(
n2 − 1

2

)
E

Ȧ∈SA
(‖L(Ȧ)‖2),

where we have used that
∫ +∞

0 ρ2n2
e−ρ

2
dρ = 1

2Γ(n2 + 1
2), and vol(SA) =

2πn
2− 1

2 /Γ(n2 − 1
2).

Claim II: For ‖v‖ = 1, the push-forward measure of the Gaussian distribution on
A⊥ by the map f : A⊥ → v⊥, Ȧ 7→ Pv⊥(Ȧv), is the standard Gaussian on v⊥.

Note that for all B ∈ Cn×n, we have 〈uv∗, B〉F = tr(B∗uv∗) = v∗B∗u = 〈u,Bv〉.
Then, the set F = {ẇv∗ : ẇ ∈ v⊥} is a linear subspace of A⊥, and the kernel
of f is the Hermitian complement of F as subset of A⊥. Since f |F : F → v⊥ is a
linear isometry, the claim follows from the characterization of the standard Gaussian
distribution.

Claim III: Let m ∈ N. If η ∼ NCm , and x ∈ Cm then

E
η∼NCm

(|〈η, x〉|2) = ‖x‖2.

The proof of this claim is a standard exercise and is left to the reader.
Now we are ready to prove the lemma. We chose a representative of v such that

‖v‖ = 1 and a representative of the left eigenvector u such that 〈u, v〉 = 1. Note
that this implies by Proposition 3.3 and Lemma 3.2:

µλ(A, λ, v) =
‖u‖ ‖v‖
|〈u, v〉|

= ‖u‖, λ̇ = 〈Ȧv, u〉, v̇ = −A−1
λ,vPv⊥Ȧv.

For the first statement, we have

E
Ȧ∈TAS

(|λ̇|2) = E
Ȧ∈TAS

(|〈Ȧv, u〉|2) = E
Ȧ∈TAS

(|〈Ȧ, uv∗〉F |2)

= E
Ḃ∈N

A⊥

E
t∼N (0, 1

2
)
(|〈t
√
−1A+ Ḃ, uv∗〉F |2).

Since the mixed term of the expansion of |〈t
√
−1A + Ḃ, uv∗〉F |2 is linear in t, its

expected value is zero. Hence,

E
Ȧ∈TAS

(|〈Ȧv, u〉|2) = E
Ḃ∈N

A⊥

E
t∼N (0, 1

2
)
(t2|〈A, uv∗〉F |2 + |〈Ḃ, uv∗〉F |2)

=
|λ|2

2
+ E
Ḃ∈N

A⊥

(|〈Ḃ, πA⊥(uv∗)〉F |2).
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where we have denoted by πA⊥(uv∗) the orthogonal projection of uv∗ onto A⊥.
With the identification of A⊥ and Cn2−1 as Hermitian spaces, from Claim III (with
m = n2 − 1) we conclude that

E
Ḃ∈N

A⊥

(|〈Ḃ, πA⊥(uv∗)〉F |2) = ‖πA⊥(uv∗)‖2F = ‖uv∗‖2F − |λ|2 = ‖u‖2 − |λ|2.

We have then proved:

E
Ȧ∈TAS

(|〈Ȧv, u〉|2) = µλ(A, λ, v)2 − |λ|
2

2
,

and from claim I we conclude:

E
Ȧ∈SA

(|〈Ȧv, u〉|2) =
1(

n2 − 1
2

) (µλ(A, λ, v)2 − |λ|
2

2

)
,

as claimed in the lemma. The second statement in the lemma is proved in a very
similar fashion. This time we have

E
Ȧ∈TAS

(|v̇|2) = E
Ȧ∈TAS

(‖A−1
λ,vPv⊥Ȧv‖

2) =

= E
Ḃ∈N

A⊥

E
t∼N (0, 1

2
)

(∥∥∥A−1
λ,vPv⊥

(
t
√
−1A+ Ḃ

)
v
∥∥∥2
)

=

= E
Ḃ∈N

A⊥

(∥∥∥A−1
λ,vPv⊥Ḃv

∥∥∥2
)

= E
ẇ∈N

v⊥
(‖A−1

λ,vẇ‖
2) = ‖A−1

λ,v‖
2
F ,

the previous to last equality from claim II and the last coming from the fact that for
any matrix B ∈ Cn×n, Ex∼NCn ‖Bx‖2 = ‖B‖2F (note the use of Frobenius instead of
operator norm in the last equality: that is a crucial point). The last statement of
the lemma then follows from claim I.

�

10 Proof of Theorem 2.33

10.1 Proof of (1) and (2) in Theorem 2.33

Note that (2) is trivial. We thus prove (1). The procedure we suggest to choose
ω ∈ Ωn at random is the following (note that each step requires O(n3) arithmetic
operations or random choices):

1. Choose B ∼ NC(n−1)×(n−1) and let U be the Q factor in the QR decomposition
of B, then multiply Q by the diagonal matrix with entries rii/|rii| where the
rii are the diagonal elements of the R factor. This produces a unitary matrix
U uniformly distributed in Un−1, see for example [39].
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2. Choose λ ∼ NC and M ∼ NC(n−1)×n . Let H ∈ Un be any unitary matrix
such that its last column is in ker(M) (it is trivial to produce such an H by
computing the QR decomposition of the matrix whose columns are ker(M) and
the columns of M). Compute Q as the product of the first n×(n−1) submatrix
of H times U . This produces an element with the uniform distribution in the
set of Q ∈ Sn−1(Cn) such that (M,Q) ∈ An.

3. If 2<(λ̄tr(MQ)) > 1−|λ|2(n−1) then discard λ,M,Q and repeat (1) and (2).

4. Choose w ∼ NCn−1 .

The only subtle point is that steps (1) and (2) might have to be repeated an arbitrary
number of times. The expected number of times that steps (1) and (2) will be
repeated is related to Cn defined in (23) by

∞∑
k=1

Prob(step k is reached) =

∞∑
k=1

Prob
(
2<(λ̄tr(MQ)) > 1− |λ|2(n− 1)

)k−1

=
∞∑
k=1

(
1− C−1

n

)k−1
=

1(
1− (1− C−1

n )
) = Cn.

10.2 Proof of (3) in Theorem 2.33

We are now prepared for proving (24). Let 1l be the characteristic function of the
set

{(λ,B) : 2<(λ̄tr(B)) ≤ 1− |λ|2(n− 1)} ⊆ C× C(n−1)×(n−1).

From the definition and Fubini’s theorem, for any measurable nonnegative function
φ defined on V, the expected value Eω∼Ωn (φ(ψn(ω))) equals:

Cn E
M

E
Q:(M,Q)∈An

(
E
λ,w

(
φ

((
λ w∗

0 MQ+ λIn−1

)
, λ, e1

)
1l(λ,MQ)

))
=

Cn E
M

E
Q:(M,Q)∈An

(α(MQ)) ,

where λ ∼ NC, M ∼ NC(n−1)×n , w ∼ NCn−1 and α : C(n−1)×(n−1) → [0,∞] is defined
by

α(B) = E
λ,w

(
φ

((
λ w∗

0 B + λIn−1

)
, λ, e1

)
1l(λ,B)

)
.

We are then under the hypotheses of Corollary 6.7. Using this result we obtain

E
w∼Ωn

(φ(ψn(w))) =
Cn

Γ(n)
E

B∼NC(n−1)×(n−1)

(α(B)|det(B)|2).
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With the change of variables B + λIn−1 = D, which implies

‖B‖2F = ‖D‖2F + (n− 1)|λ|2 − 2<(λ̄tr(D)),

this last expression equals

Cn
Γ(n)

E
λ,w,D

(
φ

((
λ w∗

0 D

)
, λ, e1

)
| det(D − λIn−1)|2e−|λ|2(n−1)+2<(λ̄tr(D))1l(λ,D − λIn−1)

)
,

where D ∼ NC(n−1)×(n−1) . Now, note that

1l(λ,D − λIn−1) 6= 0⇐⇒ e−|λ|
2(n−1)+2<(λ̄tr(D)) ≤ e.

We have thus proved

E
w∼Ωn

(φ(ψn(w))) ≤ eCn
Γ(n)

E
λ,w,D

(
φ

((
λ w∗

0 D

)
, λ, e1

)
|det(D − λIn−1)|2

)

=
(38)

e nCn E
A∼NCn×n

 1

n

∑
λ,v:Av=λv

φ(A, λ, v)

 .

This proves claim (3) in Theorem 2.33. �

We prove the following (non-sharp) bound for the value of Cn.

Lemma 10.1 With the notations above,

Cn ≤ 4n.

Proof. Note that if 0 < |λ| ≤ (n− 1)−1/2, then for any nonzero M ∈ C(n−1)×n

we have

Prob
Q

(
2<(λ̄tr(MQ)) ≤ 1− |λ|2(n− 1)

)
≥ Prob

Q

(
2<(λ̄tr(MQ)) ≤ 0

)
=

1

2
,

the last equality coming from the linearity of the trace. We thus have

Prob
λ,M,Q

(
2<(λ̄tr(MQ)) ≤ 1− |λ|2(n− 1)

)
≥ 1

π

∫
|λ|<(n−1)−1/2

e−|λ|
2

2
dλ =

1− e−
1

n−1

2
.

We thus have

Cn ≤
2

1− e−
1

n−1

≤ 4(n− 1) ≤ 4n,

as claimed. �
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11 Proof of Theorem 1.1

Consider the following algorithm.

Algorithm 7 Relative Error

Input: ε ∈ (0, 1/2), A ∈ Cn×n, (ζ, w) ∈ C× Cn

Preconditions: (ζ, w) is a certified approximate eigenpair of A with
associated eigenpair (λ, v), ‖w‖ = 1.

k := 0

(ζ ′, w′) := (ζ, w)

repeat

(ζ ′, w′) := NA(ζ ′, w′) (one Newton iteration)

k := k + 1

until k ≥ log2 log2

(
4‖A‖F
ε|ζ′|

)
return (ζ ′, w′)

Output: (ζ ′, w′) ∈ C× Cn

Postconditions: The algorithm halts if λ 6= 0. In this case, (ζ ′, w′)
is an approximate eigenpair of A with associated eigenpair (λ, v), and
dS(w′, v) ≤ ε, and moreover |ζ ′ − λ| ≤ ε|λ| and distA((ζ, w), (λ, v)) ≤
c∗/µ(A, λ, v)(1/2)22k−1

By hypothesis,

distA((ζ, w), (λ, v)) ≤ c∗
µ(A, λ, v)

< 1. (58)

Hence, |ζ − λ|/‖A‖F ≤ distA((ζ, w), (λ, v)) < 1 and the same bound holds with ζ
replaced by ζ ′ at all the iterations of the algorithm (by Definition 2.11). Using that
|λ| ≤ ‖A‖F , we deduce that |ζ ′| ≤ 2‖A‖F . Hence, at the end of the repeat loop the
value k satisfies

22k ≥ 4‖A‖F
ε|ζ ′|

≥ 2

ε
. (59)

This inequality implies that after k iterations of the loop we have, from the definition
of approximate eigenpair and the bound (58), that

|ζ ′ − λ|
‖A‖F

≤ distA((ζ ′, w′), (λ, v)) ≤ c∗
µ(A, λ, v)

(
1

2

)2k−1

≤
(

1

2

)2k−1

=
2

22k
≤ ε.

(60)
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In particular, dS(w′, v) ≤ ε as we wanted. On the other hand, the first inequality
in (59) implies

22k−1|ζ ′| − ‖A‖F ≥
2‖A‖F
ε

− ‖A‖F ≥
‖A‖F
ε

the last since ε < 1. We now use this inequality together with (60) to obtain

|ζ ′ − λ|
|λ|

≤ ‖A‖F
|λ|22k−1

≤ ‖A‖F(
|ζ ′| − ‖A‖F

22k−1

)
22k−1

=
‖A‖F

22k−1|ζ ′| − ‖A‖F
≤ ε,

i.e., |ζ ′ − λ| ≤ ε|λ|.
It remains to show that Relative Error halts provided λ 6= 0 and to estimate its

average running time when A is drawn from NCn×n . For this, we note that as soon
as

k ≥ log2 log2

(
8‖A‖F
ε|λ|

)
we shall have (using (60))

|ζ ′| ≥ |λ| − ‖A‖F
22k−1

≥ |λ| − ε|λ|
4

= |λ|(1− ε/4).

Therefore, we will also have

log2 log2

(
4‖A‖F
ε|ζ ′|

)
≤ log2 log2

(
4‖A‖F

ε|λ|(1− ε/4)

)
≤ log2 log2

(
8‖A‖F
ε|λ|

)
≤ k.

Hence, the stopping condition will hold after at most

log2 log2

(
8‖A‖F
ε|λ|

)
≤ log2 log2

(
8‖A‖F ‖A−1‖

ε

)
iterations (we have used that |λ|−1 ≤ ‖A−1‖ for λ is an eigenvalue of A).

We finally estimate the average cost of Relative Error. Since each iteration of the
repeat loop requires O(n3) operations, this cost is at most O(n3) times

E
A∼NCn×n

(
log2 log2

(
8‖A‖F ‖A−1‖

ε

))
≤ log2 log2

(
8

ε
E

NCn×n
(‖A‖F ‖A−1‖)

)
,

where we have used Jensen’s inequality. Bounds for the expected value of ‖A−1‖
when A ∼ NCn×n are known, see for example [19, Prop. 4.22] which, together with
the Cauchy–Schwartz inequality E(fg) ≤ (E(f2)E(g2))1/2, implies

E
A∼NCn×n

(‖A‖F ‖A−1‖) ≤
√
n2
e(n+ 1)

2
≤ 2n3/2.

The statement follows. �
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