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CONVEXITY PROPERTIES OF THE CONDITION NUMBER*

CARLOS BELTRANT, JEAN-PIERRE DEDIEU}, GREGORIO MALAJOVICH!, AND
MIKE SHUBY

Abstract. We define in the space of n X m matrices of rank n, n < m, the condition Riemannian
structure as follows: For a given matrix A the tangent space at A is equipped with the Hermitian
inner product obtained by multiplying the usual Frobenius inner product by the inverse of the
square of the smallest singular value of A denoted o, (A). When this smallest singular value has
multiplicity 1, the function A — log(on(A)~2) is a convex function with respect to the condition
Riemannian structure that is t — log(om (A(t))~2) is convex, in the usual sense for any geodesic
A(t). In a more abstract setting, a function « defined on a Riemannian manifold (M, (,)) is said
to be self-convex when log a(y(t)) is convex for any geodesic in (M, a (,)). Necessary and sufficient
conditions for self-convexity are given when « is C2. When «a(z) = d(z, N)~2, where d(x, N) is the
distance from z to a C? submanifold N' C R7, we prove that « is self-convex when restricted to the
largest open set of points z where there is a unique closest point in N to z. We also show, using
this more general notion, that the square of the condition number ||A||r /on(A) is self-convex in
projective space and the solution variety.
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1. Introduction. Let two integers 1 < n < m be given, and let us consider
the space of matrices K"*", K = R, or C, equipped with the Frobenius Hermitian
product

(M,N)p =trace (N*M) = Zmijﬂj.
4,9

Given an absolutely continuous path A(t), a <t < b, its length is given by the integral

b
i/

and the shortest path connecting A(a) to A(b) is the segment connecting them. Con-
sider now the problem of connecting these two matrices with the shortest possible
path in staying, as much as possible, away from the set of “singular matrices,” that
is, the matrices with nonmaximal rank.

dA(t)

dt
dt ’

F
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The singular values of a matrix A € K"*™ are denoted in nonincreasing order:
o1(A) > >0,-1(A) > 0,(A) > 0.

We denote by GL,, ,, the space of matrices A € K"*"™ with maximal rank: rank A = n;
that is, 05, (A4) > 0 so that the set of singular matrices is

N =K\ GL,,, = {A € K™™ : g,(A) =0}.

Since the smallest singular value of a matrix is equal to the distance from the set of
singular matrices:

o(A4) = dp(A,N) = min |4 - S| 5

given an absolutely continuous path A(t), a <t < b, we define its “condition length”
by the integral
b
L= /
a

A good compromise between length and distance to N is obtained in minimizing L.
We call “minimizing condition geodesic” an absolutely continuous path, parametrized
by arc length, which minimizes L, in the set of absolutely continuous paths with given
endpoints and condition distance d,(A, B) between two matrices the length L, of a
minimizing condition geodesic with endpoints A and B, if any.

In this paper our objective is to investigate the properties of the smallest singu-
lar value o, (A(t)) along a condition geodesic. Our main result says that the map
log (0, (A(t)) ™) is convex. Thus o, (A(t)) is concave, and its minimum value along
the path is reached at one of the endpoints.

Note that a similar property holds in the case of hyperbolic geometry where
instead of K"*™ we take R"~1 x [0, oo[, instead of " where we have R"~! x {0}, and
where the length of a path a(t) = (a1(t),...,a,(t)) is defined by the integral

4

/]

Geodesics in that case are arcs of circles centered at R"~! x {0} or segments of vertical
lines, and log (an (t)*l) is convex along such paths.

The approach used here to prove our theorems is heavily based on Riemannian
geometry. We define on GL,, ,,, the following Riemannian structure:

dA(t)

7 on(A(t))"tdt.

F

dZ—g)Han(t)ldt.

(M,N), 4 =0n(A)*Re(M,N)p,

where M, N € K"*™ and A € GL, ;. The minimizing condition geodesics defined
previously are clearly geodesic in GL,, ,, for this Riemannian structure so that we
may use the toolbox of Riemannian geometry. In fact things are not so simple: the
smallest singular value o, (A) is a locally Lipschitz map in GL,, ., and it is smooth
on the open subset

GLim ={AeGLy. : on_1(A) > 0n(4)},

that is, when the smallest singular value of A is simple. On the open subset GL, ,,, the
metric (-, -),, defines a smooth Riemannian structure, and we call “condition geodesics”
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the geodesics related to this structure. Such a path is not necessarily a minimizing
geodesic. Our first main theorem establishes a remarkable property of the condition
Riemannian structure.

THEOREM 1. o2 is logarithmically convex on GLim, i.e., for any geodesic curve
v(t) in GL; ,, for the condition metric the map log (022(v(t))) is convex.

PROBLEM 1. The condition Riemannian structure (.,.), is defined in GL,,
where it is only locally Lipschitz. Let us define condition geodesics in GLy, ., as the
extremals of the condition length L, (see, for example, [3, Thm. 4.4.3, Chap. 4] for the
definition of such extremals in the Lipschitz case). Is Theorem 1 still true for GLy, m, ¢
All the exzamples we have studied confirm that convexity holds, even if o, (y(t)) fails
to be C'. See Boito-Dedieu [2]. We intend to address this issue in a future paper.

In a second step we extend these results to other spaces of matrices: the sphere
Sr(GL;,,,) of radius r in GL;,, in Corollary 6, the projective space P (GL;,,,) in
Corollary 7. We also consider the case of the solution variety of the homogeneous
equation M = 0, that is, the set of pairs

{(M, ¢) € Knx(HD) y gntl . ppe = 0}.

Now our function « is the square of the condition number studied by Demmel in [4].
This is done in the affine context in Theorem 3 and in the projective context in
Corollary 8.

Since 0,(A) is equal to the distance from A to the set of singular matrices a
natural question is to ask whether our main result remains valid for the inverse of the
distance from certain sets or for more general functions.

DEFINITION 1. Let (M, (-,-)) be Riemannian, and let o : M — R be a function
of class C? with positive values. Let M, be the manifold M with the new metric

called condition Riemann structure. We say that o is self-conver when log a(y(t)) is
convex for any geodesic v in M.

For example, with M = {z = (z1,...,2,) € R" : z,, > 0} equipped with the
usual metric, a(z) = z,2 is self-convex. The space M, is the Poincaré model of
hyperbolic space.

In the following theorem we prove self-convexity for the distance function to a C?
submanifold without boundary ' C R7. Let us denote by

1
p(x)*

Let U be the largest open set in R/ such that, for any = € U, there is a unique closest
point in A to z. When U is equipped with the new metric a(z)(.,.) we have the
following theorem.

THEOREM 2. The function o : U \ N — R is self-convez.

Theorem 2 is then extended to the projective case. Let A/ be a C? submanifold
without boundary P(R7). Let us denote by dg the Riemannian distance in projective
space (points in the projective space are lines through the origin and the distance dr
between two lines is the angle they make). Let us denote dp = sindp (this is also a
distance), define a(z) = dp(z,N)~2, and let U be the largest open subset of P(R7)
such that for x € U there is a unique closest point from N to x for the distance dp.
Then we have the following corollary.

p(x) = d(a,N) = minlo — y| and a(z) =
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COROLLARY 1. The map a: U\ N — R is self-convez.

The extension of Theorems 1 and 2 to other types of sets or functions is not
obvious. In Example 1 we prove that a(A4) = o1(A)"2 + -+ + 0,,(A)~2 is not self-
convex in GL,, .

In Example 2 we take N' = R?, and U/ the unit disk so that &/ contains a point
(the center) which has many closest points from N. In that case the corresponding
function « : U \ N' — R is self-convex, but it fails to be smooth at the center of the
disk.

In Example 3 we provide an example of a submanifold ' C R? such that the
function a(z) = d(x, N)~2 defined on R? \ N is not self-convex.

Our interest in considering the condition metric in the space of matrices comes
from recent papers by Shub [8] and Beltrdn and Shub [1] where these authors use
condition length along a path in certain solution varieties to estimate step size for
continuation methods to follow these paths. They give bounds on the number of
steps required in terms of the condition length of the path. If geodesics in the condi-
tion metric are followed, the known bounds on polynomial system solving are vastly
improved. To understand the properties of these geodesics, we have begun this paper
with linear systems where we can investigate their properties more deeply. We find
self-convexity in the context of this paper remarkable. We do not know if similar is-
sues may naturally arise in linear algebra even for solving systems of linear equations.
Similar issues do clearly arise when studying continuation methods for the eigenvalue
problem.

2. Self-convexity. Let us first recall some basic definitions about convexity on
Riemannian manifolds. A good reference on this subject is Udrigte [9].
DEFINITION 2. We say that a function f: M — R is convex whenever

f(ray () < (1 =) f(x) +1f(y)

for every x,y € M, for every geodesic arc vz, joining x and y and 0 <t < 1.

The convexity of f in M is equivalent to the convexity in the usual sense of
f o vzy on [0,1] for every z,y € U and the geodesic v,y joining = and y or also to
the convexity of g o« for every geodesic v [9, Thm. 2.2, Chap. 3]. Thus, we see the
following lemma.

LEMMA 1. Self-convexity of a function o : M — R is equivalent to the convezity
of logoa in the condition Riemannian manifold M.

When f is a function of class C? in the Riemannian manifold M, we define its
second derivative D? f(z) as the second covariant derivative. It is a symmetric bilinear
form on T, M. Note [9, Chap. 1] that if z € M and & € T, M, and if v(t) is a geodesic
in M, v(0) =, %7(0) = &, then

d2
= Z(f07)(0).

This second derivative depends on the Riemannian connection on M. Since M is
equipped with two different metrics, (.,.) and (.,.),, we have to distinguish between
the corresponding second derivatives; they are denoted by D?f(x) and D2 f(z), re-
spectively. No such distinction is necessary for the first derivative D f(x).

Convexity on Riemannian manifold is characterized by (see [9, Thm. 6.2, Chap. 3])
the following proposition.

PROPOSITION 1. A function f : M — R of class C? is convez if and only if
D% f(x) is positive semidefinite for every x € M.

D f(x)(i, @)
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We use this proposition to obtain a characterization of self-convexity: « is self-
convex if and only if the second derivative D2 (logoa)(z) is positive semidefinite for
any x € M,. We get the following proposition.

PROPOSITION 2. For a function o : M — R of class C? with positive values
self-convexity is equivalent to

20(z)D*a(x)(&,%) + || Da() |23 — 4(Da()i)* > 0

for any x € M and for any vector & € T, M, the tangent space at x.

Proof. Let © € M be given. Let ¢ : R™ — M be a coordinate system such
that ¢(0) = x and with first fundamental form g;;(0) = ¢;; (Kronecker’s delta) and
Christoffel’s symbols T'%, (0) = 0, and let

A=aop

so that a(x) = A(0). Those coordinates are called “normal” or “geodesic.” Note that
this implies
9gij
8zk

0)=0

i

for all ¢, j, k. We denote by g, ,; and I', jk» respectively, the first fundamental form
and the Christoffel symbols for ¢ in M. Let us compute them. Note that

Ir,ij (2) = gij(2)A(2),

a K,1j
T2 (0) = Daw sy (0)(ex) = DlgigA)(0)(ex)
0A
= gij (0)DA(0)(ex) + A(0)Dg;;(0)(ex) = 6i; 8—%(0)'
Moreover,
i L j 1 09, ij OGx,ik OGr. ik
v = —FZ- = — ) ) _ 5J
1 0A 0A 0A
= 24(0) (51'1‘5—%(0) + 5““6_%-(0) - 6J—ka—zi(0)> .
That is,
r;,ik =T §A2A1<o> §2(0) for all i, k,
T i = zawy 52, (0), J#i
Ii 0 otherwise.

=
The second derivative of t}jle composition of two maps
MELERER
is given by the identity (see [9, Hessian, Chap. 1.3))
D2(¢po f)(x) = D(f(2))D* f(x) + 4" (f(x))Df(x) @ Df (),
where Df(z) ® Df(x) is the bilinear form on T, M by
(Df(z) ® Df(x))(u,v) = Df(x)(u)Df(z)(v).
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This gives, in our context (that is, when f = « and ¢ = log),

1 1
D?(log oa)(x) = MDia(x) - WDO((CE) ® Da(x).
According to Proposition 1 our objective is now to give a necessary and sufficient
condition for D2 (log oc)(z) to be positive semidefinite for each x € M. In our system
of local coordinates the components of D?a(x) are (see [9, Chap. 1.3])

0%A , 0%A
A = N\ A oA
gk 020z, XZ: %9z 020z,
while the components of D?a(x) are

9%A . 0A
A i = —— — e ., —.
Ik 020z, Z LM

If we replace the Christoffel symbols in this last sum by the values previously com-
puted, then we obtain, when j = k,

; 0A
Zrﬁﬂﬂaz J,Jja +Z 09 9,

(i) - 2AZ(3%> -3 (5) - 2AZ<3%>

while, Whenj #+k,
0A . OA 1 0A 0A 1 0A 0A 1 0A 0A
Z FK 2Jk 32,

Dt gn T nahgn = 3402 b7, T 3407, 0o — A7, Dok
Both cases are subsumed in the identity

S OA 1 9A0A b (aA>2

wik Gz~ ADz 0z 24 Dz

Putting together all these identities gives the following expression for the components
of D?(log oa)(z):

2A 104 0A 5jk <8A)2> 1 0A 9A

2 J— i = T 229, 9.,
Dra*(logoa)(x) i = 1 aZjaZk 1 32,] D + 0z A2 9z 0z,

1 2 04 04
T 242 < 3z]<92k +6sz <8z1) 323 3zk>

Thus, D2 (logoa)(z) > 0 if and only if
2a(z)D*a(z) + | Da()|| (., ), — 4Da(z) ® Da(z)
is positive semidefinite, that is, when
2a(z)D*a(x)(&, &) + | Da(z)|z2]l7 — 4(Da(z)d)* = 0

for any = € M and for any vector & € T, M. This finishes the proof. |
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An easy consequence of Proposition 2 is the following. See also Example 3.

COROLLARY 2. When a function o : M — R of class C? is self-convex, then
any critical point of o has a positive semidefinite second derivative D*a(x). Such a
function cannot have a strict local maximum or a nondegenerate saddle.

PROPOSITION 3. The following condition is equivalent for a C? function o =
1/p? : M — R to be self-convex on M: For every x € M and & € T, M,

&2 | Dp(x) |1 = (Dp(x)d)? — p(z)D?p(x) (&, 3) > 0,
or, what is the same,
2||&|?|Dp(x)|1? = D?p? () (i, &).

Proof. Note that

—9
Da(x)t = p(x)BDp(a:)x,
2 . 6 5 2 .
Da(z) (&, &) = W(Dﬂ(ﬂi) )T - p(x)3D p(x)(d, ).

Hence, the necessary and sufficient condition of Proposition 2 reads

4||33||2HDP($)||2 16 -2 12 2\2 4 2 .
— D + D — D >
() p(x)ﬁ( p(x)x) p(x)ﬁ( p(x)x) oL p(z)(z,2) >0,
and the proposition follows. O

COROLLARY 3. Fach of the following conditions is sufficient for a function o =
1/p%: M — R to be self-convex at & € M: For every i € T,M,

D?p(x)(&,4) <0,
1D?p*(x)|| < 2||Dp(x)]|*.

In the following proposition we obtain a weaker condition on « to obtain convexity
in M, instead of self-convexity.
PROPOSITION 4. «(z) is convez in M, if and only if

20(z)D*a(x)(#, %) + [ Da() |23 — 2(Da(x)i)* > 0

for any x € M and any vector & € T, M.
Proof. We follow the lines of the proof of Proposition 2 with 1 equal to the
identity map instead of i) = log. O

3. Some general formulas for matrices.

PROPOSITION 5. Let A = (%,0) € GL;, ,,, where ¥ = diag (01 > --- > 01 >
on) € K"™™. The map o, : GL;, ,, — R is a smooth map and, for every U € K"*™,

DO'n(A)U = Re(”nn),
D262 (A)U,U) = 2527 [t |? — 2 S0~} Lknon tTaon”.
(o ) =1 Unj b1

2_ 52
(Tk (o4
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Proof. Since 02 is an eigenvalue of AA* with multiplicity 1, the implicit function
theorem proves the existence of smooth functions o2 (B) € R and u(B) € K", defined
in an open neighborhood of A and satisfying

BB*u(B) = o2 (B)u(B),

[u(B)[* =1,

uw(A) =e, =(0,...,0,1)T € K,

02(A) = o2.

Differentiating these equations at B gives, for any U € K"*™
(UB* + BU*)u(B) + BB*u(B) = (02) w(B) + 02 (B)u(B),
u(B)*u(B) =0

with @(B) = Du(B)U and (02)" = Do2(B)U. Premultiplying the first equation by
u(B)* gives
w(B)*(UB* + BU*)u(B) + u(B)* BB*(B) = (02) u(B)*u(B) + o2 (B)u(B)"u(B)
so that
Do (B)U = (02)" = 2Re(u(B)*UB*u(B))

and
Re(u(B)*UB*u(B))

on(B)

The derivative of the eigenvector is now easy to compute:

Du(B)U = (B) = (02(B)I,, — BB))!(UB* + BU* — (02) I,)u(B),

Do, (B)U =

where (02(B)I,, — BB*)" denotes the generalized inverse (or Moore-Penrose inverse)
of 02(B)I,, — BB*.
The second derivative of 02 at B is given by
D?c7(B)(U,U) = 2Re(u(B)*UB*u(B) + u(B)*UU*u(B) + u(B)*UB*iu(B))
= 2Re(u(B)*UU*u(B) + u(B)*(UB* + BU*)u(B)) = 2Re(u(B)*UU"u(B)
+u(B)*(UB* + BU*)(02(B)I,, — BB*)'(UB* + BU* — (ai)/In)u(B)).
Using u(A) = e, and 0,(A) = o, we get
Do (AU = 2Re(UA*) iy = 20, Re(uny),
Do, (A)U = Re(unn),
and the second derivative is given by
D7 (A)(U,U)

n—1

— 9Re <(UU*)M+ (UA" + AU ) i(02 — 02) M (UA* + AU” — (o )’Jn),m>

:w
,_.,_\

o2 2

— 9Re ((UU*)nn — [(UA* + AU )k )

— o}

x>

=1
—1

_2Z|unj| _22 |ukn0n+unk0k| ' 0
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COROLLARY 4. Let A = (3,0) € G]L;m, where 3 = diag (o1 > -+ > 0p1 >

on > 0) € K"*". Let us define p( y=o0n(A)/|A||lr. Then, for any U € K"X’” such
that Re (A,U)r = 0, we have

HAH
—1 Juknon+nrorl® _ (Ul
DARANDLU) 2 i (S o S il 101 2

3

Proof. Note that

Don(A)U|Allr — on(A)EHEGEE Do, (AU

IANI% 1Al

and the first assertion of the corollary follows from Proposition 5. For the second one,
note that h = hy/hs (for real valued C? functions h, hq, he with ha(0) # 0) implies

D2y _ M3D*h1 — hihaD?hy = 2ho Dy Dhy + 2h1 (Dha)?

= W '
Now, p?(A) = a2(A)/||Allf, D(JAIF)U = 2Re(A,U)r = 0, D*(|A|1)(U,U) =
2||U||%, and D?*c 2(A)(U U) is known from Proposition 5. The formula for D?p?(A)
follows after some elementary calculations. O

4. The affine linear case. We consider here the Riemannian manifold M =
GL;; ,,, equipped with the usual Frobenius Hermitian product. Let a : GL,, — R
be defined as a(A) =1/02(A).

COROLLARY 5. The function o is self-conver in GL;,

Proof. From Proposition 3, it suffices to see that

2|UNEI1Don(A)F = D*op (A)(U,U).

Since unitary transformations are isometries in GLn m With respect to the condition
metric we may suppose, via a singular value decomp051t10n that A = (X,0) € G}Li s

where ¥ = diag (o1 > -+ > op—1 > 0,) € K**". Now, the inequality to verify is
obvious from Proposition 5, as || Do, (A)||r =1 and

j=1

COROLLARY 6. Let > 0. The function « is self-convex in the sphere S,(GL;, ,,)

of radius r in GL ,,
Proof. Tt is enough to prove that any geodesic in (S, (GL;; ,,,), @) is also a geodesic
n (GL7 ,,,a). Indeed, suppose that A and B are matrices in S,(GL; ,,) and the

mlmmal geodesic in (GL;, ,,,, ) between A and B is X(t), a <t <b. Then we claim

that LK(%) < L.(X(t)). Indeed, for any t,

i< rX(t) )_ P X (B Re((X (1), 220 1)
|

XOl.) ~ IX®Ol, 1X (0%
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so that

H% (Ir;((%)II) F

1/2
2 ||ax||?
T \ |y PPRe((X(1), B p)? 202 Re((X (1), BH2) p)?
X @)% IX @17 IX @17
dX(t) dX(t)
B S T O IV R o
X017 1X (8) T OIX®lE
Hence,
E (L“) ) —”‘1< i) | (i)
dt \IX®llp /|l )l ol e
X(t X X
:” ()”Fan Sa,gl (X(t)) d (t) _ d (t)
||X 7 dt || g dt ||,
Therefore X (¢) can only be a minimizing geodesic if it belongs to S.(GL;, ,,). Since

all geodesics are locally minimizing geodesics, Corollary 6 follows. d
The following gives an example of a smooth and nonself-convex function in GL, ,,.
EXAMPLE 1. For n > 3, the function a(A) = o1(A)"2 + -+ + 0,(A)~2 is not
self-convez in GLy, .
Proof. For simplicity we consider the case of real square matrices. We have

a(d) =A%,
Da(A)A = —2(A7 AP AA Y p = —2(A7TA AT Ay,
[Da(A)||F = 4|A7T AT AT,
D2a(A)(A, A) = 2||ATAATY |2 4 4(A7 AT AAT T AA Y g
According to Proposition 4, the self-convexity of a(A) in GL,, is equivalent to
2047 (2 AT AAT  + 447 AT AATT AAT p)
HAAFATTATIATT R —8(aT AT A4 > 0.

This inequality is not satisfied when

100 . 10
A={0 1 0 andA=[-1 0 0. O
00 2 00
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5. The homogeneous linear case.

5.1. The complex projective space. The matter of this subsection is mainly
taken from Gallot—Hulin—Lafontaine [6, sec. 2.A.5].

Let V be a Hermitian space of complex dimension dim¢ V' = d+ 1. We denote by
P(V) the corresponding projective space, that is, the quotient of V'\ {0} by the group
C* of dilations of V; P(V) is equipped with its usual smooth manifold structure with
complex dimension dimP(V') = d. We denote by p the canonical surjection.

Let V be considered as a real vector space of dimension dimg V' = 2d+2 equipped
with the scalar product Re(.,.})yy. The sphere S(V') is a submanifold in V' of real
dimension 2d + 1. This sphere being equipped with the induced metric becomes a
Riemannian manifold and, as usual, we identify the tangent space at z € S(V') with

T.S(V)={ueV : Re(u,z2), =0}.

The projective space P(V') can also be seen as the quotient S(V)/S! of the unit
sphere in V by the unit circle in C for the action given by (\,z) € S x S(V) —
Az € S(V'). The canonical map is denoted by

py : S(V) = P(V).

py is the restriction of p to S(V).

The horizontal space at z € S(V') related to py is defined as the (real) orthogonal
complement of ker Dpy (z) in T,S(V'). This horizontal space is denoted by H,. Since
V is decomposed in the (real) orthogonal sum

V=Rz®Riz® 2",
and since ker Dpy (z) = Riz (the tangent space at z to the circle S1z) we get
H,=zt={ucV : (u,2) =0}.

There exists on P(V) a unique Riemannian metric such that py is a Riemannian
submersion; that is, py is a smooth submersion and, for any z € S(V'), Dpy(z) is an
isometry between H, and T,,)P(V). Thus, for this Riemannian structure, one has

(Dpv (2)u, Dpy (2)v) -

p(z)]P(V) - Re <u, U>V

for any z € S(V) and u,v € H,.
PROPOSITION 6. Let z € S(V') be given.
1. A chart at p(z) € P(V) is defined by

v, H, = P(V), ¢.(u) =p(z+u).
2. Its derivative at 0 is the restriction of Dp(z) at H,:
Dy, (0) = Dp(z) : H, — Ty P(V),

which is an isometry.
3. For any smooth mapping ¥ : P(V) — R, and for any v € H, we have

Dip(p(2)) (Dp(z)v) = D(¢ 0 ¢2)(0)v

and

D*¢(p(2))(Dp(2)v, Dp(z)v) = D*(¥ 0 ¢:)(0)(v, v).
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Proof. 1 and 2 are easy. We have D(¢ o ¢,)(0) = D (p(2))D(p.)(0), which
gives 3 since D(p.)(0)v = Dp(z)v for any v € H,. For the second derivative, recall
that D24 (p(2))(Dp(z)v, Dp(2)v) = (¢ 0 7)"(0), where 7 is a geodesic curve in P(V)
such that 4(0) = p(z), 4'(0) = Dp(z)v. Now, consider the horizontal py-lift v of 4 to
S(V) with base point z. Note that v(0) = z, 4/(0) = v. Hence,

(¥09)"(0) = (¥ opoy)"(0) = D*(¥ o p)(2)(v,v) + Dy(p(2)) Dp(2)7"(0).
As ~"(0) is orthogonal to T.S(V'), we have Dp(z)v"(0) = 0. Finally,

Do p)(2)(v,0) = (¥ 0 p(z + 10))"(0) = (¥ 0 @:(tv))" (0) = D* (¥ 0 9:)(0) (v, v),

and the assertion on the second derivative follows. O

The following result will be helpful.

PropoSITION 7. Let My, Ms be Riemannian manifolds, and let ay : My —
10, 00[ be of class C?. Let m: M1 — Ma be a Riemannian submersion. Let Uy C My
be an open set, and let us assume that oy = g o T is self-convex in U; = 7r*1(Z/{2),
Then, as is self-convex in Us.

Proof. Let M, 1 be My, but endowed with the condition metric given by o,
and let M, 2 be Mj, but endowed with the condition metric given by as. Then,
m: M1 — M, 2 is also a Riemannian submersion.

Now, let vo : [a,b] — Uy C My be a geodesic, and let v C M, 1 be its
horizontal lift by w. Then, 1 is a geodesic in Uy C M; (see [6, Cor. 2.109]), and
hence log a1 (71 (t)) is a convex function of t. Now,

log(az(72(t))) = log(az o m(y1())) = log(en (+(2)))

is convex as wanted. O

COROLLARY 7. The function ap : P(GL;,,) — R, as(A) = ||A]|%0,%(A) is
self-convex in P(GL; ).

Proof. Note that p : S(GL; ,,,) — P(GL7,,) is a Riemannian submersion, and
a9 = aop, where « is as in Corollary 6. The corollary follows from Proposition 7. 0

5.2. The solution variety. Let us denote by p; and ps the canonical maps
S, AP (K"X(”“)) and Sy B P (K"+) =P, (K),

where S; is the unit sphere in K"*("*1) and S, is the unit sphere in K"t'. Consider
the affine solution variety,

W> ={(M,{) €S1 xS» : M e€GL;, ., and MC =0} .

It is a Riemannian manifold equipped with the metric induced by the product metric
on K»*(+1) 5 K+l The tangent space to W™ is given by

The projective solution variety considered here is
W= = {(Pl(M),pz(C)) ep (K"XW”) x P, (K) : M €GLZ, ., and MC = 0} :

that is, also a Riemannian manifold equipped with the metric induced by the product
metric on P (K™ (1) x P, (K).
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Let us denote by m the restriction to W?> of the first projection S; X Sg — Sy,
and by R: W”> - R, R=o0,0my. We have the following lemma. R

LEMMA 2. Let w = (M,{) € W?, and let v be a geodesic in W, v(0) = w.
Then,

Do, (m1(w))(m 07)"(0) < 0.

Proof. Our problem is invariant by unitary change of coordinates. Hence, using
a singular value decomposition, we can assume that M = (3,0) € GLi)n 41, where

¥ =diag (o1 > -+ > op_1 > 0Op) € K"™™ and ¢ = epq1 = 0,...,0,1)T € S,.
As v = (M(t),((t)) is a geodesic of W= C K< (n+1) % K™ 4"(0) is orthogonal to
T, W, which contains all the pairs of the form ((A4,0),0) where A is a n X n matrix,
Re(X, A) = 0. Hence, M"(0) has the form
M"(0) = (a2, %)
for some real number a € R. Finally, M (t) is contained in the sphere so || M (t)||r =1
and
0= ([[M(®)I[%)"(0) = 2/|M’(0)||F + 2Re(M (0),
so that a = —||[M’(0)[|% and (M"(0))n, = —||M’(0)
Doy (1 (w))(m1 ©7)"(0) = Re((m1 ©7)"(0)nn) = Re(M"(0))nn <0. O
THEOREM 3. The map a: W> — R given by a(M,¢) = 0, (M)~2 is self-conver.
Proof. Using unitary invariance we can take M = (¥,0) € GL,, ., where
Y =diag (01 > -+ > 01 > 0,) € K" and ¢ = e,p1 = (0,...,0,1)T € S,.
According to Proposition 3 we have to prove that

2 ||w||?, [|DR(w)|* > D*R?(w)(w, )

M"(0)) = 2||M'(0)|IF + 2a

| %04 From Proposition 5,

for every w € W> and w € T,,)’V>. From Proposition 5 we have
DR(w)w = Do, (71 (w))(Dm (w)w) = Re(D7y (w)w) np,

so that [ DR(w)|| = 1. On the other hand, assume that w # 0, and let v be a geodesic
in W2, v(0) = w, ¥(0) = w. From Lemma 2,

D*R*(w)(w, w) = (03, o m1 07)"(0)
= D%} (m1 (w)) (D71 (w), Dy (w)id) + 207 Doy (1 (w) ) (1 0 )" (0)
< Doy (m1(w)) (D (w)(w), Dy (w) (w)).
Thus, we have to prove that for € K»*("+1),
291" > D?07, (1 (w)) (3 9).

which is a consequence of our Proposition 5. O

COROLLARY 8. The map az : W> — R given by as(M, () = |M||%/02(M) is
self-convex.

Proof. Consider the Riemannian submersion

p1 X p2:S; XSy — P (K”X("H)) x P, (K), p1 X p2(M, ¢) = (p1(M),p2(C)).

Note that T(M,()W> contains the kernel of the derivative D(p1 X p2)(M, (). Thus,

the restriction p; X po : W> — W> is also a Riemannian submersion. The corollary
follows combining Proposition 7 and Theorem 2. a
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6. Self-convexity of the distance from a submanifold of R7. Let N be a
C* submanifold without boundary N' C R7, k > 2. Let us denote by

p(e) = d(x,N) = inf[lo — y]

the distance from NV to z € R7 (here d(z,y) = ||z —y|| denotes the Euclidean distance).
Let U be the largest open set in R/ such that, for any = € U, there is a unique closest
point from N to z. This point is denoted by K (z) so that we have a map defined by

K:U— N, p(x) =d(z, K(x)).

Classical properties of p and K are given in the following proposition (see also Foote [5]
and Li and Nirenberg [7]).
PROPOSITION 8.
1. p is defined and 1—Lipschitz on R,
2. for any x €U, x — K(x) is a vector normal to N at K(z), i.e., v — K(z) €
(T N)
3. K isC*1 on U,
4. p? is C* on U, Dp*(z)i = 2(x — K(x),4), and D?p?(z)(i,%) = 2||&? —
2 (DK (x)&, ),
5. pis C* on U\ N,
6. (DK (z)i,2) > 0 for every x € U and & € RI.
Proof.
1. For any x and y one has p(z) = d(z,K(z)) < d(z,K(y)) < d(z,y) +

d(y,K(y)) = d(z,y) + p(y). Since z and y play a symmetric role we get

lp(x) = p(y)| < d(z,y).

2. This is the classical first order optimality condition in optimization.

3. This classical result may be derived from the inverse function theorem applied
to the canonical map defined on the normal bundle to N

can: NN — R’, can(y,n) =y +n

for every y € N and n € NN = (T,N)‘. The normal bundle is a C*~1
manifold, the canonical map is a C*~! diffeomorphism when restricted to the
set {(y,m) : y+tn € U for all 0 < ¢t < 1}, and K(x) is easily given from
can~!.

4. The derivative of p? is equal to Dp?(x): = 2(x — K(x), # — DK (z)i) =
2(x — K(x),4) because DK (2)i € TN and 2 — K(x) € (TK(E)N)J'.
Thus Vp?(z) = 2(z — K(z)) is C*¥~! on U so that p? is C*. The formula for
D?p? follows.

5. This step is obvious.

6. Let z(t) be a curve in ¢ with 2(0) = 2. Let us denote dwd(tt) = x(t), % =
(1), y(t) = K(2(t)), 20 = j(t), and L8 = jj(t). From the first order
optimality condition we get

(x(t) —y(t),y(t)) = 0

whose derivative at t = 0 is
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Thus

(DK ()i, &) = (g, 4) = (9, 9) — (z —y,3) -
This last quantity is equal to %% ||z — y(t)||2‘t:0. It is nonnegative by the
second order optimality condition. 0

Proofs of Theorem 2 and Corollary 1. We are now able to prove our second
main theorem. Let us denote a(z) = 1/p(x)%. We shall prove that « is self-convex

on Y. From Proposition 3 it suffices to prove that, for every & € R/,
22 Dp(@) |2 = D2?(a)(i, &)

or, according to assertion 4 of Proposition 8 and || Dp|| = 1, that
2l}2 > 2)4l)? - 2 (DK (2), &)

This is obvious from assertion 4 of Proposition 8.

Now we prove Corollary 1. Let S;(R?) be the sphere of radius 1 in R’, and let
prs denote the canonical projection pg; : R — P(R7). Note that the preimage of N
by prs satisfies

d(y, pg; W) = de(pri (), N)lyll-

As in the proof of Corollary 6, the mapping 1/p(x)? is self-convex in the set S;(R7) N
pﬂgjl (U). Now, apply Proposition 7 to the Riemannian submersion pg; to conclude the
corollary. O

Two examples.
EXAMPLE 2. Take U the unit disk in R? and N the unit circle. The corresponding
function is given by

a(w) = d(w,N)™? =1/ (1 — |l[)*.
According to Theorem 2, the map log a(z) is convex along the condition geodesics in
UN{(0,0)} ={zeR* : 0< |z| <1}.

This property also holds in U: a geodesic through the origin is a ray z(t) = (=1 + €?)
(cosf,sinf) when —oo <t <0, and z(t) = (1 — e~ *)(cosf,sinf) when 0 <t < oo for
some 0. In that case

log a(z(t)) = 2|t

which is convew.
EXAMPLE 3. Take N' C R? equal to the union of the two points (—1,0) and
(1,0). In that case

(@) = dla, NY? = min (+0)? 3, (1) 4 03).

It may be shown that for any 0 < a < 1/10, the straight line segment is the only mini-
mizing geodesic joining the points (0, —a) and (0,a). Since log a(0,t) = —log(1 +t?)
has a mazimum at t = 0, g(t), —a < t < a cannot be log-convex. Here {0} x R is
equal to the locus in R2 of points equally distant from the two nodes, which is the set
we avoid in Theorem 2.
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