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Abstract In his 1981 Fundamental Theorem of Algebra paper Steve Smale initiated
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1 Introduction and Main Result

1.1 Introduction and Preliminaries

In his 1981 paper [19] Steve Smale initiated the complexity theory of finding a so-
lution of polynomial equations of one complex variable by a variant of Newton’s
method. More specifically he considered the affine space Pd of monic polynomials
of degree d ,

f (z) =
d∑

i=0
aiz

i, ad = 1 and ai ∈ C (i = 0, . . . , d − 1).

He identified Pd with C
d , with coordinates (a0, . . . , ad−1) ∈ C

d . In Pd he considered
the polydisk

Q1 = {
f ∈ Pd : |ai | < 1, i = 0, . . . , d − 1}

to have finite volume and he obtained a probability space by normalizing the volume
to 1. The algorithm he analyzed is given by the following. Let 0 < h ≤ 1 and let
z0 = 0. Inductively define zn = Th(zn−1) where Th is the modified Newton’s method
for f given by Th(z) = z − h

f (z)
f ′(z) .

His eponymous main theorem was:

Main Theorem There is a universal polynomial S(d,1/μ) and a function h =
h(d,μ) such that for degree d and μ, 0 < μ < 1, the following is true with prob-
ability 1− μ. Let x0 = 0. Then xn = Th(xn−1) is defined for all n > 0 and xs is an
approximate zero for f where s = S(d,1/μ).

In [19], that xs is an approximate zero meant that there is an x∗ such that
f (x∗) = 0, xn → x∗ and |f (xj+1)|

|f (xj )| < 1
2 , for j ≥ s, where xk+1 = xk − f (xk)

f ′(xk)
. That

is, xk+1 is defined by the usual Newton’s method for f . Smale mentions that the

polynomial S may be taken to be 100(d+2)9
μ7

. The notion of approximate zero was
changed in later papers (see Blum et al. [8] for the later version or Sect. 1.2). The
new version incorporates immediate quadratic convergence of Newton’s method on
an approximate zero. In the remainder of this paper an approximate zero refers to the
new version.
Note that 1

μ7
is not finitely integrable, so Smale’s initial algorithm was not proven

to be finite average time or cost when the upper bound is averaged over the polydisk
Q1 (see Blum et al. [8, pp. 208, Proposition 2]).
A tremendous amount of work has been done in the last 30 years following on

Smale’s initial contribution, much too much to survey here. Let us mention a few of
the main changes. In one variable a lot of work has been done concerning the choice
of good starting point z0 for Smale’s algorithm other than zero. See Chaps. 8 and 9
of Blum et al. [8] and references in the commentary on Chap. 9. The latest work in
this direction is Kim–Martens–Sutherland [12].
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Fig. 1 The curve zt , 0≤ t ≤ 1, is the branch of f −1(L) containing z0

Smale’s algorithm may be given the following interpretation. For z0 ∈ C, consider
ft = f − (1− t)f (z0), for 0≤ t ≤ 1. The polynomial ft has the same degree as f ,
z0 is a zero of f0 and f1 = f . So, we analytically continue z0 to zt a zero of ft . For
t = 1 we arrive at a zero of f . Newton’s method is then used to produce a discrete
numerical approximation to the path (ft , zt ).
If we view f as a mapping from C to C, then the curve zt is the branch of the in-

verse image of the line segment L = {tf (z0) : 0≤ t ≤ 1}, containing z0. (See Fig. 1.)
Here are several of the changes made in the intervening years. Renegar [13] con-

sidered systems of n-complex polynomials in n-variables, without the restriction to
be monic. Given a degree d , we let Pd stands for the vector space of degree d poly-
nomials in n complex variables

Pd =
{
f : f (z) =

∑
‖α‖≤d

aαzα

}
,

where α = (α1, . . . , αn) ∈ Nn is a multi-index, ‖α‖ = ∑d
k=1 αk , zα = z

α1
1 · · · zαn

n ,
aα ∈ C. We have suppressed the n for ease of notation. It should be understood from
the context.
For (d) = (d1, . . . , dn), let P(d) = Pd1 × · · · × Pdn so f = (f1, . . . , fn) ∈ P(d) is a

system of n polynomial equations in n complex variables and fi has degree di .
As Smale’s, Renegar’s results were not finite average cost or time. In a series of

papers Shub and Smale [15–18], made some further changes and achieved enough
results for Smale’s 17th problem to emerge a reasonable if challenging research goal.
Let us recall the 17th problem from Smale [20]:

Problem 17 Solving Polynomial Equations.
Can a zero of n complex polynomial equations in n unknowns be found approxi-

mately, on the average, in polynomial time with a uniform algorithm?

In place of P(d) it is natural to consider H(d) = Hd1 × · · ·× Hdn , where Hdi
is the

vector space of homogeneous polynomials of degree di in n + 1 complex variables.
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The map

idi
: Pdi

→ Hdi
, idi

(f )(z0, . . . , zn) = z
di

0 f

(
z1

z0
, . . . ,

zn

z0

)
,

is an isomorphism and i : P(d) → H(d) for i= (id1 , . . . , idn) is an isomorphism.
For f ∈ H(d) and λ ∈ C,

f (λζ ) = Δ
(
λdi

)
f (ζ ),

whereΔ(ai)means the diagonal matrix whose ith diagonal entry is ai . Thus the zeros
of f ∈ H(d) are now complex lines so may be considered as points in projective space
P(Cn+1).
The affine chart

j : C
n → P

(
C

n+1), j(ζ1, . . . , ζn) = C(1 : ζ1 : · · · : ζn),

maps the zeros of f ∈ P(d) to zeros of i(f ) ∈ H(d). In addition i(f ) may have zeros
at infinity, i.e., zeros with ζ0 = 0.
From now on we consider H(d) and P(Cn+1). On Hdi

we put a unitarily invariant
Hermitian structure which we first encountered in the book [21] by Hermann Weyl
and which is sometimes called Weyl, Bombieri–Weyl or Kostlan Hermitian structure
depending on the applications considered.
For α = (α0, . . . , αn) ∈ N

n+1, ‖α‖ = di , and the monomial zα = z
α0
0 · · · zαn

n , the
Weyl Hermitian structure makes 〈zα, zβ〉 = 0, for α �= β and

〈
zα, zα

〉 =
(

di

α

)−1
=

(
di !

α0! · · ·αn!
)−1

.

On H(d) we put the product structure

〈f,g〉 =
n∑

i=1
〈fi, gi〉.

On C
n+1 we put the usual Hermitian structure

〈x, y〉 =
n∑

k=0
xk yk.

Given a complex vector space V with Hermitian structure and a vector 0 �= v ∈ V ,
we let v⊥ be the Hermitian complement of v,

v⊥ = {
w ∈ V : 〈v,w〉 = 0}.

The subspace v⊥ is a model for the tangent space, TvP(V ), of the projective space
P(V ) at the equivalence class of v (which we also denote by v).
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The tangent space TvP(V ) inherits an Hermitian structure from 〈·, ·〉 by the for-
mula

〈w1,w2〉v = 〈w1,w2〉
〈v, v〉 ,

where w1,w2 ∈ v⊥ represent the tangent vectors at TvP(V ).
This Hermitian structure which is well defined is called the Fubini–Study Hermi-

tian structure.
The group of unitary transformations U (n + 1) acts on H(d) and C

n+1 by f 
→
f ◦ U−1 and ζ 
→ Uζ for U ∈ U (n + 1).
This unitary action preserves the Hermitian structure on H(d) and C

n+1, see Blum
et al. [8]. That is, for U ∈ U (n + 1),

〈
f ◦ U−1, g ◦ U−1〉 = 〈f,g〉 for f,g ∈ H(d);〈

Uζ,Uζ ′〉 = 〈
ζ, ζ ′〉 for ζ, ζ ′ ∈ C

n+1.

The zeros of λf and f for 0 �= λ ∈ C are the same, and we may consider the space
P(H(d)). Now the space of problem instances is compact and the space P(Cn+1) is
compact as well. The set P(H(d)) has a unitarily invariant Hermitian structure which

gives rise to a volume form of finite volume πN−1
Γ (N)

, where N = dimH(d).
The average of a function φ : P(H(d)) → R is

EP(H(d))(φ) = 1

vol(P(H(d)))

∫
f ∈P(H(d))

φ(f )df = Γ (N)

πN−1

∫
f ∈P(H(d))

φ(f )df.

If φ is induced by a homogeneous function φ : H(d) → R of degree zero, that is,
φ(λf ) = φ(f ), λ ∈ C − {0}, then we may also compute this average with respect to
the Gaussian measure on (H(d), 〈·, ·〉), that is,

EH(d)
(φ) = 1

(2π)N

∫
H(d)

φ(f )e−‖f ‖2/2 df. (1)

It is this approach via the Gaussians above defined on H(d) and the Fubini–Study
Hermitian structure and volume form on P(Cn+1), which we take in this paper. The
quantities we define on H(d) are homogeneous of degree zero, thus are defined on
P(H(d)) and benefit from the compactness of this space and of P(Cn+1). While aver-
ages over systems of equations may be carried out in the vector space H(d).
The solution variety

V = {
(f, x) ∈ (

H(d) − {0}) × P
(
C

n+1) : f (x) = 0}
is a central object of study. It is equipped with two projections

V

H(d) P
(
C

n+1)
�

�
��

π1 �
���

π2
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The solution variety V also has a projective version, namely,

VP = {
(f, x) ∈ P(H(d)) × P

(
C

n+1) : f (x) = 0}.
1.2 Homotopy Methods

Homotopy methods for the solution of a system f ∈ H(d) proceed as follows. Choose
(g, ζ ) ∈ V a known pair. Connect g to f by a C1 curve ft in H(d), 0≤ t ≤ 1, such that
f0 = g, f1 = f , and continue ζ0 = ζ to ζt such that ft (ζt ) = 0, so that f1(ζ1) = 0.
The critical values of the projection of V on H(d) − {0} are an algebraic subvariety,
Σ , of H(d) − {0} of complex codimension 1, called the discriminant variety. By the
transversality theorem (see Abraham–Robbin [2]) a generic set of C1 curves ft do
not intersect Σ . If a curve is in this generic set and f0(ζ0) = 0, then by the implicit
function theorem we may continue ζ0 to ζt , 0 ≤ t ≤ 1, such that ft (ζt ) = 0. See
Smale [19] for this type of argument. Indeed almost all “straight line” paths in H(d)

do not intersect Σ , again by a transversality argument, so if ζ0 is a nondegenerate
zero of g then for almost all f , ζ0 may be continued to a zero of f along the curve
ft = (1− t)g + tf . We do not use this generality in this paper so we leave the above
assertions as a sketch. In Proposition 1 we prove a precise version of the fact that the
homotopies we consider in this paper may be almost always continued.
Now homotopy methods numerically approximate the path (ft , ζt ). One way to

accomplish the approximation is via (projective) Newton’s methods. Given an ap-
proximation xt to ζt define

xt+�t = Nft+�t (xt ),

where

Nf (x) = x − (
Df (x)|x⊥

)−1
f (x).

That xt is an approximate zero of ft associated with the zero ζt means that the
sequence of Newton iterative Nk

ft
(xt ) converges immediately quadratically to ζt .

The main result of Shub [14] is that �t may be chosen so that t0 = 0, tk = tk−1 +
�tk , xtk is an approximate zero of ftk with associated zero ζtk , and tK = 1 for

K = K(f,g, ζ ) ≤ CD3/2
∫ 1

0
μ(ft , ζt )

∥∥(ḟt , ζ̇t )
∥∥

(ft ,ζt )
dt. (2)

Here C is a universal constant, D =maxdi ,

μ(f, ζ ) = ‖f ‖∥∥(
Df (ζ )|ζ⊥

)−1
Δ

(‖ζ‖di−1√di

)∥∥
is the condition number of f at ζ , and

∥∥(ḟt , ζ̇t )
∥∥

(ft ,ζt )
= (‖ḟt‖f 2t

+ ‖ζ̇t‖ζ 2t

)1/2
is the norm of the tangent vector to the projected curve in (ft , ζt ) in VP ⊂ P(H(d)) ×
P(Cn+1). The choice of �tk is made explicit in Dedieu–Malajovich–Shub [10] and
Beltrán [4].
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In VP, ‖ζ̇t‖ζt ≤ μ(ft , ζt )‖ḟt‖ft , so the estimates (2) may be bounded from above
by

K(f,g, ζ ) ≤ CD3/2
∫ 1

0
μ(ft , ζt )

2‖ḟt‖ft dt, (3)

for a perhaps different universal constant C.
Finally in the case of straight line homotopy ‖ḟt‖ft = sin(θ)‖f0‖‖f1‖

‖ft‖2 , where θ is the
angle between f0 and f1. So (3) may be rewritten as

K(f,g, ζ ) ≤ CD3/2 sin(θ)‖f0‖‖f1‖
∫ 1

0

μ(ft , ζt )
2

‖ft‖2 dt, (4)

see Bürgisser–Cucker [9], where (4) is a principal part of the analysis and where the
increments Δtk , which exhibit the right-hand side of (4) as an upper bound, are also
made explicit.
Much attention has been devoted to studying the right hand of (4), for a good

starting point (g, ζ ).
In Beltrán–Pardo [5], an affirmative probabilistic solution to Smale’s 17th problem

is proven. They prove that a random point (g, ζ ) is good in the sense that with random
fixed starting point (g, ζ ) = (f0, ζ0) the average value of the right hand side of (4)
is bounded by O(nN). Moreover, Beltrán and Pardo show how to pick a random
starting point starting from a random n × (n + 1) matrix.
In [9], Bürgisser–Cucker exhibit a deterministic algorithm for Smale’s 17th prob-

lem which is polynomial average cost, except for a narrow range of dimensions. More
precisely:

There is a deterministic real number algorithm that on input f ∈ H(d) com-
putes an approximate zero of f in average time NO(log logN), where N =
dimH(d) measures the size of the input f . Moreover, if we restrict data to
polynomials satisfying

D ≤ n
1
1+ε , or D ≥ n1+ε,

for some fixed ε > 0, then the average time of the algorithm is polynomial in
the input size N .

So Smale’s 17th problem in its deterministic form remains open for a narrow range
of degrees and variables.

The caseD ≤ n
1
1+ε is dealt with by Bürgisser–Cucker by constructing a good start-

ing point for a homotopy method while the case D ≥ n1+ε is dealt with differently.
Our Theorem 3 shows that we may use the homotopy method suggested by Smale’s
algorithm, described in the next section, in this range of dimensions and conclude a
polynomial result as well.

1.3 Smale’s Algorithm Reconsidered

Smale’s 1981 algorithm depends on f (0), so there is no fixed starting point for all sys-
tems. Given ζ ∈ P(Cn+1) we define for f ∈ H(d) the straight line segment ft ∈ H(d),
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0≤ t ≤ 1, by

ft = f − (1− t)Δ

( 〈·, ζ 〉di

〈ζ, ζ 〉di

)
f (ζ ).

So f0(ζ ) = 0 and f1 = f . Therefore we may apply homotopy methods to this line

segment. (Here Δ(
〈·,ζ 〉di

〈ζ,ζ 〉di
) must be understood as a matrix of functions and f (ζ ) as a

vector of constants which multiply the functions according to matrix vector multipli-
cation.)
Note that if we restrict f to the affine chart ζ + ζ⊥ then

ft (z) = f (z) − (1− t)f (ζ ),

and if we take ζ = (1,0, . . . ,0) and n = 1 we recover Smale’s algorithm.
There is no reason to single out ζ = (1,0, . . . ,0). Since the unitary group acts

by isometries on P(H(d)), P(Cn+1), V and VP, and preserves μ and is transitive on
P(Cn+1), all the points ζ yield algorithms with the same average cost.
Note that if we let

Vζ = {
f ∈ H(d) : f (ζ ) = 0},

then

f0 = f − Δ

( 〈·, ζ 〉di

〈ζ, ζ 〉di

)
f (ζ )

is the orthogonal projection Πζ (f ) of f on Vζ . This follows from the reproducing
kernel property of the Weyl Hermitian product on Hdi

, namely,

〈
g, 〈·, ζ 〉di

〉 = g(ζ ), (5)

for all g ∈ Hdi
(i = 1, . . . , n). In particular ‖〈·, ζ 〉di ‖ = ‖ζ‖di .

Then, ∥∥f − Πζ (f )
∥∥ = ∥∥�

(‖ζ‖−di
)
f (ζ )

∥∥,

while ∥∥Πζ (f )
∥∥ = (‖f ‖2 − ∥∥�

(‖ζ‖−di
)
f (ζ )

∥∥2)1/2.
Let Φ : H(d) × P(Cn+1) × [0,1] → V be the map given by

Φ(f, ζ, t) = (ft , ζt ), (6)

where

ft = (1− t)Πζ (f ) + tf,

that is,

ft = f − (1− t)Δ

( 〈·, ζ 〉di

〈ζ, ζ 〉di

)
f (ζ ),

and ζt is the homotopy continuation of ζ along the path ft .
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Proposition 1 For almost every f ∈ H(d), the set of ζ ∈ P(Cn+1) such that Φ is
defined for all t ∈ [0,1] has full measure.Moreover, for every ζ ∈ P(Cn+1), the set of
f ∈ H(d) such that Φ is defined for all t ∈ [0,1] has full measure.

Remark In fact, the proof also shows that the complement of the set (f, ζ ) such that
Φ is defined for all t ∈ [0,1] is a real algebraic set. The proof of Proposition 1 is in
Sect. 2.

The norm of ḟt is given now by the formula

‖ḟt‖ft = ‖f0‖‖f1‖ sin(θ)

‖ft‖2 = ‖Πζ (f )‖‖f − Πζ (f )‖
‖ft‖2

= (‖f ‖2 − ‖Δ(‖ζ‖−di )f (ζ )‖2)1/2‖Δ(‖ζ‖−di )f (ζ )‖
‖ft‖2 .

Let T (f, ζ ) = K(f,Πζ (f ), ζ ) and Tζ (f ) = T (f, ζ ). Then, the average cost of this
algorithm satisfies

Proposition 2

EH(d)
(Tζ ) = EH(d)×P(Cn+1)(T ) ≤ (I),

where

(I) = CD3/2

(2π)N vol(P(Cn+1))

∫
f ∈H(d)

∫
ζ∈P(Cn+1)

∫
t∈[0,1]

μ(ft , ζt )
2

‖ft‖2

× (‖f ‖2 − ∥∥Δ
(‖ζ‖−di

)
f (ζ )

∥∥2)1/2∥∥Δ
(‖ζ‖−di

)
f (ζ )

∥∥e−‖f ‖2/2 df dζ dt.

As we have mentioned above, it is easily seen, by unitary invariance of all the
quantities involved, that the average EH(d)

(Tζ ) on H(d) is independent of ζ and equal
to EH(d)×P(Cn+1)(T ). This argument proves the first equality of this proposition. The

inequality follows immediately from the definition of T (f, ζ ).
What is gained by letting ζ vary and dividing by vol(P(Cn+1)) is that a new way

to see the integral leads to new theorems and interesting questions.
Suppose η is a non-degenerate zero of h ∈ H(d). We define the basin of η, B(h,η),

as those ζ ∈ P(Cn+1) such that the zero ζ of h − Δ(
〈·,ζ 〉di

〈ζ,ζ 〉di
)h(ζ ) continues to η for

the homotopy ht . From the proof of Proposition 1 we observe that the basins are open
sets.
Let (I) be the expression defined in Proposition 2. Then, the main result of this

paper is:

Theorem 1 (Main Theorem)

(I) = CD3/2

(2π)N

∫
h∈H(d)

[ ∑
η/h(η)=0

μ2(h, η)

‖h‖2 Θ(h,η)

]
e−‖h‖2/2 dh,
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where

Θ(h,η) = 1

vol(P(Cn+1))

∫
ζ∈B(h,η)

θh(ζ )dζ,

θh(ζ ) = (‖h‖2 − ∥∥Δ
(‖ζ‖−di

)
h(ζ )

∥∥2)1/2
× ∥∥Δ

(‖ζ‖−di
)
h(ζ )

∥∥In

(∥∥Δ
(‖ζ‖−di

)
h(ζ )

∥∥2/2),
and In(α) = ∫ 1

0 e(1−t−2)αt−2n−1 dt .

From Proposition 1 we find that the function Θ , defined in the statement of Theo-
rem 1, is defined for almost every pair (h, η) ∈ V .
Summing Θ(h,η) over the roots of h we let Θ̂(h) = ∑

η/h(η)=0Θ(h,η), and for
almost all h we have

Θ̂(h) = 1

vol(P(Cn+1))

∫
ζ∈P(Cn+1)

θh(ζ )dζ. (7)

That is, Θ̂(h) = ‖θh‖L1 .
More generally, for p > 1, consider the Lp-norm of θh

‖θh‖p
Lp = 1

vol(P(Cn+1))

∫
ζ∈P(Cn+1)

θh(ζ )p dζ. (8)

The next theorem shows that the average of ‖θh‖p
Lp over H(d), for all p ≥ 1, is

polynomial in N .

Theorem 2

EH(d)

(‖θh‖p
Lp

) ≤ 2p

p

Γ (N − n + p/2)

Γ (N − n)

Γ (n + p/2)

Γ (n)
.

(The equality holds for p = 1.)
Theorem 3

(I) ≤ 18CD3/2Dn3/2N3/2.

That is, (I) is polynomial in the Bézout number and the input size, N , and poly-
nomial in the input size alone for any range of dimensions where the Bézout number
D is polynomial in N .
Since our method of proof of Theorem 3 relies on Theorem 2, where the basins

are not taking into account, it is possible that Smale’s algorithm is polynomial cost in
all dimensions.
Understanding the basins better might lead to a proof of such a theorem. The

integral

1

(2π)N

∫
h∈H(d)

∑
η/h(η)=0

μ2(h, η)

‖h‖2 e−‖h‖2/2 dh ≤ e(n + 1)
2

D,
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where D = d1 · · ·dn is the Bézout number (see Bürgisser–Cucker [9]). So the ques-
tion is how does the factor Θ(h,η) affect the integral.1

From Theorem 2, the expected value of Θ̂(h) = ‖θh‖L1 is controlled, then, if the
integral on the D basins are reasonably balanced, the factor of D in Theorem 3 and
the integral above may cancel.

Remark The proof of Theorem 1 involves complicated formulas which exhibit enor-
mous cancellations. We do not have a good explanation for these cancellations.

At the end of the paper we present some numerical experiments with n = 1 and
d = 7 which were done by Carlos Beltrán on the Altamira super computer at the
Universidad de Cantabria (partially supported by MTM2010-16051 Spanish Min-
istry of Science and Innovation MICINN). We thank Carlos and the Universidad de
Cantabria. We also thanks Gregorio Malajovich for many useful discussions and San-
tiago Laplagne for having done some more experiments. It would be interesting to see
more experimental data. The proof of Theorem 1 is in Sect. 3, and the proofs of The-
orems 2 and 3 are in Sect. 4.

2 Proof of Proposition 1

For the proof of Proposition 1 we need a technical lemma.

Lemma 1 Let E be a vector bundle over B , F be finite dimensional vector space,
and consider the trivial vector bundle F ×B . Let ϕ : F ×B → E be a smooth bundle
map, covering the identity in B , which is a fiberwise surjective linear map. Then, ϕ
is a surjective submersion.

The proof is left to the reader.
Recall that Φ : H(d) × P(Cn+1) × [0,1] → V is the map given by

Φ(f, ζ, t) = (ft , ζt ),

where

ft = f − (1− t)Δ

( 〈·, ζ 〉di

〈ζ, ζ 〉di

)
f (ζ ),

and ζt is the homotopy continuation of ζ along the path ft .

1In an earlier version of this paper we asked:
(d) Evaluate or estimate∫

ζ∈P(Cn+1)
1

‖Δ(‖ζ‖−di )h(ζ )‖2n−1 e‖Δ(‖ζ‖−di )h(ζ )‖2/2 dζ.

It is easy to see, as in the proof of Theorem 2, that the expected value of this integral over H(d) is infinite.
In Fernandez–Pardo [11] the authors consider the more meaningful average over the unit sphere of H(d)

and get a precise formula for it. Our initial goal in asking question (d) was to get an upper-bound estimate
of the integral we now evaluate in Theorem 2.
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This map is defined at (f, ζ, t) provided that rank(Dfs(ζs)|ζ⊥
s

) = n, for all s ∈
[0, t].
Let K be the vector bundle over C

n+1 − {0} with fiber Kz = L(z⊥,C
n), z ∈

C
n+1 − {0}, where L(z⊥,C

n) is the space of linear transformations from z⊥ to C
n.

For k = 0, . . . , n, let Kk be the sub-bundle of rank k linear transformations. Note that
Kk has (n − k)2 complex codimension (cf. [3]). These sub-bundles define a stratifi-
cation of the bundle K .

Lemma 2 Let Ω(0) be the set of pairs (f, ζ ) ∈ H(d) × P(Cn+1) such that
rank(Df0(ζ )|ζ⊥) < n, where (f0, ζ ) = Φ(f, ζ,0). Then Ω(0) is a stratified set of
smooth manifolds of complex codimension (n − k)2, for k = 0, . . . , n − 1.

Proof Let Ω̂(0) be the inverse image of Ω(0) under the canonical projection H(d) ×
(Cn+1 − {0}) → H(d) × P(Cn+1).
Let ϕ : H(d) × (Cn+1 − {0}) → K be the map ϕ(f, ζ ) = Df (ζ )|ζ⊥ . For each

k = 0, . . . , n − 1, let Ω̂
(0)
k = ϕ−1(Kk). Since Df0(ζ )|ζ⊥ = Df (ζ )|ζ⊥ , then Ω̂(0) =⋃n−1

k=0 Ω̂
(0)
k .

Claim: ϕ is transversal to Kk for k = 0, . . . , n − 1:
Note that ϕ(f, ·) : C

n+1 − {0} → K is a section of the vector bundle K for each
f ∈ H(d). Moreover, for each ζ ∈ C

n+1−{0}, the linear map ϕ(·, ζ ) : H(d) → Kζ is a
surjective linear map. This fact follows by construction: given L ∈ Kζ = L(ζ⊥,C

n),
let L̃ ∈ L(Cn+1,C

n) be any linear extension of L to C
n+1. Then, the system

f = Δ(
〈·,ζ 〉di−1
〈ζ,ζ 〉di−1 )L̃(·) ∈ H(d) satisfy Df (ζ )|ζ⊥ = L. Then, the claim follows from

Lemma 1.
Since ϕ is transversal, we conclude that the inverse image of a stratification is

a stratification of the same codimension (cf. [3]). That is, Ω̂(0) is a stratification of
smooth submanifolds of complex codimension (n − k)2, for k = 0, . . . , n − 1. (The
leaves of the strata are not analytic submanifolds since their definition relies on com-
plex conjugation but they are real analytic submanifolds whose tangent space is mod-
elled by a complex vector space at each point.)
Moreover, since each strata Ω̂

(0)
k contains the fiber of the canonical projection

H(d) × (Cn+1−{0}) → H(d) ×P(Cn+1), then, its image,Ω(0)
k , is a smooth manifold

of codimension (n − k)2, and the lemma follows. �

One can define the homotopy continuation of the pair (f, ζ ) ∈ H(d) × P(Cn+1)
for all t ∈ [0,1] whenever (f, ζ ) /∈ Ω(0) and lies outside the subset of pairs such that
there exist (w, t) ∈ P(Cn+1) × (0,1] satisfying the following equations:

f (w) = (1− t)Δ

( 〈w,ζ 〉di

〈ζ, ζ 〉di

)
f (ζ ), and rank

(
Dft(w)|w⊥

)
< n.

Note that, since ft is homogeneous, rank(Dft (w)|w⊥) is well defined on w ∈
P(Cn+1).
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Differentiating ft we get

Dft(w) = Df (w) − (1− t)Δ

(
di〈w,ζ 〉di−1〈·, ζ 〉

〈ζ, ζ 〉di

)
f (ζ ).

Therefore, taking s = 1− t , we conclude that one can define the homotopy contin-
uation of the pair (f, ζ ) ∈ H(d) × P(Cn+1) for all t ∈ [0,1] whenever (f, ζ ) /∈ Ω(0)

and lies outside the subset of pairs such that there exist (w, s) ∈ P(Cn+1) × [0,1)
satisfying, for some k = 0, . . . , n − 1, the following equations:

Δ
(〈ζ, ζ 〉di

)
f (w) − sΔ

(〈w,ζ 〉di
)
f (ζ ) = 0, (9)

rank
([

Δ
(〈ζ, ζ 〉di

)
Df (w) − sΔ

(
di〈w,ζ 〉di−1〈·, ζ 〉)f (ζ )

]∣∣
w⊥

) = k. (10)

LetΣ ′ ⊂ V be the set of critical points of the projection π1 : V → H(d). Recall that
Σ = π1(Σ

′) ⊂ H(d) is the discriminant variety. If (f,w) ∈ Σ ′ then w is a degenerate
root of f , that is, rank(Df (w)|w⊥) < n (cf. Blum et al. [8]).
Note that if f ∈ Σ then every ζ ∈ P(Cn+1) satisfies equations (9) and (10) for

s = 0 and w ∈ P(Cn+1) a degenerate root of f . Hence, it is natural to remove the
discriminant variety Σ and the case s = 0 from this discussion.

Lemma 3 Let Λ ⊂ (H(d) − Σ) × P(Cn+1) × P(Cn+1) × (0,1) be the set of tuples
(f, ζ,w, s) such that Eqs. (9) and (10) holds for some k = 0, . . . , n − 1. Then, Λ

is stratified set of smooth manifolds of real codimension 2(n + (n − k)2) for k =
0, . . . , n − 1.

Proof Similar to the preceding proof, for each k = 0, . . . , n − 1, we consider the set
Λ̂k ⊂ (H(d) − Σ) × (Cn+1 − {0}) × (Cn+1 − {0}) × (0,1) of tuples (f, ζ,w, s) such
that equations (9) and (10) holds.
Let (f, ζ,w, s) ∈ Λ̂k for some k ∈ {0, . . . , n − 1}. Since f /∈ Σ then 〈w,ζ 〉 �= 0.

Therefore from (9), equation (10) takes the form

rank
((〈w,ζ 〉Df (w) − �(di)f (w)〈·, ζ 〉)∣∣

w⊥
) = k,

for k = 0, . . . , n − 1.
Let

F = (F1,F2) : (H(d) − Σ) × (
C

n+1 − {0}) × (
C

n+1 − {0}) × (0,1) → C
n × K

be the map defined by

F1(f, ζ,w, s) = Δ
(〈ζ, ζ 〉di

)
f (w) − sΔ

(〈w,ζ 〉di
)
f (ζ ) ∈ C

n,

F2(f, ζ,w, s) = (
w,

(〈w,ζ 〉Df (w) − Δ(di)f (w)〈·, ζ 〉)|w⊥
) ∈ K.

Note that Λ̂k = F−1({0} × Kk).
Claim: F is transversal to {0} × Kk :
In fact, what we prove is that DF is surjective at any point (f, ζ,w, s) which F

maps into {0} × Kk , for any k = 0, . . . , n − 1, that is, any point in Λ̂k .
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Recall that Vζ = {f ∈ H(d) : f (ζ ) = 0}. Consider the orthogonal decomposition
H(d) = Vζ ⊕ Cζ , where Cζ = Vζ

⊥.
Let (f, ζ,w, s) ∈ Λ̂k . We first prove that DF1(f, ζ,w, s)|Cζ : Cζ → C

n is surjec-
tive.
Note that the linear map ξ : C

n → Cζ given by ξ(a) = Δ(
〈·,ζ 〉di

〈ζ,ζ 〉di
)a, is an isomor-

phism, where ξ−1 : Cζ → Cn is given by ξ−1(f ) = f (ζ ). Then, under this identifi-
cation, the restriction to Cζ of the derivative of F1 is the linear map given by

DF1(f, ζ,w, s)|Cζ = (1− s)Δ
(〈w,ζ 〉di

)
,

for all tuples (f, ζ,w, s). Moreover, since (f, ζ,w, s) ∈ Λ̂k , then 〈w,ζ 〉 �= 0 and
s �= 1, hence DF1(f, ζ,w, s)|Cζ is onto.
Now we prove that DF2(f, ζ,w, s)|Vζ ×TwP(Cn+1) is surjective onto the tangent

space TF2(f,ζ,w,s)K , at every (f, ζ,w, s) ∈ Λ̂k .
Note that the map F2(f, ζ, ·, s) : C

n+1 − {0} → K is a section of the vector
bundle K . Therefore, from Lemma 1, it is enough to prove that F2(·, ζ,w, s) :
H(d) → Kw is a surjective linear map.
Fix a tuple (f, ζ,w, s) ∈ Λ̂k , for some k = 0, . . . , n − 1. The unitary group

U (n + 1) acts by isometries on (H(d) − Σ) × (Cn+1 − {0}) × (Cn+1 − {0}) × (0,1)
by U · (f, ζ,w, s) = (f ◦ U−1,U(ζ ),U(w), s), and leave Λ̂k invariant. Therefore
we may assume that w = e0. Write fi(z) = ∑

‖α‖=di
a

(i)
α zα (i = 1, . . . , n). Then, the

linear map F2(·, ζ, e0, s) : H(d) → Ke0 is given by

F2(f, ζ, e0, s) = ((
ζ0a

(i)
(di−1,vj ) − dia

(i)
(di ,0,...,0)

ζj

))
i,j=1,...,n,

where vj is the n-vector with the j -entry equal to 1 and the other entries equal to 0.
In particular, since ζ0 �= 0, the restriction F2(·, ζ, e0, s) : Vζ → Ke0 is surjective,

concluding the claim.
Then, since F is transversal to {0} × Kk , we conclude that Λ̂k = F−1({0} × Kk)

is a submanifold of real codimension 2(n + (n − k)2), for k = 0, . . . , n − 1.
To end the proof, we note that Λ̂k contains the fiber of the canonical projection

(H(d) − Σ) × (Cn+1 − {0}) × (Cn+1 − {0}) × (0,1) → (H(d) − Σ) × P(Cn+1) ×
P(Cn+1) × (0,1). �

Let Π : H(d) × P(Cn+1) × P(Cn+1) × (0,1) → H(d) × P(Cn+1) be the canonical
projection

Π(f, ζ,w, s) = (f, ζ ).

Then, from Lemmas 2 and 3 the set of pairs (f, ζ ) ∈ H(d) × P(Cn+1) such that the
homotopy is not defined for all t ∈ [0,1] is contained by the union

Ω(0) ∪ Π(Λ) ∪ Σ × P
(
C

n+1) ⊂ H(d) × P
(
C

n+1).
Remark We could conclude the proof by Fubini’s Theorem. But we give a different
argument. See the remark at the end.
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Proof of Proposition 1 For k = 0, . . . , n−1, letΩ(0)
k ⊂ H(d) ×P(Cn+1) be the subset

given in the proof of Lemma 2, and let π̂1 : H(d) ×P(Cn+1) → H(d) be the projection
in the first coordinate. From Sard’s Lemma we see that almost every f ∈ H(d) is a

regular value of the restriction π̂1|Ω(0)
k

: Ω
(0)
k → H(d), for each k = 0, . . . , n − 1.

Therefore, from Lemma 2, we conclude that for almost every f ∈ H(d) the subset

π̂1|Ω(0)
k

−1
(f ) = π̂−1

1 (f ) ∩ Ω
(0)
k ⊂ P

(
C

n+1)

is an empty set or a smooth submanifold of complex dimension n − (n − k)2, for
k = 0, . . . , n − 1. Hence, for almost every f ∈ H(d), the set of ζ ∈ P(Cn+1) such that
Φ is not defined at t = 0 has measure zero.
Similar to the preceding argument, for each k = 0, . . . , n − 1, let Λk ⊂ (H(d) −

Σ) × P(Cn+1) × P(Cn+1) × P(Cn+1) × (0,1) be the set of tuples (f, ζ,w, s) such
that Eqs. (9) and (10) hold, and let Π̂f : H(d) × P(Cn+1) × P(Cn+1) × P(Cn+1) ×
(0,1) → H(d) be the projection in the first coordinate. Then by Sard’s Lemma, almost
every f ∈ H(d) is a regular value of the restriction Π̂f |Λk

: Λk → H(d). Therefore,
from Lemma 3, we conclude that for almost every f ∈ H(d) the subset

Π̂f |−1Λk
(f ) = Π̂−1

f (f ) ∩ Λk ⊂ P
(
C

n+1) × P
(
C

n+1) × (0,1)

is an empty set or a smooth submanifold of real dimension 2n + 1 − 2(n − k)2,
for k = 0, . . . , n − 1. Then, projecting in the ζ -space we see that for almost every
f ∈ H(d), the set of ζ ∈ P(Cn+1) such that Φ is not defined at t ∈ (0,1) is a finite
union of measure zero sets. Moreover, since Σ ⊂ H(d) has measure zero, the proof
of the first statement of the proposition follows.
The second statement of Proposition 1 follows directly from proofs of the claims

of Lemma 2, and Lemma 3, and the subsequent analysis of dimensions. �

Remark The proof of Proposition 1 follows immediately from Fubini’s Theorem. But
we say more because this discussion may be useful for the discussion of the basins.
This proposition proves that the boundary of the basins are contained in this stratified
set, the structure of which should be persistent by the isotopy theorem (cf. [3]) on the
connected components of the complement of the critical values of the projection. We
do not know if there is more than one component.

3 Proof of Theorem 1

Let us first state the notation in the forthcoming computations. Most of the maps are
defined between Hermitian spaces, however, they are real differentiable. Therefore,
unless we mention the contrary, all derivatives are real derivatives. Moreover, if a
map is defined on P(Cn+1) then is natural to restrict its derivative at ζ to the complex
tangent space Tζ P(Cn+1). If L : E → F is a linear map between finite dimensional
Hermitian vector spaces, then its determinant, det(L), is the determinant of the linear
map L : E → Im(L), computed with respect to the associated canonical real struc-
tures, namely, the real part of the Hermitian product of E and the real part of the
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inherited Hermitian product on Im(L) ⊂ F . The adjoint operator L∗ : F → E is also
computed with respect to the associated canonical real structures.
In general, if E is a set, IdE means the identity map defined on that set.
Since the set of triples (f, ζ, t) ∈ H(d) × P(Cn+1) × [0,1] such that t = 0 or t = 1

has measure zero, we may assume in the rest of this section that t ∈ (0,1).
Recall that Φ : H(d) × P(Cn+1) × [0,1] → V is the map given by

Φ(f, ζ, t) = (ft , ζt ),

where

ft = f − (1− t)Δ

( 〈·, ζ 〉di

〈ζ, ζ 〉di

)
f (ζ ),

and ζt is the homotopy continuation of ζ along the path ft .
For each t ∈ (0,1), let Φt : H(d) × P(Cn+1) → V be the restriction Φt(·, ·) =

Φ(·, ·, t).
Recall that for each non-degenerate root η of h, B(h,η) is the non-empty open set

of those ζ ∈ P(Cn+1) such that the zero ζ of Πζ (h) continues to η for the homotopy
ht = (1− t)Πζ (h) + th.
Given h ∈ H(d) and t ∈ (0,1), let Ĥt : P(Cn+1) → H(d) × P(Cn+1),

Ĥt (ζ ) = (
ĥt (ζ ), ζ

)
, and ĥt (ζ ) = h +

(
1− t

t

)
Δ

( 〈·, ζ 〉di

〈ζ, ζ 〉di

)
h(ζ ), (11)

for all ζ ∈ P(Cn+1). (We have suppressed the h for ease of notation.)

Lemma 4 Let t ∈ (0,1), and let (h, η) ∈ V be a regular value of Φt . Then, the fiber
Φt(h,η)−1 is given by

Φ−1
t (h, η) = Ĥt

(
B(h,η)

)
.

Proof For 0< t < 1, we have (f, ζ ) ∈ Φ−1
t (h, η), provided that

(i) h = ft = tf + (1− t)Πζ (f );
(ii) the homotopy continuation of ζ on the path {sh + (1− s)Πζ (f )}s∈[0,1] is η.

Since Πζ (h) = Πζ (f ) we conclude that

f = 1

t

(
h − (1− t)Πζ (h)

) = h +
(
1− t

t

)(
h − Πζ (h)

)
,

and ζ ∈ B(h,η). �

Proposition 3 Let (f, ζ ) ∈ H(d) × P(Cn+1) such that Φt is defined and let (h, η) =
Φt(f, ζ ). Then the normal Jacobian of Φt is given by

NJΦt (f, ζ ) = t2n
Jac

Ĥt
(ζ )

NJπ1(h, η)
,

where Jac
Ĥt

(ζ ) = |det(DĤt (ζ ))| is the Jacobian of the map Ĥt defined in (11).
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The proof of this proposition is divided in several lemmas and is left to the end of this
section.
Let us first recall the co-area formula. Let π : X → Y be a smooth surjective map

between Riemannian manifolds X and Y . If almost every y ∈ Y is a regular value
of π , and ϕ : X → R is integrable, then

∫
x∈X

ϕ(x)dX =
∫

y∈Y

∫
x∈π−1(y)

ϕ(x)

NJπ(x)
dπ−1(y)dY.

In particular, the co-area formula for the projection π1 : V → H(d) and a function
ϕ : V → R yields

∫
(h,η)∈V

ϕ(h,η)dV =
∫

h∈H(d)

( ∑
η/h(η)=0

ϕ(h,η)

NJπ1(h, η)

)
dh.

Proof of Theorem 1 Recall from Proposition 2 that (I) is defined by

(I) = CD3/2

(2π)N vol(P(Cn+1))

∫
f ∈H(d)

∫
ζ∈P(Cn+1)

∫
t∈[0,1]

μ(ft , ζt )
2

‖ft‖2

× ∥∥Πζ (f )
∥∥∥∥Δ

(‖ζ‖−di
)
f (ζ )

∥∥e−‖f ‖2/2 dt dζ df.

Then, for 0< t < 1, by the co-area formula for the map Φt : H(d) × P(Cn+1) → V ,
and Proposition 3 we obtain

(I) = CD3/2

(2π)N vol(P(Cn+1))

∫ 1

0
t−2n

∫
(h,η)∈V

μ(h,η)2

‖h‖2 NJπ1(h, η)

×
∫

(f,ζ )∈Φ−1
t (h,η)

‖Πζ (f )‖‖Δ(‖ζ‖−di )f (ζ )‖
Jac

Ĥt
(ζ )

e−‖f ‖2/2 dΦ−1
t (h, η)dV dt.

If Φt(f, ζ ) = (h, η), then f (ζ ) = h(ζ )/t and Πζ (f ) = Πζ (h). From Lemma 4 we
find that, for all t ∈ (0,1), Ĥt |B(h,η) : B(h,η) → Φ−1

t (h, η) given by ζ 
→ (ĥt (ζ ), ζ ),

is a parameterization of the fiber Φ−1
t (h, η). Moreover, since ζ = Ĥt

−1
(f, ζ ) when-

ever Ĥt (ζ ) = (f, ζ ), applying the change of variable formula we conclude that

(I) = CD3/2

(2π)N vol(P(Cn+1))

∫ 1

0
t−2n−1

∫
(h,η)∈V

μ(h,η)2

‖h‖2 NJπ1(h, η)

×
∫

ζ∈B(h,η)

∥∥Πζ (h)
∥∥∥∥Δ

(‖ζ‖−di
)
h(ζ )

∥∥e−‖ĥt (ζ )‖2/2 dζ dV dt. (12)
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From the definition of ĥt (ζ ) in (11) and the reproducing kernel property of the Weyl
Hermitian product (5), we obtain

∥∥ĥt (ζ )
∥∥2 = ‖h‖2 + 2

(
1− t

t

)
Re

〈
h,Δ

(〈ζ, ζ 〉−di 〈·, ζ 〉di
)
h(ζ )

〉

+
(
1− t

t

)2∥∥Δ
(〈ζ, ζ 〉−di 〈·, ζ 〉di

)
h(ζ )

∥∥2,
and then

∥∥ĥt (ζ )
∥∥2 = ‖h‖2 −

(
1− 1

t2

)∥∥Δ
(‖ζ‖−di

)
h(ζ )

∥∥2. (13)

Therefore, from (12) and (13) we obtain

(I) = CD3/2

(2π)N

∫
(h,η)∈V

μ(h,η)2

‖h‖2 Θ(h,η)NJπ1(h, η)e−‖h‖2/2 dV , (14)

where

Θ(h,η) = 1

vol(P(Cn+1))

∫
ζ∈B(h,η)

(‖h‖2 − ∥∥Δ
(‖ζ‖−di

)
h(ζ )

∥∥2)1/2

× ∥∥Δ
(‖ζ‖−di

)
h(ζ )

∥∥In

(∥∥Δ
(‖ζ‖−di

)
h(ζ )

∥∥2/2)dζ,

and In(α) = ∫ 1
0 e(1−t−2)αt−2n−1 dt .

Now, the proof of Theorem 1 follows applying the co-area formula for the projec-
tion π1 : V → H(d). �

3.1 Proof of Proposition 3

The map ĥt : P(Cn+1) → H(d) given in (11) is differentiable, and therefore Ĥt is also
differentiable.

Lemma 5 Let (f, ζ ) ∈ H(d) × P(Cn+1) such that Φt is defined and let (h, η) =
Φt(f, ζ ). Then

NJΦt (f, ζ ) = |det[D(π1 ◦ Φt)(ĥt (ζ ), ζ ) · (IdH(d)
,−(Dĥt (ζ )|ζ⊥)∗)]|

|det(Idζ⊥ +(Dĥt (ζ )|ζ⊥)∗Dĥt (ζ ))|ζ⊥|1/2NJπ1(h, η)
,

where (IdH(d)
,−(Dĥt (ζ )|ζ⊥)∗) : H(d) → H(d) × Tζ P(Cn+1) is the linear map ḟ 
→

(ḟ ,−(Dĥt (ζ )|ζ⊥)∗ḟ ).

Proof In general, let E1, E2, and V be finite dimensional vector spaces with inner
product. Assume that dim(V ) = dim(E1), and let p : V → E1 be an isomorphism.
Let γ : E2 → E1 and α : E1 × E2 → V be linear operators. Consider the following
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diagram:

E1 × E2 V

E1 E2 E1

�α

�

p

�

�

�

�

�

�

�

�

�

�

�

�(
IdE1 ,−γ ∗) 	

(γ,IdE2 )

where (γ, IdE2) : E2 → E1 × E2.
Note that the image of the operator (IdE1,−γ ∗) : E1 → E1×E2 is the orthogonal

complement of (γ, Id)(E2) in E1 × E2; therefore we get

∣∣det(α|((γ,IdE2 )(E2))
⊥)

∣∣ = |det(p · α · (IdE1,−γ ∗))|
|det(IdE1 +γ γ ∗)|1/2|det(p)|

= |det(p · α · (IdE1,−γ ∗))|
|det(IdE2 +γ ∗γ )|1/2|det(p)| ,

where the last equality follows by the Sylvester Theorem: if A and B are matrices of
size n × m and m × n, respectively, then

det(Idm +BA) = det(Idn +AB). (15)

Now the proof follows taking E1 = H(d), E2 = Tζ P(Cn+1), V = T(h,η)V ,
with the associated real inner products, γ = Dĥt (ζ )|ζ⊥ , α = DΦt(f, ζ ) and p =
Dπ1(h, η). �

The derivative of ĥt at ζ ∈ P(Cn+1) in the direction ζ̇ ∈ Tζ P(Cn+1) is given by

Dĥt (ζ )ζ̇ =
(
1− t

t

)(
Kζ (ζ̇ ) + Lζ (ζ̇ )

)
,

where Kζ ,Lζ : Tζ P(Cn+1) → H(d) are given by

Kζ (ζ̇ ) = Δ

( 〈·, ζ 〉di

〈ζ, ζ 〉di

)
Dh(ζ )ζ̇ ; (16)

Lζ (ζ̇ ) = Δ

(
di〈·, ζ 〉di−1〈·, ζ̇ 〉

〈ζ, ζ 〉di

)
h(ζ ), (17)

for all ζ̇ ∈ Tζ P(Cn+1).

Lemma 6 The adjoint operators Kζ
∗,Lζ

∗ : H(d) → Tζ P(Cn+1) are given by

Kζ
∗(ḟ ) = (

Dh(ζ )|ζ⊥
)∗

Δ
(〈ζ, ζ 〉−di+1)ḟ (ζ ), (18)

and

Lζ
∗(ḟ ) = (

Dḟ (ζ )|ζ⊥
)∗

Δ
(〈ζ, ζ 〉−di+1)h(ζ ), (19)

for any ḟ ∈ H(d).
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Proof By the definition of adjoint, the definition of Kζ and the reproducing kernel
property of the Weyl Hermitian product (5), we get

Re
〈
Kζ

∗(ḟ ), ζ̇
〉 = ‖ζ‖2 Re〈ḟ ,Δ

(〈ζ, ζ 〉−di 〈·, ζ 〉di
)
Dh(ζ )ζ̇

〉
= Re〈ḟ (ζ ),Δ

(〈ζ, ζ 〉−di+1)Dh(ζ )ζ̇
〉

= Re〈(Dh(ζ )|ζ⊥
)∗

Δ
(〈ζ, ζ 〉−di+1)ḟ (ζ ), ζ̇

〉
.

Moreover, differentiating equation (5) with respect to ζ , we obtain for Lζ
∗

Re
〈
Lζ

∗(ḟ ), ζ̇
〉 = ‖ζ‖2 Re〈ḟ ,Δ

(〈ζ, ζ 〉−di di〈·, ζ 〉di−1〈·, ζ̇ 〉)h(ζ )
〉

= Re〈Dḟ (ζ )ζ̇ ,Δ
(〈ζ, ζ 〉−di+1)h(ζ )

〉
= Re〈(Dḟ (ζ )|ζ⊥

)∗
Δ

(〈ζ, ζ 〉−di+1)h(ζ ), ζ̇
〉
. �

Lemma 7 One has
∣∣det(Idζ⊥ +(

Dĥt (ζ )|ζ⊥
)∗

Dĥt (ζ )|ζ⊥
)∣∣

=
(
1+

(
1− t

t

)2∥∥Δ
(√

di‖ζ‖−di
)
h(ζ )

∥∥2)2n

×
∣∣∣∣det

(
Idζ⊥ + ( 1−t

t
)2(Dh(ζ )|ζ⊥)∗Δ(‖ζ‖−di+1)2Dh(ζ )ζ⊥

1+ ( 1−t
t

)2‖Δ(
√

di‖ζ‖−di )h(ζ )‖2
)∣∣∣∣.

Proof By direct computation we get

Kζ
∗Kζ = (

Dh(ζ )|ζ⊥
)∗

Δ
(〈ζ, ζ 〉−di+1)Dh(ζ )|ζ⊥;

Kζ
∗Lζ = Lζ

∗Kζ = 0.
Note that, if ḟ = Lζ (ζ̇ ) for some ζ̇ ∈ Tζ P(Cn+1), then, for all θ ∈ C

n, we get

(
Dḟ (ζ )|ζ⊥

)∗
θ = (

Re
〈
θ,Δ

(
di‖ζ‖−2)h(ζ )

〉)
ζ̇ .

Hence,

Lζ
∗Lζ = ∥∥Δ

(√
di‖ζ‖−di

)
h(ζ )

∥∥2 Idζ⊥ .

Therefore we get

(
Dĥt (ζ )|ζ⊥

)∗
Dĥt (ζ )

∣∣
ζ⊥ =

(
1− t

t

)2(
Kζ

∗Kζ + Lζ
∗Lζ

)

=
(
1− t

t

)2((
Dh(ζ )|ζ⊥

)∗
Δ

(‖ζ‖−2di+2)Dh(ζ )|ζ⊥

+ ∥∥Δ
(√

di‖ζ‖−di
)
h(ζ )

∥∥2 Idζ⊥
)
.

The proof follows. �
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Lemma 8 One has

∣∣det[D(π1 ◦ Φt)
(
ĥt (ζ ), ζ

) · (IdH(d)
,−(

Dĥt (ζ )|ζ⊥
)∗)]∣∣

= ∣∣det(Idζ⊥ +(
Dĥt (ζ )|ζ⊥

)∗
Dĥt (ζ )|ζ⊥

)∣∣t2n.
Proof First we find an expression for the term inside the determinant. For short, let

ψ = D(π1 ◦ Φt)
(
ĥt (ζ ), ζ

) · (IdH(d)
,−(

Dĥt (ζ )|ζ⊥
)∗)

.

One gets

[
∂

∂f
(π1 ◦ Φt)(f, ζ )

]
(ḟ ) = ḟ − (1− t)Δ

( 〈·, ζ 〉di

〈ζ, ζ 〉di

)
ḟ (ζ ), (20)

and
[

∂

∂ζ
(π1 ◦ Φt)(f, ζ )

]
(ζ̇ )

= −(1− t)

[
Δ

( 〈·, ζ 〉di

〈ζ, ζ 〉di

)
Df (ζ )ζ̇ + Δ

(
di〈·, ζ 〉di−1〈·, ζ̇ 〉

〈ζ, ζ 〉di

)
f (ζ )

]
. (21)

Since ĥt (ζ )(ζ ) = h(ζ )/t , and D[ĥt (ζ )](ζ )|ζ⊥ = Dh(ζ )|ζ⊥ , from (20) and (21)
we get

ψ(ḟ ) = ḟ − (1− t)Δ

( 〈·, ζ 〉di

〈ζ, ζ 〉di

)
ḟ (ζ )

+ (1− t)

[
Δ

( 〈·, ζ 〉di

〈ζ, ζ 〉di

)
Dh(ζ )|ζ⊥

(
Dĥt (ζ )|ζ⊥

)∗
ḟ

+ Δ

(
di〈·, ζ 〉di−1〈·, (Dĥt (ζ )|ζ⊥)∗ḟ 〉

〈ζ, ζ 〉di

)
h(ζ )

t

]
,

for all ḟ ∈ H(d). That is, with the notation Kζ and Lζ given in (16) and (17), we get

ψ(ḟ ) = ḟ − (1− t)

[
Δ

( 〈·, ζ 〉di

〈ζ, ζ 〉di

)
ḟ (ζ ) −

(
1− t

t

)
Kζ

(
Kζ

∗ + Lζ
∗)ḟ

]

+
(
1− t

t

)2
Lζ

(
Kζ

∗ + Lζ
∗)ḟ (22)

for all ḟ ∈ H(d).
Note that ψ = IdH(d)

−L, for a certain operator L. Therefore det(ψ) =
det((IdH(d)

−L)|ImL), where last determinant must be understood as the determinant
of the linear operator (IdH(d)

−L)|ImL : ImL → ImL.
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The image of L is decomposed into two orthogonal subspaces, namely:

Cζ :=
{
Δ

( 〈·, ζ 〉di

〈ζ, ζ 〉di

)
a : a = (a1, . . . , an)

T ∈ C
n

}
;

Rζ := {
Lζ (w) : w ∈ Tζ P

(
C

n+1)}.
Note that ImKζ = Cζ ⊂ kerLζ

∗ and ImLζ = Rζ ⊂ kerKζ
∗.

Consider the linear map

τ : C
n → Cζ , τ(b) = Δ

( 〈·, ζ 〉di

〈ζ, ζ 〉di

)
Δ

(‖ζ‖di
)
b, b ∈ C

n.

Note that τ−1(Δ(
〈·,ζ 〉di

〈ζ,ζ 〉di
)a) = Δ(‖ζ‖−di )a. Since

∥∥∥∥Δ

( 〈·, ζ 〉di

〈ζ, ζ 〉di

)
a

∥∥∥∥ = ∥∥Δ
(‖ζ‖−di

)
a
∥∥,

we conclude that τ is a linear isometry between C
n and Cζ .

Let

η : Tζ P
(
C

n+1) → Rζ , η(·) = ‖ζ‖
‖Δ(

√
di‖ζ‖−di )h(ζ )‖Lζ (·).

Since
∥∥Lζ (w)

∥∥ = ∥∥Δ
(√

di‖ζ‖−di
)
h(ζ )

∥∥‖w‖
‖ζ‖ ,

for all w ∈ Tζ P(Cn+1), we find that η is a linear isometry between Tζ P(Cn+1) and
Rζ .
Let ΠCζ ψ and ΠRζ ψ be the orthogonal projections on Cζ and Rζ , respectively.
Then |det(ψ)| is equal to the absolute value of the determinant of

(
A B

C D

)
,

where A = τ−1 ◦ΠCζ ψ |Cζ ◦ τ , B = τ−1 ◦ΠCζ ψ |Rζ ◦η, C = η−1 ◦ΠRζ ψ |Cζ ◦ τ and
D = η−1 ◦ ΠRζ ψ |Rζ ◦ η.
Straightforward computation shows that

A = t IdCn + (1− t)2

t
Δ

(‖ζ‖−di+1)Dh(ζ )|ζ⊥
(
Dh(ζ )|ζ⊥

)∗
Δ

(‖ζ‖−di+1);
B = (1− t)2

t

∥∥Δ
(√

di‖ζ‖−di
)
h(ζ )

∥∥Δ
(‖ζ‖−di+1)Dh(ζ )|ζ⊥;

C =
(
1− t

t

)2∥∥Δ
(√

di‖ζ‖−di
)
h(ζ )

∥∥(
Dh(ζ )|ζ⊥

)∗
Δ

(‖ζ‖−di+1);
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D =
(
1+

(
1− t

t

)2∥∥Δ
(√

di‖ζ‖−di
)
h(ζ )

∥∥2) Idζ⊥ .

Since D is invertible, we may write
(

A B

C D

)
=

(
A − BD−1C B

0 D

)
·
(

I 0
D−1C I

)
,

hence det
(

A B
C D

) = detD det(A − BD−1C).
Thus,∣∣det(ψ)

∣∣
= t2n

(
1+

(
1− t

t

)2∥∥Δ
(√

di‖ζ‖−di
)
h(ζ )

∥∥2)2n

×
∣∣∣∣det

(
IdCn + ( 1−t

t
)2Δ(‖ζ‖−di+1)Dh(ζ )|ζ⊥(Dh(ζ )|ζ⊥)∗Δ(‖ζ‖−di+1)

1+ ( 1−t
t

)2‖Δ(
√

di‖ζ‖−di )h(ζ )‖2
)∣∣∣∣
2

.

Observe that
(
Dh(ζ )|ζ⊥

)∗
Δ

(‖ζ‖−di+1)2Dh(ζ )|ζ⊥

= (
Δ

(‖ζ‖−di+1)Dh(ζ )|ζ⊥
)∗(

Δ
(‖ζ‖−di+1)Dh(ζ )|ζ⊥

)
.

Then, the proof follows from Lemma 7 and the Sylvester Theorem (15). �

Proof of Proposition 3 The Jacobian of Ĥt : P(Cn+1) → H(d) × P(Cn+1) at ζ is
given by ∣∣det(Idζ⊥ +(

Dĥt (ζ )|ζ⊥
)∗

Dĥt (ζ )|ζ⊥
)∣∣1/2.

Then, the proof follows from Lemmas 5 and 8. �

4 Proof of Theorem 2 and Theorem 3

4.1 Proof of Theorem 2

Recall that

θh(ζ ) = ∥∥Πζ (h)
∥∥∥∥h − Πζ (h)

∥∥In

(∥∥h − Πζ (h)
∥∥2/2),

where In(α) = ∫ 1
0 e(1−t−2)αt−2n−1 dt .

In order to prove Theorem 2 we need some extra notation. Denote by S2n+1 the
unit sphere in C

n+1 = R
2(n+1). For all k ∈ N, let σk : R

k → R be the norm function
σk(x) = ‖x‖. Given a measurable function ϕ : R

k → R, let us denote by ERk (ϕ) the
expected value with respect to the standard Gaussian measure on R

k , i.e.,

ERk (ϕ) = 1

(2π)k/2

∫
Rk

ϕ(x)e−‖x‖2/2 dx.
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Lemma 9 Let W be a complex vector space of dimension m with an Hermitian
product 〈·, ·〉W . Denote ‖w‖ = √〈w,w〉W . Then, for every integrable function ψ :
R → R one has

1

(2π)m

∫
w∈W

ψ
(‖w‖)e−‖w‖2/2 dw = ER2m(ψ ◦ σ2m).

Proof If w1, . . . ,wm is an orthonormal basis of (W, 〈·, ·〉W), then, w1, . . . ,wm,
iw1, . . . , iwm is an orthonormal basis of the associated 2m-dimensional real vector
space, namely WR, with the real inner product Re〈·, ·〉W . Define the linear map A :
WR → R

2m, by A(wk) = ek , and A(iwk) = em+k , where ek is the kth element of the
standard orthonormal basis of R

2m. A straightforward computation shows that A is a
(real) linear isometry. Then the lemma follows by the change of variable formula. �

Lemma 10 Let p ≥ 1. Then

EH(d)

(‖θh‖p
Lp

) = ER2(N−n)

(
σ

p

2(N−n)

)
ER2n

(
σ

p

2nIn
p
(
σ 22n/2

))
.

Proof Given the canonical projection S2n+1 → P(Cn+1), by the co-area formula we
get

‖θh‖p
Lp = 1

2π

1

vol(P(Cn+1))

∫
w∈S2n+1

θh(w)p dw. (23)

Recall that Vw = {f ∈ H(d) : f (w) = 0} and Cw is the Hermitian comple-
ment of Vw , and that Πw : H(d) → Vw and Π |CW

are the orthogonal projec-
tions onto Vw and Cw , respectively. Then we may write H(d) = Vw ⊕ Cw . De-
note by ψ(α) = αIn(α

2/2). Then θh(w) = ‖Πw(h)‖ψ(‖Π |Cw(h)‖). Since ‖h‖2 =
‖Πw(h)‖2 + ‖ΠCw(h)‖2, by Fubini’s Theorem we get
∫

h∈H(d)

θh(w)p
e−‖h‖2/2

(2π)N
dh =

∫
f ∈Vw

‖f ‖p e−‖f ‖2/2

(2π)N−n
df

∫
g∈Cw

ψ
(‖g‖)p e−‖g‖2/2

(2π)n
dg.

Since Vw and Cw are complex vector spaces with an Hermitian product of di-
mensions N − n and n, respectively, the proof follows interchanging in (23) the in-
tegral sign with the sign of expectation, Lemma 9 and the fact that vol(S2n+1) =
2π vol(P(Cn+1)). �

Lemma 11 Let p ≥ 1.With the above definitions, one has

(i) ER2(N−n) (σ
p

2(N−n)) = 2p/2 Γ (N−n+p/2)
Γ (N−n)

.

(ii) ER2n(σ
p

2nIn
p(σ 22n/2)) ≤ 2p/2

p
Γ (n+p/2)

Γ (n)
, where the equality holds for p = 1.

Proof (i): By definition, and integrating by polar coordinates, we have

ER2(N−n)

(
σ

p

2(N−n)

) = 1

(2π)N−n

∫
R2(N−n)

‖x‖pe−‖x‖2/2 dx

= vol(S2(N−n)−1)
(2π)N−n

∫ +∞

0
ρ2(N−n)−1ρpe−ρ2/2 dρ.
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Then performing the change of variable u = ρ2/2 we obtain

ER2(N−n) (σ2(N−n)) = vol(S2(N−n)−1)2N−n+p/2−1

(2π)N−n

∫ +∞

0
uN−n+p/2−1e−u du

= vol(S2(N−n)−1)2N−n+p/2−1

(2π)N−n
Γ (N − n + p/2).

The assertion follows from the fact that vol(Sk) = 2 π(k+1)/2
Γ ((k+1)/2) .

(ii) By definition of In, we have

ER2n

(
σ

p

2nIn
p
(
σ 22n/2

)) =
∫ 1

0
t−2n−1

ER2n

(
σ

p

2ne
p(1− 1

t2
)σ 22n/2)

dt. (24)

Then, for fixed t ∈ (0,1),

ER2n

(
σ

p

2ne
p(1− 1

t2
)σ 22n/2) = 1

(2π)n

∫
R2n

‖x‖pe
p(1− 1

t2
)‖x‖2/2

e−‖x‖2/2 dx

= vol(S2n−1)
(2π)n

∫ +∞

0
ρ2n−1ρpe

−(
p

t2
−(p−1))ρ2/2

dρ.

Now, performing the change of variable u = (
p

t2
− (p − 1))ρ2/2, we get

ER2n

(
σ

p

2ne
p(1− 1

t2
)σ 22n/2) = vol(S2n−1)2n+p/2−1

(2π)n(
p

t2
− (p − 1))n+p/2

Γ (n + p/2)

= t2n+p

(p − t2(p − 1))n+p/2
2p/2Γ (n + p/2)

Γ (n)
.

Since t ∈ (0,1), and p ≥ 1, we have the bound p − t2(p − 1) ≥ 1, and hence

ER2n

(
σ

p

2ne
p(1− 1

t2
)σ 22n/2) ≤ t2n+p2p/2Γ (n + p/2)

Γ (n)

(where the equality holds for p = 1). Then the proof follows from (24). �

Proof of Theorem 2 The proof follows from Lemmas 10 and 11. �

4.2 Proof of Theorem 3

Proposition 4 Let p,q ≥ 1 such that 1/p + 1/q = 1. If 1< q < 2, then we have

(I) ≤ CD3/2D

[
2p

p

Γ (N − n + p/2)

Γ (N − n)

Γ (n + p/2)

Γ (n)

]1/p

×
[

Γ (N + 1)
Γ (N + 1− q)

Γ (n2 + n − q)

Γ (n2 + n)

22q+2

4− 2q n3q
]1/q

.



Found Comput Math

Proof Consider on V the following density measure:

dρV = (2π)−ND−1NJπ1(h, η)e−‖h‖2/2 dV .

By the co-area formula we see that this measure is a probability measure on V .
From (14), the definition of Θ̂ in (7), and Fubini’s Theorem, we obtain

(I) = CD3/2D

∫
V

μ(h,η)2

‖h‖2 Θ(h,η)dρV

≤ CD3/2D

∫
V

μ(h,η)2

‖h‖2 Θ̂(h)dρV

= CD3/2D

vol(P(Cn+1))

∫
P(Cn+1)

(∫
V

μ(h,η)2

‖h‖2 θh(ζ )dρV
)
dζ.

The function θh(ζ ), as a function defined on V , is constant and equal to ‖Πζ (h)‖‖h−
Πζ (h)‖In(‖h − Πζ (h)‖2/2) on the fiber of the projection π1 : V → H(d).
For p,q > 0 such that 1/p + 1/q = 1, Hölder inequality on (V ,dρV ) yields

(I) ≤ CD3/2D

vol(P(Cn+1))

∫
P(Cn+1)

(∫
V

μ(h,η)2q

‖h‖2q dρV
)1/q(∫

V
θh(ζ )p dρV

)1/p
dζ.

Then, applying Fubini’s Theorem and taking the canonical projection π1 : V →
H(d) we get by the co-area formula

(I) ≤ CD3/2D

D1/q+1/p

(
EH(d)

( ∑
η/h(η)=0

μ2q(h, η)

‖h‖2q
))1/q

× 1

vol(P(Cn+1))

∫
P(Cn+1)

(
DEH(d)

(
θh(ζ )p

))1/p dζ,

where, abusing notation, we denote

EH(d)

( ∑
η/h(η)=0

μ2q(h, η)

‖h‖2q
)

= 1

(2π)N

∫
h∈H(d)

[ ∑
η/h(η)=0

μ2q(h, η)

‖h‖2q
]
e−‖h‖2/2 dh.

From the proof of Lemma 10 we see that EH(d)
(θh(ζ )p) is independent of ζ ∈

P(Cn+1). Then

EH(d)

(
θh(ζ )p

) = EH(d)

(‖θh‖p
Lp

)
,

and hence

(I) ≤ CD3/2D1/p
(

EH(d)

( ∑
η/h(η)=0

μ2q(h, η)

‖h‖2q
))1/q

EH(d)

(‖θh‖p
Lp

)1/p
. (25)
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In Beltrán–Shub [7] (see also Beltrán–Pardo [6]) it is proved that, for 0< α < 4,

EH(d)

( ∑
η/h(η)=0

μα(h,η)

‖h‖α

)

≤ D
Γ (N + 1)

Γ (N + 1− α/2)

Γ (n2 + n − α/2)

Γ (n2 + n)

2α+2

4− α
n3α/2. (26)

Now the proof follows from (25), (26) and Theorem 2. �

Proof of Theorem 3 The Gamma function Γ (x), for x > 0, is logarithmic convex
(see Artin [1]). Then it is an easy exercise to check that Γ (x + 1/2) ≤ √

xΓ (x), for
all x > 0.
Let p = 3 and q = 3/2. Then applying this inequality to Proposition 4 yields

(I) ≤ C′D3/2DNn
√

N − n + 1/2√n + 1/2,
where C′ = C213/33−1/3. Then, the result of the theorem follows from the trivial
bound N − n + 1/2≤ N and n + 1/2≤ (3/2)n. �

5 Numerical Experiments

In this section we present some numerical experiments for n = 1 and d = 7 that were
performed by Carlos Beltrán on the Altamira supercomputer at the Universidad de
Cantabria.
Recall from Theorem 1 that

Θ(h,η) = 1

vol(P(Cn+1))

∫
ζ∈B(h,η)

(‖h‖2 − ∥∥�
(‖ζ‖−di

)
h(ζ )

∥∥2)1/2

× ∥∥�
(‖ζ‖−di

)
h(ζ )

∥∥In

(∥∥�
(‖ζ‖−di

)
h(ζ )

∥∥2/2)dζ,

where In(α) = ∫ 1
0 e(1−t−2)αt−2n−1 dt .

Table 1 concerns a degree 7 polynomial h, chosen at random with the Bombieri–
Weyl distribution. The condition numbers μ(h,η), Θ(h,η) and vol(B(h,η)), at each
root η of h are computed.

Table 1 Degree 7 random
polynomial Roots in C μ(h, ·) Θ(h, ·) vol(B(h, ·))

3.260883− i1.658800 1.712852 0.4733570 0.140509π

−2.357860− i1.329208 1.738380 0.5502839 0.138576π

−0.210068+ i1.868947 1.608231 0.5049662 0.144054π

0.227994− i0.782004 1.909433 0.4914771 0.125685π

−0.044701+ i0.384342 3.231554 1.003594 0.147277π

−0.308283+ i0.049618 3.183603 0.8892611 0.152433π

0.213950− i0.068700 2.948318 0.8426484 0.151466π
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Fig. 2 The basins B(h,η) in C and in the Riemann sphere of the degree 7 random polynomial (GNU
Octave) (Color figure online)

The data of the chosen random polynomial is given by

a7 = −0.152840− i0.757630,

a6 = 1.283080+ i0.357670,

a5 = 2.000560+ i3.302700,

a4 = 13.004500+ i0.203300,

a3 = −1.138140+ i7.094290,

a2 = 3.110090+ i2.618830,

a1 = 0.282940+ −i0.276260,

a0 = −0.316220+ i0.036590.

One gets ‖h‖ = 2.9631.
In Fig. 2 we have plotted, using GNU Octave, the basins B(h,η) at each root η of

the chosen random polynomial h are plotted, in C and in the Riemann sphere.
In Table 2 the same quantities are computed for the polynomial given by a0 = −1,

a1 = a2 = · · · = a6 = 0, a7 = 1. In this case the roots are the seventh roots of unity,
and it is not difficult to see that the actual values of μ(h,η),Θ(h,η), and vol(B(h,η))
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Table 2 h(z0, z1) = z71 − z70 Roots in C μ(h, ·) Θ(h, ·) vol(B(h, ·))

−0.900969+ i0.433884 3.023716 0.7035899 0.128982π

−0.900969− i0.433884 3.023716 0.8354068 0.153846π

−0.222521+ i0.974928 3.023716 0.7405610 0.135198π

−0.222521− i0.974928 3.023716 0.7549753 0.141414π

1.000000+ i0.000000 3.023716 0.9128278 0.156954π

0.623490+ i0.781831 3.023716 0.6800328 0.135198π

0.623490− i0.781831 3.023716 0.8122845 0.148407π

Fig. 3 The basins B(h,η) in C and in the Riemann sphere for h(z0, z1) = z71 − z70 (GNU Octave) (Color
figure online)

are constant at the roots of h by symmetry; cf. Fig. 3. This example illustrates the
extent of the accuracy of the computations.
In this case we get ‖h‖ = √

2.
The errors for the root of unity case in the third column are of the order of 25 %.

But 25 % does not seem enough to explain the variation in the computed quantities in
the third column of the random example where the ratio of the max to min is greater
than 2. So it is likely that they are not all equal. On the other hand, the ratios of
the volumes of the basins in the fourth columns of the random and roots of unity
examples do seem of the same order of magnitude. So perhaps for n = 1 they are
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all equal? Also, the graphics of the basins are very encouraging in the random case.
There appear to be seven connected regions with a root in each. So there is some hope
that this is true in general. That is, there may generically be a root in each connected
component of the basins. This would be very interesting and would be a very good
start for understanding the integrals. It would be good to have some more experiments
and even better some theorems.
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