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Abstract. In our previous paper [2], we studied the condition metric in the space of maximal
rank n×m matrices. Here, we show that this condition metric induces a Lipschitz-Riemann structure
on that space. After investigating geodesics in such a nonsmooth structure, we show that the inverse
of the smallest singular value of a matrix is a log-convex function along geodesics (Theorem 1).

We also show that a similar result holds for the solution variety of linear systems (Theorem 31).
Some of our intermediate results, such as Theorem 12, on the second covariant derivative or

Hessian of a function with symmetries on a manifold, and Theorem 29 on piecewise self-convex
functions, are of independent interest.

Those results were motivated by our investigations on the complexity of path-following algorithms
for solving polynomial systems.

1. Introduction. Let two integers 1 ≤ n ≤ m be given and let us consider the
space of matrices Kn×m, K = R or C, equipped with the Frobenius inner product

〈M,N〉F = trace (N∗M) =
∑
i,j

mijnij .

We denote by

σ1(A) ≥ . . . ≥ σn−1(A) ≥ σn(A) ≥ 0

the singular values of a matrix A ∈ Kn×m, by GLn,m the space of matrices A ∈ Kn×m
with maximal rank, that is rankA = n or, equivalently, σn(A) > 0, and by N the set
of singular (or rank deficient) matrices:

N = Kn×m \GLn,m =
{
A ∈ Kn×m : σn(A) = 0

}
.

The distance of a matrix A ∈ Kn×m from N is given by its smallest singular value:

dF (A,N ) = min
S∈N
‖A− S‖F = σn(A).

Consider now the problem of connecting two matrices with the shortest possible
path staying, as much as possible, away from the set of singular matrices. We realize
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this objective by considering an absolutely continuous path A(t), a ≤ t ≤ b, with
given endpoints (say A(a) = A and A(b) = B) which minimizes its condition length
defined by

Lκ =

∫ b

a

∥∥∥∥dA(t)

dt

∥∥∥∥
F

σn(A(t))−1dt.

We call minimizing condition path an absolutely continuous path which minimizes
this integral in the set of absolutely continuous paths with the same end-points. We de-
fine a minimizing condition geodesic as a minimizing condition path parametrized
by the condition arc length, that is when∥∥∥∥dA(t)

dt

∥∥∥∥
F

σn(A(t))−1 = 1 a. e.

A condition geodesic is an absolutely continuous path which is locally a minimizing
condition geodesic. This concept of geodesic is related to the Riemannian structure
defined on GLn,m by:

〈M,N〉κ,A = σn(A)−2Re 〈M,N〉F .

We call it the condition Riemann structure on GLn,m.
Our objective is to investigate the properties of the smallest singular value σn(A(t))

along a condition geodesic. Our main result says:
Theorem 1. For any condition geodesic t → A(t) in GLn,m, the map t →

log
(
σ−2
n (A(t))

)
is convex.

This theorem extends our main result in [2]. In that paper, the same theorem is
proven for those condition geodesic arcs contained in the open subset

GL>n,m = {A ∈ GLn,m : σn−1(A) > σn(A)}

that is when the smallest singular value σn(A) is simple. The reason for this restriction
is easy to explain. The smallest singular value σn(A) is smooth in GL>n,m, and, in that
case, we can use the toolbox of Riemannian geometry. But it is only locally Lipschitz
in GLn,m; for this reason we call the condition structure in GLn,m a Lipschitz-
Riemannian structure.

Motivation: Let us now say a word about our motivations. The today classical
papers [28], [29], and [30] by Shub and Smale relate complexity bounds for homotopy
methods to solve polynomial systems to the condition number of the encountered
problems along the considered homotopy path. Ill-conditioned problems slow the
algorithm and increase its complexity. For this reason it is natural to consider paths
which avoid ill-posed problems, and, at the same time, are as short as possible. The
condition metric has been designed to construct such paths. It has been introduced
by Shub in [27], then studied by Beltrán and Shub in [4] in spaces of polynomial
equations (see also [12, 3, 22].) When we started to work in this project, we expected
to reduce the more general problem of finding good homotopy paths for non-linear
systems to the ‘linear’ case. Unfortunately this seems to be a harder problem, to be
pursued later.

The case of linear maps (and related spaces) appears in Beltrán-Dedieu-Malajovich-
Shub [2] and Boito-Dedieu [7].
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In the linear case, it is rather a remarkable fact that the inverse of the squared
distance to singular matrices σ−2

n (A(t)) is log-convex along the condition geodesics.
So, in particular, the maximum of log

(
σn(A(t))−2

)
and the maximum of σn(A(t))−1

along such paths is necessarily obtained at its endpoints and the condition geodesics
stay away from singular matrices.

This is clearly not true in the usual metric, since straight lines can get arbitrarily
close to the variety of degenerate matrices. This suggests the following application:

If we consider a condition path connecting a given A ∈ GLn,m to (for example)
In,m‖A‖F /

√
n (In,m(i, j) = 1 if i = j and 0 otherwise), for any matrix A(t) in this

path, according to Theorem 1, one has
√
n

‖A‖F
≤ σn(A(t))−1 ≤ σn(A)−1.

We think this property may help to find good preconditioners to solve linear systems.
There are other motivations. Convexity of the distance or similar function to

the ill-posed problems may play a role in optimization. Witness for example the
role played by the barrier function in linear programming theory. Two of us will be
expanding on this theme in a forthcoming paper.

Outline of the paper
The condition number is not of class C1, hence we cannot apply the usual Rie-

mannian geometry to the condition metric. In Section 2, we introduce Lipschitz-
Riemann structures and develop the basic results, that allow us to do differential ge-
ometry in the non-smooth case. Using nonsmooth analysis techniques, we prove that
any condition geodesic is C1 with a locally Lipschitz derivative (Theorem 3). Such
techniques are already present in Boito-Dedieu [7].

In Section 3 we develop an important tool for proving self-convexity, allowing
a more systematic use of the symmetries. (A symmetry is an isometry of a manifold
that leaves a function invariant). Theorem 12 gives a simplified computation of the
Hessian when there is a Lie group of symmetries. This theorem may be of independent
interest. It is so natural we would not be surprised if it is already known, but we have
not found it anywhere. We were led to this theorem sometime after a conversation
with John Lott on Hessians and Riemannian submersions while he was visiting the
University of Toronto.

The strategy for proving the main theorem is to decompose the space of matrices
in a finite union of smooth manifolds, so that in each of them the metric is smooth. In
Section 4 we produce this decomposition, we study the group of symmetries of the
condition number and then, using Theorem 12, we establish self-convexity on each
piece.

In Section 5, we prove a result that may be of independent interest, Theorem 29:
piecing together convexity results on restrictions of the Lipschitz-Riemann structure
to a union of submanifolds of varying dimensions, where the structure is smooth, to
obtain a global result.

In Section 6, we use all these tools to finish the proof of Theorem 1. We use the
same tools in Section 7 to state and prove Theorem 31 about self-convexity in the
solution variety

W = {(A, x) ∈ GLn,n+1 × P(Kn) : Ax = 0} .

Above, the notation P(E) denotes the projectivization of a linear space E. Namely,
it is the space (manifold) of real or complex lines in E passing through the origin.
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For instance, P(R3) is the classical projective plane, that can also be obtained by
identifying antipodal points of the sphere S2.

Acknowledgements. We have benefited greatly from conversations with our col-
leagues Charles Pugh and Vitaly Kapovitch about Lipschitz-Riemann structures, es-
pecially those conformally equivalent to smooth structures by locally Lipschitz scaling
maps.

Some of this work was accomplished when we met not only in our intitutions,
but also at the Institut de Matemàtica de la Universitat de Barcelona and at the
Thematic Program in the Foundations of Computational Mathematics (FoCM) at
the Fields Institute. We thank these institutions. Also, we would like to thank an
anonymous referee for many helpful comments.

2. Geodesics in Lipschitz-Riemann structures, and self-convexity.

2.1. Lipschitz-Riemann structures. Most textbooks of Riemannian geome-
try define a Riemannian structure on a smooth manifoldM as a scalar product 〈·, ·〉x
on each tangent space TxM, depending smoothly on x. Here we drop the smoothness
hypothesis.

Definition 2. A Lipschitz-Riemann structure on a C2 manifold M is a
scalar product 〈·, ·〉x at each TxM, such that its coefficients are locally Lipschitz func-
tions of x. Also, let ‖u‖x =

√
〈u, u〉x be the associated norm in TxM.

The length of an absolutely continuous path x(t) ∈ M, a ≤ t ≤ b, is defined as
the integral

L(x, a, b) =

∫ b

a

‖ẋ(τ)‖x(τ)dτ,

where ẋ(t) denotes the derivative with respect to t. Its arc length is given by the
map

t ∈ [a, b]→ L(x, a, t) ∈ [0, L(x, a, b)].

The distance d(a, b) between two points a, b ∈M is the infimum of all the lengths of
the paths containing a and b in their image. We call minimizing path an absolutely
continuous path such that L(x, a, b) = d(a, b).

It is usual in differential geometry textbooks to construct geodesics as solutions
of a certain second order differential equation, the geodesic differential equation. Un-
fortunately, the coefficients of this equation are given by a formula in terms of the
partial derivatives of the metric coefficients. In a Lipschitz-Riemann structure, those
coefficients are assumed to be Lipschitz, not necessarily differentiable functions. Also,
it turns out that minimizing paths are not necessarily smooth.

We define a minimizing geodesic as a minimizing path parametrized by arc
length, that is when

‖ẋ(t)‖x(t) = 1 a. e.

A path inM parametrized by arc length is a geodesic when it is locally a minimizing
geodesic.

The main result of this section is the following:
Theorem 3. Any geodesic for a Lipschitz-Riemann structure belongs to the class

C1+Lip that is C1 with a locally Lipschitz derivative.
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This theorem is proved in section 2.4, it extends a similar result by Charles Pugh
[24] who proves the existence of locally minimizing C1+Lip geodesics. His argument
is based on a smooth approximation of the Lipschitz structure where the classical
toolbox of Riemannian geometry applies, followed by a passage à la limite.

Using different techniques we prove here this regularity assumption for all geodesics.
An immediate consequence of [8, Cor .VIII-4 p.126] is that C1+Lip = W 2,∞ the

Sobolev space of maps f with f ′′ ∈ L∞.

2.2. Existence of geodesics in a Lipschitz-Riemann structure. Existence
of minimizing geodesics with given endpoints may be deduced from the Hopf-Rinow
Theorem. Because we cannot assume the smoothness of geodesics, we refer to Gro-
mov’s version of this theorem [18, Th.1.10]. A metric space (X, d) is a path metric
space if the distance between each pair of points equals the infimum of the lengths
of curves joining the points.

Theorem 4. If (X, d) is a complete, locally compact path metric space, then
• Each bounded, closed subset is compact,
• Each pair of points can be joined by a minimizing geodesic.

Two examples of such spaces are given by Boito-Dedieu [7] for linear maps (X is
one of the connected components of GLn,m equipped with the condition structure),
and by Shub [27] when X is the solution variety associated with the homogeneous
polynomial system solving problem equipped with the corresponding condition struc-
ture.

2.3. Lipschitz-Riemann structures in Rk, generalized gradients and the
problem of Bolza. An important example of Lipschitz-Riemann structure is given
by an open set Ω ⊂ Rk equipped with the scalar product

〈u, v〉x = vTH(x)u

where H is a locally Lipschitz map from Ω into the set of positive definite n × n
matrices.

A minimizing geodesic x(t) ∈ Ω, a ≤ t ≤ b, minimizes the integral∫ b

a

√
ẏ(t)TH(y(t))ẏ(t)dt

in the set of absolutely continuous paths y(t) with endpoints y(a) = x(a), and y(b) =
x(b). This is an instance of the Bolza problem.

For a smooth integrand L, a local solution x(t) of the Bolza problem

inf

∫ b

a

L(y(t), ẏ(t))dt, (2.1)

where the infimum is taken in the set of a.c. paths with given endpoints, satisfies the
Euler-Lagrange differential equation

− d

dt

∂L

∂ẋ
(x(t), ẋ(t)) +

∂L

∂x
(x(t), ẋ(t)) = 0 a.e. (2.2)

In our context, it is possible to differentiate L(x, ẋ) =
√
ẋTH(x)ẋ with respect to the

second argument by ordinary differential calculus:

∂

∂ẋ
L(x, ẋ) : y 7→ 1

L(x, ẋ)
ẋTH(x)y.
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If we avoid ẋ = 0 (which will be the case), we deduce that L is smooth in the variable
ẋ and locally Lipschitz in the variable x. For this reason we replace the classical
geodesic differential equation by a generalized version of the Euler-Lagrange equation
(2.2) based on generalized gradients.

Let f : Ω ⊂ Rk → R be a locally Lipschitz function defined on an open set. Its
one-sided directional derivative at x ∈ Ω in the direction d ∈ Rk is defined as

f ′(x, d) = lim
t→0+

f(x+ td)− f(x)

t
.

The generalized directional derivative in Clarke’s sense of f at x ∈ Ω in the
direction d is defined as

fo(x, d) = lim sup
y → x
t→ 0+

f(y + td)− f(y)

t

and the generalized gradient of f at x is the nonempty compact subset of Rk given
by

∂f(x) =
{
s ∈ Rk : 〈s, d〉 ≤ fo(x, d) for all d ∈ Rk

}
.

It turns out that the generalized gradient is always a convex set. When f ∈ C1(Ω)
the generalized gradient is just the usual one: ∂f(x) = {∇f(x)} . The generalized
directional derivative is related to the gradient via the equality

fo(x, d) = max
s∈∂f(x)

〈s, d〉 .

We say that f is regular at x when the two directional derivatives exist and are
equal:

fo(x, d) = f ′(x, d) for any d ∈ Rk.

When f is defined on a C1 manifoldM, we say that f is regular at m ∈M when
its composition with a local chart at m gives a regular map in the usual meaning.

Good references for this topic is Clarke [11] or Schirotzek [26].
For the problem of Bolza described above the counterpart of the Euler-Lagrange

equation is given by the following result (see [11] Theorem 4.4.3, and [10]).
Theorem 5. Let x solve the Bolza problem (2.1) in the case in which L(x, ẋ) is

a locally Lipschitz map and suppose that ẋ is essentially bounded. Then there is an
absolutely continuous map p such that

ṗ(t) ∈ ∂xL(x(t), ẋ(t)) and p(t) ∈ ∂ẋL(x(t), ẋ(t)) a.e.

2.4. Proof of Theorem 3. Since Theorem 3 is of local nature, it suffices to
prove it locally in Rk. Once this is done, take a local chart and transfer the Lipschitz-
Riemann structure ofM to an open set Ω ⊂ Rk where the theorem is already proved.
Therefore, let us show the theorem in Rk.

By definition, a geodesic is a locally minimizing geodesic. Thus, it suffices to
establish the theorem in this case.

6



A minimizing geodesic x(t) ∈ Ω, a ≤ t ≤ b, is parametrized by arc length so that

ẋ(t)TH(x(t))ẋ(t) = 1 a.e.,

Thus, ẋ(t) is 6= 0 and essentially bounded:

ẋ ∈ L∞
(
[a, b],Rk

)
.

Moreover, x minimizes the integral∫ b

a

√
ẏ(t)TH(y(t))ẏ(t)dt

in the set of absolutely continuous paths with endpoints y(a) = x(a), and y(b) = x(b).
Thus, according to Theorem 5, there is an absolutely continuous arc p such that

ṗ(t) ∈ ∂x
√
ẋ(t)TH(x(t))ẋ(t), (2.3)

p(t) ∈ ∂ẋ
√
ẋ(t)TH(x(t))ẋ(t) (2.4)

for almost all t ∈ [a, b]. Since our integrand is smooth in the ẋ variable we may write
(2.4)

p(t) =
H(x(t))ẋ(t)√

ẋ(t)TH(x(t))ẋ(t)
= H(x(t))ẋ(t).

Thus, ẋ(t) = H(x(t))−1p(t) is absolutely continuous and x(t) possesses a.e. a second
derivative ẍ(t) ∈ L1([a, b],Rk).

We now have to show that this second derivative is essentially bounded. This
comes from (2.3). Since

√
· is a smooth function we get from Proposition 2.3.3 and

Theorem 2.3.9 of Clarke’s book [11] that

∂x

√
ẋTH(x)ẋ ⊂ ẋT∂H(x)ẋ

2
√
ẋTH(x)ẋ

=
1

2
ẋT∂H(x)ẋ,

with

ẋT∂H(x)ẋ =
∑
i,j

ẋiẋj∂hij(x).

Equation (2.3) implies

ṗ(t) ∈ 1

2
ẋ(t)T∂H(x(t))ẋ(t) a.e.

From the hypothesis, the functions hij(x) are locally Lipschitz. Their generalized
gradients are compact convex sets in Rk. The union of all these sets along the path
x(t) gives us a bounded set. Since the curve ẋ(t) is continuous, we deduce from
these considerations, that ṗ(t) is bounded a.e. Thus p(t) is Lipschitz, and ẋ(t) =
H(x(t))−1p(t) is also Lipschitz. The second derivative ẍ(t) is thus bounded by the
Lipschitz constant of ẋ(t), and we are done.
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Remark 6. The previous lines give the following properties for a geodesic x in
Ω: x ∈ C1+Lip, ẋTH(x)ẋ = 1, and

d

dt
(H(x)ẋ) ∈ 1

2
ẋT∂H(x)ẋ =

1

2

∑
i,j

ẋiẋj∂hij(x) a.e.

The initial value problem, and even the boundary value problem associated with this
second order differential inclusion, may have many solutions. Examples are given in
[7]. Moreover, solutions are not necessarily locally minimizing geodesics and geodesics
are not necessarily unique.

2.5. Conformal Lipschitz-Riemann structure. The example of a Lipschitz-
Riemann structure which motivates this paper is given by the condition structure
on GLn,m. It is obtained in multiplying the Frobenius scalar product by the locally
Lipschitz function σ−2

n . Let us put it in a more general setting.
Definition 7. Let (M, 〈·, ·〉) be a C2 Riemannian manifold, and let α :M→ R

be a locally Lipschitz function with positive values. Let Mκ be the manifold M with
the new metric

〈·, ·〉κ,x = α(x)〈·, ·〉x

called α-Riemann structure. When α is the square of the (unscaled) condition number,
i.e. α(A) = ‖A†‖22 = σ−2

n , this is also called the condition Riemann structure or
simply the condition structure. We say that α is self-convex when logα(γ(t)) is
convex for any geodesic γ in Mκ.

We denote by L (respectively Lκ) the length of a curve γ in the M-structure
(respectively in the Mκ-structure). We will speak of length or condition length,
and also of distance or condition distance, geodesics or condition geodesics
and so on.

Examples of self-convex maps are given in [2] where this concept is introduced
for the first time.

Using this definition Theorem 1 above reads

α(A) = σn(A)−2 is self-convex in GLn,m.

3. Self-convexity in the smooth case and the computation of Hessians.

3.1. Self-convexity in the smooth case. Self convexity in the smooth case
was studied in our previous paper [2] in this journal. We refer the reader to Section
2 of [2] for basic definitions regarding convexity and geodesic convexity. A snapshot
of the main features of self-convexity in the smooth case follows.

We denote by D the Levi-Civita connection and by DXT the covariant deriva-
tive of a tensor T in the direction given by a vector field X. Recall that if we assume
geodesic coordinates in the neighborhood of a point p, then (DXT )p is the same as
the ordinary directional (or Lie) derivative. The covariant derivative is coordinate
independent, in the sense that DXT is a tensor.

If f is a smooth enough function, then its derivative with respect to a vector field
is denoted by X(f), so that X(f)(p) = Df(p)X(p) = 〈∇f(p), X(p)〉p. The second
covariant derivative of a function f (sometimes also known as the Hessian) is defined
by

D2f(X,Y ) = D(Df)(X,Y ) = DX(Y (f))− (DXY )(f) (3.1)
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where X and Y are smooth vector fields. The operator above is symmetric, in the
sense that D2f(X,Y ) = D2f(Y,X) (see e.g. [5, p.305])

When α :M→ R is C2, self-convexity of α is equivalent to the second covariant
derivative of log(α) being positive semi-definite in the α-condition Riemann structure
(see [32] Chap. 3, Theorem 6.2). Note that the second covariant derivative of a map
M → R is different in M and in Mκ. We denote them respectively by D2 or D2

κ.
Self-convexity of α is equivalent to D2

κ log(α) being positive semi-definite.
Proposition 2 of [2] is
Proposition 8. For a function α : M → R of class C2 with positive values

self-convexity is equivalent to

2α(x)D2α(x)(ẋ, ẋ) + ‖Dα(x)‖2x‖ẋ‖2x − 4(Dα(x)ẋ)2 ≥ 0 (3.2)

for all x ∈M and for all vector ẋ ∈ TxM, the tangent space at x.

3.2. Self-convexity in a product space. Proposition 2 of [2] has an immediate
corollary which can be useful. Suppose N is another C2 Riemannian manifold. Give
M×N the product metric. Let π :M×N →M be the projection on the first factor
and α̂ :M×N → R be the composition α̂ = α ◦ π.

Proposition 9. Let α be of class C2 in M. Then, α is self-convex in M if and
only if α̂ is self-convex in M×N .

We thank an anonymous referee for pointing out the if part of this Proposition
and simplifying the proof.

Proof. We prove first the only if part. Let (x, y) ∈ M×N and assume normal
(geodesic) coordinates in a neighborhood of x ∈M. Also, assume normal coordinates
around y ∈ N with respect to the inner product 〈·, ·〉N .

We claim that this defines a system of normal coordinates in M×N . This can
be seen from the fact that the exponential map in a product manifold M×N is the
partitionning of the exponential mappings of M and N . However, we give a direct
proof below.

Let gij and Γkij denote respectively the coefficients of the first fundamental form
〈·, ·〉x,y and the Christoffel symbols. By construction, gij(x, y) = δij . Also, it is easy
to see that for all indexes i, j, k,

Γkij(x, y) = 0 .

Indeed, if indices (i, j, k) correspond to the same componentM or N this follows
from the choice of normal coordinates in each component. Otherwise, say that i, j
correspond to coordinates in M and k to coordinates in N . Then gik ≡ gjk ≡ 0 and
furthermore,

∂

∂uk
gij(x, y) = 0.

Thus Γikj(x, y) = 0 for all indexes i, j, k. This implies that Γkij(x, y) = 0 as well. Thus
we have a normal system of coordinates around (x, y) ∈M×N .

In that system of coordinates,

D2
M×N α̂(x, y) =

[
D2
Nα(x) 0

0 0

]
From the block structure of the second covariant derivative above, it is clear that
D2
M×N α̂(x, y) is positive semi-definite if and only if D2

Nα(x) is positive definite.
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We have raised the question in the introduction of whether self-convexity of the
condition number holds for the condition Riemann structure on the solution variety
considered in [27]. The theorems proven in this paper apply to the case of linear sys-
tems, but with the use of Proposition 9 they give us some information on polynomial
systems almost for free.

Let d = (d1, . . . , dn). Consider the vector space

Pd,0 = {(f1, . . . , fn) : fi ∈ C[x1, . . . , xn] with deg fi = di and fi(0) = 0}.

An important point is that self-convexity is well-defined for Riemannian mani-
folds. Therefore, if we want to speak of self-convexity in Pd,0, we need to make it into
an inner product vector space. We will follow [6] and assume the unitarily invariant
metric in the space of degree di polynomials. This is the same as the metric for sym-
metric di-tensors. Then we define the product metric for Pd and it is inherited by
the subspace Pd,0. In more precise terms: if fi(x) =

∑
1≤|a|≤di fiax

a1
1 xa22 · · ·xann and

gi(x) =
∑

1≤|a|≤di giax
a1
1 xa22 · · ·xann then we set

〈f, g〉 =

n∑
i=1

∑
1≤|a|≤di

fiaḡia(
di
a

)
with (

di
a

)
=

di!

a1!a2! . . . an!(di − |a|)!
.

This vector space splits as Pd,0 = L0 ⊕ (H.O.T.)0 where L0 are linear and (H.O.T.)0

are higher order polynomials vanishing at 0. Those two spaces are orthogonal. The
inner product for linear polynomials is

〈Ax,Bx〉 =

n∑
i=1

1

di

n∑
j=1

AijB̄ij =

= tr



1/
√
d1

. . .

1/
√
dn

B

∗
1/
√
d1

. . .

1/
√
dn

A

 .

The unscaled[6, Prop.5 p.228], normalized[6, p.233] condition number is defined, for
f ∈ Pd,0, by

µ(f, 0) =

∥∥∥∥∥∥∥Df(0)−1


√
d1

. . . √
dn


∥∥∥∥∥∥∥

2

= σ−1
n


1/
√
d1

. . .

1/
√
dn

Df(0)

 .

The right-hand term is the (unscaled) condition number for L0. It coincides with the
unscaled condition number for matrices, which is the topic of this paper.

Proposition 10. µ is self-convex in its domain of definition Pd,0 \ Σ, where
Σ = {f ∈ Pd,0 : Df(0) is degenerate}.

Proof. Immediate from Proposition 9 and Theorem 1.
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3.3. Computation of the Hessian. When analyzing the convexity properties
of σn(A), we first note that this function is invariant through unitary changes of
coordinates, namely

σn(A) = σn(UAV ∗)

for unitary matrices U ∈ Un, and V ∈ Um (resp. orthogonal matrices U ∈ On, and
V ∈ Om). Let us consider this situation in a general framework.

A Lie group is a group that is also a smooth manifold, and such that the group
operations (multiplication and inversion) are smooth. We say that a Lie group G acts
(smoothly) on a manifold M if there is a smooth map ` : G×M→M with

`((g1g2), p) = `(g1, `(g2, p)) and `(1, p) = p .

In the example above, G = Un × Um acts on GLn,m by `((U, V ), p) = UpV ∗. For
simplicity, we may write g(p) for `(g, p) and assimilate g to the mapping p→ g(p) =
`(g, p).

An isometry ofM is a diffeomorphism ofM that preserves Riemannian distance.
We say that the Lie group G acts by isometries when for all g, the corresponding map
g : p→ g(p) is an isometry of M.

Definition 11. Let α :M→ R. A group of symmetries of α is a Lie group,
acting smoothly by isometries on M, and leaving α invariant (that is, α(g(p)) = α(p)
for all g ∈ G and p ∈ M. Let 1 be the unit of the group G. We will denote by g
the Lie algebra of G and by exp : g ' T1G → G the exponential function (See, for
instance, [20]). For instance, if G = Un, then 1 is the n× n identity matrix, and g is
the algebra of skew-Hermitian matrices. Moreover, exp(A) = I+A+ 1

2A
2+ 1

3!A
3+· · · .

Note that it may happen (for instance, if G is a discrete group) that g = {0} and
hence TpGp = {0}.

Given p ∈ M, G(p) = {g(p) : g ∈ G} will denote the G-orbit of p. The orbit G(p)
is a manifold [20, Cor 2.19]. If the group G is compact, the orbit is then an embedded
submanifold of M. In any case, TpG(p) will denote the tangent space of the orbit
G(p) at p, as a subspace of TpM. It can also be described as the set of all

d

dt
(exp(ta)(p)) |t=0 ,

for a ∈ g, the Lie algebra of G.
For instance, whenG = Un×Um, then g is An×Am (the skew-Hermitian matrices)

and exp(ta) is the usual matrix exponential:

exp(t(a1, a2))(p) =

(
I + ta1 +

t2

2
a2

1 + · · ·
)
p

(
I + ta2 +

t2

2
a2

2 + · · ·
)∗

Theorem 12. Let M be a smooth Riemannian manifold. Let α : M → R be
of class C2, and let G be a group of symmetries of α. Let p ∈ M. Let w = b + k ∈
TpM where k ∈ TpG(p), b ⊥ TpG(p). Let the vector field K be the infinitesimal
generator associated with some element a in the Lie Algebra g of G, where k =
d
dt (exp(ta)(p)) |t=0. Namely,

K(q) =
d

dt
(exp(ta)q) |t=0 , q ∈M.

11



Let φt(q) = φ(t, q) be the flow of grad α, defined for t ∈ (−ε, ε) and q close enough
to p. Let B be a smooth vector field in M such that B(φt(p)) = Dφt(p)b where D
denotes the usual derivative applied to the diffeormorphism φt :M→M . Then, the
following equality holds:

D2α(p)(w,w) =

D2α(p)(b, b) +
1

2
〈grad (‖K‖2)(p), grad α(p)〉p + grad α(〈B,K〉)(p).

Above, grad α(〈B,K〉)(p) = 〈grad α(p), grad (〈B,K〉p)〉p is the directional derivative
of 〈B,K〉 with respect to grad α.

Let us recall from (3.1) the intrinsic definition of the second covariant derivative
or Hessian.

D2α(p)(v, w) = X(Y (α))p − (DXY )(α)p,

whereX,Y are vector fields, X(p) = v, Y (p) = w, andD is the Levi-Civita connection.
Also, [X,Y ] is the Lie bracket of two vector fields X and Y . It is defined for any α
of class C2 by

[X,Y ](α) = X(Y (α))− Y (X(α)).

It turns out that this is a first order differential operator, hence [X,Y ] is a vector
field.

Another useful identity relating the Lie bracket and the Levi-Civita connection
is:

[X,Y ] = DXY −DYX (3.3)

The proof of Theorem 12 is a consequence of the two following lemmas:
Lemma 13. For any vector field X on M , we have

2D2α(X,K) = grad α(〈X,K〉)− 〈[grad α,X],K〉.

Moreover,

D2α(p)(k, k) =
1

2
〈grad (‖K‖2)(p), grad α(p)〉p, (3.4)

Proof. We recall that for vector fields X,Y, Z,

2〈DXY,Z〉 = X(〈Y,Z〉) + Y (〈X,Z〉)− Z(〈X,Y 〉)+ (3.5)

〈[X,Y ], Z〉+ 〈[Z,X], Y 〉 − 〈[Y,Z], X〉.

Note that K(p) = k and K(q) ∈ TqG(q) for q ∈M. As α is G-invariant,

K(α) = 〈K, grad α〉 = 0. (3.6)

Moreover, the one-parameter group generated by K consists of global isometries, thus
K is a Killing vector field, which implies that for any pair of vector fields X,Y ,

〈DYK,X〉+ 〈DXK,Y 〉 = 0, or equivalently using (3.5)

12



K(〈Y,X〉) + 〈[Y,K], X〉+ 〈[X,K], Y 〉 = 0. (3.7)

We can now compute

2D2α(X,K) = 2X(K(α))− 2(DXK)(α) = −2〈DXK, grad α〉 =

−X(〈K, grad α〉)−K(〈X, grad α〉) + grad α(〈X,K〉)

−〈[X,K], grad α〉 − 〈[grad α,X],K〉+ 〈[K, grad α], X〉.

From (3.7) we know that

−K(〈X, grad α〉)− 〈[X,K], grad α〉+ 〈[K, grad α], X〉 = 0.

Using 〈grad α,K〉 = 0, we conclude

2D2α(X,K) = grad α(〈X,K〉)− 〈[grad α,X],K〉,

which proves the first assertion.
When X = K, the second term above vanishes: using (3.3),

〈[K, grad α],K〉 = 〈DKgrad α,K〉 − 〈Dgrad αK,K〉
= 〈DKgrad α,K〉+ 〈grad α,DKK〉
= K(〈K, grad α〉)
= 0.

Equation (3.4) follows.

Lemma 14.

2D2α(p)(k, b) = grad α(〈B,K〉)(p).

Proof. By continuity of the formulas in the lemma, we can assume that k 6= 0 and
that b, grad α(p) are lineary independent. Let N0 be a codimension 2 submanifold
of M with p in its interior. Assume that b ∈ TpN0, k is orthogonal to TpN0, and
grad α(p) 6∈ TpN0.

Let N = ∪φt(N0) with φt the flow associated with grad α and where the union is
taken in a small interval around t = 0. N is a codimension 1 submanifold. For small
ε, the integral curve of grad α is thus contained in N, and for q = φt(p), we have
B(q) = Dφt(p)b ∈ TqN. Both grad α and B are tangent to N by construction. By
Frobenius Theorem, [B, grad α] is again tangent to N. In particular, [grad α,B](p) ∈
TpN, and hence 〈[grad α,B],K〉(p) = 0. From Lemma 13,

2D2α(B,K) = grad α(〈B,K〉)− 〈[grad α,B],K〉 = grad α(〈B,K〉)

at p as wanted.

Proof of Theorem 12. The second covariant derivative is a symmetric bilinear
form. Thus,

D2α(p)(v, v) = D2α(p)(b, b) +D2α(p)(k, k) + 2D2α(p)(b, k).

Theorem 12 follows from lemmas 13 and 14.
Corollary 15. Assume that for every p ∈M:

13



• D2
κ log(α)(p) is positive semi-definite in (TpG(p))

⊥
,

• For b ∈ TpM, b ⊥ TpG(p), we have that Dφt(p)b ⊥ Tφt(p)G(φt(p)). Here,
φt(q) = φ(t, q) is the flow of grad α, defined for t ∈ (−ε, ε) and q close enough
to p.

• For every a ∈ g, the associated vector field K(q) = d
dt (exp(ta)q) |t=0, q ∈M ,

satisfies

αD(‖K‖2)(grad α) + ‖K‖2‖grad α‖2 ≥ 0.

Then, α is self-convex in M.
Proof. α is self-convex if and only if D2

κ log(α) is positive semi-definite. Now, let
v = b+ k ∈M. According to Theorem 12,

D2
κ log(α)(p)(v, v) = D2

κ log(α)(p)(b, b)+

1

2
〈gradκ((‖K‖κ)2)(p), gradκ log(α)(p)〉κ,p + gradκ,pα(〈B,K〉κ)(p),

where K is as defined in Theorem 12 and B is a vector field such that B(φt(p)) =
Dφt(p)b. Note that gradκα(〈B,K〉κ) depends only on the value of B, and K along
the integral curve φt(p). Moreover,

〈B,K〉κ(φt(p)) = α(φt(p))〈B(φt(p)),K(φt(p))〉 =

α(φt(p))〈Dφt(p)(b),K(φt(p))〉 = 0,

from the second item in the hypotheses of our corollary. Thus, we have

D2
κ log(α)(p)(v, v) =

D2
κ log(α)(p)(b, b) +

1

2
〈gradκ((‖K‖κ)2)(p), gradκ log(α)(p)〉κ,p.

This quantity has to be non-negative for every v or, equivalently,
• D2

κ logα(p) has to be positive semi-definite in (TpG(p))
⊥

, and
• 〈gradκ((‖K‖κ)2)(p), gradκ log(α)(p)〉κ,p ≥ 0 for every vector field K, K(q) =

d
dt (exp(ta)q)‖t=0 where a ∈ g.

The second of these two items can be re-written using the original Riemannian struc-
ture 〈·, ·〉. Note that

(‖K‖κ)2 = α‖K‖2,

gradκ((‖K‖κ)2) =
1

α
grad (α‖K‖2) = grad ‖K‖2 + ‖K‖2 grad α

α
,

gradκ log(α) =
1

α
grad (logα) =

grad α

α2
.

Thus,

〈grad κ((‖K‖κ)2), gradκ log(α)〉κ = 〈grad ‖K‖2 + ‖K‖2 grad α

α
,

grad α

α2
〉

=
1

α3

(
αD(‖K‖2)(grad α) + ‖K‖2‖grad α‖2

)
.

The corollary follows.
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4. Self-convexity in spaces of matrices. Let u ≤ n and (k) = (k1, . . . , ku) ∈
Nu such that k1 + · · ·+ku = n. We define P(k) as the set of matrices A ∈ GLn,m with
u distinct singular values

σ1(A) > · · · > σu(A) > 0,

σi(A) having the multiplicity ki. Such a matrix has a singular value decomposition
A = UDV ∗ with U ∈ Un, V ∈ Um and D ∈ GLn,m with

D = diag

 k1︷ ︸︸ ︷
σ1, . . . , σ1, . . . ,

ku︷ ︸︸ ︷
σu, . . . , σu

 = diag (σ1Ik1 , . . . , σuIku) .

Above, Un is the group of unitary n× n matrices. If K = R, it should be replaced by
the group of orthogonal n× n matrices.

We also let

D(k) =
{
D ∈ P(k) : D = diag (σ1Ik1 , . . . , σuIku) , σ1 > · · · > σu

}
.

Notice that the singular values σ1 > · · · > σu can vary within each P(k) or each
D(k).

Proposition 16. P(k) is a real smooth embedded submanifold of GLn,m. Its real
codimension is

• k2
1 + · · ·+ k2

u − u if K = C.
• 1

2 (n+ k2
1 + · · ·+ k2

u)− u if K = R.
The tangent space to P(k) at a matrix

D =

σ1Ik1 0 0 0 · · · 0

0
. . . 0 0 · · · 0

0 0 σuIku 0 · · · 0


is the set of matricesλ1Ik1 +A1 ∗ ∗ ∗ · · · ∗

∗
. . . ∗ ∗ · · · ∗

∗ ∗ λuIku +Au ∗ · · · ∗


where A1, . . . , Au are skew-symmetric matrices of respective sizes k1, . . . , ku, λ1, . . . , λu ∈
R, and the other entries are complex numbers (real, if K = R). Moreover, for any
i = 1, . . . , u, σi : P(k) → R is a smooth function.

Proof. To prove that P(k) is a real smooth embedded submanifold of GLn,m
we use Lemma 33 (see the appendix). We take G = Un × Um, M = GLn,m, and
D = D(k). The group action of G on M is given by

(U, V,X) ∈ G×GLn,m → UXV ∗ ∈ GLn,m.

Under this action, the image of D(k) is P(k). Define the equivalence relation R in
Un × Um ×D(k) by

(U, V,D)R(U ′, V ′, D′) if and only if UDV ∗ = U ′D′V ′∗.
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Since D is diagonal this is equivalent to

D′ = D, U ′ = UM, V ′ = VMW ,

where M and MW are unitary block-diagonal matrices

M = diag(U1, . . . , Uu), MW = diag(U1, . . . , Uu,W ),

with Ui ∈ Uki , and W ∈ Um−n. Note that the set I(k) of such pairs (M,MW ) is the
isotropy group of any D ∈ D(k). Also, the relation R is invariant under left Un ×Um
action, namely:

(U, V,D)R(U ′, V ′, D′)⇔ (QU,RV,D)R(QU ′, RV ′, D′)

for any (Q,R) ∈ Un × Um.
It is easy to see that the graph of this equivalence relation, that is the set of

pairs ((U, V,D), (UM,VMW , D)), with U , V , D, M , and W as before, is a closed
submanifold in (G × D(k)) × (G × D(k)). Indeed, this graph is the image of the
diffeomorphic embedding

G×D(k) × U(k) × (U(k) × Um−n) → (G×D(k))× (G×D(k))
((U, V ), D,M,MW ) 7→ ((U, V,D), (UM,VMW , D))

(U(k) = Uk1 ⊗ · · · ⊗ Uku are the unitary block-diagonal matrices).
Thus the quotient space (G×D(k))/R is equipped with a unique manifold struc-

ture making π (the canonical surjection) a submersion.
Let us define

i : (G×D(k))/R → GLn,m, i(π(U, V,D)) = UDV ∗.

The injectivity of i follows by construction of R: elements of (G × D(k))/R are rep-
resented non-uniquely by elements (U, V,D) ∈ (G × D(k)). Two of those elements
(say (U, V,D) and (U ′, V ′, D′)) represent the same equivalence class if and only if
UDV ∗ = U ′D′V ′∗.

We still have to check that this map is an immersion. For any (U̇ , V̇ , Ḋ) in the
tangent space T(U,V,D)G×D(k) we have

D(i ◦ π)(U, V,D)(U̇ , V̇ , Ḋ) = U̇DV ∗ + UḊV ∗ + UDV̇ ∗ = U(AD + Ḋ −DB)V ∗

with U̇ = UA, V̇ = V B, A and B skew-symmetric matrices of respective size n and
m. When AD + Ḋ −DB = 0, we obtain, via an easy computation,

Ḋ = 0, A = diag(A1, . . . , Au), B = diag(A1, . . . , Au, C),

where Ai and C are skew-symmetric matrices of respective sizes ki and m− n. Thus
(U̇ , V̇ , Ḋ) = (UA, V B, 0) is tangent to the fiber of π in G×D(k) above π(U, V,D) so

that Dπ(U, V,D)(U̇ , V̇ , Ḋ) = 0. In other words

Di(π(U, V,D))(Dπ(U, V,D)(U̇ , V̇ , Ḋ)) = 0 =⇒ Dπ(U, V,D)(U̇ , V̇ , Ḋ) = 0

that is Di(π(U, V,D)) is injective.
The last point to check to apply Lemma 33 is the continuity of the inverse of i.

Suppose that Xp → X with Xp, X ∈ Im i = P(k). We can write them Xp = UpDpV
∗
p
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and X = UDV ∗. Let (Upq , Vpq ) be a subsequence which converges to (Ũ , Ṽ ) (G is

compact). Since Xpq → X we have Dpq → Ũ∗XṼ = D̃, and ŨD̃Ṽ ∗ = UDV ∗. Now

we consider the sequence Ũ∗XpṼ . It is a convergent sequence, hence it has a unique

limit D̃ and (Ũ , Ṽ , D̃)R(U, V,D). Thus, π(Ũ∗Up, Ṽ
∗Vp, Dp) converges to π(I, I,D).

By left Un × Um action, we conclude that π(Up, Vp, Dp) converges to π(U, V,D) as
required.

Thus, the hypothesis of Lemma 33 is satisfied and P(k) is a real smooth embedded
submanifold of GLn,m.

The computation of its dimension is easy: it is given by the difference of the
dimension of G×D(k) and the dimension of the fiber above any point in the quotient
space, that is

dimUn + dimUm + u− dimUk1 − . . .− dimUku − dimUm−n.

The tangent space TDP(k), D = diag(σ1Ik1 , . . . , σuIku), is the image of the tan-
gent space T(In,Im,D)G × D(k) by the derivative D(i ◦ π)(In, Im, D). It is the set of

matrices AD + Ḋ −DB with Ḋ = diag(λ1Ik1 , . . . , λuIku), A and B skew symmetric
of sizes n and m. They all have the type described in Proposition 16 and this space
of matrices has the right dimension.

Let us prove the smoothness of the map X ∈ P(k) → σi(X) ∈ R. Since the map
(U, V,D) ∈ G×D(k) → σi(D) is smooth, and constant in the equivalence classes, the
map π(U, V,D) ∈ (G×D(k))/R → σi(D) = σi(UDV

∗) is also smooth. Thus the map
X = UDV ∗ ∈ P(k) → σi(X) is smooth as the composition of the previous map by
i−1.

Lemma 17. Let I be an open interval. Let (γ(t))t∈I be a smooth path in P(k).
Then, there are smooth paths U(t) ∈ Un, V (t) ∈ Um and Σ(t) ∈ D(k) so that

γ(t) = U(t)Σ(t)V (t)∗ (4.1)

for all t ∈ I. We give two quite different proofs of this result.
Proof. Consider the mapping π : Un × D(k) × Um → P(k) sending (U,D, V ) to

UDV ∗. Note that π is surjective. We claim that it is also a submersion: by unitary
invariance, we may assume that U = In, V = Im. Then, for skew-symmetric matrices
A,B of respective sizes n,m, we have:

Dπ(I,D, V )(A, Ḋ,B) = AD + Ḋ +DB.

It is a simple exercise to check that one can get any matrix in the tangent space
TDP(k), computed in Proposition 16, by choosing appropriate A,B. Thus, Dπ(I,D, I)
is surjective, and π is a submersion.

Finally, we claim that π is also a proper map (i.e. the preimage of a compact set
is a compact set): let K ⊆ P(k) be a compact subset. The mapping sending a matrix
to its (ordered) singular values is continuous, and hence the set of singular values of
matrices in K is the continuous image of a compact set, thus a compact set, call it
K ′ ⊆ D(k). Thus, π−1(K) is a closed (because π is continuous) subset of the compact
set Un ×K ′ × Um, thus a compact set. This proves that π is proper.

A theorem by Ehresmann [15] (see [25, Th. 5.1] for a general version on a more
modern framework) says that, under these hypotheses, π is actually a locally trivial
fibration which implies that it defines a fiberbundle. Hence, π has the homotopy
lifting property and in particular any path in P(k) can be smoothly lifted to a path
in Un ×D(k) × Um as wanted.
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As an alternative, we have:
Proof. We will show that U(t), V (t) and Σ(t) are solutions of a certain differential

equation on the manifold Un × Um × D(k). An important fact to be used below is
that TIUn is the space of skew-hermitian matrices. In the real case, TIOn is the space
of skew-symmetric matrices. Let us assume for a while that (4.1) admits a solution.
Differentiating (4.1) with respect to t, we obtain after a few trivial manipulations that

U(t)∗γ̇(t)V (t) = U(t)∗U̇(t)Σ(t)− Σ(t)V (t)∗V̇ (t) + Σ̇(t).

For shortness, let M(t) = U(t)∗γ̇(t)V (t), A(t) = U(t)∗U̇(t) ∈ TIUn and B(t) =
V (t)∗V̇ (t) ∈ TIUm. We have now:

M(t) = A(t)Σ(t)− Σ(t)B(t) + Σ̇(t).

Using block notation, we obtain for i < j that

Mij(t) = σj(t)Aij(t)− σi(t)Bij(t).

The equation for block Mji(t) reads:

Mji(t) = σi(t)Aji(t)− σj(t)Bji(t).

Transposing,

Mji(t)
∗ = −σi(t)Aij(t) + σj(t)Bij(t).

We obtain therefore {
Aij = 1

σ2
j−σ2

i
(σjMij(t) + σiMji(t)

∗)

Bij = 1
σ2
j−σ2

i
(σiMij(t) + σjMji(t)

∗)
(4.2)

The blocks in the diagonal (that is, i = j) are of the form

Mii(t) = σi(Aii −Bii) + σ̇iIki ,

hence we can solve by setting

Aii = −Bii =
1

2σi
(Mii(t)− σ̇iIki). (4.3)

Equations (4.2)-(4.3) are a system of smooth non-autonomous ordinary differential
equations in variables U ∈ Un, V ∈ Um and Σ ∈ D(k). The Lipschitz condition holds.
Hence, for every t0 ∈ I, there are ε > 0 and local solutions U(t), V (t) and Σ(t) for
t ∈ (t0 − ε, t0 + ε), solving (4.1).

In order to show the existence of a global solution on all the interval, we need to
check that as t → t0 + ε, the solution converges to a limit in Un × Um × D(k). The
convergence of U(t) and V (t) follows from compactness of the unitary group. Because
γ(t0 + ε) ∈ P(k),

lim
t→t0+ε

Σ(t) ∈ D(k).

Hence, the solution (U(t), V (t),Σ(t)) can be extended to an interval that is open and
closed in I, hence to all I.
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Let α : GLn,m be defined by α(A) = σn(A)−2. We also denote by α = σ−2
u its

restriction to P(k) or to D(k). We first consider the case of diagonal matrices, then we
prove self-convexity of α in P(k).

Lemma 18. Let P(k) be equipped with the condition metric structure

〈·, ·〉κ = σ−2
u Re 〈·, ·〉F .

1. If Σ1,Σ2 ∈ D(k), then any minimizing condition geodesic in P(k) joining Σ1

and Σ2 lies in D(k),
2. The set D(k) is a totally geodesic submanifold of P(k) for the condition metric,

namely, every geodesic in D(k) for the induced structure is also a geodesic in
P(k), or equivalently:

3. If Σ ∈ D(k) and Σ̇ ∈ TΣD(k), then the unique geodesic in P(k) through Σ with

tangent vector Σ̇ at Σ, remains in D(k).
Moreover, α = σ−2

u is log-convex in D(k).
Proof. According to Proposition 16, P(k) is a smooth Riemannian manifold for

the condition structure.
Let γ(t), 0 ≤ t ≤ T, be a minimizing condition geodesic with endpoints Σ1 and

Σ2 ∈ D(k). Let γ(t) = UtΣtV
∗
t be a singular value decomposition of γ(t), choosen as

in Lemma 17. Let σu(t) be the smallest singular value of γ(t). It suffices to see that
Lκ(Σ) ≤ Lκ(γ) that is∫ T

0

‖Σ̇t‖Fσu(t)−1dt ≤
∫ T

0

‖γ̇t‖Fσu(t)−1dt.

Since

γ̇t = U̇tΣtV
∗
t + UtΣ̇tV

∗
t + UtΣtV̇

∗
t ,

with U̇t = UtAt, V̇t = VtBt, At and Bt skew-symmetric, we see that

‖γ̇t‖2F = ‖AtΣt + Σ̇t − ΣtBt‖2F = ‖Σ̇t‖2F + ‖AtΣt − ΣtBt‖2F ≥ ‖Σ̇t‖2F

because the diagonal terms in Σ̇t are real numbers and those of AtΣt − ΣtBt are
purely imaginary when K = C and vanish when K = R. When γt does not belong to
D(k), then the inequality above is strict.

The second assertion is an easy consequence of the first one. The third assertion
is another classical characterization of totally geodesic submanifolds, see [23] Chapter
4, Proposition 13 or Theorem 5.

Finally, for log-convexity of α(X) = σu(X)−2, using [2] Proposition 3, it suffices
to see that for Σ ∈ D(k) and Σ̇ ∈ TΣD(k),

2‖Σ̇‖2‖Dσu(Σ)‖2 ≥ D2σ2
u(Σ)(Σ̇, Σ̇), (4.4)

where the second derivative is computed in the Frobenius metric structure. Now,

D(σu)(Σ)(Σ̇) = σu(Σ̇).

Thus ∥∥∥D(σu)(Σ)(Σ̇)
∥∥∥2
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is maximized for the ‘unit vector’ (in block representation)

Σ̇ =
1√
ku


0k1

· · ·
0ku−1

Iku

 .
We deduce that

‖Dσu(Σ)‖2 =
1

ku
,

hence

2‖Σ̇‖2‖Dσu(Σ)‖2 =
2‖Σ̇‖2

ku
≥ 2σu(Σ).

The right-hand-side of (4.4) is precisely

D2σ2
u(Σ)(Σ̇, Σ̇) = D(2σu(Σ)σu(Σ̇))(Σ̇) = 2σu(Σ̇)2,

and equation (4.4) follows.
Proposition 19. The map α = σ−2

u is self-convex in P(k).
Proof. By unitary invariance, we may choose as initial point a matrix Σ ∈ D(k)

with ordered distinct diagonal entries σ1 > . . . > σu > 0. We use Corollary 15, with
the group G being Un × Um and the action

Un × Um × P(k) −→ P(k)

((U, V ), A) 7→ UAV ∗.

The Lie algebra of G is the set An×Am where Ak is the set of k× k skew-symmetric
matrices.

We write G(L) for the G-orbit of a point L ∈ P(k). In our case, this is the
manifold of all ULV ∗ with U ∈ Un, V ∈ Um. The tangent space to the Lie group
action at L is the tangent manifold TLG(L) ⊆ TLP(k).

First, we note that for any L ∈ D(k), we have

(TLG(L))⊥ = TL {ULV ∗ : U ∈ Un, V ∈ Um}⊥ =

{B1L+ LB∗2 : (B1, B2) ∈ An ×Am}⊥ .

Let us denote by S this last set. We claim that S = D(k). Indeed, D(k) ⊆ S, because
the diagonal of any matrix of the form B1L + LB∗2 is purely imaginary and hence
orthogonal to D(k). The other inclusion is easily checked by a dimensional argument:
The dimension of D(k) is u and the dimension of S is

dim(P(k))− dim {B1L+ LB∗2 : (B1, B2) ∈ An ×Am} ,

that is dim(P(k)) minus the dimension of the orbit of L under the action of Un ×
Um. We have computed these two quantities in Proposition 16, and we immediately
conclude that dim(S) = u, for both K = C and K = R. Thus, for all L ∈ D(k),

(TLG(L))⊥ = D(k).

We now check the three conditions of Corollary 15.
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• D2
κ log(α)(Σ) is positive semi-definite in (TΣG(Σ))⊥: let

Σ̇ ∈ (TΣG(Σ))⊥ = TΣD(k),

and let γ be a condition geodesic in D(k) such that γ(0) = Σ, γ̇(0) = Σ̇. We
have to check that

d2

dt2
logα(γ(t)) |t=0 ≥ 0.

This is true as α is log-convex in D(k) from Lemma 18.
• We have to check that for small enough t, and for

Σ̇ ∈ (TΣG(Σ))⊥ = TΣD(k),

Dφt(D)Σ̇ belongs to

Tφt(Σ)G(Σ)⊥ = TΣD(k),

where φt is the flow of gradκα. In our case, φt can be computed exactly.
Indeed,

gradκα =
1

α
grad α = − 2

kuσu
E,

where

E = diag(0, . . . , 0,

ku︷ ︸︸ ︷
1, . . . , 1).

Thus, grad α preserves the diagonal form, and φt(Σ) ∈ D(k) is a diagonal

matrix, for every t while defined. Thus, Dφt(Σ)(Σ̇) is again a diagonal ma-
trix, for every diagonal matrix Σ̇. This proves that the second condition of
Corollary 15 applies to our case.

• For (B1, B2) ∈ An×Am, the vector field K on GLn,m generated by (B1, B2)
is

K(A) =
d

dt

(
etB1AetB

∗
2

)
|t=0 = B1A+AB∗2 .

Note that
1. K∗ as a linear operator on GLn,m satisfies K∗(A) = B∗1A+AB2.
2. ‖K(Σ)‖2 = ‖B1Σ + ΣB∗2‖2,
3. For w ∈ TΣP(k), D(‖K‖2)(Σ)w = 2Re〈K∗K(Σ), w〉 = 2Re〈B1B

∗
1Σ +

ΣB2B
∗
2 − 2B1ΣB∗2 , w〉.

4. grad α(Σ) = − 2
kuσ3

u
E where E = diag(0, . . . , 0,

ku︷ ︸︸ ︷
1, . . . , 1).

Thus,

α(Σ)D(‖K‖2)(Σ)(grad α(Σ)) + ‖K(Σ)‖2‖grad α(Σ)‖2 =

4

kuσ6
u

(
−σuRe〈B1B

∗
1Σ + ΣB2B

∗
2 − 2B1ΣB∗2 , E〉+ ‖B1Σ− ΣB2‖2

)
.
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Hence, it suffices to see that J ≥ 0 where

J = ‖B1Σ− ΣB2‖2 − σuRe〈B1B
∗
1Σ + ΣB2B

∗
2 − 2B1ΣB∗2 , E〉.

Expanding this expression and writing Σ′ = Σ∗ − σuE∗, we have

J = Re (trace (B1B
∗
1ΣΣ′) + trace (Σ′ΣB2B

∗
2)− 2trace (B1ΣB∗2Σ′)) ,

which by Lemma 20 below is a non-negative quantity. The proposition follows.

Lemma 20. Let Σ = diag(σ1Ik1 , . . . , σu−1Iku−1
, σuIku) ∈ GLn,m and Σ′ =

diag(σ1Ik1 , . . . , σu−1Iku−1
, 0Iku) ∈ GLm,n. Then, for any skew-symmetric matrices

B,C of respective sizes n,m, we have:

Re (trace (BB∗ΣΣ′) + trace (Σ′ΣCC∗)− 2 trace (BΣC∗Σ′)) ≥ 0.

Proof. We denote

J = Re (trace (BB∗ΣΣ′) + trace (Σ′ΣCC∗)− 2 trace (BΣC∗Σ′)) .

Write

Σ =

(
L 0 0
0 σuIku 0

)
, Σ′ =

L 0
0 0
0 0

 ,

and let us write B,C by blocks,

B =

(
B1 B2

−B∗2 B4

)
, C =

 C1 C2 C3

−C∗2 C4 C5

−C∗3 −C∗5 C6


where B1, C1 are of the size of L and B4, C4 are of the size of Iku . Then,

trace (BB∗ΣΣ′) = trace ((B1B
∗
1 +B2B

∗
2)L2),

trace (Σ′ΣCC∗) = trace (L2(C1C
∗
1 + C2C

∗
2 + C3C

∗
3 )),

trace (BΣC∗Σ′) = trace (B1LC
∗
1L+ σuB2C

∗
2L).

Thus,

J ≥ Re
(
trace ((B1B

∗
1 + C1C

∗
1 )L2 − 2B1LC

∗
1L)

)
+

Re
(
trace ((B2B

∗
2 + C2C

∗
2 + C3C

∗
3 )L2 − 2σuB2C

∗
2L)

)
.

We will prove that these two terms are non-negative. For the first one, note that

Re
(
trace ((B1B

∗
1 + C1C

∗
1 )L2 − 2B1LC

∗
1L)

)
= ‖B1L− LC1‖2 ≥ 0.

For the second one, we check that for every l, 1 ≤ l ≤ n− ku the l-th diagonal entry
of the matrix (B2B

∗
2 +C2C

∗
2 +C3C

∗
3 )L2−2σuB2C

∗
2L has a positive real part. Indeed,

if we denote by v ∈ Kku the l-th row of B2 by w ∈ Kku the l-th row of C2 and by x
the l-th row of C3, we have

Re
(
(B2B

∗
2 + C2C

∗
2 + C3C

∗
3 )L2 − 2σuB2C

∗
2L
)
l,l

=

σ2
l

(
(‖v‖2 + ‖w‖2 + ‖x‖2)− 2

σu
σl

Re〈v, w〉
)
≥ σ2

l ‖v − w‖2 ≥ 0

as σu < σl. This finishes the proof of Lemma 20 and hence of Proposition 19.
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5. Puting pieces together. Before stating the main result of this section we
have to introduce the following machinery:

5.1. Second symmetric derivatives. In the case of Lipschitz-Riemann struc-
tures, the mappings we want to consider are not necessarily C2 and, to study their
convexity properties, an approach based on the usual covariant second derivative is
insufficient. We will use instead the second symmetric upper derivative.

Let U ⊆ Rk be an open set and φ : U → R be any function. The second
symmetric upper derivative of φ at x ∈ U in the direction v ∈ Rk is

SD 2φ(x; v) = lim sup
h7→0

φ(x+ hv) + φ(x− hv)− 2φ(x)

h2

which is allowed to be ±∞. If U ⊆ R is an interval, we simply write SD 2φ(x) for

SD 2φ(x; 1).
It is well-known that a continuous function φ on an interval is convex if and only

if SD 2φ(x) ≥ 0 for all x (see for example [31] Theorem 5.29). There is a stronger
result due to Burkill [9] Theorem 1.1 (see also [31] Corollary 5.31) which uses a weaker
hypothesis:

Theorem 21 (Burkill). Let φ :]a, b[→ R be a continuous function such that

SD 2φ(x) ≥ 0 for almost all x ∈]a, b[, and assume that SD 2φ(x) > −∞ for x ∈]a, b[.
Then, φ is a convex function.

Theorem 21 will allow us to assemble the pieces where convexity is proven in
Proposition 19 to prove our main results (Theorems 1 and 31). We proceed a little
more generally as the result may be of interest in other circumstances. Let M be a
k-dimensional C2 manifold (not necessarily having a Riemannian structure).

Definition 22. Let α : M → R. We say that SD 2α is bounded from −∞
(denoted SD 2α > −∞) if for every x ∈ M there is an open neighborhood Ux ⊆ M
and a coordinate chart ϕx : Ux → Rk, ϕx(x) = 0 such that

SD 2(α ◦ ϕ−1
x )(0; v) > −∞

for every v ∈ Rk.
The following lemma is a consequence of Definition 22.
Lemma 23. Let M be a C2 manifold, let α : M →]0,∞[ be a locally Lipschitz

mapping. Then, SD 2α > −∞ if and only if, for any function φ :]0,∞[→ R of class

C2, SD 2(φ ◦ α) > −∞. In particular, SD 2α > −∞ if and only if SD 2(log ◦α) >
−∞.

Proof. The if part is trivial (just make φ(t) = t). In order to prove the only if

part, we assume that SD 2α > −∞. Let x ∈M and let ϕx : Ux → Rk be a coordinate

chart such that ϕx(x) = 0 and SD 2(α ◦ ϕ−1
x )(0; v) > −∞ for each v ∈ Rk. There is

a sequence hp → 0 such that

lim
p→∞

α(ϕ−1
x (hpv)) + α(ϕ−1

x (−hpv))− 2α(x)

h2
p

= C > −∞.

Let us define Hp = α(ϕ−1
x (hpv)) − α(x), and similarly Kp = α(ϕ−1

x (−hpv)) − α(x).
By Taylor’s formula we get

φ(α(ϕ−1
x (hpv))) = φ(α(x)) + φ′(α(x))Hp + φ′′(α(x))

H2
p

2
+ o(H2

p ),
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and similarly

φ(α(ϕ−1
x (−hpv))) = φ(α(x)) + φ′(α(x))Kp + φ′′(α(x))

K2
p

2
+ o(K2

p),

so that

φ(α(ϕ−1
x (hpv))) + φ(α(ϕ−1

x (−hpv)))− 2φ(α(x)

h2
p

=

φ′(α(x))
Hp +Kp

h2
p

+ φ′′(α(x))
H2
p +K2

p

2h2
p

+
o(H2

p ) + o(K2
p)

h2
p

.

Notice that limp→∞
Hp+Kp

h2
p

= C. Since h→ α(ϕ−1
x (hv)) is Lipschitz in a neighborhood

of 0 we have, for a suitable constant D > 0, H2
p ≤ Dh2

p and K2
p ≤ Dh2

p. Thus, taking

the lim sup as p→∞ gives SD 2φ(α ◦ ϕ−1
x )(0, v) ≥ C +D > −∞ and we are done.

5.2. Projecting geodesics on submanifolds : the Euclidean case. The
following technical lemma, interesting by itself, is a consequence of Lebesgue’s Density
Theorem.

Lemma 24. For any locally integrable function f defined in R with values in Rn,
let x ∈ R be a point where f is locally integrable. This means that F ′(x) = f(x) where
F denotes an antiderivative of f . Then

lim
ε→0

2

ε2

∫ x+ε

x

(y − x)f(y)dy = f(x).

Proof. Notice that, by Lebesgue’s differentiation theorem, an antiderivative F of
f exists a. e. and it is absolutly continuous. Suppose that F (x) = 0. Let us define

h(y) =

{
F (y)/(y − x) if y 6= x,
f(x) if y = x,

so that h is a continuous function and F (y) = (y − x)h(y) for any y. Integrating by
parts gives ∫ x+ε

x

(y − x)f(y)dy = εF (x+ ε)−
∫ x+ε

x

F (y)dy

so that

2

ε2

∫ x+ε

x

(y − x)f(y)dy = 2
F (x+ ε)− F (0)

ε
− 2

ε2

∫ x+ε

x

(y − x)h(y)dy.

Since h is continuous, by the Mean Value Theorem, there exists ζ ∈ [x, x + ε] such
that

2

ε2

∫ x+ε

x

(y − x)h(y)dy =
2h(ζ)

ε2

∫ x+ε

x

(y − x)dy = h(ζ)→ h(x) = f(x)

as ε→ 0. On the other hand

lim
ε→0

2
F (x+ ε)− F (x)

ε
= 2f(x).
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Thus

lim
ε→0

2

ε2

∫ x+ε

x

(y − x)f(y)dy = 2f(x)− f(x) = f(x)

and we are done.
Our aim is now to see how close are a geodesic in a Lipschitz-Riemannian manifold

and a geodesic in a submanifold when they have the same tangent at a given point.
Let us start to study a simple case.

Let us consider the Lipschitz-Riemann structure defined on an open, k-dimensional
set Ω ⊂ Rk containing 0 by the scalar product 〈u, v〉x = vTH(x)u (see section 2.3).

1. The matrix H(0) is supposed to have the following block structure

H(0) =

(
Hp(0) 0

0 Hk−p(0)

)
.

We also suppose that (see section 2.3)
2. The entries hij(x) of H(x) are regular at x = 0,

The set Ωp = Ω ∩ (Rp × {0}) is a submanifold in Ω. We suppose that
3. Hp is C2 in Ωp,

so that Ωp is in fact a smooth C2 Riemannian manifold for the induced H−structure.
Let us now consider a vector a ∈ Rp ×{0} and three parametrized curves denoted by
x, xp, and y defined in a neighborhood of 0 in R, and such that:

4. x(0) = xp(0) = y(0) = 0,
5. ẋ(0) = ẋp(0) = ẏ(0) = a,
6. x is a geodesic in Rk for the H-structure,
7. xp is its orthogonal projection onto Rp × {0},
8. y is a geodesic in Rp × {0} for the induced structure.

According to Theorem 3, x has regularity C1+Lip so that its second derivative exists
a.e. We suppose here that

9. The second derivative ẍ(t) is defined at t = 0, and

d

dt
|t=0 (H(x(t))ẋ(t)) ∈ 1

2

∑
i,j

ẋi(0)ẋj(0)∂hij(x(0)).

In this context we have:
Lemma 25. Under the hypotheses 1 to 9 above, the curves xp and y have a contact

of order 2 at 0: xp(s) = y(s) + o(s2).
Proof. By hypothesis 3,

y ∈ C2. (5.1)

Hypothesis 8 says that y is a geodesic. Because geodesics are parametrized by arc
length,

ẏT (s)Hp(y(s))ẏ(s) = 1. (5.2)

The Euler-Lagrange equation for geodesics in is now

d

ds
(Hp(y(s))ẏ(s)) =

1

2

∑
i,j

ẏi(s)ẏj(s)grad hp,ij(y(s)), (5.3)
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where hp,ij is hij , seen as a function of x1, . . . , xp. The differential system (5.1-5.3)
actually defines y(s) as a curve in Ωp, in function of the initial condition (y(0), ẏ(0)).

Moreover, thanks to hypothesis 9 we have:

H(x(0))ẍ(0) +
d

dt |t=0
(H(x(t)))ẋ(0) ∈ 1

2

k∑
i,j=1

ẋi(0)ẋj(0)∂hij(x(0)).

When we project it onto Rp we get, with x(t) =

(
xp(t)
xk−p(t)

)
,

Hp(0)ẍp(0) +
d

dt |t=0
(Hp(xp(t)))ẋp(0) ∈ 1

2

p∑
i,j=1

ẋp,i(0)ẋp,j(0)ΠRp∂hij(x(0)).

Since the functions hij(x) for i, j = 1 . . . p are regular (hypothesis 2), from Clarke [11]
Proposition 2.3.15, we obtain

ΠRp∂hij(x(0)) = ∂hp,ij(xp(0)) = grad hp,ij(xp(0))

so that

Hp(0)ẍp(0) +
d

dt
|t=0 (Hp(xp(t)))ẋp(0) =

1

2

p∑
i,j=1

ẋp,i(0)ẋp,j(0)grad hp,ij(xp(0)),

Taking at t = 0 the differential equation giving y and noting that y(0) = xp(0),
ẏ(0) = ẋp(0) gives

ÿ(0) = ẍp(0).

We want to prove that xp(s) = y(s) + o(s2). According to Taylor’s formula with
integral remainder, we have

xp(s)− y(s) = xp(0)− y(0) + s(ẋp(0)− ẏ(0)) +

∫ s

0

(ẍp(σ)− ÿ(σ))σdσ,

so that,

2
xp(s)− y(s)

s2
=

2

s2

∫ s

0

(ẍp(σ)− ÿ(σ))σdσ.

From Lemma 24 and hypothesis 9, the limit of this expression exists at s = 0, and it
is equal to ẍp(0)− ÿ(0) = 0. This achieves the proof.

Proposition 26. Let Rk be endowed with the Lipschitz-Riemann structure de-
fined by 〈u, v〉x = vTH(x)u, where the entries hij(x) of H(x) are regular and H(x)
has the block structure

H(x) =

(
Hp(x) 0

0 Hk−p(x)

)
,

for x ∈ Rk. Assume that Hp is C2 for all x ∈ Rp × {0} ⊂ Rk. Let x : [a, b]→ Rk be a
geodesic in Rk with respect to the Lipschitz-Riemann structure. Then, there exists a
zero-measure set Z ⊆ [a, b] such that for t0 ∈ [a, b] \ Z the following holds:
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m

u

γq,u

Fig. 5.1. The projection K :M→N .

“If x(t0) ∈ Rp×{0} ⊂ Rk and ẋ(t0) ∈ Rp×{0} ⊂ Rk, then the projection xp(t) =
πRp(x(t)) has a contact of order 2 with y(t), the unique geodesic in Rp with respect
to the Lipschitz-Riemann structure Hp with initial conditions y(t0) = πRp(x(t0)) and
ẏ(t0) = πRp(ẋ(t0))”.

Proof. From Remark 6, there exists a zero measure Z ⊆ [a, b] such that for
t0 ∈ [a, b] \ Z, ẍ(t0) exists and

d

dt
|t=t0 (H(x(t))ẋ(t)) ∈ 1

2

∑
i,j

ẋi(t0)ẋj(t0)∂hij(x(t0)).

From Lemma 25, for every such t0, if in addition x(t0) ∈ Rp×{0} and ẋ(t0) ∈ Rp×{0},
then xp(t) has a contact of order 2 with y(t) and we are done.

5.3. Projecting geodesics on submanifolds : the Riemannian case. Our
aim, in this section, is to prove another version of Lemma 25 in a different geometric
context. Let M be a C3 Riemannian manifold with distance d, of dimension k, and
let N be a submanifold of dimension p.

Let us first define the projection onto N (Fig.5.1). To each q ∈ N and to
a vector u 6= 0 normal to N at q we associate the geodesic γq,u in M such that
γq,u(0) = q and γ̇q,u(0) = u. Let n ∈ N be given, and let U be an open neighborhood
of n such that, for each m ∈ U there exists a unique geodesic arc γq,u(t), t in an open
interval containing 0, contained in U and containing m. Thus U is the union of such
geodesic arcs and two of them have always a void intersection. This picture defines a
map K : U → N by K(m) = q if m = γq,u(t). The map K is the projection map
onto N . It has the following classical properties:

1. It is defined in the neighborhood U of n ∈ N ,
2. For each m ∈ U , K(m) is the unique point in M such that

inf
q∈N

d(m, q) = d(m,K(m))

3. K is C2.
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See Li-Nirenberg [21] or Beltran-Dedieu-Malajovich-Shub [2].
Let α :M→]0,∞[ be a locally Lipschitz, regular map (see section 2.3). It defines

a conformal Lipschitz-Riemann structure on M associated with the inner product

〈·, ·〉α,m = α(m) 〈·, ·〉m .

We call it the α−structure. We suppose that α is C2 when it is restricted to N so
that N is C2 and not only Lipschitz for the induced α−structure.

Proposition 27. Under the hypotheses above, let γ : [a, b] → M be a geodesic
curve inM for the α−structure. Then, there exists a zero-measure set Z ⊆ [a, b] such
that for t0 ∈ [a, b] \ Z the following holds:

“If γ(t0) ∈ N and γ̇(t0) ∈ Tγ(t0)N , then the projection γN (t) = (K ◦ γ)(t) of
γ onto N has a contact of order 2 with δ(t), the unique geodesic in N such that
δ(t0) = γ(t0) and δ̇(t0) = γ̇(t0)”.

Remark 28. IfM, N and α are assumed to be smooth then Z = ∅ in Proposition
27. See for example the proof of Proposition 5.9 in [33].

Proof. The proof consists in a transfer fromM to Rk where we apply Proposition
27. Let

Z =

{
t0 ∈ [a, b] : γ(t0) ∈ N , γ̇(t0) ∈ Tγ(t0)N but lim

t→t0

γN (t)− δ(t)
(t− t0)2

6= 0

}
.

We have to check that Z is a zero measure set. It suffices to see that for every t ∈ (a, b)
there is an open interval I containing t and such that I∩Z has zero measure. Without
loss of generality, we may assume that t = 0. Thus, let t = 0 ∈ (a, b) and let n = γ(0).

SinceM is C3, the normal bundle to N is C2 and there exists a C2 diffeomorphism
φ : U → V ⊂ Rk, where V is an open set containing 0, satisfying

1. φ(n) = 0,
2. φ(U ∩N ) = V ∩ (Rp × {0}),
3. For any q ∈ N and any vector u 6= 0 normal to N at q, φ (γq,u) is a straight

line in Rk orthogonal to Rp × {0}.
We make φ an isometry in defining on V ⊂ Rk a Lipschitz-Riemannian structure by

〈Dφ(m)u,Dφ(m)v〉φ(m) = α(m) 〈u, v〉m

for any m ∈ U , and u, v ∈ TmM. Let us denote x = φ(m), a = Dφ(m)u, b = Dφ(m)v,
we also write this scalar product

〈a, b〉x = bTH(x)a

where H is a locally Lipschitz map from V into the k × k positive definite matrices.
Notice that H is regular because α is regular in N .
Since for every n̂ ∈ N ∩ U ,

Dφ(n̂) (Tn̂N ) = Rp × {0} and Dφ(n̂)
(

(Tn̂N )
⊥
)

= {0} × Rk−p,

H(x) has the block structure

H(x) =

(
Hp(x) 0

0 Hk−p(x)

)
.

Since α is C2 when restricted to N we have the same regularity for the restriction
of H to Rp × {0}.
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Since φ is an isometry the curves φ ◦ γ and φ ◦ δ are geodesics in Rk and Rp×{0}
respectively, and, from the definition of φ, the orthogonal projection (in the Euclidean
meaning) of φ ◦ γ onto Rp × {0} is equal to φ ◦ γN .

Thus, the hypotheses of Proposition 26 are satisfied so that φ ◦ γN and φ ◦ δ have
an order 2 contact at every t out of a zero measure set Z0. This gives easily an order
2 contact for γN and δ at t 6∈ Z0 in M in terms of the α−distance but also, since
1/α is locally Lipschitz, in terms of the initial Riemannian distance. The proposition
follows.

5.4. Arriving to the main theorem. We are now ready to state the main
theorem in this section:

Theorem 29 (Piecing together). M = ∪∞i=1Mi is a C3 Riemannian manifold,
enumerable union of the submanifolds Mi. Let α :M→]0,∞[ be a locally Lipschitz
mapping. Assume that:

1. α is regular,
2. For each i, the restriction of α to Mi is C2 and self-convex in Mi,

3. SD 2α > −∞.
Then, α is self-convex in M.

Proof. Once again we add to M the α−structure. If this theorem is false, there
exists a geodesic γ in M for the α−structure such that

SD 2 log(α(γ(t))) < 0

on a positive measure set P ⊂ R (Theorem 21 and Lemma 23). Since an enumerable
union of zero-measure sets is also a zero-measure set, we can suppose that P ⊂ Mi

for some i, so that γ(t) ∈ Mi for every t ∈ P . According to the Lebesgue Density
Theorem, almost all points t ∈ P are density points, that is

lim
ε→0

meas (P ∩ [t− ε, t+ ε])

2ε
= 1.

We remove the “non-density points” from P to obtain a new set, also called P , with
positive measure and only density points. Since γ ∈ C1+Lip (Theorem 3), the second
derivative γ̈(t) exists for almost all t. We also remove from P the zero measure set of
Proposition 27.

Let t ∈ P be given. Since it is a density point of P , we have s ∈ P for “a lot of
points” close to t. Since γ(s) ∈Mi for such points, and since γ is C1, we get

γ̇(t) ∈ Tγ(t)Mi.

Take now the geodesic δ in Mi for the induced α−structure such that δ(t) = γ(t)
and δ̇(t) = γ̇(t). As we have removed the zero-measure set of Proposition 27, γi and
δ have a contact of order 2 at t.

By self-convexity of α in Mi, and since δ is C2 we get

SD 2 log ◦α ◦ δ(t) =
d2

dt2
log ◦α ◦ δ(t) ≥ 0.

Let us now consider

∆2(h) =
log ◦α ◦ γ(t+ h) + log ◦α ◦ γ(t− h)− 2 log ◦α ◦ γ(t)

h2
.
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It is not difficult to prove that t is a density point of

Q = {s = t+ h ∈ P : t− h ∈ P} .

Let us denote by γi the projection of γ on Mi (see section 5.3). For the points
s = t + h ∈ Q, one has γ(t + h) = γi(t + h), γ(t − h) = γi(t − h), and γ(t) = γi(t),
thus

∆2(h) =
log ◦α ◦ γi(t+ h) + log ◦α ◦ γi(t− h)− 2 log ◦α ◦ γi(t)

h2
.

From the contact of order 2 between γi and δ we then conclude,

∆2(h) =
log ◦α ◦ δ(t+ h) + log ◦α ◦ δ(t− h)− 2 log ◦α ◦ δ(t) + o(h2)

h2
.

Since δ is C2, taking the limit as h→ 0 gives

lim ∆2(h) =
d2

dt2
log ◦α ◦ δ(t).

Since this last expression is nonegative we obtain

SD 2 log(α(γ(t))) ≥ lim ∆2(h) ≥ 0

which contradicts our hypothesis SD 2 log(α(γ(t))) < 0 on P .

6. Proof of Theorem 1. Theorem 1 is a consequence of Theorem 29 applied
to M = GLn,m considered as the union of the submanifolds P(k) (see section 4) and
to the mapping α(A) = σn(A)−2, the inverse of the square of the smallest singular
value of A ∈ GLn,m. According to propositions 16 and 19 we just have to prove that

α is a regular map and that SD 2α > −∞. Let us start with this last inequality.
We must prove that for every A ∈ GLn,m, B ∈ Kn×m,

SD 2σ−2
n (A;B) = lim sup

h7→0

σ−2
n (Ah) + σ−2

n (A−h)− 2σ−2
n (A)

h2
> −∞,

where Ah = A + hB. Now, let S+
n be the set of symmetric, positive definite n × n

matrices. Then,

σ−2
n (Ah) + σ−2

n (A−h) = λ−1
n (AhA

∗
h) + λ−1

n (A−hA
∗
−h).

where, λn denotes the smallest eigenvalue. Since, for any S ∈ S+
n ,

λn(S) = inf
u∈Rn, ‖u‖=1

uTSu,

it is a concave function of S, and λ−1
n is convex. Thus,

λ−1
n (AhA

∗
h) + λ−1

n (A−hA
∗
−h) ≥ 2λ−1

n

(
AhA

∗
h +A−hA

∗
−h

2

)
= 2λ−1

n (AA∗ + h2BB∗).

We conclude that

SD 2σ−2
n (A;B) ≥ lim sup

h 7→0

2λ−1
n (AA∗ + h2BB∗)− 2λ−1

n (AA∗)

h2
.

This last quantity is bounded in absolute value since λ−1
n is locally Lipschitz, so in

particular SD 2σ−2
n (A;B) > −∞.

To prove that α is regular it suffices to write it as the composition of C1 maps
and of the convex λ−1

n which is also a regular map (see [11] Prop. 2.3.6). This finishes
the proof of our Main Theorem 1.
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7. The solution variety. As in [2], we are also interested in the log–convexity
of σn(A)−1 in the solution variety:

W = {(A, x) ∈ GLn,n+1 × P(Kn+1) : Ax = 0}.

Remark 30. In [2] we have sometimes taken A to lie in the unit sphere of Kn×m
or even the projective space P(Kn×m). The interested reader can check [2] for the
relations between self-convexity in the various settings.

Theorem 31. For any condition geodesic t → (A(t), x(t)) in W, the map t →
log
(
σ−2
n (A(t))

)
is convex. As we have done in the case of GLn,m, we divide the

proof in several sections.

7.1. The smooth part of W. Let u ≤ n and (k) = (k1, . . . , ku) ∈ Nu such that
k1 + · · ·+ ku = n. We define W(k) = {(A, x) ∈ W : A ∈ P(k)}.

Proposition 32. For any choice of (k), the set W(k) is a smooth submanifold
of W, σu is a smooth function and α = σ−2

u is self–convex in W(k).
Proof. Let us consider the map

ψ : P(k) ×Kn+1 \ {0} → Kn
(A, x) 7→ Ax

which is a smooth mapping between two smooth manifolds. Since 0 is a regular value
of ψ, its preimage ψ−1(0) is a smooth submanifold of P(k) × Kn+1 \ {0}. Moreover,
σu is the composition of the projection onto the first coordinate W(k) → P(k) and
the function σu which is smooth by Proposition 16. To check that σu is self–convex
in W(k) we use Corollary 15 and proceed as in the proof of Proposition 19. Let
G = Un × Un+1, and consider the action

G×W(k) → W(k)

((U, V ), (A, x)) 7→ (UAV ∗, V x)

Let p = (Σ, en+1) where eTn+1 = (0, . . . , 0, 1) and Σ ∈ D(k) has ordered distinct
singular values σ1 > · · · > σu > 0. Recall that TpG(p) is the tangent space in p of the
orbit G(p) of p by the Lie group G. As in Propositions 16 and 19, we have

TpG(p) = {(B1Σ + ΣB∗2 , B2en+1) : (B1, B2) ∈ An ×An+1},

TpG(p)⊥ = {(Σ̇, 0) : Σ̇ ∈ P(k), Σ̇ is diagonal, Σ̇en+1 = 0}.

Note that TpG(p)⊥ is isometric to the set of diagonal n×n matrices with eigenvalues
σ1 > . . . > σu > 0 of respective multiplicities k1, . . . , ku.

Let us check the conditions of Corollary 15. By unitary invariance, we can choose
a pair p = (Σ, en+1) as above.

1. D2
κ log(α)(p) is positive semi-definite in (TpG(p))⊥: let (Σ̇, 0) ∈ TpG(p)⊥. Let γ

be a condition geodesic in TpG(p)⊥ such that γ(0) = (Σ, 0), γ̇(0) = (Σ̇, 0). We have
to check that

d2

dt2
logα(γ(t)) |t=0 ≥ 0.

This is true as α is log-convex in the set of diagonal n× n matrices with eigenvalues
σ1 > . . . > σu > 0 from Proposition 16.
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2. We have to check that for small enough t, and for

b = (Σ̇, 0) ∈ TpG(p)⊥,

Dφt(p)b is perpendicular to

Tφt(p)G(φt(p)),

where φt is the flow of gradκα in W(k). Now, as in the proof of Proposition 19, the
operator grad preserves the diagonal form of (Σ, en) and hence Dφt(p)b is of the
form (Σ′, 0) where Σ′ is diagonal with Σ′en = 0. In particular, it is orthogonal to
Tφt(p)G(φt(p)). Thus, the second condition of Corollary 15 applies to our case.

3. For (B1, B2) ∈ An ×Am, the vector field K on W(k) generated by (B1, B2) is

K(A, x) =
d

dt

(
etB1AetB

∗
2 , etB2x

)
|t=0 = (B1A+AB∗2 , B2x).

Note that

‖K(A, x)‖2 = ‖B1A+AB∗2‖2 + ‖B2x‖2.

Thus,

D(‖K‖2)(A, x)(C, v) =
d

dt
|t=0

(
‖K(A+ tC, x+ tv)‖2

)
=

2Re〈B1B
∗
1A+AB2B

∗
2 + 2B∗1AB

∗
2 , C〉+ 2Re〈B∗2B2x, v〉.

Moreover,

grad α(Σ, en+1) =

(
− 2

kuσ2
u

E, 0

)
where E = diag(0, . . . , 0,

ku︷ ︸︸ ︷
1, . . . , 1).

Thus,

α(Σ, en+1)D(‖K‖2)(Σ, en+1)(grad α(Σ, en+1)) +‖K(Σ, en+1)‖2‖grad α(Σ, en+1)‖2 =

2

kuσ6
u

(
−σuRe〈B1B

∗
1Σ + ΣB2B

∗
2 − 2B1ΣB∗2 , E〉+ ‖B1Σ− ΣB2‖2 + ‖B2x‖2

)
.

This is positive from the proof of Proposition 19.

Hence, all the conditions of Corollary 15 are fulfilled and the Proposition follows.

7.2. Proof of Theorem 31. Now we can prove Theorem 31 using Theorem 29
and Proposition 32. Note that we have W = ∪(k)W(k) and α is smooth and self–
convex in each W(k) by Proposition 32. From Theorem 29 we just need to check that

α is regular in W and that SD 2α > −∞. Since

α = σ−2
n ◦ π1,

where π1 is the projection on the first coordinate, α is a smooth function. Now,
consider the chart locally given by π−1

1 , and note that α ◦ π−1
1 = σ−2

n is regular in
GLn,m from the proof of Theorem 1. By definition, this means that α is regular

in W(k). Using the same argument, SD 2σ−2
n > −∞ in GLn,m also implies that

SD 2α > −∞ in W and we are done.
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8. Appendix. In this appendix we prove the following which gives a sufficient
condition for the image of a submanifold under a group action to be a submanifold.

Lemma 33. Let G be a Lie group acting on a smooth manifold M, and D a
smooth submanifold in M Define on G × D the equivalence relation (g, d)R(g′, d′)
when gd = g′d′. Let us denote by

π : G×D → (G×D)/R

the canonical surjection onto the quotient space, by i the map

i : (G×D)/R →M, i(π(g, d)) = gd,

and by P = i((G × D)/R) the image of i. When the three following conditions are
satisfied

1. The graph of R is a closed embedded submanifold in (G×D)× (G×D),
2. i is an immersion,
3. For every sequence (xk) ∈ (G × D)/R such that (i(xk)) converges to y ∈ P

the sequence (xk) converges,
then, P is an embedded submanifold in M.

Proof. Let X be a manifold and let R denote an equivalence relation defined on
X . A classical necessary and sufficient condition to define on the quotient space X/R
a unique quotient manifold structure making the canonical surjection π : X → X/R a
submersion is the following: the graph G of the relation is an embedded submanifold
in X × X and the first projection pr1 : G → X is a submersion (See [1, Th.3.5.25]).

In the context of our lemma this condition comes from the first hypothesis and
from the definition of the equivalence relation via the group action: let ((g, d), (h, e)) ∈
G. Let (ġ, ḋ) ∈ T(g,d)(G × D). Let a(t) be a curve in G and b(t) a curve in D(k) such
that:

a(0) = g, ȧ(0) = ġ, b(0) = d, ḃ(0) = ḋ.

Then, consider the following curve contained in (G × D)× (G × D) defined by:

θ(t) = ((a(t), b(t)), (a(t)g−1h, h−1gb(t))).

It is clear that θ(0) = ((g, d), (h, e)) because

h−1gb(0) = h−1gd = e.

It is also clear that Dpr1(θ(0)) θ′(0) = (ġ, ḋ). Moreover, it is immediate that θ(t) is
contained in G. Thus, pr1 is a submersion.

Let f : Y → Z be a smooth map between two manifolds. Its image f(Y) is a
submanifold in Z when f is an immersion and a homeomorphism onto its image.

By construction, i is smooth. It is a homeomorphism by the third hypothesis and
an immersion by the second one. To check that it is injective, we have to show that if
gd = g′d′, then (g, d)R(g′, d′). This follows from the construction of the relation R.
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