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CONVEXITY PROPERTIES OF THE CONDITION NUMBER∗

CARLOS BELTRÁN† , JEAN-PIERRE DEDIEU‡ , GREGORIO MALAJOVICH§ , AND

MIKE SHUB¶

Abstract. We define in the space of n×m matrices of rank n, n ≤ m, the condition Riemannian
structure as follows: For a given matrix A the tangent space at A is equipped with the Hermitian
inner product obtained by multiplying the usual Frobenius inner product by the inverse of the
square of the smallest singular value of A denoted σn(A). When this smallest singular value has
multiplicity 1, the function A → log(σn(A)−2) is a convex function with respect to the condition
Riemannian structure that is t → log(σn(A(t))−2) is convex, in the usual sense for any geodesic
A(t). In a more abstract setting, a function α defined on a Riemannian manifold (M, 〈, 〉) is said
to be self-convex when logα(γ(t)) is convex for any geodesic in (M, α 〈, 〉). Necessary and sufficient
conditions for self-convexity are given when α is C2. When α(x) = d(x,N )−2, where d(x,N ) is the
distance from x to a C2 submanifold N ⊂ Rj , we prove that α is self-convex when restricted to the
largest open set of points x where there is a unique closest point in N to x. We also show, using
this more general notion, that the square of the condition number ‖A‖F /σn(A) is self-convex in
projective space and the solution variety.
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1. Introduction. Let two integers 1 ≤ n ≤ m be given, and let us consider
the space of matrices Kn×m, K = R, or C, equipped with the Frobenius Hermitian
product

〈M,N〉F = trace (N∗M) =
∑
i,j

mijnij .

Given an absolutely continuous path A(t), a ≤ t ≤ b, its length is given by the integral

L =

∫ b

a

∥∥∥∥dA(t)dt

∥∥∥∥
F

dt,

and the shortest path connecting A(a) to A(b) is the segment connecting them. Con-
sider now the problem of connecting these two matrices with the shortest possible
path in staying, as much as possible, away from the set of “singular matrices,” that
is, the matrices with nonmaximal rank.
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1492 C. BELTRÁN, J.-P. DEDIEU, G. MALAJOVICH, AND M. SHUB

The singular values of a matrix A ∈ Kn×m are denoted in nonincreasing order:

σ1(A) ≥ · · · ≥ σn−1(A) ≥ σn(A) ≥ 0.

We denote byGLn,m the space of matricesA ∈ Kn×m with maximal rank: rankA = n;
that is, σn(A) > 0 so that the set of singular matrices is

N = K
n×m \GLn,m =

{
A ∈ K

n×m : σn(A) = 0
}
.

Since the smallest singular value of a matrix is equal to the distance from the set of
singular matrices:

σn(A) = dF (A,N ) = min
S∈N

‖A− S‖F ,

given an absolutely continuous path A(t), a ≤ t ≤ b, we define its “condition length”
by the integral

Lκ =

∫ b

a

∥∥∥∥dA(t)dt

∥∥∥∥
F

σn(A(t))
−1dt.

A good compromise between length and distance to N is obtained in minimizing Lκ.
We call “minimizing condition geodesic” an absolutely continuous path, parametrized
by arc length, which minimizes Lκ in the set of absolutely continuous paths with given
endpoints and condition distance dκ(A,B) between two matrices the length Lκ of a
minimizing condition geodesic with endpoints A and B, if any.

In this paper our objective is to investigate the properties of the smallest singu-
lar value σn(A(t)) along a condition geodesic. Our main result says that the map
log
(
σn(A(t))

−1
)
is convex. Thus σn(A(t)) is concave, and its minimum value along

the path is reached at one of the endpoints.
Note that a similar property holds in the case of hyperbolic geometry where

instead of Kn×m we take Rn−1 × [0,∞[, instead of N where we have Rn−1 ×{0}, and
where the length of a path a(t) = (a1(t), . . . , an(t)) is defined by the integral∫ ∥∥∥∥da(t)dt

∥∥∥∥ an(t)−1dt.

Geodesics in that case are arcs of circles centered at Rn−1×{0} or segments of vertical
lines, and log

(
an(t)

−1
)
is convex along such paths.

The approach used here to prove our theorems is heavily based on Riemannian
geometry. We define on GLn,m the following Riemannian structure:

〈M,N〉κ,A = σn(A)
−2Re 〈M,N〉F ,

where M,N ∈ Kn×m and A ∈ GLn,m. The minimizing condition geodesics defined
previously are clearly geodesic in GLn,m for this Riemannian structure so that we
may use the toolbox of Riemannian geometry. In fact things are not so simple: the
smallest singular value σn(A) is a locally Lipschitz map in GLn,m, and it is smooth
on the open subset

GL
>
n,m = {A ∈ GLn,m : σn−1(A) > σn(A)} ,

that is, when the smallest singular value of A is simple. On the open subset GL>n,m the
metric 〈·, ·〉κ defines a smooth Riemannian structure, and we call “condition geodesics”



CONVEXITY PROPERTIES OF THE CONDITION NUMBER 1493

the geodesics related to this structure. Such a path is not necessarily a minimizing
geodesic. Our first main theorem establishes a remarkable property of the condition
Riemannian structure.

Theorem 1. σ−2
n is logarithmically convex on GL>n,m, i.e., for any geodesic curve

γ(t) in GL
>
n,m for the condition metric the map log

(
σ−2
n (γ(t))

)
is convex.

Problem 1. The condition Riemannian structure 〈., .〉κ is defined in GLn,m

where it is only locally Lipschitz. Let us define condition geodesics in GLn,m as the
extremals of the condition length Lκ (see, for example, [3, Thm. 4.4.3, Chap. 4] for the
definition of such extremals in the Lipschitz case). Is Theorem 1 still true for GLn,m?
All the examples we have studied confirm that convexity holds, even if σ−1

n (γ(t)) fails
to be C1. See Boito-Dedieu [2]. We intend to address this issue in a future paper.

In a second step we extend these results to other spaces of matrices: the sphere
Sr(GL>n,m) of radius r in GL>n,m in Corollary 6, the projective space P

(
GL>n,m

)
in

Corollary 7. We also consider the case of the solution variety of the homogeneous
equation Mζ = 0, that is, the set of pairs{

(M, ζ) ∈ K
n×(n+1) ×K

n+1 : Mζ = 0
}
.

Now our function α is the square of the condition number studied by Demmel in [4].
This is done in the affine context in Theorem 3 and in the projective context in
Corollary 8.

Since σn(A) is equal to the distance from A to the set of singular matrices a
natural question is to ask whether our main result remains valid for the inverse of the
distance from certain sets or for more general functions.

Definition 1. Let (M, 〈·, ·〉) be Riemannian, and let α : M → R be a function
of class C2 with positive values. Let Mκ be the manifold M with the new metric

〈·, ·〉κ,x = α(x)〈·, ·〉x
called condition Riemann structure. We say that α is self-convex when logα(γ(t)) is
convex for any geodesic γ in Mκ.

For example, with M = {x = (x1, . . . , xn) ∈ Rn : xn > 0} equipped with the
usual metric, α(x) = x−2

n is self-convex. The space Mκ is the Poincaré model of
hyperbolic space.

In the following theorem we prove self-convexity for the distance function to a C2

submanifold without boundary N ⊂ Rj. Let us denote by

ρ(x) = d(x,N ) = min
y∈N

‖x− y‖ and α(x) =
1

ρ(x)2
.

Let U be the largest open set in Rj such that, for any x ∈ U , there is a unique closest
point in N to x. When U is equipped with the new metric α(x) 〈., .〉 we have the
following theorem.

Theorem 2. The function α : U \ N → R is self-convex.
Theorem 2 is then extended to the projective case. Let N be a C2 submanifold

without boundary P(Rj). Let us denote by dR the Riemannian distance in projective
space (points in the projective space are lines through the origin and the distance dR
between two lines is the angle they make). Let us denote dP = sindR (this is also a
distance), define α(x) = dP(x,N )−2, and let U be the largest open subset of P(Rj)
such that for x ∈ U there is a unique closest point from N to x for the distance dP.
Then we have the following corollary.
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Corollary 1. The map α : U \ N → R is self-convex.
The extension of Theorems 1 and 2 to other types of sets or functions is not

obvious. In Example 1 we prove that α(A) = σ1(A)
−2 + · · · + σn(A)

−2 is not self-
convex in GLn,m.

In Example 2 we take N = R
2, and U the unit disk so that U contains a point

(the center) which has many closest points from N . In that case the corresponding
function α : U \ N → R is self-convex, but it fails to be smooth at the center of the
disk.

In Example 3 we provide an example of a submanifold N ⊂ R2 such that the
function α(x) = d(x,N )−2 defined on R2 \ N is not self-convex.

Our interest in considering the condition metric in the space of matrices comes
from recent papers by Shub [8] and Beltrán and Shub [1] where these authors use
condition length along a path in certain solution varieties to estimate step size for
continuation methods to follow these paths. They give bounds on the number of
steps required in terms of the condition length of the path. If geodesics in the condi-
tion metric are followed, the known bounds on polynomial system solving are vastly
improved. To understand the properties of these geodesics, we have begun this paper
with linear systems where we can investigate their properties more deeply. We find
self-convexity in the context of this paper remarkable. We do not know if similar is-
sues may naturally arise in linear algebra even for solving systems of linear equations.
Similar issues do clearly arise when studying continuation methods for the eigenvalue
problem.

2. Self-convexity. Let us first recall some basic definitions about convexity on
Riemannian manifolds. A good reference on this subject is Udrişte [9].

Definition 2. We say that a function f : M → R is convex whenever

f(γxy(t)) ≤ (1 − t)f(x) + tf(y)

for every x, y ∈ M, for every geodesic arc γxy joining x and y and 0 ≤ t ≤ 1.
The convexity of f in M is equivalent to the convexity in the usual sense of

f ◦ γxy on [0, 1] for every x, y ∈ U and the geodesic γxy joining x and y or also to
the convexity of g ◦ γ for every geodesic γ [9, Thm. 2.2, Chap. 3]. Thus, we see the
following lemma.

Lemma 1. Self-convexity of a function α : M → R is equivalent to the convexity
of log ◦α in the condition Riemannian manifold Mκ.

When f is a function of class C2 in the Riemannian manifold M, we define its
second derivative D2f(x) as the second covariant derivative. It is a symmetric bilinear
form on TxM. Note [9, Chap. 1] that if x ∈ M and ẋ ∈ TxM, and if γ(t) is a geodesic
in M, γ(0) = x, d

dtγ(0) = ẋ, then

D2f(x)(ẋ, ẋ) =
d2

dt2
(f ◦ γ)(0).

This second derivative depends on the Riemannian connection on M. Since M is
equipped with two different metrics, 〈., .〉 and 〈., .〉κ, we have to distinguish between
the corresponding second derivatives; they are denoted by D2f(x) and D2

κf(x), re-
spectively. No such distinction is necessary for the first derivative Df(x).

Convexity on Riemannian manifold is characterized by (see [9, Thm. 6.2, Chap. 3])
the following proposition.

Proposition 1. A function f : M → R of class C2 is convex if and only if
D2f(x) is positive semidefinite for every x ∈ M.
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We use this proposition to obtain a characterization of self-convexity: α is self-
convex if and only if the second derivative D2

κ(log ◦α)(x) is positive semidefinite for
any x ∈ Mκ. We get the following proposition.

Proposition 2. For a function α : M → R of class C2 with positive values
self-convexity is equivalent to

2α(x)D2α(x)(ẋ, ẋ) + ‖Dα(x)‖2x‖ẋ‖2x − 4(Dα(x)ẋ)2 ≥ 0

for any x ∈ M and for any vector ẋ ∈ TxM, the tangent space at x.
Proof. Let x ∈ M be given. Let ϕ : Rm → M be a coordinate system such

that ϕ(0) = x and with first fundamental form gij(0) = δij (Kronecker’s delta) and
Christoffel’s symbols Γijk(0) = 0, and let

A = α ◦ ϕ
so that α(x) = A(0). Those coordinates are called “normal” or “geodesic.” Note that
this implies

∂gij
∂zk

(0) = 0

for all i, j, k. We denote by gκ,ij and Γiκ,jk, respectively, the first fundamental form
and the Christoffel symbols for ϕ in Mκ. Let us compute them. Note that

gκ,ij(z) = gij(z)A(z),

∂gκ,ij
∂zk

(0) = Dgκ,ij(0)(ek) = D(gijA)(0)(ek)

= gij(0)DA(0)(ek) +A(0)Dgij(0)(ek) = δij
∂A

∂zk
(0).

Moreover,

Γiκ,jk =
1

A(0)
Γijk =

1

2A(0)

(
∂gκ,ij
∂zk

(0) +
∂gκ,ik
∂zj

(0)− ∂gκ,jk
∂zi

(0)

)

=
1

2A(0)

(
δij

∂A

∂zk
(0) + δik

∂A

∂zj
(0)− δjk

∂A

∂zi
(0)

)
.

That is, ⎧⎪⎨
⎪⎩
Γiκ,ik = Γiκ,ki =

1
2A(0)

∂A
∂zk

(0) for all i, k,

Γiκ,jj =
−1

2A(0)
∂A
∂zi

(0), j �= i,

Γiκ,jk = 0 otherwise.

The second derivative of the composition of two maps

M f→ R
ψ→ R

is given by the identity (see [9, Hessian, Chap. 1.3])

D2(ψ ◦ f)(x) = Dψ(f(x))D2f(x) + ψ′′(f(x))Df(x) ⊗Df(x),

where Df(x)⊗Df(x) is the bilinear form on TxM by

(Df(x) ⊗Df(x))(u, v) = Df(x)(u)Df(x)(v).
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This gives, in our context (that is, when f = α and ψ = log),

D2
κ(log ◦α)(x) =

1

α(x)
D2
κα(x) −

1

α(x)2
Dα(x) ⊗Dα(x).

According to Proposition 1 our objective is now to give a necessary and sufficient
condition for D2

κ(log ◦α)(x) to be positive semidefinite for each x ∈ M. In our system
of local coordinates the components of D2α(x) are (see [9, Chap. 1.3])

Ajk =
∂2A

∂zj∂zk
−
∑
i

Γijk
∂A

∂zi
=

∂2A

∂zj∂zk

while the components of D2
κα(x) are

Aκ,jk =
∂2A

∂zj∂zk
−
∑
i

Γiκ,jk
∂A

∂zi
.

If we replace the Christoffel symbols in this last sum by the values previously com-
puted, then we obtain, when j = k,

∑
i

Γiκ,jj
∂A

∂zi
= Γjκ,jj

∂A

∂zj
+
∑
i�=j

Γiκ,jj
∂A

∂zi

=
1

2A

(
∂A

∂zj

)2

− 1

2A

∑
i�=j

(
∂A

∂zi

)2

=
1

A

(
∂A

∂zj

)2

− 1

2A

∑
i

(
∂A

∂zi

)2

while, when j �= k,

∑
i

Γiκ,jk
∂A

∂zi
= Γjκ,jk

∂A

∂zj
+ Γkκ,jk

∂A

∂zk
=

1

2A

∂A

∂zk

∂A

∂zj
+

1

2A

∂A

∂zj

∂A

∂zk
=

1

A

∂A

∂zj

∂A

∂zk
.

Both cases are subsumed in the identity

∑
i

Γiκ,jk
∂A

∂zi
=

1

A

∂A

∂zj

∂A

∂zk
− δjk

2A

∑
i

(
∂A

∂zi

)2

.

Putting together all these identities gives the following expression for the components
of D2

κ(log ◦α)(x):

Dka
2(log ◦α)(x)jk =

1

A

(
∂2A

∂zj∂zk
− 1

A

∂A

∂zj

∂A

∂zk
+
δjk
2A

∑
i

(
∂A

∂zi

)2
)

− 1

A2

∂A

∂zj

∂A

∂zk

=
1

2A2

(
2A

∂2A

∂zj∂zk
+ δjk

∑
i

(
∂A

∂zi

)2

− 4
∂A

∂zj

∂A

∂zk

)
.

Thus, D2
κ(log ◦α)(x) ≥ 0 if and only if

2α(x)D2α(x) + ‖Dα(x)‖2x 〈., .〉x − 4Dα(x)⊗Dα(x)

is positive semidefinite, that is, when

2α(x)D2α(x)(ẋ, ẋ) + ‖Dα(x)‖2x‖ẋ‖2x − 4(Dα(x)ẋ)2 ≥ 0

for any x ∈ M and for any vector ẋ ∈ TxM. This finishes the proof.
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An easy consequence of Proposition 2 is the following. See also Example 3.
Corollary 2. When a function α : M → R of class C2 is self-convex, then

any critical point of α has a positive semidefinite second derivative D2α(x). Such a
function cannot have a strict local maximum or a nondegenerate saddle.

Proposition 3. The following condition is equivalent for a C2 function α =
1/ρ2 : M −→ R to be self-convex on M: For every x ∈ M and ẋ ∈ TxM,

‖ẋ‖2‖Dρ(x)‖2 − (Dρ(x)ẋ)2 − ρ(x)D2ρ(x)(ẋ, ẋ) ≥ 0,

or, what is the same,

2‖ẋ‖2‖Dρ(x)‖2 ≥ D2ρ2(x)(ẋ, ẋ).

Proof. Note that

Dα(x)ẋ =
−2

ρ(x)3
Dρ(x)ẋ,

D2α(x)(ẋ, ẋ) =
6

ρ(x)4
(Dρ(x)ẋ)2 − 2

ρ(x)3
D2ρ(x)(ẋ, ẋ).

Hence, the necessary and sufficient condition of Proposition 2 reads

4‖ẋ‖2‖Dρ(x)‖2
ρ(x)6

− 16

ρ(x)6
(Dρ(x)ẋ)2 +

12

ρ(x)6
(Dρ(x)ẋ)2 − 4

ρ(x)5
D2ρ(x)(ẋ, ẋ) ≥ 0,

and the proposition follows.
Corollary 3. Each of the following conditions is sufficient for a function α =

1/ρ2 : M −→ R to be self-convex at x ∈ M: For every ẋ ∈ TxM,

D2ρ(x)(ẋ, ẋ) ≤ 0,

or

‖D2ρ2(x)‖ ≤ 2‖Dρ(x)‖2.

In the following proposition we obtain a weaker condition on α to obtain convexity
in Mκ instead of self-convexity.

Proposition 4. α(x) is convex in Mκ if and only if

2α(x)D2α(x)(ẋ, ẋ) + ‖Dα(x)‖2x‖ẋ‖2x − 2(Dα(x)ẋ)2 ≥ 0

for any x ∈ M and any vector ẋ ∈ TxM.
Proof. We follow the lines of the proof of Proposition 2 with ψ equal to the

identity map instead of ψ = log.

3. Some general formulas for matrices.
Proposition 5. Let A = (Σ, 0) ∈ GL

>
n,m, where Σ = diag (σ1 ≥ · · · ≥ σn−1 >

σn) ∈ Kn×n. The map σn : GL>n,m → R is a smooth map and, for every U ∈ Kn×m,

{
Dσn(A)U = Re(unn),

D2σ2
n(A)(U,U) = 2

∑m
j=1 |unj |2 − 2

∑n−1
k=1

|uknσn+unkσk|2
σ2
k−σ2

n
.
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Proof. Since σ2
n is an eigenvalue of AA∗ with multiplicity 1, the implicit function

theorem proves the existence of smooth functions σ2
n(B) ∈ R and u(B) ∈ Kn, defined

in an open neighborhood of A and satisfying⎧⎪⎪⎨
⎪⎪⎩

BB∗u(B) = σ2
n(B)u(B),

‖u(B)‖2 = 1,
u(A) = en = (0, . . . , 0, 1)T ∈ Kn,
σ2
n(A) = σ2

n.

Differentiating these equations at B gives, for any U ∈ Kn×m,{
(UB∗ +BU∗)u(B) +BB∗u̇(B) =

(
σ2
n

)′
u(B) + σ2

n(B)u̇(B),
u(B)∗u̇(B) = 0

with u̇(B) = Du(B)U and
(
σ2
n

)′
= Dσ2

n(B)U . Premultiplying the first equation by
u(B)∗ gives

u(B)∗(UB∗ +BU∗)u(B) + u(B)∗BB∗u̇(B) =
(
σ2
n

)′
u(B)∗u(B) + σ2

n(B)u(B)∗u̇(B)

so that

Dσ2
n(B)U =

(
σ2
n

)′
= 2Re(u(B)∗UB∗u(B))

and

Dσn(B)U =
Re(u(B)∗UB∗u(B))

σn(B)
.

The derivative of the eigenvector is now easy to compute:

Du(B)U = u̇(B) = (σ2
n(B)In −BB∗)†(UB∗ +BU∗ − (σ2

n

)′
In)u(B),

where (σ2
n(B)In −BB∗)† denotes the generalized inverse (or Moore–Penrose inverse)

of σ2
n(B)In −BB∗.
The second derivative of σ2

n at B is given by

D2σ2
n(B)(U,U) = 2Re(u̇(B)∗UB∗u(B) + u(B)∗UU∗u(B) + u(B)∗UB∗u̇(B))

= 2Re(u(B)∗UU∗u(B) + u(B)∗(UB∗ +BU∗)u̇(B)) = 2Re(u(B)∗UU∗u(B)

+ u(B)∗(UB∗ +BU∗)(σ2
n(B)In −BB∗)†(UB∗ +BU∗ − (σ2

n

)′
In)u(B)).

Using u(A) = en and σn(A) = σn we get{
Dσ2

n(A)U = 2Re(UA∗)nn = 2σnRe(unn),
Dσn(A)U = Re(unn),

and the second derivative is given by

D2σ2
n(A)(U,U)

= 2Re

(
(UU∗)nn +

n−1∑
k=1

(UA∗ +AU∗)nk(σ2
n − σ2

k)
−1(UA∗ +AU∗ − (σ2

n

)′
In)kn

)

= 2Re

(
(UU∗)nn +

n−1∑
k=1

|(UA∗ +AU∗)kn|2
σ2
n − σ2

k

)

= 2
m∑
j=1

|unj |2 − 2
n−1∑
k=1

|uknσn + unkσk|2
σ2
k − σ2

n

.
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Corollary 4. Let A = (Σ, 0) ∈ GL>n,m, where Σ = diag (σ1 ≥ · · · ≥ σn−1 >
σn > 0) ∈ Kn×n. Let us define ρ(A) = σn(A)/ ‖A‖F . Then, for any U ∈ Kn×m such
that Re 〈A,U〉F = 0, we have

⎧⎨
⎩

Dρ(A)U = Re(unn)
‖A‖F

,

D2ρ2(A)(U,U) = 2
‖A‖2

F

(∑m
j=1 |unj |2 −

∑n−1
k=1

|uknσn+unkσk|2
σ2
k−σ2

n
− ‖U‖2

F

‖A‖2
F

σ2
n

)
.

Proof. Note that

Dρ(A)U =
Dσn(A)U‖A‖F − σn(A)

2Re〈A,U〉F
2‖A‖F

‖A‖2F
=
Dσn(A)U

‖A‖F ,

and the first assertion of the corollary follows from Proposition 5. For the second one,
note that h = h1/h2 (for real valued C2 functions h, h1, h2 with h2(0) �= 0) implies

D2h =
h22D

2h1 − h1h2D
2h2 − 2h2Dh1Dh2 + 2h1(Dh2)

2

h32
.

Now, ρ2(A) = σ2
n(A)/‖A‖2F , D(‖A‖2F )U = 2Re〈A,U〉F = 0, D2(‖A‖2F )(U,U) =

2‖U‖2F , and D2σ2
n(A)(U,U) is known from Proposition 5. The formula for D2ρ2(A)

follows after some elementary calculations.

4. The affine linear case. We consider here the Riemannian manifold M =
GL>n,m equipped with the usual Frobenius Hermitian product. Let α : GL>n,m → R

be defined as α(A) = 1/σ2
n(A).

Corollary 5. The function α is self-convex in GL
>
n,m.

Proof. From Proposition 3, it suffices to see that

2‖U‖2F‖Dσn(A)‖2F ≥ D2σ2
n(A)(U,U).

Since unitary transformations are isometries in GL>n,m with respect to the condition
metric we may suppose, via a singular value decomposition, that A = (Σ, 0) ∈ GL>n,m,
where Σ = diag (σ1 ≥ · · · ≥ σn−1 > σn) ∈ Kn×n. Now, the inequality to verify is
obvious from Proposition 5, as ‖Dσn(A)‖F = 1 and

D2σ2
n(A)(U,U) = 2

m∑
j=1

|unj |2−2

n−1∑
k=1

|uknσn + unkσk|2
σ2
k − σ2

n

≤ 2

m∑
j=1

|unj |2 ≤ 2‖U‖2F .

Corollary 6. Let r > 0. The function α is self-convex in the sphere Sr(GL>n,m)
of radius r in GL

>
n,m.

Proof. It is enough to prove that any geodesic in (Sr(GL>n,m), α) is also a geodesic
in (GL>n,m, α). Indeed, suppose that A and B are matrices in Sr(GL>n,m) and the
minimal geodesic in (GL>n,m, α) between A and B is X(t), a ≤ t ≤ b. Then we claim

that Lκ
( rX(t)
‖X(t)‖F

) ≤ Lκ(X(t)). Indeed, for any t,

d

dt

(
rX(t)

‖X(t)‖F

)
=

r dX(t)
dt

‖X(t)‖F
− r

X(t)Re(〈X(t), dX(t)
dt 〉F )

‖X(t)‖3F
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so that

∥∥∥∥ ddt
(
rX(t)

‖X(t)‖
)∥∥∥∥

F

=

⎛
⎜⎝r

2
∥∥∥ dX(t)

dt

∥∥∥2
F

‖X(t)‖2F
+
r2Re(〈X(t), dX(t)

dt 〉F )2
‖X(t)‖4F

− 2r2Re(〈X(t), dX(t)
dt 〉F )2

‖X(t)‖4F

⎞
⎟⎠

1/2

=

⎛
⎜⎝r

2
∥∥∥ dX(t)

dt

∥∥∥2
F

‖X(t)‖2F
− r2Re(〈X(t), dX(t)

dt 〉F )2
‖X(t)‖4F

⎞
⎟⎠

1/2

≤
r
∥∥∥dX(t)

dt

∥∥∥
F

‖X(t)‖F
.

Hence,

∥∥∥∥ ddt
(

rX(t)

‖X(t)‖F

)∥∥∥∥
κ

= σ−1
n

(
rX(t)

‖X(t)‖F

)∥∥∥∥ ddt
(
rX(t)

‖X(t)‖
)∥∥∥∥

F

=
‖X(t)‖Fσ−1

n (X(t))

r

∥∥∥∥ ddt
(
rX(t)

‖X(t)‖
)∥∥∥∥

F

≤ σ−1
n (X(t))

∥∥∥∥dX(t)

dt

∥∥∥∥
F

=

∥∥∥∥dX(t)

dt

∥∥∥∥
κ

.

Therefore X(t) can only be a minimizing geodesic if it belongs to Sr(GL>n,m). Since
all geodesics are locally minimizing geodesics, Corollary 6 follows.

The following gives an example of a smooth and nonself-convex function inGLn,m.
Example 1. For n ≥ 3, the function α(A) = σ1(A)

−2 + · · · + σn(A)
−2 is not

self-convex in GLn,m.
Proof. For simplicity we consider the case of real square matrices. We have

α(A) = ‖A−1‖2F ,

Dα(A)Ȧ = −2〈A−1, A−1ȦA−1〉F = −2〈A−TA−1A−T , Ȧ〉F ,

‖Dα(A)‖2F = 4‖A−TA−1A−T ‖2F ,

D2α(A)(Ȧ, Ȧ) = 2‖A−1ȦA−1‖2F + 4〈A−1, A−1ȦA−1ȦA−1〉F .

According to Proposition 4, the self-convexity of α(A) in GLn is equivalent to

2‖A−1‖2F
(
2‖A−1ȦA−1‖2F + 4〈A−1, A−1ȦA−1ȦA−1〉F

)

+4‖Ȧ‖2F ‖A−TA−1A−T ‖2F − 8〈A−1, A−1ȦA−1〉2F ≥ 0.

This inequality is not satisfied when

A =

⎛
⎝1 0 0
0 1 0
0 0 2

⎞
⎠ and Ȧ =

⎛
⎝ 0 1 0
−1 0 0
0 0 0

⎞
⎠ .
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5. The homogeneous linear case.

5.1. The complex projective space. The matter of this subsection is mainly
taken from Gallot–Hulin–Lafontaine [6, sec. 2.A.5].

Let V be a Hermitian space of complex dimension dimC V = d+1. We denote by
P(V ) the corresponding projective space, that is, the quotient of V \ {0} by the group
C∗ of dilations of V ; P(V ) is equipped with its usual smooth manifold structure with
complex dimension dimP(V ) = d. We denote by p the canonical surjection.

Let V be considered as a real vector space of dimension dimR V = 2d+2 equipped
with the scalar product Re 〈., .〉V . The sphere S(V ) is a submanifold in V of real
dimension 2d + 1. This sphere being equipped with the induced metric becomes a
Riemannian manifold and, as usual, we identify the tangent space at z ∈ S(V ) with

TzS(V ) = {u ∈ V : Re 〈u, z〉V = 0} .
The projective space P(V ) can also be seen as the quotient S(V )/S1 of the unit

sphere in V by the unit circle in C for the action given by (λ, z) ∈ S1 × S(V ) →
λz ∈ S(V ). The canonical map is denoted by

pV : S(V ) → P(V ).

pV is the restriction of p to S(V ).
The horizontal space at z ∈ S(V ) related to pV is defined as the (real) orthogonal

complement of kerDpV (z) in TzS(V ). This horizontal space is denoted by Hz. Since
V is decomposed in the (real) orthogonal sum

V = Rz ⊕ Riz ⊕ z⊥,

and since kerDpV (z) = Riz (the tangent space at z to the circle S1z) we get

Hz = z⊥ = {u ∈ V : 〈u, z〉 = 0} .
There exists on P(V ) a unique Riemannian metric such that pV is a Riemannian

submersion; that is, pV is a smooth submersion and, for any z ∈ S(V ), DpV (z) is an
isometry between Hz and Tp(z)P(V ). Thus, for this Riemannian structure, one has

〈DpV (z)u,DpV (z)v〉Tp(z)P(V ) = Re 〈u, v〉V
for any z ∈ S(V ) and u, v ∈ Hz .

Proposition 6. Let z ∈ S(V ) be given.
1. A chart at p(z) ∈ P(V ) is defined by

ϕz : Hz → P(V ), ϕz(u) = p(z + u).

2. Its derivative at 0 is the restriction of Dp(z) at Hz:

Dϕz(0) = Dp(z) : Hz → Tp(z)P(V ),

which is an isometry.
3. For any smooth mapping ψ : P(V ) → R, and for any v ∈ Hz we have

Dψ(p(z)) (Dp(z)v) = D(ψ ◦ ϕz)(0)v
and

D2ψ(p(z))(Dp(z)v,Dp(z)v) = D2(ψ ◦ ϕz)(0)(v, v).
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Proof. 1 and 2 are easy. We have D(ψ ◦ ϕz)(0) = Dψ(p(z))D(ϕz)(0), which
gives 3 since D(ϕz)(0)v = Dp(z)v for any v ∈ Hz. For the second derivative, recall
that D2ψ(p(z))(Dp(z)v,Dp(z)v) = (ψ ◦ γ̃)′′(0), where γ̃ is a geodesic curve in P(V )
such that γ̃(0) = p(z), γ̃′(0) = Dp(z)v. Now, consider the horizontal pV -lift γ of γ̃ to
S(V ) with base point z. Note that γ(0) = z, γ′(0) = v. Hence,

(ψ ◦ γ̃)′′(0) = (ψ ◦ p ◦ γ)′′(0) = D2(ψ ◦ p)(z)(v, v) +Dψ(p(z))Dp(z)γ′′(0).

As γ′′(0) is orthogonal to TzS(V ), we have Dp(z)γ′′(0) = 0. Finally,

D2(ψ ◦ p)(z)(v, v) = (ψ ◦ p(z + tv))′′(0) = (ψ ◦ ϕz(tv))′′(0) = D2(ψ ◦ ϕz)(0)(v, v),
and the assertion on the second derivative follows.

The following result will be helpful.
Proposition 7. Let M1,M2 be Riemannian manifolds, and let α2 : M2 →

]0,∞[ be of class C2. Let π : M1 → M2 be a Riemannian submersion. Let U2 ⊆ M2

be an open set, and let us assume that α1 = α2 ◦ π is self-convex in U1 = π−1(U2).
Then, α2 is self-convex in U2.

Proof. Let Mκ,1 be M1, but endowed with the condition metric given by α1,
and let Mκ,2 be M2, but endowed with the condition metric given by α2. Then,
π : Mκ,1 → Mκ,2 is also a Riemannian submersion.

Now, let γ2 : [a, b] → U2 ⊆ Mκ,2 be a geodesic, and let γ1 ⊆ Mκ,1 be its
horizontal lift by π. Then, γ1 is a geodesic in U1 ⊆ M1 (see [6, Cor. 2.109]), and
hence logα1(γ1(t)) is a convex function of t. Now,

log(α2(γ2(t))) = log(α2 ◦ π(γ1(t))) = log(α1(γ(t)))

is convex as wanted.
Corollary 7. The function α2 : P(GL>n,m) → R, α2(A) = ‖A‖2Fσ−2

n (A) is
self-convex in P(GL>n,m).

Proof. Note that p : S(GL>n,m) → P(GL>n,m) is a Riemannian submersion, and
α2 = α◦p, where α is as in Corollary 6. The corollary follows from Proposition 7.

5.2. The solution variety. Let us denote by p1 and p2 the canonical maps

S1
p1→ P

(
K
n×(n+1)

)
and S2

p2→ P
(
K
n+1
)
= Pn(K),

where S1 is the unit sphere in Kn×(n+1) and S2 is the unit sphere in Kn+1. Consider
the affine solution variety,

Ŵ> =
{
(M, ζ) ∈ S1 × S2 : M ∈ GL

>
n,n+1 and Mζ = 0

}
.

It is a Riemannian manifold equipped with the metric induced by the product metric
on Kn×(n+1) ×Kn+1. The tangent space to Ŵ> is given by

T(M,ζ)Ŵ> =
{
(Ṁ, ζ̇) ∈ TMS1 × TζS2 : Ṁζ +Mζ̇ = 0

}
.

The projective solution variety considered here is

W> =
{
(p1(M), p2(ζ)) ∈ P

(
K
n×(n+1)

)
× Pn (K) : M ∈ GL

>
n,n+1 and Mζ = 0

}
;

that is, also a Riemannian manifold equipped with the metric induced by the product
metric on P

(
Kn×(n+1)

)× Pn (K).
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Let us denote by π1 the restriction to Ŵ> of the first projection S1 × S2 → S1,
and by R : Ŵ> → R, R = σn ◦ π1. We have the following lemma.

Lemma 2. Let w = (M, ζ) ∈ Ŵ>, and let γ be a geodesic in Ŵ>, γ(0) = w.
Then,

Dσn(π1(w))(π1 ◦ γ)′′(0) < 0.

Proof. Our problem is invariant by unitary change of coordinates. Hence, using
a singular value decomposition, we can assume that M = (Σ, 0) ∈ GL

>
n,n+1, where

Σ = diag (σ1 ≥ · · · ≥ σn−1 > σn) ∈ Kn×n and ζ = en+1 = (0, . . . , 0, 1)T ∈ S2.
As γ = (M(t), ζ(t)) is a geodesic of Ŵ> ⊆ Kn×(n+1) × Kn, γ′′(0) is orthogonal to
TwŴ , which contains all the pairs of the form ((A, 0), 0) where A is a n× n matrix,
Re〈Σ, A〉 = 0. Hence, M ′′(0) has the form

M ′′(0) = (aΣ, ∗)
for some real number a ∈ R. Finally, M(t) is contained in the sphere so ‖M(t)‖F = 1
and

0 = (||M(t)||2F )′′(0) = 2||M ′(0)||2F + 2Re〈M(0),M ′′(0)〉 = 2||M ′(0)||2F + 2a

so that a = −‖M ′(0)‖2F and (M ′′(0))nn = −‖M ′(0)‖2Fσn. From Proposition 5,

Dσn(π1(w))(π1 ◦ γ)′′(0) = Re((π1 ◦ γ)′′(0)nn) = Re(M ′′(0))nn < 0.

Theorem 3. The map α : Ŵ> → R given by α(M, ζ) = σn(M)−2 is self-convex.
Proof. Using unitary invariance we can take M = (Σ, 0) ∈ GL

>
n,n+1, where

Σ = diag (σ1 ≥ · · · ≥ σn−1 > σn) ∈ Kn×n and ζ = en+1 = (0, . . . , 0, 1)T ∈ S2.
According to Proposition 3 we have to prove that

2 ‖ẇ‖2w ‖DR(w)‖2 ≥ D2R2(w)(ẇ, ẇ)

for every w ∈ Ŵ> and ẇ ∈ TwŴ>. From Proposition 5 we have

DR(w)ẇ = Dσn(π1(w))(Dπ1(w)ẇ) = Re(Dπ1(w)ẇ)nn,

so that ‖DR(w)‖ = 1. On the other hand, assume that ẇ �= 0, and let γ be a geodesic
in Ŵ>, γ(0) = w, γ̇(0) = ẇ. From Lemma 2,

D2R2(w)(ẇ, ẇ) = (σ2
n ◦ π1 ◦ γ)′′(0)

= D2σ2
n(π1(w))(Dπ1(w)ẇ,Dπ1(w)ẇ) + 2σnDσn(π1(w))(π1 ◦ γ)′′(0)

< D2σ2
n(π1(w))(Dπ1(w)(ẇ), Dπ1(w)(ẇ)).

Thus, we have to prove that for ẏ ∈ K
n×(n+1),

2 ‖ẏ‖2 ≥ D2σ2
n(π1(w))(ẏ, ẏ),

which is a consequence of our Proposition 5.
Corollary 8. The map α2 : W> → R given by α2(M, ζ) = ‖M‖2F/σ2

n(M) is
self-convex.

Proof. Consider the Riemannian submersion

p1 × p2 : S1 × S2 −→ P

(
K
n×(n+1)

)
× Pn (K) , p1 × p2(M, ζ) = (p1(M), p2(ζ)).

Note that T(M,ζ)Ŵ> contains the kernel of the derivative D(p1 × p2)(M, ζ). Thus,

the restriction p1 × p2 : Ŵ> → W> is also a Riemannian submersion. The corollary
follows combining Proposition 7 and Theorem 2.
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6. Self-convexity of the distance from a submanifold of Rj. Let N be a
Ck submanifold without boundary N ⊂ Rj , k ≥ 2. Let us denote by

ρ(x) = d(x,N ) = inf
y∈N

‖x− y‖

the distance fromN to x ∈ Rj (here d(x, y) = ‖x−y‖ denotes the Euclidean distance).
Let U be the largest open set in Rj such that, for any x ∈ U , there is a unique closest
point from N to x. This point is denoted by K(x) so that we have a map defined by

K : U → N , ρ(x) = d(x,K(x)).

Classical properties of ρ andK are given in the following proposition (see also Foote [5]
and Li and Nirenberg [7]).

Proposition 8.

1. ρ is defined and 1−Lipschitz on Rj,
2. for any x ∈ U , x−K(x) is a vector normal to N at K(x), i.e., x −K(x) ∈(

TK(x)N
)⊥

,

3. K is Ck−1 on U ,
4. ρ2 is Ck on U , Dρ2(x)ẋ = 2 〈x − K(x), ẋ〉, and D2ρ2(x)(ẋ, ẋ) = 2‖ẋ‖2 −

2 〈DK(x)ẋ, ẋ〉,
5. ρ is Ck on U \ N ,
6. 〈DK(x)ẋ, ẋ〉 ≥ 0 for every x ∈ U and ẋ ∈ Rj.

Proof.
1. For any x and y one has ρ(x) = d(x,K(x)) ≤ d(x,K(y)) ≤ d(x, y) +
d(y,K(y)) = d(x, y) + ρ(y). Since x and y play a symmetric role we get
|ρ(x)− ρ(y)| ≤ d(x, y).

2. This is the classical first order optimality condition in optimization.
3. This classical result may be derived from the inverse function theorem applied

to the canonical map defined on the normal bundle to N
can : NN → R

j , can(y, n) = y + n

for every y ∈ N and n ∈ NyN = (TyN )⊥. The normal bundle is a Ck−1

manifold, the canonical map is a Ck−1 diffeomorphism when restricted to the
set {(y, n) : y + tn ∈ U for all 0 ≤ t ≤ 1}, and K(x) is easily given from
can−1.

4. The derivative of ρ2 is equal to Dρ2(x)ẋ = 2 〈x − K(x), ẋ − DK(x)ẋ〉 =

2 〈x − K(x), ẋ〉 because DK(x)ẋ ∈ TK(x)N and x − K(x) ∈ (
TK(x)N

)⊥
.

Thus ∇ρ2(x) = 2(x−K(x)) is Ck−1 on U so that ρ2 is Ck. The formula for
D2ρ2 follows.

5. This step is obvious.

6. Let x(t) be a curve in U with x(0) = x. Let us denote dx(t)
dt = ẋ(t), d

2x(t)
dt2 =

ẍ(t), y(t) = K(x(t)), dy(t)
dt = ẏ(t), and d2y(t)

dt2 = ÿ(t). From the first order
optimality condition we get

〈x(t)− y(t), ẏ(t)〉 = 0

whose derivative at t = 0 is

〈ẋ− ẏ, ẏ〉+ 〈x− y, ÿ〉 = 0.
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Thus

〈DK(x)ẋ, ẋ〉 = 〈ẏ, ẋ〉 = 〈ẏ, ẏ〉 − 〈x− y, ÿ〉 .

This last quantity is equal to 1
2
d2

dt2 ‖x − y(t)‖2∣∣
t=0

. It is nonnegative by the
second order optimality condition.

Proofs of Theorem 2 and Corollary 1. We are now able to prove our second
main theorem. Let us denote α(x) = 1/ρ(x)2. We shall prove that α is self-convex
on U . From Proposition 3 it suffices to prove that, for every ẋ ∈ Rj ,

2‖ẋ‖2‖Dρ(x)‖2 ≥ D2ρ2(x)(ẋ, ẋ)

or, according to assertion 4 of Proposition 8 and ‖Dρ‖ = 1, that

2‖ẋ‖2 ≥ 2‖ẋ‖2 − 2 〈DK(x)ẋ, ẋ〉 .
This is obvious from assertion 4 of Proposition 8.

Now we prove Corollary 1. Let S1(R
j) be the sphere of radius 1 in Rj , and let

pRj denote the canonical projection pRj : Rj → P(Rj). Note that the preimage of N
by pRj satisfies

d(y, p−1
Rj (N )) = dP(pRj (y),N )‖y‖.

As in the proof of Corollary 6, the mapping 1/ρ(x)2 is self-convex in the set S1(R
j)∩

p−1
Rj (U). Now, apply Proposition 7 to the Riemannian submersion pRj to conclude the

corollary.

Two examples.
Example 2. Take U the unit disk in R2 and N the unit circle. The corresponding

function is given by

α(x) = d(x,N )−2 = 1/ (1− ‖x‖)2 .
According to Theorem 2, the map logα(x) is convex along the condition geodesics in

U \ {(0, 0)} =
{
x ∈ R

2 : 0 < ‖x‖ < 1
}
.

This property also holds in U : a geodesic through the origin is a ray x(t) = (−1+ et)
(cos θ, sin θ) when −∞ < t ≤ 0, and x(t) = (1− e−t)(cos θ, sin θ) when 0 ≤ t <∞ for
some θ. In that case

logα(x(t)) = 2 |t| ,
which is convex.

Example 3. Take N ⊂ R
2 equal to the union of the two points (−1, 0) and

(1, 0). In that case

α(x)−1 = d(x,N )2 = min
(
(1 + x1)

2 + x22, (1− x1)
2 + x22

)
.

It may be shown that for any 0 < a ≤ 1/10, the straight line segment is the only mini-
mizing geodesic joining the points (0,−a) and (0, a). Since logα(0, t) = − log(1+ t2)
has a maximum at t = 0, g(t), −a ≤ t ≤ a cannot be log-convex. Here {0} × R is
equal to the locus in R2 of points equally distant from the two nodes, which is the set
we avoid in Theorem 2.
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[1] C. Beltrán and M. Shub, Complexity of Bézout’s theorem VII: Distance estimates in the
condition metric, Found. Comput. Math., 9 (2009), pp. 179–195.

[2] P. Boito and J.-P. Dedieu, The condition metric in the space of full rank rectangular Matri-
ces, available online at http://www.math.univ-toulouse.fr/∼dedieu/Boito-Dedieu-future.pdf,
SIAM J. Matrix Anal. Appl., to appear.

[3] F. H. Clarke, Optimization and Nonsmooth Analysis, 2nd ed., Les Publications CRM, Mon-
treal, 1989.

[4] J. W. Demmel, The probability that a numerical analysis problem is difficult, Math. Comput.,
50 (1988), pp. 449–480.

[5] R. Foote, Regularity of the distance function, Proc. Amer. Math. Soc., 92 (1984), pp. 153–155.
[6] S. Gallot, D. Hulin, and J. Lafontaine, Riemannian Geometry, 3rd ed., Springer-Verlag,

Berlin, 2004.
[7] Y. Li and L. Nirenberg, Regularity of the distance function to the boundary, Rend. Accad.

Naz. Sci. XL Mem. Mat. Appl. (5), 29 (2005) pp. 257–264.
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