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1 Introduction and Main Result
1.1 Introduction and Preliminaries

In his 1981 paper [19] Steve Smale initiated the complexity theory of finding a so-
lution of polynomial equations of one complex variable by a variant of Newton’s
method. More specifically he considered the affine space P; of monic polynomials
of degree d,

d
f@=>az, a=1 and a4 eC (=0,...d-1).
i=0
He identified P; with C¢, with coordinates (ag, ..., as—1) € C%. In P, he considered

the polydisk
Qi ={fePas:lail<1,i=0,...,d -1}

to have finite volume and he obtained a probability space by normalizing the volume
to 1. The algorithm he analyzed is given by the following. Let 0 < 4 < 1 and let

z0 = 0. Inductively define z,, = T}, (z,,—1) where T}, is the modified Newton’s method

for f givenby T,(z) =z —h ]J:’((Zz))

His eponymous main theorem was:

Main Theorem There is a universal polynomial S(d,1/n) and a function h =
h(d, i) such that for degree d and i, 0 < u < 1, the following is true with prob-
ability 1 — . Let xo = 0. Then x, = Ty (x,—1) is defined for all n > 0 and x; is an
approximate zero for f where s = S(d, 1/1).

In [19], that x; is an approximate zero meant that there is an x* such that
_ el 1 ~ _ f ()
f(x*)=0, x, — x* and |f(ij)| < 5, for j > s, where x4 = xx — 00 That
is, xx41 1s defined by the usual Newton’s method for f. Smale mentions that the
100(d+2)°
7

polynomial S may be taken to be
changed in later papers (see Blum et al. [8] for the later version or Sect. 1.2). The
new version incorporates immediate quadratic convergence of Newton’s method on
an approximate zero. In the remainder of this paper an approximate zero refers to the
new version.

Note that % is not finitely integrable, so Smale’s initial algorithm was not proven

. The notion of approximate zero was

to be finite average time or cost when the upper bound is averaged over the polydisk
Q1 (see Blum et al. [8, pp. 208, Proposition 2]).

A tremendous amount of work has been done in the last 30 years following on
Smale’s initial contribution, much too much to survey here. Let us mention a few of
the main changes. In one variable a lot of work has been done concerning the choice
of good starting point zg for Smale’s algorithm other than zero. See Chaps. 8 and 9
of Blum et al. [8] and references in the commentary on Chap. 9. The latest work in
this direction is Kim—Martens—Sutherland [12].
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Fig. 1 The curve z;, 0 <t < 1, is the branch of f_l (L) containing zq

Smale’s algorithm may be given the following interpretation. For zg € C, consider
fi=f—0—=1)f(z0), for 0 <t < 1. The polynomial f; has the same degree as f,
z0 1s a zero of fp and f1 = f. So, we analytically continue zg to z; a zero of f;. For
t = 1 we arrive at a zero of f. Newton’s method is then used to produce a discrete
numerical approximation to the path (f;, z;).

If we view f as a mapping from C to C, then the curve z; is the branch of the in-
verse image of the line segment L = {rf(z9) : 0 <t < 1}, containing z¢. (See Fig. 1.)

Here are several of the changes made in the intervening years. Renegar [13] con-
sidered systems of n-complex polynomials in n-variables, without the restriction to
be monic. Given a degree d, we let P, stands for the vector space of degree d poly-
nomials in n complex variables

de:{f: fz)= Z aaz“},

lell<d

where o = (a1, ...,a,) € N” is a multi-index, |a| = Zleak, % = z‘fl R L
ay € C. We have suppressed the n for ease of notation. It should be understood from
the context.

For (d) = (d1,....dy), let Pgy =Py, x - x Py, 50 f=(f1,.... fn) €Puisa
system of n polynomial equations in n complex variables and f; has degree d;.

As Smale’s, Renegar’s results were not finite average cost or time. In a series of
papers Shub and Smale [15-18], made some further changes and achieved enough
results for Smale’s 17th problem to emerge a reasonable if challenging research goal.
Let us recall the 17th problem from Smale [20]:

Problem 17 Solving Polynomial Equations.
Can a zero of n complex polynomial equations in n unknowns be found approxi-
mately, on the average, in polynomial time with a uniform algorithm?

In place of Py it is natural to consider H gy = Hgq, X - -+ X Hg,, where Hy;, is the
vector space of homogeneous polynomials of degree d; in n + 1 complex variables.
FoCT
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The map
. . d 21 z
ig; 1 Py, — Hy;, ig; (f)(z0, .-, 20) =2 f(—,---, —n>,
20 20
is an isomorphism and i : Py — Hg) fori= (ig,, ..., 14,) is an isomorphism.

For f € Hg) and A € C,

FOL) =A%) £ (0,

where A(a;) means the diagonal matrix whose i th diagonal entry is a;. Thus the zeros
of f € H) are now complex lines so may be considered as points in projective space
P(Cn+ 1 ).

The affine chart

PrCP =P, @ ) =CA g g,

maps the zeros of f € Py to zeros of i(f) € H(g). In addition i( ) may have zeros
at infinity, i.e., zeros with o =0

From now on we consider H4) and P(C**t1. On ‘Hg; we put a unitarily invariant
Hermitian structure which we first encountered in the book [21] by Hermann Weyl
and which is sometimes called Weyl, Bombieri—Weyl or Kostlan Hermitian structure
depending on the applications considered.

For o = (g, ..., a,) € N"T!|la|| = d;, and the monomial z% =z, - - - z;", the
Weyl Hermitian structure makes (z%, z#) =0, for o # 8 and

—1 -1
<Za’Za>: dl = L .
o ool op!

On H 4y we put the product structure

n

(f.g)=> (figi)-
i=l1

On C"t! we put the usual Hermitian structure
n
Y= xr.
k=0

Given a complex vector space V with Hermitian structure and a vector 0 #v € V,
we let v+ be the Hermitian complement of v,

sz{wEV: <v,w)=0}.

The subspace v~ is a model for the tangent space, T,[P(V), of the projective space
P(V) at the equivalence class of v (which we also denote by v).
FoE""l
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The tangent space T,[P(V) inherits an Hermitian structure from (-, -) by the for-
mula

(wy, wa)

(wi, wa)y = (0, v)

where wy, wy € v+ represent the tangent vectors at 7,[P(V).

This Hermitian structure which is well defined is called the Fubini—Study Hermi-
tian structure.

The group of unitary transformations U/(n + 1) acts on H4) and Cl by f >
foU land ¢+ Ut forU eUU(n+1).

This unitary action preserves the Hermitian structure on H 4y and C"*!, see Blum
et al. [8]. Thatis, forU el (n + 1),

(foU goU)=(fg) forf,geMHu;
Uz, Ut)=(¢,¢') forg, ¢ eC T

The zeros of Af and f for 0 # A € C are the same, and we may consider the space
P(H(4)). Now the space of problem instances is compact and the space P(C"*1y is
compact as well. The set P(H (4)) has a unitarily invariant Hermitian structure which
gives rise to a volume form of finite volume %, where N =dimH y).

The average of a function ¢ : P(H4)) — R is

1 I'(N)

EP(H(d))(¢) = —VOI(IP’(H(d))) FeP(Hw) d(f)df = ZN-1

¢ (frdf.

feP(Hay)

If ¢ is induced by a homogeneous function ¢ : Hz) — R of degree zero, that is,
dLf)=¢(f), » € C— {0}, then we may also compute this average with respect to
the Gaussian measure on (H ), (-, -)), that is,

1 2
By (@) = any /H(d) o (fre VI /2qy. (1)

It is this approach via the Gaussians above defined on H 4y and the Fubini—Study
Hermitian structure and volume form on P(C"*!), which we take in this paper. The
quantities we define on H () are homogeneous of degree zero, thus are defined on
P(Ha)) and benefit from the compactness of this space and of P(C"*1). While aver-
ages over systems of equations may be carried out in the vector space H ).

The solution variety

V={(f,x) € (Hwu —{0}) x P(C"*1): f(x)=0]

is a central object of study. It is equipped with two projections

Y
RN
Ha) P(C*t)

FolCT
L
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The solution variety ) also has a projective version, namely,
Ve ={(f.x) e P(H@) x P(C"t!): f(x)=0}.
1.2 Homotopy Methods

Homotopy methods for the solution of a system f € H ) proceed as follows. Choose
(g,¢) € V aknown pair. Connect g to f by a C! curve f; in Ha),0 <t <1, such that
fo=g, fi = f, and continue ¢y = ¢ to ¢ such that f;({;) =0, so that f1(¢;) =0
The critical values of the projection of V on H ;) — {0} are an algebraic subvariety,
X, of Hg) — {0} of complex codimension 1, called the discriminant variety. By the
transversality theorem (see Abraham—Robbin [2]) a generic set of C I curves f; do
not intersect X'. If a curve is in this generic set and f((¢o) = 0, then by the implicit
function theorem we may continue ¢y to ¢, 0 <t < 1, such that f;(¢) = 0. See
Smale [19] for this type of argument. Indeed almost all “straight line” paths in H )
do not intersect X, again by a transversality argument, so if ¢y is a nondegenerate
zero of g then for almost all f, £y may be continued to a zero of f along the curve
fi =0 —1t)g+tf. We do not use this generality in this paper so we leave the above
assertions as a sketch. In Proposition 1 we prove a precise version of the fact that the
homotopies we consider in this paper may be almost always continued.

Now homotopy methods numerically approximate the path (f;, {;). One way to
accomplish the approximation is via (projective) Newton’s methods. Given an ap-
proximation x; to ¢; define

Xerat = Nyg o, (x1),

where

Ni(x)=x— (Df0)l) " fx).

That x; is an approximate zero of f; associated with the zero {; means that the
sequence of Newton iterative NX . (x7) converges immediately quadratically to ;.

The main result of Shub [14] i 1s that Ar may be chosen so that 70 =0, t = tx—1 +
Aty, x4, 1s an approximate zero of f; with associated zero ¢, and rg =1 for

1
K=K(f8¢) = CD”/ w(feed|fréol g, dr. )
0 Y4
Here C is a universal constant, D = max d;,

1, O =F1(DF @) Al 14" /ay) |

is the condition number of f at ¢, and

|G el g oy = (Ll 2+ 1Eal2) 2

is the norm of the tangent vector to the projected curve in (f;, ¢;) in Vp C P(Hg)) x
P(C"*1). The choice of Af; is made explicit in Dedieu—Malajovich—Shub [10] and
Beltran [4].
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In Vp, ||§"[ le, < m(fe, Sl f} | ., so the estimates (2) may be bounded from above
by

1
K(£.8.0) =D [t fll . 3
0
for a perhaps different universal constant C. .
Finally in the case of straight line homotopy || ;| = Sm(eﬂ'}%, where 6 is the
t

angle between fy and f1. So (3) may be rewritten as

wu( fr, 51)2 dr.
I fi 12

see Biirgisser—Cucker [9], where (4) is a principal part of the analysis and where the
increments A, , which exhibit the right-hand side of (4) as an upper bound, are also
made explicit.

Much attention has been devoted to studying the right hand of (4), for a good
starting point (g, ¢).

In Beltrdn—Pardo [5], an affirmative probabilistic solution to Smale’s 17th problem
is proven. They prove that a random point (g, ¢) is good in the sense that with random
fixed starting point (g, ¢) = (fo, o) the average value of the right hand side of (4)
is bounded by O (nN). Moreover, Beltran and Pardo show how to pick a random
starting point starting from a random n x (n + 1) matrix.

In [9], Biirgisser—Cucker exhibit a deterministic algorithm for Smale’s 17th prob-
lem which is polynomial average cost, except for a narrow range of dimensions. More
precisely:

1
K(f,g,¢) <CD?sin®)| follll f11 fo 4)

There is a deterministic real number algorithm that on input f € Hy com-
putes an approximate zero of f in average time N©OUgEN) yyhere N =
dim'H ) measures the size of the input f. Moreover, if we restrict data to
polynomials satisfying

1
D<nTr, or D>n'te,

for some fixed ¢ > 0, then the average time of the algorithm is polynomial in
the input size N.

So Smale’s 17th problem in its deterministic form remains open for a narrow range
of degrees and variables.

Thecase D <n T is dealt with by Biirgisser—Cucker by constructing a good start-
ing point for a homotopy method while the case D > n!*¢ is dealt with differently.
Our Theorem 3 shows that we may use the homotopy method suggested by Smale’s
algorithm, described in the next section, in this range of dimensions and conclude a
polynomial result as well.

1.3 Smale’s Algorithm Reconsidered

Smale’s 1981 algorithm depends on f(0), so there is no fixed starting point for all sys-
tems. Given ¢ € P(C"*!) we define for f € H gy the straight line segment f; € Ha),
FoCM
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0<t<l1,by

(.0
(¢, &)
So fo(¢) =0 and f1 f Therefore we may apply homotopy methods to this line

fi=f -0~ )A< )f(;“)

segment. (Here A( d ) must be understood as a matrix of functions and f(¢) as a

vector of constants Wthh multiply the functions according to matrix vector multipli-
cation.)
Note that if we restrict f to the affine chart { + ¢ then

fi(@) = f(z) = =1) f(£),

and if we take ¢ = (1,0, ...,0) and n = 1 we recover Smale’s algorithm.

There is no reason to single out ¢ = (1,0, ...,0). Since the unitary group acts
by isometries on P(H 4)), P(C"*1), ¥ and Vp, and preserves p and is transitive on
P(C™*1), all the points ¢ yield algorithms with the same average cost.

Note that if we let

Ve={feHua: f(&)=0}

d;
fo=f— A(é ? )f(c)

is the orthogonal projection I1;(f) of f on V. This follows from the reproducing
kernel property of the Weyl Hermitian product on H;, , namely,

then

(& (. 0% =g, )
forall g € Hy, (i =1,...,n). In particular || (-, £)% || = || ¢ ||%.
Then,
| f =IO = A=) r@l
while

|7 = (17 = JaQien=) r@) ).
Let @ : H) X P(C"*+1) x [0, 1] — V be the map given by

S0 = (fi 0, ©)
where
fo= (1= D) +1f,
that is,
f=r-a —t)A(é ?d )f(;“)
and ¢, is the homotopy continuation of ¢ along the path f;.

FoE 'Tl
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Proposition 1 For almost every [ € Hqy, the set of ¢ € P(C"*YY such that & is
defined for all t € [0, 1] has full measure. Moreover, for every ¢ € P(C"1), the set of
f € Ha) such that @ is defined for all t € [0, 1] has full measure.

Remark 1In fact, the proof also shows that the complement of the set ( f, ) such that
@ is defined for all 7 € [0, 1] is a real algebraic set. The proof of Proposition 1 is in
Sect. 2.

The norm of f; is given now by the formula
_ ol Allsin®) _ [T (OUILS — I (Pl
Ifel12 1112

_ AP = 1A= FOID 1AW 1= f O
1112

Let 7(f,¢) = K(f, I1:(f),¢) and 7. (f) =7 (f, ¢). Then, the average cost of this
algorithm satisfies

1fell

Proposition 2

IIErH(d) (72) = ]EH(d) xP(Cr+1 (T) =D,

where

B CD3/? u(fes &)
D= N n+1 THen2
Q)Y vol(P(C* ) J rer ) Jeep@rty Jreroy I f2ll

< (IF12 = [Aa(ic =) £ D) | Allg17%) £ @) |e P2 d f de de.

As we have mentioned above, it is easily seen, by unitary invariance of all the
quantities involved, that the average Ey, (7;) on Ha) is independent of ¢ and equal
to Eqy @ XP(CrH1) (7). This argument proves the first equality of this proposition. The
inequality follows immediately from the definition of 7 (f, ¢).

What is gained by letting ¢ vary and dividing by vol(P(C"*1)) is that a new way
to see the integral leads to new theorems and interesting questions.

Suppose 7 is a non-degenerate zero of & € H 4. We define the basin of 5, B(h, n),
as those ¢ € P(C"*1) such that the zero ¢ of h — A( é{gi )h(¢) continues to n for
the homotopy /,. From the proof of Proposition 1 we observe that the basins are open
sets.

Let (I) be the expression defined in Proposition 2. Then, the main result of this
paper is:

Theorem 1 (Main Theorem)

cD3? wr(h,n)

D= [ 2
@V Jiera L, =, Il

O (h, 77)i| e—llhllz/2 dh,

FoE r"'I
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where
1

e =
(%, m) vol(P(C"* 1)) Jeepan,n

On(¢)dg,

1/2

0n(0) = (1112 = | A (I~ )R )
x [AUIZI7) R | T (| A1 I~ @) |7 /2),
and T, () = [ e~ og=2n=1 gy,

From Proposition 1 we find that the function ®, defined in the statement of Theo-
rem 1, is defined for almost every pair (h, n) € V.

Summing ® (h, n) over the roots of & we let @(h) = Zn/h(n)zo ®(h,n), and for
almost all & we have

1

Oh)= ———
VOl(P(Cn+1)) {EIP)((C”J"I)

On(£)d<. (7

That is, © (k) = [|6),]| 1.
More generally, for p > 1, consider the L ,-norm of 6,

CAES 0n(£)P d¢. (8)

VOl(P(Cn+ 1 )) ¢ e[[b((cn-ﬁ-l )

The next theorem shows that the average of |6, ||[’i » over Hy, for all p > 1, 1s
polynomial in V.

Theorem 2

2P (N —n+p/2) I'(n+ p/2)
p _
Ett, (160117,) < b T(N—n) I (n)

(The equality holds for p =1.)

Theorem 3

() < 18CD**Dn3/2 N3/

That is, (I) is polynomial in the Bézout number and the input size, N, and poly-
nomial in the input size alone for any range of dimensions where the Bézout number
D is polynomial in N.

Since our method of proof of Theorem 3 relies on Theorem 2, where the basins
are not taking into account, it is possible that Smale’s algorithm is polynomial cost in
all dimensions.

Understanding the basins better might lead to a proof of such a theorem. The
integral

L WA ) w22
(2m)

FoC T
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where D =d - - - d, is the Bézout number (see Biirgisser—Cucker [9]). So the ques-
tion is how does the factor ® (4, n) affect the inte;_gral.1

From Theorem 2, the expected value of @(h) = |6l 11 is controlled, then, if the
integral on the D basins are reasonably balanced, the factor of D in Theorem 3 and
the integral above may cancel.

Remark The proof of Theorem 1 involves complicated formulas which exhibit enor-
mous cancellations. We do not have a good explanation for these cancellations.

At the end of the paper we present some numerical experiments with n = 1 and
d =7 which were done by Carlos Beltrdn on the Altamira super computer at the
Universidad de Cantabria (partially supported by MTM2010-16051 Spanish Min-
istry of Science and Innovation MICINN). We thank Carlos and the Universidad de
Cantabria. We also thanks Gregorio Malajovich for many useful discussions and San-
tiago Laplagne for having done some more experiments. It would be interesting to see
more experimental data. The proof of Theorem 1 is in Sect. 3, and the proofs of The-
orems 2 and 3 are in Sect. 4.

2 Proof of Proposition 1
For the proof of Proposition 1 we need a technical lemma.

Lemma 1 Let E be a vector bundle over B, F be finite dimensional vector space,
and consider the trivial vector bundle F x B. Let ¢ : F X B — E be a smooth bundle
map, covering the identity in B, which is a fiberwise surjective linear map. Then, ¢
is a surjective submersion.

The proof is left to the reader.
Recall that @ : H4) x P(C"*1) x [0, 1] — V is the map given by

¢(f’ é-vt) = (fl" é-l),

where

fi=f—a —t)A(M>f(§),
(¢, ¢)

and ¢; is the homotopy continuation of ¢ along the path f;.

UIn an earlier version of this paper we asked:
(d) Evaluate or estimate

/ ! AULITDROI/2 g
cepEthy AU IR @)1

It is easy to see, as in the proof of Theorem 2, that the expected value of this integral over H ) is infinite.
In Fernandez-Pardo [11] the authors consider the more meaningful average over the unit sphere of H )
and get a precise formula for it. Our initial goal in asking question (d) was to get an upper-bound estimate
of the integral we now evaluate in Theorem 2.

FolCT
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This map is defined at (f, ¢, ) provided that rank(Df;({s)|,L) = n, for all 5 €
[0, ¢].

Let K be the vector bundle over C"*! — {0} with fiber K, = L(z+,C"), z €
C™+1 — {0}, where L(z*, C") is the space of linear transformations from z to C”.
Fork =0, ...,n, let K; be the sub-bundle of rank k linear transformations. Note that
K has (n — k)2 complex codimension (cf. [3]). These sub-bundles define a stratifi-
cation of the bundle K.

Lemma 2 Let 2© bpe the set of pairs (f,¢) € Huy % P(C"*YY such that
rank(Df0(§)|§¢) < n, where (fo,¢) = @(f,¢,0). Then 20 5 ¢4 stratified set of

smooth manifolds of complex codimension (n — k)*, fork =0,...,n — 1.

Proof Let 2@ be the inverse image of £2() under the canonical projection Hay x
(C —{0}) — Hg) x P(C" ).

Let ¢ : H) X (C**1 — {0}) — K be the map ¢(f,¢) = Df(¢)| 1. For each
k=0,....n—1,let 2" = ¢~ (Ky). Since Dfo(¢)l,1 = Df(¢)],1, then 2© =

n—1 4(0)

k=0"“k - o

Claim: ¢ is transversal to K for k =0, ...,n — 1:

Note that ¢(f, ) : C"*t! — {0} — K is a section of the vector bundle K for each
f € Ha). Moreover, foreach ¢ € C™+1 —{0}, the linear map ¢(-, ¢) : Hay — fg isa
surjective linear map. This fact follows by construction: given L € Eg =L+, T,
let Z € L(C”+1 C™) be any linear extension of L to C"*!. Then, the system

f= ;?dl 1)L() € Hay satisfy Df ({)|,1 = L. Then, the claim follows from

Lemma 1.

Since ¢ is transversal, we conclude that the inverse image of a stratification is
a stratification of the same codimension (cf. [3]). That is, Q2O s a stratification of
smooth submanifolds of complex codimension (n — k)z, fork=0,...,n—1.(The
leaves of the strata are not analytic submanifolds since their definition relies on com-
plex conjugation but they are real analytic submanifolds whose tangent space is mod-
elled by a complex vector space at each point.)

Moreover, since each strata Q,EO) contains the fiber of the canonical projection

Hay x (C™F1 —{0}) — H gy x P(C"F1), then, its image, 29 is a smooth manifold
of codimension (n — k)2, and the lemma follows. ]

One can define the homotopy continuation of the pair (f,¢) € H) x P(Cr+h
for all r € [0, 1] whenever (f, ¢) ¢ 20 and lies outside the subset of pairs such that
there exist (w, 1) € P(C**t1) x (0, 1] satisfying the following equations:

(w, ¢)%

=1-naA
fw)y=0-1) ((g,;

)f({) and rank(Df;(w)|,1) <n

Note that, since f; is homogeneous, rank(Df;(w)l|, ) is well defined on w €
P(Cn+l).

FolCT
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Differentiating f; we get

di <w’ §>di_1 <" g)
(g, ¢)

Therefore, taking s = 1 — ¢, we conclude that one can define the homotopy contin-
uation of the pair (f,¢) € H) X P(C"+1) for all ¢ € [0, 1] whenever (f,¢) ¢ 2@
and lies outside the subset of pairs such that there exist (w,s) € PC"t) x [0, 1)
satisfying, for some k =0, ..., n — 1, the following equations:

A((g. 0)%) f(w) —sA((w, 0)%) f(2) =0, ©)
rank([A((¢. 0)") Df (w) — sA(d; (w, )47, 0) F(O]],.) =k (10)

Let X’ C V be the set of critical points of the projection 1 : V — H 4. Recall that
Y =m1(2") C H(qg) is the discriminant variety. If (f, w) € X’ then w is a degenerate
root of f, thatis, rank(Df (w)|,,1) < n (cf. Blum et al. [8]).

Note that if f € X then every ¢ € P(C"*1y satisfies equations (9) and (10) for
s =0 and w € P(C"*!) a degenerate root of f. Hence, it is natural to remove the
discriminant variety X' and the case s = 0 from this discussion.

th(w)=Df(w)—(1—t)A< )f(C)-

Lemma 3 Let A C (H) — X) X P(C"1) x P(C") x (0, 1) be the set of tuples
(f, ¢, w,s) such that Egs. (9) and (10) holds for some k =0,...,n — 1. Then, A
is stratified set of smooth manifolds of real codimension 2(n + (n — k)?) for k =
0,...,n—1.

Proof Similar to the preceding proof, for each k =0, ...,n — 1, we consider the set
Ar C (Hgy — 2) x (€1 —{0}) x (C"! —{0}) x (0, 1) of tuples (f, £, w, s) such
that equations (9) and (10) holds.

Let (f,¢,w,s) € /ik for some k € {0,...,n — 1}. Since f ¢ X then (w, ) # 0.
Therefore from (9), equation (10) takes the form

rank (((w, £) Df (w) — A(dy) f W) (-, 0))|,,.) =k,

fork=0,...,n—1.
Let

F=(Fi,F):(Hag — %) x (C"T = {0}) x (C"*! —{0}) x (0,1) > C" x K
be the map defined by

Fi(f. ¢ w,8) = A((£. 0)¥) f(w) —sA((w, 0)%) f () e C",
E(f.¢,w,s) = (w, ((w, {)Df (w) — AWdi) f(w){-, )| p1) € K.

Note that Ay = F~' ({0} x K).
Claim: F is transversal to {0} x Kj:
In fact, what we prove is that D F is surjective at any point (f, ¢, w, s) which F

maps into {0} x K, for any k =0, ...,n — 1, that is, any point in /ik.
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Recall that V; = {f € H) : f(¢) = 0}. Consider the orthogonal decomposition
H(d) = V; (&) C;, where C; = VCJ'.

Let (f,¢,w,s) € /ik. We first prove that DF(f, ¢, w, S)|C; : Ce — C" is surjec-
tive.

Note that the linear map & : C" — C, given by &(a) = A( &22 )a, is an isomor-

phism, where & -1, C, — C"is given by & ~I(f) = f(¢). Then, under this identifi-
cation, the restriction to C; of the derivative of Fj is the linear map given by

DF](f’ é‘a was)|C§ = (1 _S)A(<w’ é-)di)»

for all tuples (f, ¢, w,s). Moreover, since (f, ¢, w,s) € /ik, then (w, ¢) # 0 and
s # 1,hence DF{(f, ¢, w, s)|C§ is onto.

Now we prove that DF>(f, ¢, w, S)|V§XTw[p((Cn+l) is surjective onto the tangent
space TFz(f,g,w,s)E’ atevery (f,¢,w,s) € /ik.

Note that the map F>(f,¢,-,s) : C"*t! — {0} — K is a section of the vector
bundle K. Therefore, from Lemma 1, it is enough to prove that F>(-, ¢, w,s) :
Hy — K is a surjective linear map.

Fix a tuple (f, ¢, w,s) € Ay, for some k =0,...,n — 1. The unitary group
U(n + 1) acts by isometries on (H) — X) x (C"F!1 —{0}) x (C**1 —{0}) x (0, 1)
by U - (f,¢,w,s)=(fo UL, U),U(w),s), and leave /ik invariant. Therefore
we may assume that w = eg. Write f;(z) = Z”a”:di ag)z“ (i=1,...,n). Then, the
linear map F>(-, ¢, eq, s) : H)y — ?eo is given by

.....

where v; is the n-vector with the j-entry equal to 1 and the other entries equal to 0.

In particular, since ¢y # 0, the restriction F>(-, ¢, ep,s) : Ve — feo is surjective,
concluding the claim.

Then, since F is transversal to {0} x Ky, we conclude that Ay = F~1({0} x Ky)
is a submanifold of real codimension 2(n + (n — k)?), fork =0, ...,n — 1.

To end the proof, we note that Ay contains the fiber of the canonical projection
(H@ay — X) x (C"T1 —{0}) x (C*™ —{0}) x (0,1) = (H@) — %) x P(C"*) x
P(C"t1) x (0, 1). O

Let IT : Hgy x P(C"T1) x P(C"*1) x (0, 1) — H gy x P(C**!) be the canonical
projection
H(fvngvs) :(f’;)

Then, from Lemmas 2 and 3 the set of pairs (f,¢) € H) X P(C"*t1) such that the
homotopy is not defined for all # € [0, 1] is contained by the union

2UUI)U D xP(C) C Hiy x P(C"HH).

Remark We could conclude the proof by Fubini’s Theorem. But we give a different
argument. See the remark at the end.
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Proof of Proposition 1 Fork=0,...,n—1,let .Q,EO) CH x P(C"+1) be the subset
given in the proof of Lemma 2, and let 771 : Hg) X PC"ty — 'H (a) be the projection
in the first coordinate. From Sard’s Lemma we see that almost every f € Hg) is a
regular value of the restriction 7| 9150) : .Q,EO) — Ha), for each k =0,...,n — 1.

Therefore, from Lemma 2, we conclude that for almost every f € H ) the subset
A - A 0
110 =7 Hnel cr(ctt)

is an empty set or a smooth submanifold of complex dimension n — (n — k)2, for
k=0,...,n— 1. Hence, for almost every f € H), thesetof ¢ € P(C"+1) such that
@ is not defined at r = 0 has measure zero.

Similar to the preceding argument, for each k =0,...,n — 1, let Ay C (H) —
X)) x P(C"1y x P(C"+1) x P(C**1) x (0, 1) be the set of tuples (f, ¢, w, s) such
that Egs. (9) and (10) hold, and let IT7 : H ) x P(C"+!) x P(C"*1) x P(C"*!) x
(0, 1) — Hq) be the projection in the first coordinate. Then by Sard’s Lemma, almost
every f € Hg) is a regular value of the restriction 1 flag : Ax = Ha)- Therefore,
from Lemma 3, we conclude that for almost every f € Hg) the subset

el () = f[]?l(f) N A CP(C") x P(C™) x (0, 1)

is an empty set or a smooth submanifold of real dimension 2n + 1 — 2(n — k)2,
for k =0,...,n — 1. Then, projecting in the {-space we see that for almost every
f € Hw), the set of ¢ € P(C™*1Y such that @ is not defined at 7 € (0, 1) is a finite
union of measure zero sets. Moreover, since X' C H4) has measure zero, the proof
of the first statement of the proposition follows.

The second statement of Proposition 1 follows directly from proofs of the claims
of Lemma 2, and Lemma 3, and the subsequent analysis of dimensions. U

Remark The proof of Proposition 1 follows immediately from Fubini’s Theorem. But
we say more because this discussion may be useful for the discussion of the basins.
This proposition proves that the boundary of the basins are contained in this stratified
set, the structure of which should be persistent by the isotopy theorem (cf. [3]) on the
connected components of the complement of the critical values of the projection. We
do not know if there is more than one component.

3 Proof of Theorem 1

Let us first state the notation in the forthcoming computations. Most of the maps are
defined between Hermitian spaces, however, they are real differentiable. Therefore,
unless we mention the contrary, all derivatives are real derivatives. Moreover, if a
map is defined on P(C"*!) then is natural to restrict its derivative at ¢ to the complex
tangent space T;IP)((C”H). If L: E — F is alinear map between finite dimensional
Hermitian vector spaces, then its determinant, det(L), is the determinant of the linear
map L : E — Im(L), computed with respect to the associated canonical real struc-
tures, namely, the real part of the Hermitian product of E and the real part of the
FoCT
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inherited Hermitian product on Im(L) C F. The adjoint operator L* : F — E is also
computed with respect to the associated canonical real structures.

In general, if E is a set, Idg means the identity map defined on that set.

Since the set of triples (f, ¢, t) € Ha) X P(C"*1) x [0, 1] such thatt =0 orz = 1
has measure zero, we may assume in the rest of this section that ¢ € (0, 1).

Recall that @ : H ) x P(C**t1) x [0, 1] — V is the map given by

@(f7 Ca t) = (fl‘a Ct)a
where
<" §>dl
(¢, o)

and ¢; is the homotopy continuation of ¢ along the path f;.

For each ¢ € (0, 1), let &, : Hyy x P(C"™1) — V be the restriction @,(-,-) =
D(-, -, 1).

Recall that for each non-degenerate root n of 4, B(h, ) is the non-empty open set
of those ¢ € P(C"+1) such that the zero ¢ of I1; (h) continues to 1 for the homotopy
hy = (1 — )11 (h) + th.

Given h € Hgyand t € (0, 1), let H; : P(C"') — H gy x P(C"t),

<'9 ;)di
(¢, 0)

for all ¢ € P(C"+1). (We have suppressed the & for ease of notation.)

fz=f—(1—t)A( )f@),

A A A~ 1—1¢
H, (&)= (h/(),¢), and ht(c)=h+(7>A<

)h(;“), (11)

Lemma 4 Lett € (0, 1), and let (h,n) € V be a regular value of ®;. Then, the fiber
&, (h,n)"" is given by

@& (h, n) = H,(B(h, m)).

Proof For0 <t <1, we have (f,¢) € cD,_l(h, n), provided that

W) h=fi=tf +A =D (f);

(ii) the homotopy continuation of ¢ on the path {sh + (1 — s)I1; (f)}se[0,1] 18 7.
Since I1; (h) = I1; (f) we conclude that

1

1 —
f= ;(h — (1=t (b)) =h+ (Tt)(h — I (W),

and ¢ € B(h,n). 0

Proposition 3 Let (f,¢) € H) X P(C"*YY such that &, is defined and let (h,n) =
®,(f, ¢). Then the normal Jacobian of ®; is given by

Jacy (£)

_2n__ A 27
Nlg,(f.0) =t Nz, (h,0)’

where Jacb}t 0) = |det(DI:It(§))| is the Jacobian of the map I:It defined in (11).
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The proof of this proposition is divided in several lemmas and is left to the end of this
section.

Let us first recall the co-area formula. Let w : X — Y be a smooth surjective map
between Riemannian manifolds X and Y. If almost every y € Y is a regular value
of m, and ¢ : X — R is integrable, then

@(x) 1
dX = —d dy.
/xex #ix) /er fxe:r—l(y) NJp(x) ™0

In particular, the co-area formula for the projection 771 : V — H(4) and a function
¢V — Ryields

h
/q p(h,n)dV = (i 3 —ﬁﬁ—ﬁﬁl—)dh
(h,n)GV hEH(d) W/h(ﬁ)ZO NJJT] (hs T])

Proof of Theorem I Recall from Proposition 2 that (I) is defined by

O CD¥2 / / t/ w(fi, &)?
@m)Nvol(P(C"N) J ety Jeerorty Jrewon 1ol

< [T O a(le1=4) £ @) e M2 dr de d .

Then, for 0 < ¢ < 1, by the co-area formula for the map ®; : H ) x PC"ty > v,
and Proposition 3 we obtain

CD3/2 1 /’L(h n)Z
I = ‘/fM/ N Jy, (h,n)
27)N vol(B(C" 1)) o ey 2

~l(h,n)dVdr.

—d;
x/ T (OHITACUS )f(C)||e—||f||2/2d¢
£.0)€®; () Jac, (©)

If &,(f,¢)=(h,n), then f(¢)=~h(¢)/t and 1, (f) = I1;(h). From Lemma 4 we
find that, for all € (0, 1), I:Itlg(hm) :B(h,n) — Cbt_l(h, n) given by ¢ > (h,(2), 0),

A —1
is a parameterization of the fiber (Dt_l (h, n). Moreover, since ¢ = H; (f, {) when-
ever H;(¢) = (f, ¢), applying the change of variable formula we conclude that

CD?? _ w(h, n)?
I 2n— 1/ NJy. (h,
()<wwmmwwwf ey 2 ()

X / |7 | | A1 179 (o) [ 1O 2 4 avdr. (12)
¢eB(h)
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From the definition of ﬁ,(g’) in (11) and the reproducing kernel property of the Weyl
Hermitian product (5), we obtain

. 1—
|ac @) = 111? + 2(%) Re(h, A((¢, ¢) (-, £)")h(0))

1—1 2 —d: d: 2
+(T) lA(g, &)=, o))",
and then
A 1
|A:@) | = IR1)> - (1 - 72) la(lzl=4)r@)|). (13)
Therefore, from (12) and (13) we obtain
CD3/? w(h, n)? o2
=" _ O (h,n)N Jy, (h, 1217/2 qy) | 14
D= Gow f(h,mev gz O N T (e (19
where
1
O(h, n) = (1812 = [ Al I~ %)) )2

Vol(P(C™1)) Je e

< [A(IEI= @) | T (| A1 1= %) R(2) | /2) de,

and 7, (a) = fol (=1 Day=2n=1 4y
Now, the proof of Theorem 1 follows applying the co-area formula for the projec-
tiony : V — Hy. O

3.1 Proof of Proposition 3

The map fz, PC" 1y - H(a) givenin (11) is differentiable, and therefore I:I, is also
differentiable.

Lemma S Let (f,¢) € H) % P(C"*YY such that ®; is defined and let (h,n) =
D,(f,¢). Then

det{ DGty 0 B0)(he (¢). ¢) - [y, —(Dh ()], 1)")]]

NJa, (f,0) = . . ,
? det(Id, 1 +(Dhy(0)l;1)* Dhy (0|2 V>N ey (h, 1)

where (Idy,,, . —(Dﬁ,(§)|§L)*) cHay = Hay % T;P(C”“) is the linear map f
(f, =(Dhy(D)],2)* ).

Proof In general, let E1, E>, and V be finite dimensional vector spaces with inner
product. Assume that dim(V) = dim(E7), and let p : V — E; be an isomorphism.
Lety:Ey— Ejand «a: E; X E» — V be linear operators. Consider the following
FolCT
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diagram:
E| x E> —~ .y

<
dg, ,—y* -
(e, )<y',IdE2) P

E;q E> E;q

where (y,1dg,) : E; — E; X E».
Note that the image of the operator (Idg,, —y*) : E1 — E1 x E3 is the orthogonal
complement of (y, Id)(E>) in E1 x E;; therefore we get

det _|det(p-o - (dg,, —y™))|
‘ © (al((%ldEz)(Ez))J‘)‘ - |det(Id, +yy)|1/2|det(p)|

__ldet(p-a - (g, —y"))|
det(idg, +y*y)[1Idet(p)]

where the last equality follows by the Sylvester Theorem: if A and B are matrices of
size n X m and m x n, respectively, then

det(Id,, + BA) =det(Id, +AB). (15)

Now the proof follows taking Ey = H), E2 = TeP(C"), V = Ty.pV,
with the associated real inner products, y = Dﬁt(§)|§¢, a=D®(f,¢)and p =
Dmy(h,n). O

The derivative of /i, at ¢ € P(C"*!) in the direction ¢ € T,P(C"*1) is given by
N . 1—1¢ . .
Dhi(§)¢ = | —— | (Ke(©) + L (),

where K¢, L : T,P(C""1) — H(y) are given by

. )i .
K;@):A(((é_";))di)z)h(;);; (16)

. di (-, 0)=1(. ¢
L;(c)=A( g “)h(o, (17)

for all ¢ € T, P(C"1).

Lemma 6 The adjoint operators K;*, L™ : H) — T;IP’(C"“) are given by

K5 (f)=(Dh@)|2) A6, )~ £ (@), (18)
and
L*(f)=(DF©O)ler) A€, o)™ 4 ), (19)
forany f € Ha)-
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Proof By the definition of adjoint, the definition of K, and the reproducing kernel
property of the Weyl Hermitian product (5), we get

Re(K*(f), &) =IZIPRe(f, A((¢, )~ (-, )*) Dh(¢))
=Re(/(0), A((¢, )" Dr(0)E)
=Re{(DR(D)l;1) A5, )4 f(©), ¢).
Moreover, differentiating equation (5) with respect to ¢, we obtain for L *
Re(L*(f). &)= I¢IPRe(f. A((¢. &)™ di (. )%, 0)h(©))
=Re(Df(0)¢, A((6, )~ h(0)
=Re((Df(0)|;) A, ©) T h(2), ¢). 0
Lemma 7 One has

|det(1d, 1 +(Dhi()],1) DR (0,2

= (1 + (?)2%(@”;||—df)h(;>H2)2n

X

(%)%Dh(c)wm(u@||—df+1>2Dh(¢>;L)‘
1+ (D2 AW 121179 h () |12 '

det (Id Lt

Proof By direct computation we get
K¢ *Ky = (Dh(0)|,1) A((g. &) ) Dh(g)| 1
KLy =L K, =0.
Note that, if f = L;(é) for some ¢ € T;IP’(C”“), then, for all 6 € C", we get
(DF(@)2) 0 = (Re(®, A(di ¢ 172)h(D)))E .
Hence,

Le*Le = | AW~ )h@) |’ 1d,..

Therefore we get

2
(D)) DR ()], = (%) (K¢"Kp +Le"Ly)

1—1\° . ,
= (%) ((DR@)],2) A 124+ DR (&)«
+ AW 1174 | 1d, 1),
The proof follows. U
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Lemma 8 One has

|det[ D@y 0 @) (h(2). ¢) - (Idgy, . —(Dhe(2)],2)")]]
= |det(Id, + +(Dhs(0)|,1)* Dhy ()] 1)|*".

Proof First we find an expression for the term inside the determinant. For short, let

¥ = D(1 0 @) (hi(0),¢) - (Idpty — (DAO)],1)Y).

One gets

('v;)di) .
— o d, —(1—-1A , 20
|: f(7T1 )(f, C)](f) f—-a-n <(§,§)di f @) (20)

and

) .
[&(m O@z)(f,é“)](é“)

() z>d> (d-(- ¢>df—1<-,é>) ]
=—(1—1t D A . 21
( )[ (<z,;> ()¢ + ey f(©) (21)

Since 7 (£)(¢) = h(¢)/t, and D[h()1(©)|gr = Dh(¢)l, 1, from (20) and (21)
we get

v =f—(- )A(< “d')f(;)
(¢, ¢)
£y

.
1— A
o ”[ <<: X

¢
+A(di< )4 (( (D>h (O f) )h(f)]’

)Dh@)m(Dﬁt(z)m)*f

for all f € Ha). That is, with the notation K, and L, given in (16) and (17), we get

d; —
wih=7=a=n|a( 55 ) fo - (S Kelket + L) |

1—1¢
+( . )L;(K; + L") f 22)

forall f € Ha)-

Note that ¢ = Idy, —L, for a certain operator L. Therefore det(y) =
det((Idy @ —L)|imz), where last determinant must be understood as the determinant
of the linear operator (IdH( 2 —L)|ime :ImL — Im L.
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The image of £ is decomposed into two orthogonal subspaces, namely:

C.=1A <" ;)di . _ T ni\.
= Vs a:a= (ay,...,ay) €C"};
(¢, )4
R; = {L;(w) CwE T;IP’((C”H)}.

Note that ImnK; = C; CkerL;* and ImL; = Ry Cker K. *.
Consider the linear map
('9§>di

- C" Ce, by=A| ————
R S <<¢,§>df

)A(||§||df)b, beC"

Note that 7= (A2 0) = A(I¢ %) a. Si
ote that T (A(; =g )a) = A([[€|7%)a. Since

(-, ¢)% »
LAY

we conclude that 7 is a linear isometry between C" and C;.

Let
n:LP(C) >R, n() lacans e
Since
| Lew)| = }IA(/dT||c||‘d")h(:>H||%||l’

for all w € T,P(C"*!), we find that 7 is a linear isometry between T P(C"*!) and
R;.
Let I1c, ¢ and TR,y be the orthogonal projections on C; and R, respectively.
Then | det(v)| is equal to the absolute value of the determinant of

A B
C D)’
WhereA:‘L'_loHC“NC{o‘L’,B:‘L'_loHC“HRC on,C=n"

D=n"'oMg Y|r on.
Straightforward computation shows that

Yo Mg, ¥lc, ot and

1_ § % —:
A=t 1o+ S A=) D) s (DB 1) A1)
(-1 a i _
B= A= )h@) | A1) DRl 3
C= (%) | AN @) [ (D@1 )" A 1741
Fol T
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D (1+<1 )HA(fll;ll“’l)M{)H)

Since D is invertible, we may write

A BY_(A-BD7'C B\ (I O
C D)~ 0 D) \p7'c 1)’

=det Ddet(A — BD~10).

hence det(é g)
Thus,

|det(y)]
= tz"(l + (%)zlm(/d?u;||—"f)h<c>\}2)2n

(1 DA ™4 D)L (DR(E) | )* Al | d“))

X det Id n
( . L+ (02 AW I 179 h (@) 2

Observe that
(DR@)1e2)* A1) DR()]
= (A(llz I Dr@) L) (A2 17T DR(£)] ).
Then, the proof follows from Lemma 7 and the Sylvester Theorem (15). U

Proof of Proposition 3 The Jacobian of H, : P(C"!) > Hay x P(C*t1) at ¢ is
given by

|det(Id{L +(Dflt(§)|¢L)*Dflz(§)|gl)|1/2'

Then, the proof follows from Lemmas 5 and 8. U

4 Proof of Theorem 2 and Theorem 3
4.1 Proof of Theorem 2
Recall that
6n(6) = | | [ 2 = T |2, (| = 1T ()] /2).

where Z,, () = fol e(=1" D =2n=14;

In order to prove Theorem 2 we need some extra notation. Denote by S>'*! the
unit sphere in C"*! = R?>*+D_ For all k € N, let o : R* — R be the norm function
ox(x) = ||x||. Given a measurable function ¢ : R*¥ — R, let us denote by Eg« (¢) the
expected value with respect to the standard Gaussian measure on R¥, i.e

1
]ERk((p) = W /I\%k (p(x)e_||xl|2/2 d_x

FoE r"'I
@ Springer jo E|



Found Comput Math

Lemma 9 Let W be a complex vector space of dimension m with an Hermitian

product (-, -)w. Denote ||w| = /{w, w)w. Then, for every integrable function Vr :
R — R one has

f y \//(||w||)€_”w”2/2 dw = Egon (¥ 0 02,).
we

Q2m)m
Proof If wy,...,wy, is an orthonormal basis of (W, (-, -)w), then, wy,..., wy,
iwi,...,Lw, is an orthonormal basis of the associated 2m-dimensional real vector

space, namely W, with the real inner product Re(-, -)y . Define the linear map A :
Wr — R?m, by A(wy) = ek, and A(iwy) = ek, Where ei is the kth element of the
standard orthonormal basis of R, A straightforward computation shows that A is a
(real) linear isometry. Then the lemma follows by the change of variable formula. [J

Lemma 10 Let p > 1. Then
Er ) (||9h | Zp) = Egav-n) (Gzp(N—n))ERZ" (02’2%” (Gzzn /2))'

Proof Given the canonical projection $2*+! — P(C"*1), by the co-area formula we

get

1 1

27 vol(P(C*t1)) J, esontt
Recall that V, = {f € H@u) : f(w) =0} and C,, is the Hermitian comple-

ment of V,, and that IT, : Hy) — Vy and II|c, are the orthogonal projec-

tions onto V,, and C,, respectively. Then we may write H) =V, @ Cy. De-

note by () = aZ,(a?/2). Then 6, (w) = [Ty, (W) 1Y (1T |c, (W)]). Since [|A]* =

| [Ty, (h)||> + || [Tc,, (h)||?, by Fubini’s Theorem we get

164117, = On(w)? dw. (23)

—llgl?/2

; pe—nhnz/z " ) e~ lIr1%/2 ; e .
/he’}—((d) h(w) (27T)N _/;‘evw ”f” (ZJT)N_n fLeCwW(“g”) (27‘[)" 8-

Since V,, and C,, are complex vector spaces with an Hermitian product of di-
mensions N — n and n, respectively, the proof follows interchanging in (23) the in-
tegral sign with the sign of expectation, Lemma 9 and the fact that vol(S>"*+!) =
27 vol(P(C™ ). O

Lemma 11 Let p > 1. With the above definitions, one has

(1) Egav-n (UﬁN—n)) = 2P/2W'
2
(i) Egan (02’;1”!’(022”/2)) = % %5)/2)’ where the equality holds for p = 1.

Proof (1): By definition, and integrating by polar coordinates, we have

p - p,—lxl?/2
Egev-m (03 y_py) = e /R - | x]|Pe dx
VOl(sZ(N—n)—l) 400

@m)N= o

Y _ 2
p2N=m=1 0 =072 g,
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Then performing the change of variable u = p?/2 we obtain

VOl(sZ(N—n)—l)zN—n-i-p/Z—l

By 2-1
Egawv-m (02(N-n)) = / uN=rtp2=lg=uqy
0

(ZJT)N_”
VO](SZ(N—n)—l)ZN—rH-p/Z—I
= PESNET I'(N—n+ p/2).
The‘gssertion fc?l}ows from the fact that vol(S¥) = 2%.
(i1) By definition of Z,,, we have
1 i
Egon (07 T,7 (03,/2)) = / 2 B (02, " T2 Y a1, (24)
0
Then, for fixed r € (0, 1),
Epon (azlilep(l_r%)(’%"/z) _ ﬁ / lx ”pel’(l—t%)||x||2/26—||x||2/2 dx
T R2n

_ vol(s> ™l e 1 pp =B g
Qo) Jo

Now, performing the change of variable u = (t% —(p—1)p?/2, we get

12 VOI(sZn—l)zn-l-p/Z—l
Egon (0], e"' 7 1270/%) = r 2
wn (o ) Q2m)" (5 —(p—D)yrte/2 nep

_ (2 02 I'(n+p/2)
~(p—12(p—1)rte/? I’ (n)

Since t € (0, 1), and p > 1, we have the bound p — t2(p — 1) > 1, and hence

Eg2n (Uf ep(l_t%)gzz"/z) < 2ntrop/? —F(n +r/2)
" I'(n)
(where the equality holds for p = 1). Then the proof follows from (24). U
Proof of Theorem 2 The proof follows from Lemmas 10 and 11. U

4.2 Proof of Theorem 3

Proposition 4 Let p,qg > 1 such that 1/p+1/q =1.1If 1 <q <2, then we have

M < cnwp[ﬁ I(N—n+p/2) I+ p/z)]”f’
I'(N —n) I'(n)

F'(N+1) I'(n*>+n—gq) 2%+2 3 14
I'(N+1—q) I'(n®*+n) 4-2q '
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Proof Consider on V the following density measure:
dpy = 2m) VDN Iy, (h, e I gy,

By the co-area formula we see that this measure is a probability measure on V.
From (14), the definition of & in (7), and Fubini’s Theorem, we obtain

h 2
m=cp¥2p [ FED 60 0 dp
SEE

h,n)? A
5003/293f M@(h)dpv
v Al

DD ( / ph, m)?
vol(P(C"+1)) Jpeny \Jy |12

On (i)dpv) dg.

The function 6, (¢), as a function defined on V, is constant and equal to || 11, (h)||||h —
I (W Z,(lh — I (h) ?/2) on the fiber of the projection 71 : V — Ha)-
For p,g > O such that 1/p 4+ 1/q = 1, Holder inequality on (V, dpy) yields

CD3?*D w(h, ) >1/q (/ )l/p
D < ——— —d a) P4 de.
M= vol(P(Cr+1Y) P(@H)(/V e Py g h(£)" dpy ¢

Then, applying Fubini’s Theorem and taking the canonical projection 7y : V —
H(a) we get by the co-area formula

CD*D w2 (b, \\
(Dfﬂ)l/q“/f’(EH@( 2 i ))
n/h(n)=0

1

- p 1/p
% vol(P(Cr+1)) P(C,,H)(DEHM) (Qh(o )) de,

where, abusing notation, we denote

2q 2q

M (h,n)) 1 f |: M (h,ﬂ):| —h12/2
E E — | = E ————|e dh.
”““( 127 ) = @oN Jiewy, Tz

n/h(n)=0 n/h(n)=0

From the proof of Lemma 10 we see that ]EH( 0 (0n(2)?) is independent of ¢ €
P(C*t1). Then

B (On(0)7) = EH g (16117 5)

and hence

2q 1/q
w2 (h, )
(I)SCD3/2@1/p<]EH(d)< > 7)) B, (164117,)"7. (25)

L
n/h(m=0
FolCT
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In Beltran—Shub [7] (see also Beltran—Pardo [6]) it is proved that, for 0 < o < 4,
we (h, m)
o ( 2 e
n/h(n)=0

- FIN+1)  T*4n—a/2)2°7 5 o
n .
- I'(N+1—-«a/2) I'(n?+n) 4—a

(26)

Now the proof follows from (25), (26) and Theorem 2. ]

Proof of Theorem 3 The Gamma function I"(x), for x > 0, is logarithmic convex
(see Artin [1]). Then it is an easy exercise to check that I"(x + 1/2) < \/xI"(x), for
all x > 0.

Let p =3 and g = 3/2. Then applying this inequality to Proposition 4 yields

1) <C'D*?*DNny/N —n+1/2/n+1/2,

where C’ = C213/33=1/3 Then, the result of the theorem follows from the trivial
bound N—n+1/2<Nandn+1/2<(3/2)n. O

5 Numerical Experiments

In this section we present some numerical experiments for n = 1 and d = 7 that were
performed by Carlos Beltrdn on the Altamira supercomputer at the Universidad de
Cantabria.

Recall from Theorem 1 that

O h, n) = (1112 = | A (I I~ )2

vol(P(C"1)) Jeenmn.n)
< [ A 17)R@) | T (| A1) (@) |7 /2) de,

where 7, (o) = fol e(=1"ay=2n=1 4y

Table 1 concerns a degree 7 polynomial /, chosen at random with the Bombieri—
Weyl distribution. The condition numbers . (h, ), @ (h, n) and vol(B(h, n)), at each
root 1 of h are computed.

Table 1 Degree 7 random

polynomial Roots in C u(h, ) O(h,-) vol(B(h,-))

3.260883 — i1.658800 1.712852  0.4733570  0.1405097
—2.357860 —i1.329208  1.738380  0.5502839  0.138576x
—0.210068 +i1.868947  1.608231  0.5049662  0.144054x
0.227994 —i0.782004 1.909433  0.4914771  0.125685w
—0.044701 +i0.384342  3.231554  1.003594 0.147277x
—0.308283 +10.049618  3.183603  0.8892611  0.1524337w
0.213950 — i0.068700 2.948318  0.8426484  0.1514667
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Basins of atraction in the plane Basins of attraction in the plane, zoom around 0 and unit drcle
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Fig. 2 The basins B(h,n) in C and in the Riemann sphere of the degree 7 random polynomial (GNU
Octave) (Color figure online)

The data of the chosen random polynomial is given by

a7 = —0.152840 —i0.757630,
ae = 1.283080 4 i0.357670,
as = 2.000560 + i3.302700,
as = 13.004500 4 i0.203300,
az = —1.138140 4 i7.094290,
ar =3.110090 + i2.618830,
a1 =0.282940 4+ —i0.276260,
ao = —0.316220 4 i0.036590.

One gets ||h]| =2.9631.

In Fig. 2 we have plotted, using GNU Octave, the basins B(k, n) at each root n of
the chosen random polynomial /4 are plotted, in C and in the Riemann sphere.

In Table 2 the same quantities are computed for the polynomial given by ag = —1,
ay=ay=---=ae =0, a7 = 1. In this case the roots are the seventh roots of unity,
and it is not difficult to see that the actual values of w(k, n), ® (h, n), and vol(B(h, 1))
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_ 77
Table2 £(z0,21) =2 —2g Roots in C wh)  OM vol(B(h, -))

—0.900969 +i0.433884  3.023716  0.7035899  0.128982x
—0.900969 —i0.433884  3.023716  0.8354068  0.153846x
—0.222521 +i0.974928  3.023716  0.7405610  0.135198x
—0.222521 —i0.974928  3.023716  0.7549753  0.141414r
1.000000 + 70.000000 3.023716  0.9128278  0.1569547
0.623490 4-i0.781831 3.023716  0.6800328  0.1351987
0.623490 —i0.781831 3.023716  0.8122845  0.148407w

Basins of atraction in the plane Basins of attraction in the plane, zoom around 0 and unit circle
20 I T T T T T T 3 T T 1 T T
o e :
* e *

20 — 1

40 - — 0

60 - -1

80 - - 2

-100 | ] | | 1 | | 3
60 -50 40 -30 -20 -10 O 10 20 -

08 1171717171 08
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08060402 0 02 0.4 06 0.8 08060402 0 02 0.4 06 08

Fig. 3 The basins B(h, n) in C and in the Riemann sphere for 4 (zq, z1) = ZY - Z(7) (GNU Octave) (Color
figure online)

are constant at the roots of 4 by symmetry; cf. Fig. 3. This example illustrates the
extent of the accuracy of the computations.

In this case we get ||| = V2.

The errors for the root of unity case in the third column are of the order of 25 %.
But 25 % does not seem enough to explain the variation in the computed quantities in
the third column of the random example where the ratio of the max to min is greater
than 2. So it is likely that they are not all equal. On the other hand, the ratios of
the volumes of the basins in the fourth columns of the random and roots of unity
examples do seem of the same order of magnitude. So perhaps for n =1 they are
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all equal? Also, the graphics of the basins are very encouraging in the random case.
There appear to be seven connected regions with a root in each. So there is some hope
that this is true in general. That is, there may generically be a root in each connected
component of the basins. This would be very interesting and would be a very good
start for understanding the integrals. It would be good to have some more experiments
and even better some theorems.

Acknowledgements Michael Shub was supported by CONICET PIP 0801 2010-2012 and ANPCyT
PICT 2010-00681. Diego Armentano was partially supported by Grupo de Investigaciéon “Sistemas
Dindmicos” (Comisién Sectorial de Investigacion Cientifica (CSIC), Nro. 618). This paper was partially
funded by Mathamsud grant “Complexity”.

References

—

E. Artin, The Gamma Function (Holt, Rinehart and Winston, New York, 1964).
2. R. Abraham, J. Robbin, Transversal Mappings and Flows (Benjamin, New York, 1967).
3. V.. Arnold, S.M. Gusein-Zade, A.N. Varchenko, Singularities of Differentiable Maps, vol. 1
(Birkhauser, Basel, 1985).
4. C. Beltran, A continuation method to solve polynomial systems and its complexity, Numer. Math.
117(1), 89-113 (2011).
5. C. Beltran, L.M. Pardo, Smale’s 17th problem: average polynomial time to compute affine and pro-
jective solutions, J. Am. Math. Soc. 22(2), 363-385 (2009).
6. C.Beltran, L.M. Pardo, Fast linear homotopy to find approximate zeros of polynomial systems, Found.
Comput. Math. 11(1), 95-129 (2011).
7. C. Beltrdn, M. Shub, A note on the finite variance of the averaging function for polynomial system
solving, Found. Comput. Math. 10(1), 115-125 (2010).
8. L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and Real Computation (Springer, New York,
1998).
9. P. Biirgisser, F. Cucker, On a problem posed by Steve Smale, Ann. Math. 174(3), 1785-1836 (2011).
10. J.-P. Dedieu, G. Malajovich, M. Shub, Adaptative step size selection for homotopy methods to solve
polynomial equations, IMAJNA 33(1), 1-29 (2013).
11. M. Fernandez, L.M. Pardo, An arithmetic Poisson formula for the multi-variate resultant, J. Complex-
ity (2013). doi:10.1016/j.jc0.2013.04.005.
12. M.-H. Kim, M. Martens, S. Sutherland, Bounds for the cost of root finding (2011). arXiv:0903.
3674.
13. J. Renegar, On the efficiency of Newton’s method in approximating all zeros of a system of complex
polynomials, Math. Oper. Res. 12(1), 121-148 (1987).
14. M. Shub, Complexity of Bezout’s theorem. VI. Geodesics in the condition (number) metric, Found.
Comput. Math. 9(2), 171-178 (2009).
15. M. Shub, S. Smale, Complexity of Bézout’s theorem. I. Geometric aspects, J. Am. Math. Soc. 6(2),
459-501 (1993).
16. M. Shub, S. Smale, Complexity of Bezout’s theorem. II. Volumes and probabilities, in Computational
Algebraic Geometry. Progr. Math., vol. 109, Nice, 1992 (Birkhduser, Boston, 1993), pp. 267-285.
17. M. Shub, S. Smale, Complexity of Bezout’s theorem. III. Condition number and packing, J. Complex.
9(1), 4-14 (1993).
18. M. Shub, S. Smale, Complexity of Bezout’s theorem. I'V. Probability of success; extensions, SIAM J.
Numer. Anal. 33(1), 128-148 (1996).
19. S. Smale, The fundamental theorem of algebra and complexity theory, Bull., New Ser., Am. Math. Soc.
4(1), 1-36 (1981).
20. S. Smale, Mathematical Problems for the Next Century, Mathematics: Frontiers and Perspectives
(Amer. Math. Soc., Providence, 2000), pp. 271-294.
21. H. Weyl, The Classical Groups. Their Invariants and Representations (Princeton University Press,
Princeton, 1939).

FolCT
iy
@Springer 04



