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Given a C! path of systems of homogeneous polynomial equations f;, t € [a,b] and an approximation x,
to a zero {, of the initial system f,, we show how to adaptively choose the step size for a Newton based
homotopy method so that we approximate the lifted path (f;, §;) in the space of (problem, solution) pairs.
The total number of Newton iterations is bounded in terms of the length of the lifted path in the condition
metric.
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1. Introduction

Let us denote by () the vector space of homogeneous polynomials systems
[t e

f=(f1,...,fn) in the variable z = (z0,z1, . . .,2n), With degree (d) = (d,,...,d,), so that f;
has degree d;.

Given a C! path of systems ¢ € [a,b] — f; € Hq)> and a zero §, of the initial system
fa, under very general conditions, the path t — f; can be lifted to a C! path r — (f;, &) in
the solution variety

V={(f,0) € #y xC"\ {0} : f({)=0}.

If we make the additional hypothesis that dd—gt’ is (Hermitian) orthogonal to ; this path is
unique.

Now, given a sufficiently close approximation x, to the zero {, of the initial system f;,,
predictor-corrector methods based on Newton’s method may approximate the lifted path
(f1,&) by a finite number of pairs (f;,x;) € {4 ¥ C"!, 0 < i < k. These algorithms
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are designed as follows: first the interval [a,b] is discretized by a finite number of points
a=ty <t <...<t,=Db,then asequence (x;) is constructed recursively by

X0 = Xg and Xi+1 = Nﬁ’erl (x,')

where Ny, is the projective Newton operator associated with the system f;. The complexity
of such algorithms is measured by the size k of the subdivision (#;). If we make a good
choice for (#;) then k is small and, for each i, x; is an approximate zero of fi; associated
with ..

The complexity of such algorithms has been related by Shub & Smale (1993) to the

length [ of the path (f;) and to the condition number of the path (f;, §;): 4 = max,<<p L(f7, &)

The condition number measures the size of the first order variations of the zero of a poly-
nomial system in terms of the first order variations of the system. For (f,{) € V it is given

by
o) g (Va1 )|

or oo when rank Df({) ‘g 1 < n. We extend this definition to any pair (f,z) € J#{; x C"*!
by the same formula. Shub & Smale (1993) give the bound

u(r.0) =11 | (&)

k< CD?1u?,

where C is a constant, and D = maxd,.

A more precise estimate is given in Shub (2009). The author proves that we can
choose the step size in predictor-corrector methods so that the number of steps sufficient
to approximate the lifted path is bounded in terms of the length of the lifted path in the

condition metric:
d

We can find such a subdivision (¢;), 0 < i < k, with

Hdg

k< CDL.

Its construction is given by

tit1
to =a, and ' (Hdﬁ d—g
fi

dt

X
I

dt — #
& D3/2:u(fti7 Cti)

but, in this paper, some universal constants are not estimated, and no constructive algorithm
is given.

In the algorithm we present below, we compute ¢, from ¢#; so that at least one of the
quantities

/li+1 d fz dr
2 dt
and
tivl || d Ct

/ dr

1 dt ¢
increases of a given fraction of

1

D3/2,u(ftia gti) '
Moreover, to allow approximate computations, we introduce a tolerance parameter €. The
choice of this parameter depends on the considered problem and also on the round-off unit
of some finite precision arithmetic. This is a difficult problem, and it is not considered here.
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For an approach to a similar problem related to another algorithm, see Briquel, Cucker,
Pefia & Roschchina (2010).

The present algorithm reflects the geometrical structures used by Shub (2009). This
structure is based on a Lipschitz-Riemannian metric defined in the solution variety V by

<" '>V,(f,§) nu'(fv C)z

where (,.)y (s ¢) 1s the Riemannian metric in V inherited from the usual metric on P(Hq)) %

]P’((C”“). This condition metric is studied in more details in Beltran et al. (2010, TA),
Beltran & Shub (2009) and Beltran & Shub (TA), and in Boito & Dedieu (2010).

ALGORITHM Homotopy
INPUT: (f;)efap)» 0 # %0 € C"H1, 0 < & <1/20.
OUTPUT:

An integer k > 1,

A subdivisiona=1t <) <...<ty =b,

A sequence of nonzero points x; € ctlo<i<k
ALGORITHM:
i< 010« a;
Repeat

Find s € [t;, D] so that

st

dfi
—|| dt< SDVu(fx)
f, tis M

dt

20¢g? . /S

SDl/zﬂ(fliaxi) h ti

In case there is no such s, make s = b.
Find s’ € [;,b] so that for all o € [f;,s5'],

20¢2
5D3/2.u(f;fiaxi)
Vo S [[[,S/], ¢t,',0' (xi) <

< ¢Z‘,‘,S’(‘xi)
&
5D3/2:u'(ﬁ,‘7-xi)

where

r.0(xi) = ||xl-\|’1\/||X||"’ﬂL IY[I> =2/, Y)l,

with X = Df, (x;) \xfjf,i (x;) and Y = D (x;) |;ff6 (x;).
In case there is no such s’, make s’ = b.

fi+1 = min(s,s’);

Find 0 # x;, | € C"*! such that

dr (Nf. (xi)vxi+1) < 4782;
i SD*u(fr;xi)?
i+—i+1;
Until 7; = b.
Set k<« i

(1.1)

(1.2)

(1.3)

(1.4)

This algorithm has the following properties:
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THEOREM 1.1 Assume thatn > 2 and D =maxd; >2. Given0 < £ < 1/20, a C! homotopy
path (f),c[a,p) in #{4) and an initial point 0 # xo € C"*H! satisfying

D3/2 82
T.u(favx())ﬁo(fme) < ?a

where Bo(f,x) = [lx| " [Df(x)[ ! £(x)]]. then:
1. xp is an approximate zero of f, with associated nonsingular zero ¢,

2. Let (fi, 8 )ic(ap) be a continuous lifting of (f1 )[4, in the solution variety initialized
at (f4, &,). If the condition length L is finite, then:

2.a. The algorithm Homotopy with input (&, (f;),xo) stops after at most
k=1+0.65D%2¢72L
iterations of the main loop,
2.b. Foreach i = 1...k, x; is an approximate zero of f;, with associated zero {;,.

REMARK 1.1 o This algorithm is robust: it is designed to allow approximate compu-
tations.

e For € = 1/20, the computations in (1.1), (1.2) and (1.3) have to be exact.

e The hypothesis “the condition length L is finite” holds for an open dense set of
the C! paths (C' topology assumed) in the solution variety V and, consequently,
Theorem 1.1 holds for “almost all” inputs (f7);e4,5]>X0-

e We reach the same complexity as in Shub (2009).

Let us now mention other approaches to the construction of “convenient subdivisions”.

A practical answer consists in taking 7,11 = ; + 8t for an arbitrary 67 > 0. If x;; fails
(resp. succeeds) to be an approximate zero of f;, , then we take 6¢/2 (resp. 20¢) instead of
0t; see Li (2003). With such an algorithm we may jump from a lifted pathz — (f;,{;) € V
to another one t — (f;,§/) € V. Even if, for each i, x; is an approximate sero of f;, we
cannot certify that the sequence (f;,,x;) approximates the path (f;, {;).

In Beltrdn (2011), the author presents an algorithm to construct a certified approxi-
mation of the lifted path. It requires a C'*L path in the space of systems, and it has an
additional multiplicative factor in the number of steps given by Shub (2009). This extra
factor is unbounded for the class of C! paths considered here.

Beltran’s algorithm is studied in more detail in Beltran & Leykin (TA), which contains
implementations and experimental results.

Another important problem, which is not considered here, is the choice of both the
homotopy path (f;), a < ¢ < b, and the initial zero {,. Classical strategies are described in
Li (2003), and Sommese & Wampler (2005).

A conjectured “good choice” (see Shub & Smale , 1994) is the system

Lo
d 12 Zgl 121 =0,
fa(z()vzlv"'aZn): gd:(laow"ao)a
1
d)12 Zg’17]Zn — 07
and a linear homotopy connecting this initial system to the target system f;. See Shub
& Smale (1994) for a precise statement. This conjecture is still unproved. In Shub &
Smale (1994) an adaptive algorithm is given for linear homotopies whose number of steps
is bounded by the estimate in Shub & Smale (1993). The algorithm we present here is a
version of that algorithm adapted to the new context of length in the condition metric.
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Beltran & Pardo (2011) use a linear homotopy and Beltran’s strategy for the choice of
the subdivision. They get, for a random choice of (f;,{,), an average running time O(N?)
where N is the size of the input.

Biirgisser & Cucker (TA) define an explicit algorithm, called ALH, based on the linear
homotopy and a certain adaptive construction for the subdivision. They obtain the com-
plexity

b
217 D3/2d[p>(fa7fb)/ w(fi, &) ar

which is not as sharp as the estimate based on the condition length given in Shub (2009) or
to our own estimate. Then, we cite the authors, “ALH will serve as the basic routine for a
number of algorithms computing zeros of polynomial systems in different contexts. In these
contexts both the input system f;, and the origin (f,,C,) of the homotopy may be randomly
chosen”. See this manuscript for a more detailled description.

Our feeling, based on a series of papers on the condition metric: Beltran et al. (2010,
TA); Beltrdn & Shub (2009, TA); Boito & Dedieu (2010), is that a good choice for the
homotopy path (f;) and the initial zero §, will induce a lifted path (f;, ;) close to the
condition geodesic connecting (f,, &) to (fp, &). We are far from accomplishing this task.

Our paper is organized as follow. Section 2 recalls the geometric context and contains
the main definitions. In section 3 we study the variations of the condition number p(f,x)
when we vary both the system f and the vector x. The main difficulty is to estimate uni-
versal constants which are already present in many papers (Shub & Smale (1994), Shub
(2009) for example) but which are not given explicitely. Such explicit constants are neces-
sary to design an explicit algorithm. Section 4 contains, in the same spirit, explicit material
about projective alpha-theory. Section 5 is devoted to the proof of Theorem 1.1. Then in
Section 6 we explain how to implement our algorithm in the case of a linear homotopy,
and in Section 7 we discuss possible applications.

2. Context and definitions
2.1 Definitions

We begin by recalling the context. For every positive integer [ € N, let 74 C Clx, ..., x5,
n > 2, be the vector space of homogeneous polynomials of degree . For (d) = (di,...,d,) €
N", let #{y) = [1i=| 7, be the set of all systems f = (f1,---,fn) of homogeneous poly-
nomials of respective degrees deg(f;) =d;, 1 <i < n. So f:C"*! — C". We denote by
D :=max{d; : 1 <i< n} the maximum of the degrees, and we suppose D > 2.

The solution variety V is the set of points (f,{) € Haq) < C"! with f(£) = 0. Since the
equations are homogeneous, for all 1,4, € C\ {0}, A, f(22{) = 0 if and only if f({) =
0. So V defines a variety V C P()) x P(C"*') where P(/#)) and P(C"*") are the
projective spaces corresponding to .%{,) and C"*! respectively; V and V are smooth.

Most quantities we consider are defined on (#)\ {0}) x (C**'\ {0}) but are con-
stant on equivalence classes

{(Mf,22x) © A1, A € C\{0}}

so are defined on P({)) x P(C™*1). This product of projective spaces is the natural geo-
metric frame for this study, but our data structure is given by pairs (f,x) € (#y) \ {0}) x
(C™1\ {0}). We speak interchangeably of a pair (f, &) in V and its projection (f, &) in V.

Given a C' path of systems € [a,b] — f; € P(#]y)), and a zero {,P(C"*!) of the
initial system f,, under very general conditions, the path t — f; can be lifted to a unique C!
path t — (f;, &) in the solution variety V.

Two important ingredients used in this paper are projective Newton’s method introduced
by Shub (1993), and the concept of approximate zero.
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For a pair (f,x) € (], \ {0}) x (C"*1\ {0}) the projective Newton’s operator Ny is
defined by
Ny(x) =x=Df(x)[ ! f(x).

Here we assume that the restriction of the derivative Df(x) to the subspace orthogonal to x
xt = {ue s (ux) = 0}

is invertible. It is easy to see that the line throught x is sent by Ny onto the line throught
Ny (x) so that Ny is in fact defined on P(C"*1).

DEFINITION 2.1 We say that x is an approximate zero of f with associated zero § (f(§) =
0) provided that the point x,, = N¢(x,_1), Xo = x, is defined for all p > 1 and

o< (L) ac

Here dr denotes the rangential “distance” as in Definition 2.2.

A well-studied class of numerical algorithms for solving polynomial systems uses ho-
motopy (or path-following) algorithms associated with a predictor-corrector scheme. We
are given a C! path (f;), a <t < b, in the space f%”(d), and a root {, of f,. Under certain
genericity conditions, the path ( f;) may be lifted uniquely toa C' path (f;,&) €V, € [a,b],
starting at the given pair (f,, {,).

Given an approximate zero x, of f, associated with ,, our aim is to build an approxi-
mation of this path by a sequence of pairs (f;,,x;) € (7, \ {0}) x (C"*'\ {0}), 1 <i<k
where, a =1ty < f] < ... <t = b is a subdivision of the interval [a,b], and where x; is an
approximate zero of f;, associated with .. To simplify our notations we let f;, = f;.

The construction of the suddivision (#;) is given in the “Algorithm Homotopy”. The
construction of the sequence (x;) uses the predictor-corrector scheme based on projective
Newton’s method, studied for the first time in Shub & Smale (1993). This sequence is
defined recursively by

Xi+1 :Nfi+1 (x,-).
In fact, to allow computation errors, we choose x;, | in a suitable neighborhood of Ny,, | (x;).
Theorem 1.1 proves that for each i = 1-- -k, x; is an approximate zero of f;, associated with
{; and it gives an estimate for the integer k in terms of the maximum degree D, and the
condition length of the path (f;,§;), a <t < b.

DEFINITION 2.2 As itis clear from the context, systems and vectors are supposed nonzero.

1. j‘l{d) is endowed with the unitarily invariant inner product (see Blum ez. al. (1998)
section 12.1)

n | |
<fag> = Z Z wﬁ,a&a

i=1|a|=d; !

where o = (®,..., ), || = o+ + 0,

ﬁ(x07"~axn): Z ﬁﬂxgo...xg”?

|o|=d;

and
gi(x0y. ., xn) = Z gi,axgo...x,‘i‘".
|a|=d;

2. dg(x,y) is the Riemannian distance in IP,,(C).

3. dp(x,y) = sindg(x,y) = ming 3 cc HW% is the projective distance.
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dr(x,y) = tandg(x,y) is the tangential “distance”. It does not satisfy the triangle
inequality.

One has dp(x,y) < dr(x,y) < dr(x,y).

When rank Df(x) = n, we denote by 6, the angle between x and ker Df(x). 6, =0
when f(x) =0.

01 denotes the angle between the complex lines L and M so that 6, = ker Df(x)"
w(u) = 1 —4u+2u? decreases from 1 to 0 on the interval [0, (2 —v/2)/2].
The norm of a linear (resp. multi-linear) operator is always the operator norm.
The condition number
u(r.x) = 11| Do)l ding (Vi)
is also denoted [,,,; in Shub & Smale (1993), and U, in Blum et. al. (1998).
D = maxd;. We suppose D > 2.
u=D*2u(f,x)dr(x,y) /2.

v =D'Y2u(f,x) minyy|— Hﬁ —lﬁ“ where it is assumed that f # 0 and g # 0.
The quantity expressed as a norm is 2sindg(f,g)/2 < dr(f,8)-

Bo(f.x) = x| IDF LA ().

k X —
10(f,%) = el maxes || Df ()] 1/ 60,

(X()(f,.X) = ﬁO(f>x)YO(fax)'

ap = (13—-3/17) /4 = .15767 ...

8(f.x) = Ilxl|I =" IDf (x)| . diag(d:) f (x) .

LetX =Dy, (x)|;ff,(x) andY =Df; (x)|;l1fs(x). Then define

15 (x)

Irﬁi:nIIIXII” IX =AY =l ~* \/Xz +YIP —2maxRe((X,¥))

Il = JIX P+ 1Y 1P 21X, ).

LetaC' patha<t<b—f € Hq)\ {0} be given. We denote by

. df
="a
the derivative of the path with respect to 7, and, for any g € (),
el = 1))/ 115

the norm of the projection of g onto the subspace orthogonal to f; divided by the
norm of f;. The length of (f;) in P(,)) is given by

b .
l(b):/u 1] .

When || f;|| = 1 and (f;, f;) = O for each ¢ we have

)= [ 1.
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21. The condition length of the path (f;,x;) € (] \{0}) x (C**'\ {0}),a <1 < b, is
12 e 2 )2
L) = [ (1515 +102) " nhoxdr,

b
a

where X, is the derivative of the path x, with respect to ¢, and where the norm ||| .
is defined as in the previous item with Hffo, When ||£;|| = ||x/|| = 1 and (f;,f;) =
(x;,% ) = 0 for each t we have
b, 1/2
2 0
L) = [ (1P +10) " (i)
a

We will also use some invariants related with non homogeneous polynomial systems.
For (d) = (di,...,dn) € N", let 24 =[IiL| P4, be the set of polynomial systems
F=(F,...,F,) : C" — C" in the variables X = (X,...,X,), of respective degrees
deg(F;) < d;, 1 < i< n. The homogeneous counterpart of F is the system f =
(f1,--+, fn) € Hq) defined by

Sfilxo,%1,-- ;%) :xg"Fi <j:),...,j§z> :
The norm on &) is defined by ||F|| = || f]|. We also let:
22. B(F,X) = |DF(X)"'F(X)]|.
23. Y(F.X) = maxjs||DF (x)~ 2EX) 1/,

24. a(F,X) = B(F,X)y(F,X).

3. Variation of the condition number

A necessary ingredient for the proof of Theorem 1.1 is the following theorem which gives
the variations of the condition number when both the system and the point vary:

THEOREM 3.1 Let two nonzero systems f, g € #{;), and two nonzero vectors x,y € crHl
be given such that rank Df(x)[,. =n, u < 1/20, and v < 1/20. Then rank Dg(y)|,. =n,
and

(1—3.805u—v)u(g,y) < u(f,x) < (143.504u+v)u(g,y).

COROLLARY 3.1 Let 0 < & < 1/4, two nonzero systems f,g € ‘}ﬁd)’ and two nonzero

vectors x,y € C"! be given such that u < €/5, v < /5, and rank Df(x)|,. = n. One has
rank Dg(y)|,. = n, and

(1=&)u(g,y) <u(f,x) < (1+€)u(g.y)-
The proof of these results is obtained from the following series of lemmas.

LEMMA 3.1 Let f € #;) and x € C"*!. We have

1. Foranyi=1...n, || £:(x)| < |fl|x]|%, so that || f(x)|| < 1 when f and x are normal-
ized.

2. Forany i =1...n, |Dfi(x)|| < d;||fill|x]%", so that |Df(x)|| < D when f and x
are normalized.
3/2
3. ’}/U(fax) < DT:LL(fax)

_I_ Proof. These inequalities come from Proposition 1, and Theorem 2, p. 267, in Blum
et. al. (1998). O
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LEMMA 3.2 1 < /n=ming, u(f,x).

Proof. Let given a matrix A € C"*™, m > n, and A = UXV* a singular value decompo-
sition with
X =diag(01(A) = ... = 0,(A)) € C™",

ci(A) >20,U €U,, V € U, unitary matrices. We define

K(4) = 0,(4) " Allr = 6,(A) o1 (A)2 4.+ 0,(4)?
when 0, (A) > 0, and « otherwise. We see easily that
min(4) = V1,

and this minimum is obtained when 6;(A) =1, 1 <i<n
For the case of polynomial systems we have

u(f.2) = 1711 (diag(d; D)) Il = 17l (diag(d; Dr1, )

Using the unitary invariance of the norm in f%”(@ (Blum et. al., 1998, Sec. 12.1) ,
that is || f o U|| = ||f]| for any U € Uy, considering a U such that Uey = x with ey =
(1,0,...,0)T € C"*!, we see that

|diag(d;"*)Df ()|, |lr < 1 £]|-

Thus, our previous estimate shows that p(f,x) > \/n.
To prove the equality \/n = miny , i ( f,x) we use the unitary invariance of the condition
number

p(f,x)=pu(fol,U"x)
for any U € U, , and the equality /n = u(f,eo) when f;(z) = \/>20 zi, 1 <i<n,and
eo = (1,0,...,007 e C**1. 0
LEMMA 3.3 For any f and x one has dg(x,y) < u/v2n < u/2, and dg(x,y)8(f,x) < u

Proof. We suppose that both system f and vectors x,y are normalized. We have by

Lemma 3.2
D3/2 23/2
u= Tl’l(fvx)dR(XmY) Z T\/ﬁdR(X,y)~

For the second inequality we have

dr(x,y)|IDF ()| diag(d,’*)||[diag(d; ) ][|f (x)]]
dr(x,y)(f,x)D"?| ()|
x )

u
dR( ay)y'(fvx D3/2/2
u

dR(x7y)5(f7x)

V/ANV/AN/AN

thanks to the inequalities 2 < D, ||f;(x)|| < ||£|l/lx]| (Lemma 3.1), and the hypothesis
Ifl=lxl=1. O

LEMMA 3.4 When rank Df(x)|,. = n we have

|\Df(x)|;fo(x)\yL |< 1+4dp(x,y)tan6,.
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FiG. 1.

Proof. Take u € y* and define v = Df(x)|;ij(x) |,Lu so that

v=(u+ker Df(x))Nx*.

v € x* is the projection of u € y* along ker Df(x). Let us denote by w the orthogonal
projection of u onto x*. See Figure 1. We have ||w|| = ||u/| cos 8y w and

|lw—v|| = ||lw—ul/tan 6 = ||ul| sin B \ tan 6,
so that
[[v]] < |lul|(cos By w + sin By wtan 6) < ||u|(1 4 sin Oy tan 6, )
because exL,yL = 6, = max ul| = 1 Ou,w. (See Definition 2.2(7)) 0

ucyt
LEMMA 3.5 Assume that ||x|| = ||y|| = 1. When rank Df(x)|,. = n and u < 1 one has

_ 1
IDF )| 'DF)e )< =up +dp(x,y) tan 0.

Proof. Assume without loss of generality that y is scaled such that | (x —y,x)| is minimal
under the constraint that ||y|| = 1. In particular, this implies that ||x — y|| < dr(x,y).

. k41 x
Since Df(y) = Df (x) + Laz1 2 (v —x)* we get

k+1 X
DDA, = DA DA + Xkt DDA 2L oy
Sl (k+1)!

—1 DM f () k :
Then, we use [|Df(x)| © (z5) Il < 1(f,x)*, Lemma 3.4 and Lemma 3.1 to obtain

IDFEDFO)ll < 1+dp(xy)tan 8+ Y (k10,00 lx — v

k>1

N

1
W + dp(x,y) tan 0,
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g

LEMMA 3.6 When rank Df(x)|,. = n then
tan 6, = 8(f,x) < D'?u(f,x).

Proof. We assume that x and f are normalized. Let y = Df(x) |;fD f(x)x be the pro-

jection of x onto x* along ker Df(x) so that ||y|| = tan 6,. By Euler’s Theorem for homo-
geneous functions, one also has

y=Df(x)|_ diag(d;) f (x)
thus,
tan6, = O6(f,x)
1D (x)| - diag(d; ") | diag(d; ) f (x)|

N

Using Lemma 3.1 we obtain
tan 6, < D' pu(f,x).

a
LEMMA 3.7 When rank Df(x)|,. = n one has
IDF ()] Df )]y < 1+ 8(fx)dp(x.).

Moreover, when ||x|| = ||y|| and u < 1, we have

IDF ) DF )]y 1< 5 +6(f,x)dp(x,y).

1
(1—u)

Proof. The first assertion comes from lemmas 3.4 and 3.6. The second assertion is a
consequence of lemmas 3.5 and 3.6. 0

LEMMA 3.8 Assume that |[x|| = [[y|| = 1 and ||f|| = 1. When rank Df(x)|,. = n, and
u < (2—+/2)/2, then rank Df(y)|,. = n and

IDFO)IIDf )]l <

Moreover, if u < 1/19,
(1—u)?
v (u)

Proof. Assume without loss of generality that y is scaled such that | (x —y,x)| is minimal
under the constraint that ||y|| = 1.

We have

< 14-3.805u.

IDFOIDF )| < (1+dp(x,3)8(f.7))

so that -
Df()|. (D) - Ds () = ¥ Do) 2L

k>1

and, like in the proof of Lemma 3.5,

IDf )| (DF) =DF@)I < Y (k4 1 =
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(because u < (2 —+/2)/2). Now we apply the perturbation formula for operators X with
[|X| < 1: .

=[x

17 =x)7" <
Setting X = fo(x)\;j (Df(y) —Df(x))|,L, we obtain that

[ —X :Df(x)|X_L1Df(y)|xL
is invertible (i.e. Df(y)|,. is invertible), and

—u2
IDFO) DA < — = L7

k% v(u)

We will prove the second statement in two steps. First, prove it under the assumption
that Df(y)l,. is invertible. Then, we remove this assumption.
The first step goes as follows. Combining the first statement with Lemma 3.4 we obtain:

IDFOI DI ll < (IDFODF O MDF G DF )] o

—u)?
< (l+dp(x,y)tan9y)(lw(u))
= ()3 S
’ 7 y(u)
A bound for 0(f,y) is
5(fy) = |Dr); ding(d) )|
< DS DA [ D1 ) ding(di) )|
< IDFO)L DAL (0 VD

using |£(y)] < 1 since || £ = L and ||| = 1.

Combining both inequations and setting M = ||Df (y) |)11D f(x)],L ]|, we obtain:
2
M < (14+Mu) (1—u)
(u)
that simplifies to
1—u)? 1—u)?
R ) UZ0” 143805

() —u(l—u)?  1—5u+4u®>—u

The last bound follows from the fact that the numerator and the denominator have alter-
nating signs, so the Taylor expansion at zero of the fraction has terms of the same sign
(positive). Hence,

(1*'4)2 —1
1—5ut+-4u®—u

u

is an increasing function. In particular, for u = 1/19, this is smaller than 3.805.

Now, we must prove that Df(y)| . is invertible. Let (x;);c[0.dz(x,)] denote a minimizing
geodesic (arc of great circle) between x and y.
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Let W be the subset of all 1 € [0,dg(x,y)] so that Df(x;)ly, is invertible. It is an open
set,and 0 € W.

We claim that W is a closed set. Indeed, let s € W. Then there is a sequence of t; € W
with t; — s. We know from the second statement (restricted) that

IDf(x)| 7' Df(x),1 || < 1+3.805u.

Hence, for T =1¢;,
h(t) = HDf(xf)I);JDJ‘(X)XL [ < n(1+3.805u)*

The function A(7) is a rational function of a real parameter 7, so its domain is an open
set and contains s. By continuity, 4(s) < n(1 +3.805u)?. Thus, Df(xs),, is invertible, and
s € W. As W is a non-empty open and closed subset of an interval, W = [0,dg(x,y)] and
Df(y)l, must be invertible. 0

LEMMA 3.9 Suppose that rank Df(x)|,.. =n, u < 1 and u(f,y) is finite. Then

ﬁ + 5(fvx)dP(xvy)> :

Proof. Suppose that ||x||=||y||=]|f||= 1. We can bound

w(fH) < p(fsy) (

p(f,x) = IIDf(X)I;fo(y)IyLDf(y)Iylldiag(\/c7i)||
and we conclude with Lemma 3.7. 0
LEMMA 3.10 When rank Df(x)|.. =n, and u < 1/19 we have

1(f,y) < (143.805u)u(f,x).

Proof. Suppose that ||x||=||y||=||f||= 1. We have

L) = DS DF ()] DF (o) diag(v/di) | < (1+3.805u)(f )
by Lemma 3.8. |

LEMMA 3.11 Assume that ||f|| = ||g|| = 1. Suppose that rank Df(x)|,. =n, and v < 1.
Then rank Dg(x)|,. = n, and

IDf(x)| ' Dg(x)] | < T+,

D80 DAoL <
(1= V)a(g0) < 1(f,0) < (1) pg.).

Proof. Suppose that ||x||= 1. Also, assume without loss of generality that g is scaled so

thatv = D' u(f,x)|| f — g]-
One has Df(x)|;l1Dg(x)|xL =11 — (I, — idem) and

. 1 1/2 4. —1/2
[ — idem = Df(x)|xl' dlag(di/ )diag(d; / )D(f —g)(x)],x
which norm is bounded by (using Lemma 3.1)

(D2 f gl <v< L.
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This proves the first inequality. Thus Df (x)|x11Dg(x)| L is invertible and the norm of its
inverse is bounded by 1/(1 —v) (Neumann’s Perturbation Theorem). This gives

H(fx)

1—v

_ 1 1/2
1(8,%) < [Dg()[ 1 Df ()], [1DF ()| diag (¢ )] <
The last inequality is obtained via

_ 14 2
B(f,x) < |DF ) Dg ()], [[|Dg ()] - diag((d) )] < (1+v)p(g,).
0
LEMMA 3.12 Let||f|| = ||g|| = 1. Letug = D3?u(g,x)dr(x,y)/2. Suppose that rank Df (x)| . =

n,and v < 1. Then
(I=v)ug <u < (1+v)ug,

and
(1—=v)8(g,x) —v<6(f,x) < (1+v)d(g,x) +.

Proof. As before, suppose that ||x||= 1. and assume without loss of generality that g is
scaled so that v = D'2u(f,x)||f —gl|-

The first double inequality is a consequence of Lemma 3.11. For the second one, one
has:

8(g,x) = IDg(x)| ' Df ()|, DS (x)| [ diag(di) £ (x) + Dg(x)| ., diag(d;) (g (x) — f(x))]l.
By Lemma 3.11||Dg(x)|;fo(x)|xL || <1/(1—v) so that

6(f,x)

1—v

6(g,x) < +1(g.0)D'2||f — gl

Again by Lemma 3.11 u(g,x) < u(f,x)/(1 —v) so that

5(g.x) < S | BEDDPIF —gll  8(F0)+v.
1—v 1—v 1—v

Similarly o (f,x) =
IDF ()| Dg(x)| - Dg(x)], ! diag(di)g(x) + Df (x)] . diag(d:) (f (x) — g(x))I| <

||Df(x)|x_Lng(x)|xL 16(g,x) +v.

Lemma 3.11 shows that ||Df(x)|;ng(x)|xL || < 1+v so that

O(f,x) < (1+v)d(g,x)+w

g

LEMMA 3.13 When rank Df(x)|,. = n, u,v < 1/20, then

(1-v)
1+3.805

1(8,y) =

<u(f,x) <(1+v) <(1 — lu)z 4+ ) 1(g,y)-
1—v

Proof. As before, let ug = D*/?pi(g,x)dg(x,y)/2. Lemma 3.12 allows us to bound
ug <u/(1—v) <1/19. So we may apply Lemma 3.10 to g instead of f so that

p(g,y) < (1+3.805u,)u(g,x)
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Then, we bound (g, x) by u(f,x)/(1 —v) (Lemma 3.11) and obtain the first inequality. In
particular, (g,y) is finite.
To prove the second one we apply Lemma 3.11, and Lemma 3.9 to obtain

5+ 5(8»X)dp(x,y)> n(g,y)-

B < (e < (100 (=

By Lemma 3.3 and Lemma 3.12 we have

u

8(gax)dP(xay) < Ug < 11—y

and we are done. O

3.1 Proof of Theorem 3.1

To prove the inequalities (1 —3.805—v)u(g,y) < u(f,x) < (14+3.504u+v)u(g,y) we use
Lemma 3.13 which gives

B(u,v)u(g,y) < u(f,x) <A(u,v)u(g,y)

with

1 u (1—v)
A =(1 B =—"
(M,V) ( +v><(1luv)2+l_v>? (M,V) 1+3805%
6V +9uv? — 1207 + 4uPv — 12uv + 6v — 2u> + 3u
(1=v) (1 —u—v)?
and the last parenthesis is less than 0.504 when u,v < 1/20.

The function B(u,v) — (1 —3.805u — v) is increasing in u and v, and vanishes at the
origin. 0

Au,v)=143u+v+u

3.2 Proof of Corollary 3.1

Since u, v < €/5 and € < 1/4 we get u,v < 1/20. Thus we can apply Theorem 3.1 which
gives

(1—e)u(gy) <(1-3.805u—v)u(g,y) < p(f,x) < (14+3.504u+v)u(g,y) < (1+€)u(g,y).
0

4. Alpha theory in projective spaces

THEOREM 4.1 Let0 < o < ap = (13—3v/17) /4=0.15767 ... Let f € #[, and x € C"*!

both nonzero. If
D3/2
T.u(f7x)ﬁ0(fax) < «,

then there is a zero { € C"! of f satisfying: dr(x,{) < o(o)Bo(f,x) with

1 1—-y/(1+a)?—38a
G(a)—z—f— Zo0 .

Furthermore, if y = N¢(x), then dg(y, ) < (o(a) — 1)B(f,x). Moreover, when

D3/2
Tlvl(f’x)ﬁo(f,x) < a <0.049,

then x is an approximate zero of f corresponding to §, and so does y.
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Proof. The proof below follows the lines of Shub & Smale (1994). We suppose that
f and x are normalized (|| f]| = ||x|| = 1). We consider the non-homogeneous polynomial
system, defined for a variable X € x' by

FX)=f(x+X).
Let us denote by Nr the usual Newton operator:
Nr(X) =X —DF(X)"'F(X).

Then DF(X) = Df(x+X)|,.. In particular, DF (0) = Df(x)|,. and we have,

y=N¢(x) = A(x+Nr(0)),4 € C\{0}
Bo(f.x) = P(F,0)
w(f,x) = Y(F0)
oa(f.x) > a(F,0).

Since, by Lemma 3.1, ot (f,x) < Bo(f,x)(f,x)D>/%/2, by Theorem 1, p. 462, in Shub &
Smale (1993), 0 is an approximate zero of F' and hence (Definition 1 ibid.) the sequence
(Xk)k=0 defined recursively by X;1; = Nr(X;), Xo = 0, converges quadratically to a zero Z
of F. Namely,

ok
1 Xe1 — Xell <272 11X — X

Moreover, by the same theorem,

14+ a(F,0) — /(1+«a(F,0))> — 8a(F,0)

Z—-Xo|| <

Thus, for § = (x+Z)/ ||x+Z||, we can bound

dr(§,x) < [|Z—Xo| < o (a0 (f,x))B(F,0) < o (&) Bo(fx)-

Again by Theorem 1, p.462, of Shub & Smale (1993),

—3a(F,0) — /(1+a(F,0))2 - 8a(F,0)

1
Z—-X|| <

which implies that

dr(§,y) < (o(a) = 1)Bo(f,x).

Let us prove that x is an approximate zero. This will follow directly from Blum ez.
al. (1998), Chap. 14, Theorem 1. In order to apply this Theorem, we have to check its

hypothesis
3-V7

dT(Crx)’yO(va) < ) .

Using Lemma 3.1 this is obtained from

3/2 .
ar(en2 nire <220

4.1

We notice that u = 237 dg (x, { )1t (f,x) < ur = 2odr (x, O )u(f,x) < ao(er) < 0.0496(0.049) =
0.0518--- < 1/19. According to Lemma 3.10,

u(f,8) <1.2u(f,x).
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Hence, we infer (4.1) from:

3/2 _
dT(C,x)DTu(f,C) <12up < 01771 e =2 z\ﬁ.

A similar argument holds to prove that y is an approximate root:

3/2 3/2 _
dr(3) 25 (£,0) <1247 (€)7o (f0) < 120(0(0) ) <

|

15

In the following proposition we relate the invariant fy(f,x) for an approximate zero x
to the distance from its associated zero (.

PROPOSITION 4.2 Let f € 7, be fixed and x € C"*! be given. If

D3/2
5 Bolf0u(fix) < & < 0.049,

then, Bo(f,x) < 1.128dr(x,§), where { is the zero of f associated to x, given by Theo-
rem4.1.

Proof. We suppose that both f, x, and { are normalized. From Theorem 4.1, dr (x, ) <
Bo(f,x)o(a). Hence,

D3/2
u<Lur = Tu(f,x)dr(x, {)<oo(o) <0.0518.
From Theorem 3.1, we conclude for later use that

D3/2

ur; = Tu(f,{)dT(x,C) < u(1+43.805u)

)

Now we can bound:

ﬁo(fax)

IDFEL F)
IDFE) D) DS L )]

< () IR0

N

using Lemmas 3.5 and 3.6. We further bound, as usual,
1

l—uT§.

IDADIZ A < e+ E o [ DA - 0| < (e 0)
k=27

Putting all together,

1—u+u? 1
(1—u)? 1—u(1+3.805u)

Bo(f:x) < dr(x,8) < 1.128dr(x, §);

the last step is obtained numerically, using # < oeo (o) < 0.0518. 0

PROPOSITION 4.3 Assume that
D3/2
—Po(f,x)u(f,x) <a<1/20
Let y = Ny(x). Then,

a

o) < 00 (‘ T T=3805

)ﬁo(f,x) < 1.23aBy(f,x).
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Proof. We assume ||x|| = 1. Let F: X € x' ~ f(x+ X) be the affine polynomial
system associated with f. Then, B(F,0) = Bo(f,x). Moreover, we can scale y = x+7Y, for
Y = Nr(0). By Proposition 3, p.478 in Shub & Smale (1993),

a(l —a)
y(a)

B(FY) < Bo(fx). 4.2)

Moreover,

Bo(f,3) < IDFO)IDF D) NIV BFY). (4.3)

Clearly, |ly|| > 1. It remains to bound the norm of the first term in the rhs of (4.3). By

hypothesis,
D3/2
u= T.u'(f’x)dR(f’x) Sas 1/20

so Theorem 3.1 implies that

1) < 15 o B0,

—3.805a

In particular, Df(y)|y, has full rank, and we can apply Lemma 3.7 and then Lemma 3.6 to
bound

IS DI I < 1+8(f,)dp(x,y) < 1+ D2 (£, 3)Bo(f.x) < 1+ —

1—3.805a
Combining with (4.2) and (4.3), we obtain:

Botr) < S0 (14 i ) . < 1230B(

5. The homotopy

The objective of this section is to prove Theorem 1.1. Through this section the considered
systems and zeros are normalized: f({) =0 with ||f|| = ||| = 1.

Through this section, we assume without loss of generality that the homotopy path is
scaled such that (f;, f;) = 0. This is justified as follows.

Assume that a ! path f; is given Let #(7) be a %! increasing function. Then define a
new path g = f;(7). Also, if z; was such that fi(z) =0, set wy = Z(r)- The quantities Bo,
U, @, [ and L are invariant by parameter change. For instance,

L(fi,z5t(a),t(b)) = L(gr,wesa,b)
and ifr =1(7), ¢ = 1(7'),

$r(x) = Wi:rllllxll_1 IDA ) (fil) = Afur ()| =

= ‘Iln‘i:nlIPCH*lHDgr(X)L;1 (gz(x) = Age (0)[| = r.er(x)-

Any statement depending on those quantities can be proved without loss of generality
by assuming a parametrization f; by constant arc length with || f;|| = ||z|| = 1. This will be
the case Lemma 5.1 below. However, no change of parameter is actually necessary in the
algorithm.

Lett € [a,b], and x; € C"*! be given with ||x;|| = 1. We suppose that

rankDf[(x,)LCtL =n, (5.1)
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and that
D3/2
——Polftx)u(fi,x) < . (5.2)

According to Theorem 4.1, for o small enough, x; is an approximate zero of f;. We call
the associated zero and extend it continuously for s € [£,#] so that f(&;) = 0.

The main difficulty to prove Theorem 1.1 is to transfer the properties (5.1) and (5.2)
supposed to be true at t = ¢; onto a similar property at ¢’ = t;, 1. Moreover, we must show
that if x, is an approximate zero associated to {;, then the same is true for ¢, for a continuous
path ;. For this purpose we study this transfer in a general context.

Through this section, € < 1/6. Let ' > t be given and assume that

i
=10 < S5 Gy i

and e
e & 5.4
% 90s0) < Sprm ) oD

For any s €]t,7'] let us define x; = Ny, (x;). Notice that x; is not necessarily normalized.

LEMMA 5.1 Let & < 1/6 and set a = €2/2. Under the hypotheses above, for any s €]¢,1'],
one has

1. .u(fﬁxt) < ﬁnu(fhxl)‘

1 2 £/54+2a
2. T+e/5 (¢l,s(xl) - W?fr#ﬁ)) < Po(fssxe) < =e/5D ufim)’

3. %/2 Bo(fs,x: )1 (fs,x:) < 0.049. In particular, x; and x; are approximate zeros of f;
associated with {j,

4 u(feoxs) < T (fiox).

5. (1=e)u(fs, &) < pulfe,x) < (1+€)u(fs, ). In particular, {; is non-degenerate
zero of f, and hence s — s in continuous for s € [£,'].

6. BO(fSuxs) < 1'23a(f57xt)l30(fs7xt)'
7. Hypothesis (5.1) and a strong version of (5.2) hold at s: rank D (x,)|, 1 =n,and

D3/2
Tﬁo(fhxb‘)”(fhxs) <0.128c

Proof. We assumed without loss of generality that the homotopy path is scaled such

that (f;, f;) = 0.
1. From equation (5.3),

€

I — fill < /tSchH do=1(s)—1I(t) <I(t)—1(t) < ma

so that v < v/Du(f;,x)|| f; — fs]| < €/5 < 1/20, and Corollary 3.1 gives (1 — &) u(fs,x) <
.u(flaxl)'

2. For all A with |A]| =1,

Bo(fs,x) = ||Dﬁ(xt)|;f/1ﬁ(xt)\\ <

1255 (x| DA ) o | (1A i) |2 ) = i) |+ 1D )| A ) -

1
R
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By Lemma 3.11, (5.2) and (5.4) we obtain:

1
1—v

ﬁO(fnxt) < (¢t,s(xt)+ﬁ0(ﬁ7xt)) <

1 ( € N 20 > B e/5+2a
1_8/5 5D3/2‘u(ﬁ,)€[) D3/2‘u(ﬁ,X[) B (1—8/5)D3/2‘u(ft,x,)'
For the lower bound,

Bo(fexe) = 1D (xr) | L fs (el =
—1

H (DA DA ) || (IDAGL (i)~ Al |~ DG A

By Lemma 3.11, (5.2) and (5.4) we obtain:

Bolfo) > 1 (B0lr) — Bolli ) >

1+

1 20
> TTe/5 <¢t,s(xt) - D3/2,u(f,,x[)> .

3. Combining the the two preceding items,

D3/2 e/10+ o
Tﬁo(fhxt)u(fsvxf) < m

Thus, by Theorem 4.1, x; and x; are approximate zeros of f; associated with ;.

< 0.037931--- < 0.049. (5.5)

4. Using item 2,

e/5+2a
(1—¢/5)D32u(fi,x)

dr(x1,%s) < Bo(fs: X)) <

Thus,

u = D dg (xy,x )t (fioxe) /2 < ,(51/1_0:/; <e/s.

Then, we can use Corollary 3.1 again to bound
1
H(frxs) S g H(fo %)

5. From Theorem 4.1,

dr(x, &) <dr(xi, &) < o(a(fs,x))Bo(fs ) < 1.0429 - Bo(fs, ).

Thus,
D3/2

u= T’J(ﬁ7xt)dR(xt,§g) < 0.1978026---€ < 8/5

We bounded in item 1 the quantity v < D'/2u(f;,x)||f; — fs|| < €/5. Hence, by Corol-
lary 3.1 again:
(L=e)u(fs, &) < u(fi, &) < (A +€)u(fs, &)

6. From item 3 and Proposition 4.3,

.BO(f:\‘vxs) < 1'23%(fY7xl>ﬁ0(f97xl)'
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7. Because U (fs,xs) is finite, D fs(x;) has full rank. From items 1, 6 and (5.5),

D3/? ( e/10+
(

2
Tﬁo(fs,xs)u(fs,xs) <1.23 )> <0.128a.

1—¢g)(1—¢/5
a

Recall that our algorithm allows for an approximate computation of the Newton itera-
tion. The robustness Lemma below shows that if a point x satisfies (5.2) and conclusion 7
of Lemma 5.1, then an approximation y of x satisfies (5.2) and (5.3).

LEMMA 5.2 Assume that || f|| =1 and ||x|| = ||y|| = 1. Let & < 1/72 and ¢ < 0.8. Suppose
that Df(x) 1 has rank n, and

D3/2
Tﬁ()(fvx)u(f7x) < 0.128x (56)
D3/? co
u= TdR(an)U(fax) < m (5.7)
Then, Df(y) Iyt has rank n, and
D3/2
Tﬁo(fd)li(f,y) <a (5.8)

and furthermore, x and y are approximate zeros associated to the same exact zero §.

Proof. By using D32 u(f,x) > 4 (see Lemma 3.2 and the hypothesis D > 2) we obtain
that u < 0.0055--- < 1/19. Therefore, Lemma 3.10 implies that

1 (fy) < (143.805)u(fx)

and in particular, Df (y)ly 1 has rank n.

To estimate Bo(f,y), we decompose

Bo(7:3) = [0 L1 | < [pron o | |[preot s

The first term is bounded by Lemma 3.8,

HDf(y)‘;in(X)‘xL < 1+3.805u.

Taylor’s exansion gives Df (x)l;i fy) =
1
Df (), 1f () +Df(x) 1 DF )y =x) + Y 550 ) 1D f () (v =)
=2

Taking norms,

[y —x[*10(f,)
1= [ly=xll%(f,x)

[P FO)]| < Bolrx) + 370 Iy =l +

By Lemma 3.1c,

y—x||%(f,x) < u. Hence,

Bo(f,x) < (1+3.805u) (Bo(f,x)+5(f’x)||y_x” n W) .
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Using Lemma 3.6, 0 (f,x) < \@/J,(f,x). Thus,

iﬂﬁo(f,)( y) < (1+3.805u)2(0.128a+@u(f,x)u+lu_zu)

< (1+3.805u)> (0.128+c+ “ )a

VDu(f,x)(1 —u)

< 097a<a

Since a < 1/72 < 0.049, Theorem 4.1 implies that both x and y are approximate zeros of
f. As this is also the case for all the points in the shortest arc of circle between x and y, the

associated zero must be the same. 0

LEMMA 5.3 Assume the Hypotheses of Lemma 5.1. Let 0 < & < 1. If furthermore

Ee

1(t') =1(r) > m7

then £
, €
L(t")—L(t) > S
Proof.
L(f')—L(t) = ) (fhéﬂ p(fs, &) ds
> [ il ag) ds
> 1]::): / | fs|| ds using Lemma 5.1(5).
_ (ﬁaxf) /
= W(l(f )—1(1))
> 578
~ 5(14+e)VD’
> 58
= 5Dy
a

LEMMA 5.4 Assume the Hypotheses of Lemma 5.1 and choose € and & so that 20e <

1. If furthermore

Ee
O (x) > SDVU(fo)
then :
, €
L(t'")—L(t) > B2
Proof.
w1 = [ o8 i gras
> / fsvgﬁ‘
> “1]3_’? ds using Lemma 5.1(5).
(ﬁ’x’)dﬂg,c,f)

1+¢

<
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By the triangle inequality,

dr(&i,Gr) = dr(Gy,xi) — dr(x:, &)
We know from Theorem 4.1 that dg(x, &) < o(a)Bo(f,x). Lemma 5.1(3) says that
oo (fyr,xp) < 0.049 and hence, from Proposition 4.2, we obtain:

dr (x¢,Gr) = Bo(fr,x:)/1.128.

5-2
Thus, dr (x;, 1) > Mf;/ﬂ% ﬁ by Lemma 5.1(2). We use now the bound 20e < &

and the fact that o = €2/2 to deduce that
B 3E€/20
1.128(1+€/5)D3/2u(f;,x;)
Since € < £/20 < 1/20, we can bound @ < 0.001645- - -. Of course, dg(x;, ) > arctan .

dT(xtact’) Z 0

We may bound arctan(®) > warctan’(0.001645---) = mw > 0.999w. Now,
36¢e/20 2
L) —L@) > HU (0.999 se/ __20(@)a )
Ite 1.128(1+£/5)D32u(fo,x)  D32u(fioxs)
e e
a
Proof of Theorem 1.1

We take & = 20¢ and o = £2/2. Assume that L(b) is finite. By hypothesis and Theo-
rem 4.1, xo is an approximate zero of fu. (f;, &t )se[a5) denotes the unique lifting of the path
f; corresponding to § zero of f, associated to xg.

Induction hypothesis:

D3/2

T“(ﬂi’xi)ﬁo(ﬁmxi) <o
and furthermore, x; is an approximate zero associated to §,.

The induction hypothesis holds by hypothesis at i = 0, so we assume it is verified up
to step i. We are in the hypotheses of Lemma 5.1 for t =, ' =t;;; = min(s,s’,b) and
x =X, = x;. Thus,

D3/2
Tu (f,’,Jrl ’Nﬁi (xi)> ﬁg (ffi+1 ’foi (x,-)) < 0.128¢

and Ny, (x;) is an approximate zero for f;,, associated to {, .
Now we are in the hypotheses of Lemma 5.2. Thus, y = x; 1 picked at (1.4) satisfies
the induction hypothesis.

In order to bound the number of iterations, we remark that at each step i, one of the
following alternatives is true:

1. This is the last step: ti+1 = b.
2. Condition (1.1) is true. In that case, we are under the hypotheses of Lemma 5.3.
3. Condition (1.2) is true. Then we are under the hypotheses of Lemma 5.4.

Therefore, we may infer that at each non-terminal step,

Ee

L(ti+1) - L(tl) > W

Therefore, there can be no more than 260 _zL(b)D3/ 2 non-terminal steps. There is only
one terminal step, so the total number of steps is at most

1+260& 2L(b)D** = 1+0.65¢ 2L(b) D/
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6. Some remarks on how to implement the algorithm

In Theorem 1.1, we gave a complexity bound for approximating a lifting (f;, ;) for an
arbitrary homotopy path f; of class C', and for an initial solution ¢y for f,(¢,) = 0.

In that theorem, it is assumed that we know how to perform each step of the Homotopy
algorithm. In particular, we must be able to solve the inequalities (1.1), (1.2) and (1.3).

In this section, we explain how to do this for the case of a linear homotopy. Then, a
nonlinear homotopy may be approximated by a piecewise linear one.

The homotopy will be parametrized by arc length. Therefore, we assume first that
[a,b] = [0, Omax] and f; = cos(t) fo + sin(t)g, with of course g L fp and || fo|| = ||g]| = 1 and
OMax < /2. With that convention,

1(t) =1.

Assuming € = 1/20, we solve explicitly (1.1) by

s

-l = .
’ SDI/Z.u(ffi:xi)

Solving (1.2) and (1.3) is more tricky. Define:

X = DAl )
Y o= DA o)
Z = Dfilx)| i)

Also, let ¢ = cos(o —t) and s = sin(o —¢), so that
Y=cX+sZ.
We expand

do()® = [l 72 (IXIP + 1Y 1> = 2(x, )])
Ilell =2 ((1+ ) X1 + 52121 + 2esRe (X, Z)) = 2[el|X ||* +5(X, Z) )

= |l <(1 +A)IX]? +5%[1Z]* + 2esRe((X, Z))

24/ (X2 + sRe((X, 2)))* + (slm(<x,z>))2) .

The equation ¢,7G(x)2 = C becomes, after clearing the square root, a polynomial in ¢
and s. Replacing ¢ by /1 —s2 and clearing the square root again, we obtain a polynomial
in s of which only the smallest positive root is relevant. This way, solving (1.2) and (1.3)
can be reduced to univariate polynomial solving for a fixed degree.

The other steps of the Homotopy algorithm pose no difficulty for the implementation.

7. Conclusions

We gave a rigorous homotopy algorithm for polynomial systems. The correctness of the
result is guaranteed, in the sense that there is no ‘path jumping’.

Some algorithms such as the one by Li (2003) proceed by setting a step size in an
heuristic way, and then checking the results. Our algorithm allows to eliminate the need
for checking.

This way, it is possible to consider a massive parallel implementation of the algorithm,
each processor tracing one or a few roots. The running time will be given by the maximum
(over all paths) of the condition length.
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It is also possible to use the algorithm for a rigorous computation of the root permu-
tation associated to a closed path, and for investigating the corresponding Galois group as
in Leykin & Sottile (2009).
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