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Given a C1 path of systems of homogeneous polynomial equations ft , t ∈ [a,b] and an approximation xa
to a zero ζa of the initial system fa, we show how to adaptively choose the step size for a Newton based
homotopy method so that we approximate the lifted path ( ft ,ζt) in the space of (problem,solution) pairs.
The total number of Newton iterations is bounded in terms of the length of the lifted path in the condition
metric.
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1. Introduction

Let us denote by H(d) the vector space of homogeneous polynomials systems

f : Cn+1→ Cn,

f = ( f1, . . . , fn) in the variable z = (z0,z1, . . . ,zn), with degree (d) = (d1, . . . ,dn), so that fi
has degree di.

Given a C1 path of systems t ∈ [a,b]→ ft ∈H(d), and a zero ζa of the initial system
fa, under very general conditions, the path t → ft can be lifted to a C1 path t → ( ft ,ζt) in
the solution variety

V̂ =
{
( f ,ζ ) ∈H(d)×Cn+1 \{0} : f (ζ ) = 0

}
.

If we make the additional hypothesis that dζt
dt is (Hermitian) orthogonal to ζt this path is

unique.
Now, given a sufficiently close approximation xa to the zero ζa of the initial system fa,

predictor-corrector methods based on Newton’s method may approximate the lifted path
( ft ,ζt) by a finite number of pairs ( fti ,xi) ∈H(d)×Cn+1, 0 6 i 6 k. These algorithms

†This research was funded by MathAmsSud grant Complexity. Michael Shub was partially supported by CON-
ICET grant PIP 0801 2010-2012 and by ANPCyT PICT 2010-00681. Gregorio Malajovich is partially supported
by CNPq, FAPERJ and CAPES (Brasil).

‡e-mail: jean.pierre.dedieu@gmail.com , url: http://www.math.univ-toulouse.fr/ dedieu/ .
§Corresponding author. e-mail: gregorio.malajovich@gmail.com , url: http://www.labma.ufrj.br/ gregorio .
¶e-mail: shub.michael@gmail.com , url: http://sites.google.com/site/shubmichael/ .

c© The author 2012. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.



2 of 25 J-P. DEDIEU, G. MALAJOVICH AND M. SHUB

are designed as follows: first the interval [a,b] is discretized by a finite number of points
a = t0 < t1 < .. . < tk = b, then a sequence (xi) is constructed recursively by

x0 = xa and xi+1 = N fti+1
(xi)

where N ft is the projective Newton operator associated with the system ft . The complexity
of such algorithms is measured by the size k of the subdivision (ti). If we make a good
choice for (ti) then k is small and, for each i, xi is an approximate zero of fti associated
with ζti .

The complexity of such algorithms has been related by Shub & Smale (1993) to the
length l of the path ( ft) and to the condition number of the path ( ft ,ζt): µ =maxa6t6b µ( ft ,ζt).
The condition number measures the size of the first order variations of the zero of a poly-
nomial system in terms of the first order variations of the system. For ( f ,ζ ) ∈V it is given
by

µ( f ,ζ ) = ‖ f‖
∥∥∥∥(D f (ζ )

∣∣∣ζ⊥ )−1
diag

(√
di ‖ζ‖di−1

)∥∥∥∥
or ∞ when rank D f (ζ )

∣∣∣ζ⊥ < n. We extend this definition to any pair ( f ,z) ∈H(d)×Cn+1

by the same formula. Shub & Smale (1993) give the bound

k 6CD3/2lµ2,

where C is a constant, and D = maxdi.
A more precise estimate is given in Shub (2009). The author proves that we can

choose the step size in predictor-corrector methods so that the number of steps sufficient
to approximate the lifted path is bounded in terms of the length of the lifted path in the
condition metric:

L =
∫ b

a

(∥∥∥∥d ft
dt

∥∥∥∥2

ft
+

∥∥∥∥dζt

dt

∥∥∥∥2

ζt

)1/2

µ( ft ,ζt)dt.

We can find such a subdivision (ti), 0 6 i 6 k, with

k 6CD3/2L.

Its construction is given by

t0 = a, and
∫ ti+1

ti

(∥∥∥∥d ft
dt

∥∥∥∥
ft
+

∥∥∥∥dζt

dt

∥∥∥∥
ζt

)
dt =

C
D3/2µ( fti ,ζti)

but, in this paper, some universal constants are not estimated, and no constructive algorithm
is given.

In the algorithm we present below, we compute ti+1 from ti so that at least one of the
quantities ∫ ti+1

ti

∥∥∥∥d ft
dt

∥∥∥∥
ft

dt

and ∫ ti+1

ti

∥∥∥∥dζt

dt

∥∥∥∥
ζt

dt

increases of a given fraction of
1

D3/2µ( fti ,ζti)
.

Moreover, to allow approximate computations, we introduce a tolerance parameter ε . The
choice of this parameter depends on the considered problem and also on the round-off unit
of some finite precision arithmetic. This is a difficult problem, and it is not considered here.
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For an approach to a similar problem related to another algorithm, see Briquel, Cucker,
Peña & Roschchina (2010).

The present algorithm reflects the geometrical structures used by Shub (2009). This
structure is based on a Lipschitz-Riemannian metric defined in the solution variety V by

〈., .〉V,( f ,ζ ) µ( f ,ζ )2

where 〈., .〉V,( f ,ζ ) is the Riemannian metric in V inherited from the usual metric on P(H(d))×
P(Cn+1). This condition metric is studied in more details in Beltrán et al. (2010, TA),
Beltrán & Shub (2009) and Beltrán & Shub (TA), and in Boito & Dedieu (2010).

ALGORITHM Homotopy
INPUT: ( ft)t∈[a,b], 0 6= x0 ∈ Cn+1, 0 < ε 6 1/20.

OUTPUT:
An integer k > 1,
A subdivision a = t0 < t1 < .. . < tk = b,
A sequence of nonzero points xi ∈ Cn+1, 0 6 i 6 k.

ALGORITHM:

i← 0; t0← a;

Repeat
Find s ∈ [ti,b] so that

20ε2

5D1/2µ( fti ,xi)
6
∫ s

ti

∥∥∥∥d ft
dt

∥∥∥∥
ft

dt 6
ε

5D1/2µ( fti ,xi)
. (1.1)

In case there is no such s, make s = b.

Find s′ ∈ [ti,b] so that for all σ ∈ [ti,s′],

20ε2

5D3/2µ( fti ,xi)
6 φti,s′(xi) (1.2)

∀σ ∈ [ti,s′], φti,σ (xi) 6
ε

5D3/2µ( fti ,xi)
(1.3)

where
φti,σ (xi) = ‖xi‖−1

√
‖X‖2 +‖Y‖2−2|〈X ,Y 〉|,

with X = D fti(xi)|−1
x⊥i

fti(xi) and Y = D fti(xi)|−1
x⊥i

fσ (xi).

In case there is no such s′, make s′ = b.
ti+1 = min(s,s′);
Find 0 6= xi+1 ∈ Cn+1 such that

dR

(
N fti+1

(xi),xi+1

)
<

4ε2

5D2µ( fti ,xi)2 ; (1.4)

i← i+1;

Until ti = b.

Set k← i

This algorithm has the following properties:
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THEOREM 1.1 Assume that n> 2 and D=maxdi > 2. Given 0< ε 6 1/20, a C1 homotopy
path ( ft)t∈[a,b] in H(d) and an initial point 0 6= x0 ∈ Cn+1 satisfying

D3/2

2
µ( fa,x0)β0( fa,x0)<

ε2

2
,

where β0( f ,x) = ‖x‖−1‖D f (x)|−1
x⊥

f (x)‖. then:

1. x0 is an approximate zero of fa with associated nonsingular zero ζa,

2. Let ( ft ,ζt)t∈[a,b] be a continuous lifting of ( ft)t∈[a,b] in the solution variety initialized
at ( fa,ζa). If the condition length L is finite, then:

2.a. The algorithm Homotopy with input (ε,( ft),x0) stops after at most

k = 1+0.65D3/2
ε
−2L

iterations of the main loop,

2.b. For each i = 1 . . .k, xi is an approximate zero of fti with associated zero ζti .

REMARK 1.1 • This algorithm is robust: it is designed to allow approximate compu-
tations.

• For ε = 1/20, the computations in (1.1), (1.2) and (1.3) have to be exact.

• The hypothesis “the condition length L is finite” holds for an open dense set of
the C1 paths (C1 topology assumed) in the solution variety V and, consequently,
Theorem 1.1 holds for “almost all” inputs ( ft)t∈[a,b],x0.

• We reach the same complexity as in Shub (2009).

Let us now mention other approaches to the construction of “convenient subdivisions”.
A practical answer consists in taking ti+1 = ti +δ t for an arbitrary δ t > 0. If xi+1 fails

(resp. succeeds) to be an approximate zero of fti+1 then we take δ t/2 (resp. 2δ t) instead of
δ t; see Li (2003). With such an algorithm we may jump from a lifted path t→ ( ft ,ζt) ∈V
to another one t → ( ft ,ζ ′t ) ∈ V . Even if, for each i, xi is an approximate sero of fti , we
cannot certify that the sequence ( fti ,xi) approximates the path ( ft ,ζt).

In Beltrán (2011), the author presents an algorithm to construct a certified approxi-
mation of the lifted path. It requires a C1+Lip path in the space of systems, and it has an
additional multiplicative factor in the number of steps given by Shub (2009). This extra
factor is unbounded for the class of C1 paths considered here.

Beltrán’s algorithm is studied in more detail in Beltran & Leykin (TA), which contains
implementations and experimental results.

Another important problem, which is not considered here, is the choice of both the
homotopy path ( ft), a 6 t 6 b, and the initial zero ζa. Classical strategies are described in
Li (2003), and Sommese & Wampler (2005).

A conjectured “good choice” (see Shub & Smale , 1994) is the system

fa(z0,z1, . . . ,zn) =


d

1
2
1 zd1−1

0 z1 = 0,
· · ·

d
1
2
n zdn−1

0 zn = 0,

ζa = (1,0, . . . ,0),

and a linear homotopy connecting this initial system to the target system fb. See Shub
& Smale (1994) for a precise statement. This conjecture is still unproved. In Shub &
Smale (1994) an adaptive algorithm is given for linear homotopies whose number of steps
is bounded by the estimate in Shub & Smale (1993). The algorithm we present here is a
version of that algorithm adapted to the new context of length in the condition metric.
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Beltrán & Pardo (2011) use a linear homotopy and Beltrán’s strategy for the choice of
the subdivision. They get, for a random choice of ( fa,ζa), an average running time Õ(N2)
where N is the size of the input.

Bürgisser & Cucker (TA) define an explicit algorithm, called ALH, based on the linear
homotopy and a certain adaptive construction for the subdivision. They obtain the com-
plexity

217 D3/2dP( fa, fb)
∫ b

a
µ( ft ,ζt)

2dt

which is not as sharp as the estimate based on the condition length given in Shub (2009) or
to our own estimate. Then, we cite the authors, “ALH will serve as the basic routine for a
number of algorithms computing zeros of polynomial systems in different contexts. In these
contexts both the input system fb and the origin ( fa,ζa) of the homotopy may be randomly
chosen”. See this manuscript for a more detailled description.

Our feeling, based on a series of papers on the condition metric: Beltrán et al. (2010,
TA); Beltrán & Shub (2009, TA); Boito & Dedieu (2010), is that a good choice for the
homotopy path ( ft) and the initial zero ζa will induce a lifted path ( ft ,ζt) close to the
condition geodesic connecting ( fa,ζa) to ( fb,ζb). We are far from accomplishing this task.

Our paper is organized as follow. Section 2 recalls the geometric context and contains
the main definitions. In section 3 we study the variations of the condition number µ( f ,x)
when we vary both the system f and the vector x. The main difficulty is to estimate uni-
versal constants which are already present in many papers (Shub & Smale (1994), Shub
(2009) for example) but which are not given explicitely. Such explicit constants are neces-
sary to design an explicit algorithm. Section 4 contains, in the same spirit, explicit material
about projective alpha-theory. Section 5 is devoted to the proof of Theorem 1.1. Then in
Section 6 we explain how to implement our algorithm in the case of a linear homotopy,
and in Section 7 we discuss possible applications.

2. Context and definitions

2.1 Definitions

We begin by recalling the context. For every positive integer l ∈ N, let Hl ⊆ C[x0, . . . ,xn],
n> 2, be the vector space of homogeneous polynomials of degree l. For (d)= (d1, . . . ,dn)∈
Nn, let H(d) = ∏

n
i=1 Hdi be the set of all systems f = ( f1, . . . , fn) of homogeneous poly-

nomials of respective degrees deg( fi) = di, 1 6 i 6 n. So f : Cn+1 → Cn. We denote by
D := max{di : 1 6 i 6 n} the maximum of the degrees, and we suppose D > 2.

The solution variety V̂ is the set of points ( f ,ζ )∈H(d)×Cn+1 with f (ζ )= 0. Since the
equations are homogeneous, for all λ1,λ2 ∈ C \ {0}, λ1 f (λ2ζ ) = 0 if and only if f (ζ ) =
0. So V̂ defines a variety V ⊂ P(H(d))×P(Cn+1) where P(H(d)) and P(Cn+1) are the
projective spaces corresponding to H(d) and Cn+1 respectively; V̂ and V are smooth.

Most quantities we consider are defined on
(
H(d) \{0}

)
×
(
Cn+1 \{0}

)
but are con-

stant on equivalence classes

{(λ1 f ,λ2x) : λ1, λ2 ∈ C\{0}}

so are defined on P(H(d))×P(Cn+1). This product of projective spaces is the natural geo-
metric frame for this study, but our data structure is given by pairs ( f ,x) ∈

(
H(d) \{0}

)
×(

Cn+1 \{0}
)
. We speak interchangeably of a pair ( f ,ζ ) in V̂ and its projection ( f ,ζ ) in V .

Given a C1 path of systems t ∈ [a,b]→ ft ∈ P(H(d)), and a zero ζaP(Cn+1) of the
initial system fa, under very general conditions, the path t→ ft can be lifted to a unique C1

path t→ ( ft ,ζt) in the solution variety V .

Two important ingredients used in this paper are projective Newton’s method introduced
by Shub (1993), and the concept of approximate zero.
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For a pair ( f ,x) ∈
(
H(d) \{0}

)
×
(
Cn+1 \{0}

)
the projective Newton’s operator N f is

defined by
N f (x) = x−D f (x)|−1

x⊥ f (x).

Here we assume that the restriction of the derivative D f (x) to the subspace orthogonal to x

x⊥ =
{

u ∈ Cn+1 : 〈u,x〉= 0
}

is invertible. It is easy to see that the line throught x is sent by N f onto the line throught
N f (x) so that N f is in fact defined on P(Cn+1).

DEFINITION 2.1 We say that x is an approximate zero of f with associated zero ζ ( f (ζ ) =
0) provided that the point xp = N f (xp−1), x0 = x, is defined for all p > 1 and

dT (ζ ,xp)6

(
1
2

)2p−1

dT (ζ ,x).

Here dT denotes the tangential “distance” as in Definition 2.2.

A well-studied class of numerical algorithms for solving polynomial systems uses ho-
motopy (or path-following) algorithms associated with a predictor-corrector scheme. We
are given a C1 path ( ft), a 6 t 6 b, in the space H(d), and a root ζa of fa. Under certain
genericity conditions, the path ( ft) may be lifted uniquely to a C1 path ( ft ,ζt)∈ V̂ , t ∈ [a,b],
starting at the given pair ( fa,ζa).

Given an approximate zero xa of fa associated with ζa, our aim is to build an approxi-
mation of this path by a sequence of pairs ( fti ,xi) ∈

(
H(d) \{0}

)
×
(
Cn+1 \{0}

)
, 1 6 i 6 k

where, a = t0 < t1 < .. . < tk = b is a subdivision of the interval [a,b], and where xi is an
approximate zero of fti associated with ζti . To simplify our notations we let fti = fi.

The construction of the suddivision (ti) is given in the “Algorithm Homotopy”. The
construction of the sequence (xi) uses the predictor-corrector scheme based on projective
Newton’s method, studied for the first time in Shub & Smale (1993). This sequence is
defined recursively by

xi+1 = N fi+1(xi).

In fact, to allow computation errors, we choose xi+1 in a suitable neighborhood of N fi+1(xi).
Theorem 1.1 proves that for each i = 1 · · ·k, xi is an approximate zero of fti associated with
ζti and it gives an estimate for the integer k in terms of the maximum degree D, and the
condition length of the path ( ft ,ζt), a 6 t 6 b.

DEFINITION 2.2 As it is clear from the context, systems and vectors are supposed nonzero.

1. H(d) is endowed with the unitarily invariant inner product (see Blum et. al. (1998)
section 12.1)

〈 f ,g〉=
n

∑
i=1

∑
|α|=di

α0! . . .αn!
di!

fi,α gi,α

where α = (α0, . . . ,αn), |α|= α0 + · · ·+αn,

fi(x0, . . . ,xn) = ∑
|α|=di

fi,α xα0
0 . . .xαn

n ,

and
gi(x0, . . . ,xn) = ∑

|α|=di

gi,α xα0
0 . . .xαn

n .

2. dR(x,y) is the Riemannian distance in Pn(C).

3. dP(x,y) = sindR(x,y) = min06=λ∈C
‖x−λy‖
‖x‖ is the projective distance.



ADAPTATIVE STEP SIZE SELECTION FOR HOMOTOPY METHODS... 7 of 25

4. dT (x,y) = tandR(x,y) is the tangential “distance”. It does not satisfy the triangle
inequality.

5. One has dP(x,y)6 dR(x,y)6 dT (x,y).

6. When rank D f (x) = n, we denote by θx the angle between x and ker D f (x). θx = 0
when f (x) = 0.

7. θL,M denotes the angle between the complex lines L and M so that θx = θx,ker D f (x).

8. ψ(u) = 1−4u+2u2 decreases from 1 to 0 on the interval [0,(2−
√

2)/2].

9. The norm of a linear (resp. multi-linear) operator is always the operator norm.

10. The condition number

µ( f ,x) = ‖ f‖
∥∥∥D f (x)|−1

x⊥ diag
(√

di‖x‖di−1
)∥∥∥ ,

is also denoted µpro j in Shub & Smale (1993), and µnorm in Blum et. al. (1998).

11. D = maxdi. We suppose D > 2.

12. u = D3/2µ( f ,x)dR(x,y)/2.

13. v = D1/2µ( f ,x)min|λ |=1

∥∥∥ f
‖ f‖ −λ

g
‖g‖

∥∥∥ where it is assumed that f 6= 0 and g 6= 0.
The quantity expressed as a norm is 2sindR( f ,g)/2 6 dR( f ,g).

14. β0( f ,x) = ‖x‖−1‖D f (x)|−1
x⊥

f (x)‖.

15. γ0( f ,x) = ‖x‖maxk>2‖D f (x)|−1
x⊥

Dk f (x)
k! ‖

1/(k−1).

16. α0( f ,x) = β0( f ,x)γ0( f ,x).

17. α0 = (13−3
√

17)/4 = .15767 . . .

18. δ ( f ,x) = ‖x‖−1‖D f (x)|−1
x⊥

diag(di) f (x)‖.

19. Let X = D ft(x)|−1
x⊥

ft(x) and Y = D ft(x)|−1
x⊥

fs(x). Then define

φt,s(x) = min
|λ |=1
‖x‖−1‖X−λY‖= ‖x‖−1

√
‖X‖2 +‖Y‖2−2 max

|λ |=1
Re(〈X ,Y 〉)

= ‖x‖−1
√
‖X‖2 +‖Y‖2−2|〈X ,Y 〉|.

20. Let a C1 path a 6 t 6 b→ ft ∈H(d) \{0} be given. We denote by

ḟt =
d ft
dt

the derivative of the path with respect to t, and, for any g ∈H(d),

‖g‖ ft =
∥∥∥Π f⊥t

g
∥∥∥/‖ ft‖

the norm of the projection of g onto the subspace orthogonal to ft divided by the
norm of ft . The length of ( ft) in P(H(d)) is given by

l(b) =
∫ b

a

∥∥ ḟt
∥∥

ft
dt.

When ‖ ft‖= 1 and 〈 ft , ḟt〉= 0 for each t we have

l(b) =
∫ b

a

∥∥ ḟt
∥∥dt.
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21. The condition length of the path ( ft ,xt) ∈
(
H(d) \{0}

)
×
(
Cn+1 \{0}

)
, a 6 t 6 b, is

L(b) =
∫ b

a

(∥∥ ḟt
∥∥2

ft
+‖ẋt‖2

xt

)1/2
µ( ft ,xt)dt,

where ẋt is the derivative of the path xt with respect to t, and where the norm ‖ẋt‖xt

is defined as in the previous item with
∥∥ ḟt
∥∥

ft
. When ‖ ft‖ = ‖xt‖ = 1 and 〈 ft , ḟt〉 =

〈xt , ẋt〉= 0 for each t we have

L(b) =
∫ b

a

(∥∥ ḟt
∥∥2

+‖ẋt‖2
)1/2

µ( ft ,xt)dt.

We will also use some invariants related with non homogeneous polynomial systems.
For (d) = (d1, . . . ,dn) ∈ Nn, let P(d) = ∏

n
i=1 Pdi be the set of polynomial systems

F = (F1, . . . ,Fn) : Cn → Cn in the variables X = (X1, . . . ,Xn), of respective degrees
deg(Fi) 6 di, 1 6 i 6 n. The homogeneous counterpart of F is the system f =
( f1, . . . , fn) ∈H(d) defined by

fi(x0,x1, . . . ,xn) = xdi
0 Fi

(
x1

x0
, . . . ,

xn

x0

)
.

The norm on P(d) is defined by ‖F‖= ‖ f‖. We also let:

22. β (F,X) = ‖DF(X)−1F(X)‖.

23. γ(F,X) = maxk>2‖DF(X)−1 DkF(X)
k! ‖1/(k−1).

24. α(F,X) = β (F,X)γ(F,X).

3. Variation of the condition number

A necessary ingredient for the proof of Theorem 1.1 is the following theorem which gives
the variations of the condition number when both the system and the point vary:

THEOREM 3.1 Let two nonzero systems f ,g ∈H(d), and two nonzero vectors x,y ∈ Cn+1

be given such that rank D f (x)|x⊥ = n, u 6 1/20, and v 6 1/20. Then rank Dg(y)|y⊥ = n,
and

(1−3.805u− v)µ(g,y)6 µ( f ,x)6 (1+3.504u+ v)µ(g,y).

COROLLARY 3.1 Let 0 < ε 6 1/4, two nonzero systems f ,g ∈H(d), and two nonzero
vectors x,y ∈ Cn+1 be given such that u 6 ε/5, v 6 ε/5, and rank D f (x)|x⊥ = n. One has
rank Dg(y)|y⊥ = n, and

(1− ε)µ(g,y)6 µ( f ,x)6 (1+ ε)µ(g,y).

The proof of these results is obtained from the following series of lemmas.

LEMMA 3.1 Let f ∈H(d) and x ∈ Cn+1. We have

1. For any i = 1 . . .n, ‖ fi(x)‖6 ‖ fi‖‖x‖di , so that ‖ f (x)‖6 1 when f and x are normal-
ized.

2. For any i = 1 . . .n, ‖D fi(x)‖ 6 di ‖ fi‖‖x‖di−1, so that ‖D f (x)‖ 6 D when f and x
are normalized.

3. γ0( f ,x)6 D3/2

2 µ( f ,x).

Proof. These inequalities come from Proposition 1, and Theorem 2, p. 267, in Blum
et. al. (1998).
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LEMMA 3.2 1 6
√

n = min f ,x µ( f ,x).

Proof. Let given a matrix A ∈Cn×m, m > n, and A =UΣV ∗ a singular value decompo-
sition with

Σ = diag(σ1(A)> . . .> σn(A)) ∈ Cn×m,

σi(A)> 0, U ∈ Un, V ∈ Um unitary matrices. We define

κ(A) = σn(A)−1‖A‖F = σn(A)−1
√

σ1(A)2 + . . .+σn(A)2

when σn(A)> 0, and ∞ otherwise. We see easily that

min
A

κ(A) =
√

n,

and this minimum is obtained when σi(A) = 1, 1 6 i 6 n.
For the case of polynomial systems we have

µ( f ,x) = ‖ f‖‖
(

diag(d−1/2
i )D f (x)|x⊥

)−1
‖= ‖ f‖σn

(
diag(d−1/2

i )D f (x)|x⊥
)−1

.

Using the unitary invariance of the norm in H(d) (Blum et. al., 1998, Sec. 12.1) ,
that is ‖ f ◦U‖ = ‖ f‖ for any U ∈ Un+1, considering a U such that Ue0 = x with e0 =
(1,0, . . . ,0)T ∈ Cn+1, we see that

‖diag(d−1/2
i )D f (x)|x⊥‖F 6 ‖ f‖.

Thus, our previous estimate shows that µ( f ,x)>
√

n.
To prove the equality

√
n=min f ,x µ( f ,x) we use the unitary invariance of the condition

number
µ( f ,x) = µ( f ◦U,U∗x)

for any U ∈ Un+1, and the equality
√

n = µ( f ,e0) when fi(z) =
√

diz
di−1
0 zi, 1 6 i 6 n, and

e0 = (1,0, . . . ,0)T ∈ Cn+1.

LEMMA 3.3 For any f and x one has dR(x,y)6 u/
√

2n 6 u/2, and dR(x,y)δ ( f ,x)6 u.

Proof. We suppose that both system f and vectors x,y are normalized. We have by
Lemma 3.2

u =
D3/2

2
µ( f ,x)dR(x,y)>

23/2

2
√

ndR(x,y).

For the second inequality we have

dR(x,y)δ ( f ,x) 6 dR(x,y)‖D f (x)|−1
x⊥ diag(d1/2

i )‖‖diag(d1/2
i )‖‖ f (x)‖

6 dR(x,y)µ( f ,x)D1/2‖ f (x)‖
6 dR(x,y)µ( f ,x)D3/2/2
= u

thanks to the inequalities 2 6 D, ‖ fi(x)‖ 6 ‖ fi‖‖x‖di (Lemma 3.1), and the hypothesis
‖ f‖= ‖x‖= 1 .

LEMMA 3.4 When rank D f (x)|x⊥ = n we have

‖D f (x)|−1
x⊥D f (x)|y⊥‖6 1+dP(x,y) tanθx.
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w

θx

u

v

x⊥

0

θx

y⊥

ker D f (x)

FIG. 1.

Proof. Take u ∈ y⊥ and define v = D f (x)|−1
x⊥

D f (x)|y⊥u so that

v = (u+ker D f (x))∩ x⊥.

v ∈ x⊥ is the projection of u ∈ y⊥ along ker D f (x). Let us denote by w the orthogonal
projection of u onto x⊥. See Figure 1. We have ‖w‖= ‖u‖cosθu,w and

‖w−v‖= ‖w−u‖ tanθx = ‖u‖sinθu,w tanθx,

so that
‖v‖6 ‖u‖(cosθu,w + sinθu,w tanθx)6 ‖u‖(1+ sinθx,y tanθx)

because θx⊥,y⊥ = θx,y = max ‖u‖= 1
u ∈ y⊥

θu,w. (See Definition 2.2(7))

LEMMA 3.5 Assume that ‖x‖= ‖y‖= 1. When rank D f (x)|x⊥ = n and u < 1 one has

‖D f (x)|−1
x⊥D f (y)|y⊥‖6

1
(1−u)2 +dP(x,y) tanθx.

Proof. Assume without loss of generality that y is scaled such that |〈x−y,x〉| is minimal
under the constraint that ‖y‖= 1. In particular, this implies that ‖x− y‖6 dR(x,y).

Since D f (y) = D f (x)+∑k>1
Dk+1 f (x)

k! (y− x)k we get

D f (x)|−1
x⊥D f (y)|y⊥ = D f (x)|−1

x⊥D f (x)|y⊥ + ∑
k>1

(k+1)D f (x)|−1
x⊥

Dk+1 f (x)
(k+1)!

(y− x)k|y⊥ .

Then, we use ‖D f (x)|−1
x⊥

Dk+1 f (x)
(k+1)! ‖6 γ0( f ,x)k, Lemma 3.4 and Lemma 3.1 to obtain

‖D f (x)|−1
x⊥D f (y)|y⊥‖ 6 1+dP(x,y) tanθx + ∑

k>1
(k+1)γ0( f ,x)k‖x− y‖k

6
1

(1−u)2 +dP(x,y) tanθx
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LEMMA 3.6 When rank D f (x)|x⊥ = n then

tanθx = δ ( f ,x)6 D1/2
µ( f ,x).

Proof. We assume that x and f are normalized. Let y = D f (x)|−1
x⊥

D f (x)x be the pro-
jection of x onto x⊥ along ker D f (x) so that ‖y‖ = tanθx. By Euler’s Theorem for homo-
geneous functions, one also has

y = D f (x)|−1
x⊥ diag(di) f (x)

thus,

tanθx = δ ( f ,x)

6 ‖D f (x)|−1
x⊥ diag(d1/2

i )‖‖diag(d1/2
i ) f (x)‖

Using Lemma 3.1 we obtain
tanθx 6 D1/2

µ( f ,x).

LEMMA 3.7 When rank D f (x)|x⊥ = n one has

‖D f (x)|−1
x⊥D f (x)|y⊥‖6 1+δ ( f ,x)dP(x,y).

Moreover, when ‖x‖= ‖y‖ and u < 1, we have

‖D f (x)|−1
x⊥D f (y)|y⊥‖6

1
(1−u)2 +δ ( f ,x)dP(x,y).

Proof. The first assertion comes from lemmas 3.4 and 3.6. The second assertion is a
consequence of lemmas 3.5 and 3.6.

LEMMA 3.8 Assume that ‖x‖ = ‖y‖ = 1 and ‖ f‖ = 1. When rank D f (x)|x⊥ = n, and
u < (2−

√
2)/2, then rank D f (y)|x⊥ = n and

‖D f (y)|−1
x⊥D f (x)|x⊥‖6

(1−u)2

ψ(u)
.

Moreover, if u 6 1/19,

‖D f (y)|−1
y⊥D f (x)|x⊥‖6 (1+dP(x,y)δ ( f ,y))

(1−u)2

ψ(u)
6 1+3.805u.

Proof. Assume without loss of generality that y is scaled such that |〈x−y,x〉| is minimal
under the constraint that ‖y‖= 1.

We have

D f (y) = D f (x)+ ∑
k>1

Dk+1 f (x)
k!

(y− x)k

so that

D f (x)|−1
x⊥ (D f (y)−D f (x)) = ∑

k>1
D f (x)|−1

x⊥
Dk+1 f (x)

k!
(y− x)k,

and, like in the proof of Lemma 3.5,

‖D f (x)|−1
x⊥ (D f (y)−D f (x))‖6 ∑

k>1
(k+1)uk =

2u−u2

(1−u)2 < 1
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(because u < (2−
√

2)/2). Now we apply the perturbation formula for operators X with
‖X‖< 1:

‖(I−X)−1‖6 1
1−‖X‖

.

Setting X =−D f (x)|−1
x⊥
(D f (y)−D f (x))|x⊥ , we obtain that

Ix⊥ −X = D f (x)|−1
x⊥D f (y)|x⊥

is invertible (i.e. D f (y)|x⊥ is invertible), and

‖D f (y)|−1
x⊥D f (x)|x⊥‖6

1

1− 2u−u2

(1−u)2

=
(1−u)2

ψ(u)
.

We will prove the second statement in two steps. First, prove it under the assumption
that D f (y)|y⊥ is invertible. Then, we remove this assumption.

The first step goes as follows. Combining the first statement with Lemma 3.4 we obtain:

‖D f (y)|−1
y⊥D f (x)|x⊥‖ 6 ‖D f (y)|−1

y⊥D f (y)|x⊥‖‖D f (y)|−1
x⊥D f (x)|x⊥‖

6 (1+dP(x,y) tanθy)
(1−u)2

ψ(u)

= (1+dP(x,y)δ ( f ,y))
(1−u)2

ψ(u)

A bound for δ ( f ,y) is

δ ( f ,y) =
∥∥∥D f (y)−1

y⊥ diag(di) f (y)
∥∥∥

6 ‖D f (y)|−1
y⊥D f (x)|x⊥‖‖

∥∥∥D f (x)−1
x⊥ diag(di) f (y)

∥∥∥
6 ‖D f (y)|−1

y⊥D f (x)|x⊥‖µ( f ,x)
√

D

using | f (y)|6 1 since ‖ f‖= 1 and ‖y‖= 1.
Combining both inequations and setting M = ‖D f (y)|−1

y⊥
D f (x)|x⊥‖, we obtain:

M 6 (1+Mu)
(1−u)2

ψ(u)

that simplifies to

M 6
(1−u)2

ψ(u)−u(1−u)2 =
(1−u)2

1−5u+4u2−u3 6 1+3.805u.

The last bound follows from the fact that the numerator and the denominator have alter-
nating signs, so the Taylor expansion at zero of the fraction has terms of the same sign
(positive). Hence,

(1−u)2

1−5u+4u2−u3 −1

u
is an increasing function. In particular, for u = 1/19, this is smaller than 3.805.

Now, we must prove that D f (y)|y⊥ is invertible. Let (xt)t∈[0,dR(x,y)] denote a minimizing
geodesic (arc of great circle) between x and y.
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Let W be the subset of all t ∈ [0,dR(x,y)] so that D f (xt)|xt is invertible. It is an open
set, and 0 ∈W .

We claim that W is a closed set. Indeed, let s ∈W . Then there is a sequence of ti ∈W
with ti→ s. We know from the second statement (restricted) that

‖D f (xti)|
−1
x⊥ti

D f (x)x⊥‖6 1+3.805u.

Hence, for τ = ti,

h(τ) = ‖D f (xτ)|−1
x⊥τ

D f (x)x⊥‖
2
F 6 n(1+3.805u)2

The function h(τ) is a rational function of a real parameter τ , so its domain is an open
set and contains s. By continuity, h(s)6 n(1+3.805u)2. Thus, D f (xs)x⊥s

is invertible, and
s ∈W . As W is a non-empty open and closed subset of an interval, W = [0,dR(x,y)] and
D f (y)|y⊥ must be invertible.

LEMMA 3.9 Suppose that rank D f (x)|x⊥ = n, u < 1 and µ( f ,y) is finite. Then

µ( f ,x)6 µ( f ,y)
(

1
(1−u)2 +δ ( f ,x)dP(x,y)

)
.

Proof. Suppose that ‖x‖=‖y‖=‖ f‖= 1. We can bound

µ( f ,x) = ‖D f (x)|−1
x⊥D f (y)|y⊥D f (y)|−1

y⊥ diag(
√

di)‖

and we conclude with Lemma 3.7.

LEMMA 3.10 When rank D f (x)|x⊥ = n, and u < 1/19 we have

µ( f ,y)6 (1+3.805u)µ( f ,x).

Proof. Suppose that ‖x‖=‖y‖=‖ f‖= 1. We have

µ( f ,y) = ‖D f (y)|−1
y⊥D f (x)|x⊥D f (x)|−1

x⊥ diag(
√

di)‖6 (1+3.805u)µ( f ,x)

by Lemma 3.8.

LEMMA 3.11 Assume that ‖ f‖ = ‖g‖ = 1. Suppose that rank D f (x)|x⊥ = n, and v < 1.
Then rank Dg(x)|x⊥ = n, and

‖D f (x)|−1
x⊥Dg(x)|x⊥‖6 1+ v,

‖Dg(x)|−1
x⊥D f (x)|x⊥‖6

1
1− v

,

(1− v)µ(g,x)6 µ( f ,x)6 (1+ v)µ(g,x).

Proof. Suppose that ‖x‖= 1. Also, assume without loss of generality that g is scaled so
that v = D1/2µ( f ,x)‖ f −g‖.

One has D f (x)|−1
x⊥

Dg(x)|x⊥ = Ix⊥ − (Ix⊥ − idem) and

Ix⊥ − idem = D f (x)|−1
x⊥ diag(d1/2

i )diag(d−1/2
i )D( f −g)(x)|x⊥

which norm is bounded by (using Lemma 3.1)

µ( f ,x)D1/2‖ f −g‖6 v < 1.
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This proves the first inequality. Thus D f (x)|−1
x⊥

Dg(x)|x⊥ is invertible and the norm of its
inverse is bounded by 1/(1− v) (Neumann’s Perturbation Theorem). This gives

µ(g,x)6 ‖Dg(x)|−1
x⊥D f (x)|x⊥‖‖D f (x)|−1

x⊥ diag((d1/2
i )‖6 µ( f ,x)

1− v
.

The last inequality is obtained via

µ( f ,x)6 ‖D f (x)|−1
x⊥Dg(x)|x⊥‖‖Dg(x)|−1

x⊥ diag((d1/2
i )‖6 (1+ v)µ(g,x).

LEMMA 3.12 Let ‖ f‖= ‖g‖= 1. Let ug =D3/2µ(g,x)dR(x,y)/2. Suppose that rank D f (x)|x⊥ =
n, and v < 1. Then

(1− v)ug 6 u 6 (1+ v)ug,

and
(1− v)δ (g,x)− v 6 δ ( f ,x)6 (1+ v)δ (g,x)+ v.

Proof. As before, suppose that ‖x‖= 1. and assume without loss of generality that g is
scaled so that v = D1/2µ( f ,x)‖ f −g‖.

The first double inequality is a consequence of Lemma 3.11. For the second one, one
has:

δ (g,x) = ‖Dg(x)|−1
x⊥D f (x)|x⊥D f (x)|−1

x⊥ diag(di) f (x)+Dg(x)|−1
x⊥ diag(di)(g(x)− f (x))‖.

By Lemma 3.11‖Dg(x)|−1
x⊥

D f (x)|x⊥‖6 1/(1− v) so that

δ (g,x)6
δ ( f ,x)
1− v

+µ(g,x)D1/2‖ f −g‖.

Again by Lemma 3.11 µ(g,x)6 µ( f ,x)/(1− v) so that

δ (g,x)6
δ ( f ,x)
1− v

+
µ( f ,x)D1/2‖ f −g‖

1− v
6

δ ( f ,x)+ v
1− v

.

Similarly δ ( f ,x) =

‖D f (x)|−1
x⊥Dg(x)|x⊥Dg(x)|−1

x⊥ diag(di)g(x)+D f (x)|−1
x⊥ diag(di)( f (x)−g(x))‖6

‖D f (x)|−1
x⊥Dg(x)|x⊥‖δ (g,x)+ v.

Lemma 3.11 shows that ‖D f (x)|−1
x⊥

Dg(x)|x⊥‖6 1+ v so that

δ ( f ,x)6 (1+ v)δ (g,x)+ v.

LEMMA 3.13 When rank D f (x)|x⊥ = n, u,v 6 1/20, then

µ(g,y)
(1− v)

1+3.805 u
1−v

6 µ( f ,x)6 (1+ v)

(
1(

1− u
1−v

)
2
+

u
1− v

)
µ(g,y).

Proof. As before, let ug = D3/2µ(g,x)dR(x,y)/2. Lemma 3.12 allows us to bound
ug 6 u/(1− v)6 1/19. So we may apply Lemma 3.10 to g instead of f so that

µ(g,y)6 (1+3.805ug)µ(g,x)
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Then, we bound µ(g,x) by µ( f ,x)/(1−v) (Lemma 3.11) and obtain the first inequality. In
particular, µ(g,y) is finite.

To prove the second one we apply Lemma 3.11, and Lemma 3.9 to obtain

µ( f ,x)6 (1+ v)µ(g,x)6 (1+ v)
(

1
(1−ug)2 +δ (g,x)dP(x,y)

)
µ(g,y).

By Lemma 3.3 and Lemma 3.12 we have

δ (g,x)dP(x,y)6 ug 6
u

1− v

and we are done.

3.1 Proof of Theorem 3.1

To prove the inequalities (1−3.805−v)µ(g,y)6 µ( f ,x)6 (1+3.504u+v)µ(g,y) we use
Lemma 3.13 which gives

B(u,v)µ(g,y)6 µ( f ,x)6 A(u,v)µ(g,y)

with

A(u,v) = (1+ v)

(
1(

1− u
1−v

)
2
+

u
1− v

)
, B(u,v) =

(1− v)
1+3.805 u

1−v
.

A(u,v) = 1+3u+ v+u
6v3 +9uv2−12v2 +4u2v−12uv+6v−2u2 +3u

(1− v)(1−u− v)2

and the last parenthesis is less than 0.504 when u,v < 1/20.
The function B(u,v)− (1− 3.805u− v) is increasing in u and v, and vanishes at the

origin.

3.2 Proof of Corollary 3.1

Since u, v 6 ε/5 and ε 6 1/4 we get u,v 6 1/20. Thus we can apply Theorem 3.1 which
gives

(1−ε)µ(g,y)6 (1−3.805u−v)µ(g,y)6 µ( f ,x)6 (1+3.504u+v)µ(g,y)6 (1+ε)µ(g,y).

4. Alpha theory in projective spaces

THEOREM 4.1 Let 0 < α 6 α0 = (13−3
√

17)/4 = 0.15767 . . . Let f ∈H(d) and x∈Cn+1

both nonzero. If
D3/2

2
µ( f ,x)β0( f ,x)6 α,

then there is a zero ζ ∈ Cn+1 of f satisfying: dT (x,ζ )6 σ(α)β0( f ,x) with

σ(α) =
1
4
+

1−
√
(1+α)2−8α

4α
.

Furthermore, if y = N f (x), then dR(y,ζ )6 (σ(α)−1)β ( f ,x). Moreover, when

D3/2

2
µ( f ,x)β0( f ,x)6 α 6 0.049,

then x is an approximate zero of f corresponding to ζ , and so does y.
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Proof. The proof below follows the lines of Shub & Smale (1994). We suppose that
f and x are normalized (‖ f‖ = ‖x‖ = 1). We consider the non-homogeneous polynomial
system, defined for a variable X ∈ x⊥ by

F(X) = f (x+X).

Let us denote by NF the usual Newton operator:

NF(X) = X−DF(X)−1F(X).

Then DF(X) = D f (x+X)|x⊥ . In particular, DF(0) = D f (x)|x⊥ and we have,

y = N f (x) = λ (x+NF(0)),λ ∈ C\{0}
β0( f ,x) = β (F,0)
γ0( f ,x) > γ(F,0)
α0( f ,x) > α(F,0).

Since, by Lemma 3.1, α0( f ,x)6 β0( f ,x)µ( f ,x)D3/2/2, by Theorem 1, p. 462, in Shub &
Smale (1993), 0 is an approximate zero of F and hence (Definition 1 ibid.) the sequence
(Xk)k>0 defined recursively by Xk+1 = NF(Xk), X0 = 0, converges quadratically to a zero Z
of F . Namely,

‖Xk+1−Xk‖6 2−2k+1‖X1−X0‖.

Moreover, by the same theorem,

‖Z−X0‖6
1+α(F,0)−

√
(1+α(F,0))2−8α(F,0)
4γ(F,0)

.

Thus, for ζ = (x+Z)/‖x+Z‖, we can bound

dT (ζ ,x)6 ‖Z−X0‖6 σ(α0( f ,x))β (F,0)6 σ(α)β0( f ,x).

Again by Theorem 1, p.462, of Shub & Smale (1993),

‖Z−X1‖6
1−3α(F,0)−

√
(1+α(F,0))2−8α(F,0)
4γ(F,0)

which implies that
dR(ζ ,y)6 (σ(α)−1)β0( f ,x).

Let us prove that x is an approximate zero. This will follow directly from Blum et.
al. (1998), Chap. 14, Theorem 1. In order to apply this Theorem, we have to check its
hypothesis

dT (ζ ,x)γ0( f ,ζ )6
3−
√

7
2

.

Using Lemma 3.1 this is obtained from

dT (ζ ,x)
D3/2

2
µ( f ,ζ )6

3−
√

7
2

. (4.1)

We notice that u= D3/2

2 dR(x,ζ )µ( f ,x)6 uT = D3/2

2 dT (x,ζ )µ( f ,x)6ασ(α)6 0.049σ(0.049)=
0.0518 · · ·< 1/19. According to Lemma 3.10,

µ( f ,ζ )6 1.2µ( f ,x).
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Hence, we infer (4.1) from:

dT (ζ ,x)
D3/2

2
µ( f ,ζ )6 1.2uT < 0.1771 · · ·= 3−

√
7

2
.

A similar argument holds to prove that y is an approximate root:

dT (ζ ,y)
D3/2

2
µ( f ,ζ )6 1.2dT (ζ ,y)

D3/2

2
µ( f ,x)6 1.2α(σ(α)−α)6

3−
√

7
2

.

In the following proposition we relate the invariant β0( f ,x) for an approximate zero x
to the distance from its associated zero ζ .

PROPOSITION 4.2 Let f ∈H(d) be fixed and x ∈ Cn+1 be given. If

D3/2

2
β0( f ,x)µ( f ,x)6 α 6 0.049,

then, β0( f ,x) 6 1.128dT (x,ζ ), where ζ is the zero of f associated to x, given by Theo-
rem 4.1.

Proof. We suppose that both f , x, and ζ are normalized. From Theorem 4.1, dT (x,ζ )6
β0( f ,x)σ(α). Hence,

u 6 uT =
D3/2

2
µ( f ,x)dT (x,ζ )6 ασ(α)6 0.0518.

From Theorem 3.1, we conclude for later use that

uT,ζ =
D3/2

2
µ( f ,ζ )dT (x,ζ )6 u(1+3.805u)

Now we can bound:

β0( f ,x) = ‖D f (x)|−1
x⊥ f (x)‖

6 ‖D f (x)|−1
x⊥D f (ζ )

ζ⊥‖‖D f (ζ )|−1
ζ⊥

f (x)‖

6

(
1

(1−u)2 +u
)
‖D f (ζ )|−1

ζ⊥
f (x)‖

using Lemmas 3.5 and 3.6. We further bound, as usual,

‖D f (ζ )|−1
ζ⊥

f (x)‖6 ‖x−ζ‖+ ∑
k>2

1
k!

∥∥∥D f (ζ )|−1
ζ⊥

Dk f (ζ )(x−ζ )k
∥∥∥6 dT (x,ζ )

1
1−uT ζ

.

Putting all together,

β0( f ,x)6
1−u+u2

(1−u)2
1

1−u(1+3.805u)
dT (x,ζ )6 1.128dT (x,ζ );

the last step is obtained numerically, using u 6 ασ(α)6 0.0518.

PROPOSITION 4.3 Assume that

D3/2

2
β0( f ,x)µ( f ,x)6 a 6 1/20

Let y = N f (x). Then,

β0( f ,y)6
a(1−a)

ψ(a)

(
1+

a
1−3.805a

)
β0( f ,x)< 1.23aβ0( f ,x).
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Proof. We assume ‖x‖ = 1. Let F : X ∈ x⊥ 7→ f (x + X) be the affine polynomial
system associated with f . Then, β (F,0) = β0( f ,x). Moreover, we can scale y = x+Y , for
Y = NF(0). By Proposition 3, p.478 in Shub & Smale (1993),

β (F,Y )6
a(1−a)

ψ(a)
β0( f ,x). (4.2)

Moreover,
β0( f ,y)6 ‖D f (y)|−1

y⊥D f (y)|x⊥‖‖y‖
−1

β (F,Y ). (4.3)

Clearly, ‖y‖ > 1. It remains to bound the norm of the first term in the rhs of (4.3). By
hypothesis,

u =
D3/2

2
µ( f ,x)dR( f ,x)6 a 6 1/20

so Theorem 3.1 implies that

µ( f ,y)6
1

1−3.805a
µ( f ,x).

In particular, D f (y)|y⊥ has full rank, and we can apply Lemma 3.7 and then Lemma 3.6 to
bound

‖D f (y)|−1
y⊥D f (y)|x⊥‖6 1+δ ( f ,y)dP(x,y)6 1+D1/2

µ( f ,y)β0( f ,x)6 1+
a

1−3.805a

Combining with (4.2) and (4.3), we obtain:

β0( f ,y)6
a(1−a)

ψ(a)

(
1+

a
1−3.805a

)
β0( f ,x).6 1.23aβ0( f ,x)

5. The homotopy

The objective of this section is to prove Theorem 1.1. Through this section the considered
systems and zeros are normalized: f (ζ ) = 0 with ‖ f‖= ‖ζ‖= 1.

Through this section, we assume without loss of generality that the homotopy path is
scaled such that 〈 ft , ḟt〉= 0. This is justified as follows.

Assume that a C 1 path ft is given Let t(τ) be a C 1 increasing function. Then define a
new path gτ = ft(τ). Also, if zt was such that ft(zt) ≡ 0, set wτ = zt(τ). The quantities β0,
µ , φ , l and L are invariant by parameter change. For instance,

L( ft ,zt ; t(a), t(b)) = L(gτ ,wτ ;a,b)

and if t = t(τ), t ′ = t(τ ′),

φt,t ′(x) = min
|λ |=1
‖x‖−1‖D ft(x)|−1

x⊥ ( ft(x)−λ ft ′(x))‖=

= min
|λ |=1
‖x‖−1‖Dgτ(x)|−1

x⊥ (gτ(x)−λgτ ′(x))‖= φτ,τ ′(x).

Any statement depending on those quantities can be proved without loss of generality
by assuming a parametrization ft by constant arc length with ‖ ft‖= ‖zt‖= 1. This will be
the case Lemma 5.1 below. However, no change of parameter is actually necessary in the
algorithm.

Let t ∈ [a,b], and xt ∈ Cn+1 be given with ‖xt‖= 1. We suppose that

rank D ft(xt)|x⊥t = n, (5.1)
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and that
D3/2

2
β0( ft ,xt)µ( ft ,xt)6 α. (5.2)

According to Theorem 4.1, for α small enough, xt is an approximate zero of ft . We call ζt
the associated zero and extend it continuously for s ∈ [t, t ′] so that fs(ζs) = 0.

The main difficulty to prove Theorem 1.1 is to transfer the properties (5.1) and (5.2)
supposed to be true at t = ti onto a similar property at t ′ = ti+1. Moreover, we must show
that if xt is an approximate zero associated to ζt , then the same is true for t ′, for a continuous
path ζs. For this purpose we study this transfer in a general context.

Through this section, ε 6 1/6. Let t ′ > t be given and assume that

l(t ′)− l(t)6
ε

5D1/2µ( ft ,xt)
(5.3)

and
max
s∈[t,t ′]

φt,s(x)6
ε

5D3/2µ( ft ,xt)
. (5.4)

For any s ∈]t, t ′] let us define xs = N fs(xt). Notice that xs is not necessarily normalized.

LEMMA 5.1 Let ε 6 1/6 and set α = ε2/2. Under the hypotheses above, for any s ∈]t, t ′],
one has

1. µ( fs,xt)6 1
1−ε

µ( ft ,xt).

2. 1
1+ε/5

(
φt,s(xt)− 2α

D3/2µ( ft ,xt )

)
6 β0( fs,xt)6

ε/5+2α

(1−ε/5)D3/2µ( ft ,xt )
,

3. D3/2

2 β0( fs,xt)µ( fs,xt) 6 0.049. In particular, xt and xs are approximate zeros of fs
associated with ζs,

4. µ( fs,xs)6 1
1−ε

µ( ft ,xt).

5. (1− ε)µ( fs,ζs) 6 µ( ft ,xt) 6 (1+ ε)µ( fs,ζs). In particular, ζs is non-degenerate
zero of fs, and hence s 7→ ζs in continuous for s ∈ [t, t ′].

6. β0( fs,xs)6 1.23α( fs,xt)β0( fs,xt).

7. Hypothesis (5.1) and a strong version of (5.2) hold at s: rank D fs(xs)|x⊥s = n, and

D3/2

2
β0( fs,xs)µ( fs,xs)6 0.128α

Proof. We assumed without loss of generality that the homotopy path is scaled such
that 〈 ft , ḟt〉= 0.
1. From equation (5.3),

‖ ft − fs‖6
∫ s

t
‖ ḟσ‖ dσ = l(s)− l(t)6 l(t ′)− l(t)6

ε

5D1/2µ( ft ,xt)
,

so that v 6
√

Dµ( ft ,xt)‖ ft− fs‖6 ε/5 6 1/20, and Corollary 3.1 gives (1− ε)µ( fs,xt)6
µ( ft ,xt).

2. For all λ with |λ |= 1,

β0( fs,xt) = ‖D fs(xt)|−1
x⊥t

λ fs(xt)‖6

‖D fs(xt)|−1
x⊥t

D ft(xt)|x⊥t ‖
(
‖D ft(xt)|−1

x⊥t
(λ fs(xt)− ft(xt))‖+‖D ft(xt)|−1

x⊥t
ft(xt)‖

)
.
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By Lemma 3.11, (5.2) and (5.4) we obtain:

β0( fs,xt)6
1

1− v
(φt,s(xt)+β0( ft ,xt))6

1
1− ε/5

(
ε

5D3/2µ( ft ,xt)
+

2α

D3/2µ( ft ,xt)

)
=

ε/5+2α

(1− ε/5)D3/2µ( ft ,xt)
.

For the lower bound,

β0( fs,xt) = ‖D fs(xt)|−1
x⊥t

fs(xt)‖>∥∥∥∥(D fs(xt)|−1
x⊥t

D ft(xt)|x⊥t
)−1

∥∥∥∥−1(
‖D ft(xt)|−1

x⊥t
( fs(xt)− ft(xt))‖−‖D ft(xt)|−1

x⊥t
ft(xt)‖

)
.

By Lemma 3.11, (5.2) and (5.4) we obtain:

β0( fs,xt)>
1

1+ v
(φt,s(xt)−β0( ft ,xt))>

>
1

1+ ε/5

(
φt,s(xt)−

2α

D3/2µ( ft ,xt)

)
.

3. Combining the the two preceding items,

D3/2

2
β0( fs,xt)µ( fs,xt)6

ε/10+α

(1− ε)(1− ε/5)
6 0.037931 · · ·< 0.049. (5.5)

Thus, by Theorem 4.1, xt and xs are approximate zeros of fs associated with ζs.

4. Using item 2,

dR(xt ,xs)6 β0( fs,xt)6
ε/5+2α

(1− ε/5)D3/2µ( ft ,xt)
..

Thus,

u = D3/2dR(xt ,xs)µ( ft ,xt)/2 6
ε/10+α

(1− ε/5)
< ε/5.

Then, we can use Corollary 3.1 again to bound

µ( fs,xs)6
1

1− ε
µ( ft ,xt).

5. From Theorem 4.1,

dR(xt ,ζs)6 dT (xt ,ζs)6 σ(α( fs,xt))β0( fs,xt)6 1.0429 · · ·β0( fs,xt).

Thus,

u =
D3/2

2
µ( ft ,xt)dR(xt ,ζs)6 0.1978026 · · ·ε < ε/5.

We bounded in item 1 the quantity v 6 D1/2µ( ft ,xt)‖ ft − fs‖ < ε/5. Hence, by Corol-
lary 3.1 again:

(1− ε)µ( fs,ζs)6 µ( ft ,ζt)6 (1+ ε)µ( fs,ζs).

6. From item 3 and Proposition 4.3,

β0( fs,xs)6 1.23α0( fs,xt)β0( fs,xt).
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7. Because µ( fs,xs) is finite, D fs(xs) has full rank. From items 1, 6 and (5.5),

D3/2

2
β0( fs,xs)µ( fs,xs)6 1.23

(
ε/10+α

(1− ε)(1− ε/5)

)2

6 0.128α.

Recall that our algorithm allows for an approximate computation of the Newton itera-
tion. The robustness Lemma below shows that if a point x satisfies (5.2) and conclusion 7
of Lemma 5.1, then an approximation y of x satisfies (5.2) and (5.3).

LEMMA 5.2 Assume that ‖ f‖= 1 and ‖x‖= ‖y‖= 1. Let α 6 1/72 and c 6 0.8. Suppose
that D f (x)|x⊥ has rank n, and

D3/2

2
β0( f ,x)µ( f ,x)6 0.128α (5.6)

u =
D3/2

2
dR(x,y)µ( f ,x)6

cα√
Dµ( f ,x)

. (5.7)

Then, D f (y)|y⊥ has rank n, and

D3/2

2
β0( f ,y)µ( f ,y)6 α (5.8)

and furthermore, x and y are approximate zeros associated to the same exact zero ζ .

Proof. By using D3/2µ( f ,x)> 4 (see Lemma 3.2 and the hypothesis D > 2) we obtain
that u 6 0.0055 · · ·< 1/19. Therefore, Lemma 3.10 implies that

µ( f ,y)6 (1+3.805)µ( f ,x)

and in particular, D f (y)|y⊥ has rank n.

To estimate β0( f ,y), we decompose

β0( f ,y) =
∥∥∥D f (y)−1

|y⊥ f (y)
∥∥∥6 ∥∥∥D f (y)−1

|y⊥D f (x)|x⊥
∥∥∥∥∥∥D f (x)−1

|x⊥ f (y)
∥∥∥ .

The first term is bounded by Lemma 3.8,∥∥∥D f (y)−1
|y⊥D f (x)|x⊥

∥∥∥6 1+3.805u.

Taylor’s exansion gives D f (x)−1
|x⊥ f (y) =

D f (x)−1
|x⊥ f (x)+D f (x)−1

|x⊥D f (x)(y− x)+ ∑
k>2

1
k!

D f (x)−1
|x⊥Dk f (x)(y− x)k.

Taking norms,∥∥∥D f (x)−1
|x⊥ f (y)

∥∥∥6 β0( f ,x)+δ ( f ,x)‖y− x‖+ ‖y− x‖2γ0( f ,x)
1−‖y− x‖γ0( f ,x)

.

By Lemma 3.1c,‖y− x‖γ0( f ,x)6 u. Hence,

β0( f ,x)6 (1+3.805u)
(

β0( f ,x)+δ ( f ,x)‖y− x‖+ ‖y− x‖u
1−u

)
.
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Using Lemma 3.6, δ ( f ,x)6
√

Dµ( f ,x). Thus,

D3/2

2
β0( f ,y)µ( f ,y) 6 (1+3.805u)2

(
0.128α +

√
Dµ( f ,x)u+

u2

1−u

)
6 (1+3.805u)2

(
0.128+ c+

cu√
Dµ( f ,x)(1−u)

)
α

6 0.97α < α

Since α 6 1/72 6 0.049, Theorem 4.1 implies that both x and y are approximate zeros of
f . As this is also the case for all the points in the shortest arc of circle between x and y, the
associated zero must be the same.

LEMMA 5.3 Assume the Hypotheses of Lemma 5.1. Let 0 < ξ 6 1. If furthermore

l(t ′)− l(t)>
ξ ε

5
√

Dµ( ft ,xt)
,

then

L(t ′)−L(t)>
ξ ε

5D3/2 .

Proof.

L(t ′)−L(t) =
∫ t ′

t

∥∥∥( ḟs, ζ̇s)
∥∥∥µ( fs,ζs) ds

>
∫ t ′

t

∥∥ ḟs
∥∥µ( fs,ζs) ds

>
µ( ft ,xt)

1+ ε

∫ t ′

t

∥∥ ḟs
∥∥ ds using Lemma 5.1(5).

=
µ( ft ,xt)

1+ ε
(l(t ′)− l(t))

>
ξ ε

5(1+ ε)
√

D
.

>
ξ ε

5D3/2 .

LEMMA 5.4 Assume the Hypotheses of Lemma 5.1 and choose ε and ξ so that 20ε 6 ξ 6
1. If furthermore

φt,t ′(x)>
ξ ε

5D3/2µ( ft ,xt)
,

then

L(t ′)−L(t)>
ξ ε

13D3/2 .

Proof.

L(t ′)−L(t) =
∫ t ′

t

∥∥∥( ḟs, ζ̇s)
∥∥∥µ( fs,ζs) ds

>
∫ t ′

t

∥∥∥ζ̇s

∥∥∥µ( fs,ζs) ds

>
µ( ft ,xt)

1+ ε

∫ t ′

t

∥∥∥ζ̇s

∥∥∥ ds using Lemma 5.1(5).

>
µ( ft ,xt)

1+ ε
dR(ζt ,ζt ′).
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By the triangle inequality,

dR(ζt ,ζt ′)> dR(ζt ′ ,xt)−dR(xt ,ζt)

We know from Theorem 4.1 that dR(xt ,ζt) 6 σ(α)β0( ft ,xt). Lemma 5.1(3) says that
α0( ft ′ ,xt ′)6 0.049 and hence, from Proposition 4.2, we obtain:

dT (xt ,ζt ′)> β0( ft ′ ,xt)/1.128.

Thus, dT (xt ,ζt ′)>
ξ ε/5−2α

(1+ε/5)D3/2µ( ft ,xt )
1

1.128 by Lemma 5.1(2). We use now the bound 20ε 6 ξ

and the fact that α = ε2/2 to deduce that

dT (xt ,ζt ′)> ω =
3ξ ε/20

1.128(1+ ε/5)D3/2µ( ft ,xt)

Since ε 6 ξ/20 6 1/20, we can bound ω 6 0.001645 · · · . Of course, dR(xt ,ζt ′)> arctanω .
We may bound arctan(ω)> ω arctan′(0.001645 · · ·) = 1

1+0.001645···2 ω > 0.999ω . Now,

L(t ′)−L(t) >
µ( ft ,xt)

1+ ε

(
0.999

3ξ ε/20
1.128(1+ ε/5)D3/2µ( ft ,xt)

− 2σ(α)α

D3/2µ( ft ,xt)

)
> 0.0775

ξ ε

D3/2 >
ξ ε

13D3/2

Proof of Theorem 1.1

We take ξ = 20ε and α = ε2/2. Assume that L(b) is finite. By hypothesis and Theo-
rem 4.1, x0 is an approximate zero of fa. ( ft ,ζt)t∈[a,b] denotes the unique lifting of the path
ft corresponding to ζ0 zero of fa associated to x0.
Induction hypothesis:

D3/2

2
µ( fti ,xi)β0( fti ,xi)< α

and furthermore, xi is an approximate zero associated to ζti .
The induction hypothesis holds by hypothesis at i = 0, so we assume it is verified up

to step i. We are in the hypotheses of Lemma 5.1 for t = ti, t ′ = ti+1 = min(s,s′,b) and
x = xti = xi. Thus,

D3/2

2
µ

(
fti+1 ,N fti

(xi)
)

β0

(
fti+1 ,N fti

(xi)
)
< 0.128α

and N fti
(xi) is an approximate zero for fti+1 associated to ζti+1 .

Now we are in the hypotheses of Lemma 5.2. Thus, y = xi+1 picked at (1.4) satisfies
the induction hypothesis.

In order to bound the number of iterations, we remark that at each step i, one of the
following alternatives is true:

1. This is the last step: ti+1 = b.

2. Condition (1.1) is true. In that case, we are under the hypotheses of Lemma 5.3.

3. Condition (1.2) is true. Then we are under the hypotheses of Lemma 5.4.

Therefore, we may infer that at each non-terminal step,

L(ti+1)−L(ti)>
ξ ε

13D3/2 .

Therefore, there can be no more than 260ξ−2L(b)D3/2 non-terminal steps. There is only
one terminal step, so the total number of steps is at most

1+260ξ
−2L(b)D3/2 = 1+0.65ε

−2L(b)D3/2
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6. Some remarks on how to implement the algorithm

In Theorem 1.1, we gave a complexity bound for approximating a lifting ( ft ,ζt) for an
arbitrary homotopy path ft of class C1, and for an initial solution ζ0 for fa(ζa) = 0.

In that theorem, it is assumed that we know how to perform each step of the Homotopy
algorithm. In particular, we must be able to solve the inequalities (1.1), (1.2) and (1.3).

In this section, we explain how to do this for the case of a linear homotopy. Then, a
nonlinear homotopy may be approximated by a piecewise linear one.

The homotopy will be parametrized by arc length. Therefore, we assume first that
[a,b] = [0,θMax] and ft = cos(t) f0+ sin(t)g, with of course g⊥ f0 and ‖ f0‖= ‖g‖= 1 and
θMax 6 π/2. With that convention,

l(t) = t.

Assuming ε = 1/20, we solve explicitly (1.1) by

s− t =
ε

5D1/2µ( fti ,xi)
.

Solving (1.2) and (1.3) is more tricky. Define:

X = D ft(xt)|−1
x⊥t

ft(x)

Y = D ft(xt)|−1
x⊥t

fσ (x)

Z = D ft(xt)|−1
x⊥t

ḟt(x)

Also, let c = cos(σ − t) and s = sin(σ − t), so that

Y = cX + sZ.

We expand

φt,σ (x)2 = ‖x‖−2 (‖X‖2 +‖Y‖2−2|〈X ,Y 〉|
)

= ‖x‖−2 ((1+ c2)‖X‖2 + s2‖Z‖2 +2csRe(〈X ,Z〉)−2|c‖X‖2 + s〈X ,Z〉|
)

= ‖x‖−2
(
(1+ c2)‖X‖2 + s2‖Z‖2 +2csRe(〈X ,Z〉)

−2
√

(c‖X‖2 + sRe(〈X ,Z〉))2 +(sIm(〈X ,Z〉))2
)
.

The equation φt,σ (x)2 = C becomes, after clearing the square root, a polynomial in c
and s. Replacing c by

√
1− s2 and clearing the square root again, we obtain a polynomial

in s of which only the smallest positive root is relevant. This way, solving (1.2) and (1.3)
can be reduced to univariate polynomial solving for a fixed degree.

The other steps of the Homotopy algorithm pose no difficulty for the implementation.

7. Conclusions

We gave a rigorous homotopy algorithm for polynomial systems. The correctness of the
result is guaranteed, in the sense that there is no ‘path jumping’.

Some algorithms such as the one by Li (2003) proceed by setting a step size in an
heuristic way, and then checking the results. Our algorithm allows to eliminate the need
for checking.

This way, it is possible to consider a massive parallel implementation of the algorithm,
each processor tracing one or a few roots. The running time will be given by the maximum
(over all paths) of the condition length.



ADAPTATIVE STEP SIZE SELECTION FOR HOMOTOPY METHODS... 25 of 25

It is also possible to use the algorithm for a rigorous computation of the root permu-
tation associated to a closed path, and for investigating the corresponding Galois group as
in Leykin & Sottile (2009).
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