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Abstract We study geometric properties of the solution variety for the problem of
approximating solutions of systems of polynomial equations. We prove that given
the two pairs (fi, ζi), i = 1,2, there exist a short path joining them such that the
complexity of following the path is bounded by the logarithm of the condition number
of the problems.
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1 Introduction

The goal of this paper is to contribute to the search for approximate zeros of systems
of polynomial equations. The complexity of homotopy (or path following or continu-
ation) methods for solving systems of polynomial equations has been studied at least
since the 1980s (see [7] and references therein, and the series of articles [10–12]).
For a survey of complexity results concerning solutions of polynomials of one vari-
able, see [6]. Homotopy methods themselves have a longer history which we do not
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attempt to survey here. In [13, 14], linear homotopy methods were studied in depth.
The existence of a method that finds approximate zeros of systems in average poly-
nomial time was proved, although the lack of specific initial pairs made this proof
nonconstructive. A uniform algorithm was not proven to exist (see [15]). A great deal
of progress in this direction has recently been made in [2, 4], where the existence of
efficient initial pairs for linear homotopies is proved, as well as a probabilistic method
to generate them. We refer the reader to [3] for a detailed historical description of the
problem and its various solutions.

In [9], a new bound for the complexity of (not necessarily linear) path following
was given in terms of the length of the path in the condition metric, which is defined
below. In this paper, we prove that there exists surprisingly short paths in the solution
variety. Combination of these results suggests the existence of an algorithm that finds
approximate zeros of systems very fast, in time almost linear in the size of the input,
on the average. It suggests that understanding the geometry of the solution variety
in the condition metric, and especially the geodesics may be worth the effort. In
Sect. 2, we throw out an idea for a numerical method that the proof of our main result
suggests.

For a list of positive degrees (d) = (d1, . . . , dn) ∈ N
n, let H(d) be the set of all sys-

tems f = (f1, . . . , fn) of homogeneous polynomials of respective degrees deg(fi) =
di,1 ≤ i ≤ n. So, f : C

n+1 −→ C
n. We denote by D = max{di : 1 ≤ i ≤ n} the max-

imum of the degrees. We consider H(d) endowed with the Bombieri–Weyl Hermitian
product, and the corresponding norm (denoted ‖ · ‖).

The solution variety V(d) ⊆ P(H(d)) × P(Cn+1) (or simply V when there is no
possible confusion) is defined as the set of pairs (f, ζ ), such that f (ζ ) = 0. Observe
that V(d) is endowed with a natural metric (and corresponding volume form) inher-
ited from the Bombieri–Weyl Hermitian product in H(d) and the usual Fubini–Study
metric in P(Cn+1). We refer to this volume form in V(d) as the Fubini–Study volume.

Let g ∈ P(H(d)) be the following system of homogeneous equations (conjectured
in [13] to be an efficient initial pair for homotopy methods):

g =

⎧
⎪⎪⎨

⎪⎪⎩

d
1/2
1 X

d1−1
0 X1 = 0,

...

d
1/2
n X

dn−1
0 Xn = 0.

Observe that ‖g‖ = √
n. Moreover, g has a trivial solution e0 = (1,0, . . . ,0). In [9],

we have bounded the number k ≥ 0 of steps of projective Newton’s method sufficient
to follow a homotopy Γt = (ft , ζt ) in the solution variety V by the length of the path
Γt in the condition metric,

Length(Γt ) =
∫

∥
∥(ḟt , ζ̇t )

∥
∥

κ
dt,

where ‖(ḟt , ζ̇t )‖κ = μnorm(ft , ζt )‖(ḟt , ζ̇t )‖, and μnorm is as in [9, 10]. Namely,

μnorm(f, ζ ) = ‖f ‖∥∥Df (ζ )|−1
ζ⊥ Diag

(‖ζ‖di−1d
1/2
i

)∥
∥, ∀f ∈ P(H(d)), ζ ∈ Pn(C).

Then k ≤ C1D
3/2 Length(Γt ) for some universal constant C1 > 0. In this paper, we

find a short path joining any two pairs in V . Namely, we prove the following result.
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Theorem 1 (Main result) For every pair (f, ζ ) ∈ V(d), such that μnorm(f, ζ ) < ∞,
there exists a curve Γt ⊆ V(d) joining (f, ζ ) and (g, e0), and such that

Length(Γt ) ≤ cnD3/2 + 2
√

n ln

(
μnorm(f, ζ )√

n

)

,

where c < 9 is a universal constant.

Corollary 1 For every two pairs (f, ζ ), (h, η) ∈ V(d), such that μnorm(f, ζ ),

μnorm(h, η) < ∞, there exists a curve Γt ⊆ V(d) joining (f, ζ ) and (h, η), and such
that

Length(Γt ) ≤ 2cnD3/2 + 2
√

n ln

(
μnorm(f, ζ )μnorm(h, η)

n

)

.

Corollary 2 A sufficient number of projective Newton steps to follow some path in V

starting at (g, e0) to find an approximate zero associated to a solution ζ of a given
system f ∈ P(H(d)) is

C1D
3/2

(

nD3/2 + √
n ln

(
μnorm(f, ζ )√

n

))

,

where C1 is a universal constant.

The real case (i.e., the study of real solutions to real systems of equations) can
be analyzed with similar techniques. In this case, the subset of V(d) where μnorm is
finite (denoted W(d) or W later in this manuscript) may have one or two connected
components, depending on n and (d). Then in each of these connected components
Corollaries 1 and 2 hold, with the orthogonal group replacing the unitary group. This
observation was also pointed out to us by [5].

The Riemannian metric ‖ · ‖k defines a metric dk on W = V − {(f, ζ ) |
μnorm(f, ζ ) = ∞} by dk(x, y) = inf Length(γ ) over piecewise differentiable paths
γ in W joining x to y.

Corollary 3 Let N be the dimension of H(d). The probability (for the Fubini–Study
volume defined above) that a pair (f, ζ ) ∈ V belongs to a ball for the condition metric
dk of radius 9nD3/2 + √

n(4 + lnN + ln 1
ε
) centered at (g, e0) is at least

1 − ε.

So on the average in V, a sufficient number of projective Newton steps to follow some
path in W starting at (g, e0) to find an approximate zero associated to (f, ζ ) ∈ V is
less than or equal to τ(n,D,N) where τ(n,D,N) = C1nD3 lnN .

This last corollary suggests that the average number of steps to solve polynomial
systems of equations might be O(nD3 lnN). The reader may compare this to the
result in [13] which suggests that this number might be O(nN3 lnD), or to the result
in [2, 4] where an upper bound to the average number of steps of O(n5N2D4) is
proved.
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The theorem and corollaries above are a consequence of the two following techni-
cal propositions, which will be proved in Sect. 4.

Proposition 1 Let (f, ζ ) ∈ V(d) be such that μnorm(f, ζ ) < ∞, and let U ∈ Un+1 be
a unitary matrix such that Ue0 = ζ . Then there exists a unitary matrix R ∈ Un+1,

such that Re0 = e0, and a curve Γt ⊆ V(d) joining (f, ζ ) and (g ◦ R ◦ U∗, ζ ) and
such that

Length(Γt ) ≤ 2
√

n

(

1 + ln
μnorm(f, ζ )√

n

)

.

Proposition 2 Let U be a unitary matrix, and ζ = U∗e0. Then there exists a curve
Γt ⊆ V(d) joining (g, e0) and (g ◦ U,ζ ), and such that

Length(Γt ) ≤ 2πnD3/2.

Moreover, we can write Γt = (g ◦Ut ,U
∗
t e0) for a path of unitary matrices Ut ∈ Un+1.

Assuming Propositions 1 and 2, we can prove the main results of this paper.

1.1 Proof of the Main Results

We start with Theorem 1. We denote by Γ 1
t the curve that exists from Proposition 1,

such that

Γ 1
0 = (f, ζ ), Γ 1

1 = (g ◦ R ◦ U∗, ζ ),

Length
(
Γ 1

t

) ≤ 2
√

n

(

1 + ln
μnorm(f, ζ )√

n

)

,

where R,U ∈ Un+1 are unitary matrices, and Ue0 = ζ . Now from Proposition 2, we
can join (g ◦ R ◦ U∗, ζ ) and (g, e0) with a curve Γ 2

t of length bounded by 2πnD3/2.
Theorem 1 follows. Corollary 1 is clear from Theorem 1.

Corollary 2 is immediate from Theorem 1 and the main theorem of [9]. Finally,
we prove Corollary 3. From Theorem 1, we know that

Prob(f,ζ )∈V

[
distκ

(
(f, ζ ), (g, e0)

) ≥ R
]

≤ Prob(f,ζ )∈V

[

μnorm(f, ζ ) ≥ √
n exp

(
R − 9nD3/2

2
√

n

)]

,

for any R ≥ 0. From Theorem B of [11], this is at most

25N
(
exp

(
R−9nD3/2

2
√

n

))2
.

The corollary follows taking

R = 9nD3/2 + √
n

(

4 + lnN + ln
1

ε

)

.
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2 Suggested Numerical Methods

The proof of the main theorem in this paper suggests the following numerical proce-
dure:

(1) INPUT: A polynomial system f ∈H(d).
(2) Let g′ = g be the initial system defined in the Introduction, and let z = e0. While

z is not an approximate zero of f do:

• For some small t > 0 (t ∼ 1/(nD3/2) might work), let h = (1 − t)g′ + tf

be this polynomial system. Let z = Nh(z), where Nh is projective Newton’s
operator (cf. [8]).

• Choose a unitary matrix R ∈ Un+1 such that ‖Rz − e0‖ is small. Define g′ =
g ◦ R.

(3) OUTPUT: An approximate zero z ∈ Pn(C) of f .

There are several ways that the matrix R inside the loop might be chosen. We may
choose it at random, or as the result of some Gram–Schmidt procedure. Another
suggested way is R = ( 1 0

0 U

)
V ∗, where U(0 D)V ∗ is a singular value decomposition

of the matrix Diag(d
−1/2
i Dh(z)).

3 Bundles, Projections

In this section, we prove some technical statements that will be useful for the proof
of Propositions 1 and 2. We also include other results that are not necessary for the
main results of this paper, but may help to understand the geometry and condition
metric in the complex variety V . We consider the following subset of V :

W = W(d) = {
(f, ζ ) ∈ V : Df (ζ ) is surjective

}
.

As in [9], we denote by V̂ the affine counterpart of V . Namely,

V̂ = {
(f, ζ ) ∈ (

H(d) \ {0}) × C
n+1 : f (ζ ) = 0

}
.

As usual, t ∈ [0,1] is a parameter, and given a C1 function h : [0,1] −→ M into a
manifold M , we may write ht instead. We also write ḣt = Dh(t)(1).

We define the “linear” subbundle L(d) ⊆ V as the set of pairs of the form (f, ζ ) ∈
V, such that f = (f1, . . . , fn) and

fi(z) =
( 〈z, ζ 〉

‖ζ‖2

)di−1

Liz,

where L = (L1, . . . ,Ln) : C
n+1 −→ C

n is a surjective linear map, such that Lζ = 0.
We denote by L̃(d) ⊆ P(H(d)) × S

2n+1 the corresponding concept when the solu-
tions are in the sphere S

2n+1. Finally, the corresponding affine concept will be de-
noted by L̂(d). Namely, L̂(d) is the set of pairs of the form (f, ζ ) ∈ V̂ such that
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f = (f1, . . . , fn) and

fi(z) =
( 〈z, ζ 〉

‖ζ‖2

)di−1

Liz,

where L = (L1, . . . ,Ln) : C
n+1 −→ C

n is a surjective linear map such that Lζ = 0.
For fixed ζ, we consider the set

Lζ = {
f ∈ P(H(d)) : (f, ζ ) ∈ L(d)

}
.

We also consider the projection πL(d)
: W(d) −→ L(d), (f, ζ ) �→ (h, ζ ) where h ∈

P(H(d)) is the system defined as

h(z) = Diag

( 〈z, ζ 〉
‖ζ‖2

)di−1

Df (ζ )z,

which can be checked to be well defined. The following property holds for every
representative f of a system in P(H(d)) (see [10]):

f = h ⊕ h′, where h,h′ ∈H(d), h′ ⊥ Lζ .

In particular, we conclude that ‖f ‖ ≥ ‖h‖. Moreover, the following also holds:

Df (ζ ) = Dh(ζ ).

We conclude that

μnorm(f, ζ ) = ‖f ‖
‖h‖ μnorm(h, ζ ),

where f and h are seen as elements in P(H(d)).
We also consider the mappings

ϕ : L̃(1) −→ L̃(d)

(L, ζ ) �→ (f, ζ ),

where f ∈ L̃ζ is defined as

f (z) = Diag
(
d

1/2
i 〈z, ζ 〉di−1t

)
Lz,

and

φ = ϕ−1 : L̃(d) −→ L̃(1)

(f, ζ ) �→ (L, ζ ),

where L : C
n+1 −→ C

n is the linear map defined as follows,

Lz = Diag
(
d

−1/2
i

)
Df (ζ )z.
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Whenever we have a pair (X,Y ), we will denote

π1(X,Y ) = X, π2(X,Y ) = Y.

Observe that the following equalities hold for every (f, ζ ) ∈ L̃(d), (L, ζ ) ∈ L̃(1):

μnorm(f, ζ ) = μnorm
(
φ(f, ζ )

)
, μnorm(L, ζ ) = μnorm

(
ϕ(L, ζ )

)
.

We will use the following inequality, which holds for every pair of homogeneous
polynomials f,g of degrees df , dg (cf. [1])

‖fg‖ ≤ ‖f ‖‖g‖. (3.1)

The following will also be useful. Let f be a homogeneous polynomial of degree d ,
f defined by

f (z) = 〈z, ζ 〉d ,

where ζ ∈ C
n+1. Then the following holds:

‖f ‖ = ‖ζ‖d . (3.2)

We will make use of the higher derivative estimate obtained in [10]: For a homoge-
neous polynomial f of degree d , and for k ≥ 0,

∥
∥Dkf (x)(w1, . . . ,wk)

∥
∥ ≤ d(d − 1) · · · (d − k + 1)‖f ‖‖x‖d−k‖w1‖ · · · ‖wk‖, (3.3)

for every x,wi ∈ C
n+1.

For any integer k ≥ 1 we denote by Ik the identity square matrix of size k.

Lemma 1 Let k ≥ 1 and U ∈ Uk be a unitary matrix. Then there exists a smooth path
Ut ⊆ Uk , 0 ≤ t ≤ 1, such that U0 = Ik , U1 = U and

Length(Ut ) ≤ π
√

k,

where the length is measured for the Frobenius norm.

Proof As U is unitary, it is normal, and hence we can write

U = V DV ∗,

where V is unitary and D is a diagonal matrix containing the eigenvalues of U (this
is the well-known Schur decomposition of a normal matrix). Hence, we can write
D = Diag(ea1i, . . . , eak i) for some real numbers −π ≤ aj ≤ π . Now let A = V D′V ∗
be this skew-symmetric matrix where

D′ = Diag(a1i, . . . , aki).
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We define the path Ut = exp(tA). Note that U0 = Ik and U1 = exp(V D′V ∗) =
V exp(D′)V ∗ = V DV ∗ = U . Moreover,

Length(Ut ) =
∫ 1

0
‖U̇t‖F dt =

∫ 1

0
‖A‖F dt =

∫ 1

0
‖D′‖F dt = ‖D′‖F .

Finally, observe that

‖D′‖2
F = a2

1 + · · · + a2
k ≤ π2k. �

The following lemma is not necessary for the main results of this paper.

Lemma 2 Let f = (f1, . . . , fn) ∈ H(d) and A be a square matrix of size n + 1. Let
f ′ = (f ′

1, . . . , f
′
n) ∈H(d) be defined as

f ′(X) = Df (X)(AX), ∀X ∈ C
n+1.

Namely, for i = 1, . . . , n, we have

f ′
i (X) =

(
∂fi

∂X0
(X) · · · ∂fi

∂Xn

(X)

)

AX.

Then

‖f ′‖ ≤ n3/2D‖f ‖‖A‖F .

Proof Let fi = ∑
|α|=di

ai
αXα be the dense encoding of fi . Then

f ′
i (X) =

n∑

k=0

hi
k,

where

hi
k(X) = ∂fi

∂Xk

(X)(AX)k =
⎛

⎝
∑

|α|=di

αka
i
αX

α0
0 · · ·Xαk−1

k · · ·Xαn
n

⎞

⎠ (AX)k.

From inequality (3.1),

∥
∥hi

k

∥
∥ ≤

⎛

⎝
∑

|α|=di ,αk≥1

α2
k

(
di − 1

α0 . . . αk − 1 . . . αn

)−1∣
∣ai

α

∣
∣2

⎞

⎠

1/2

‖Ak‖

=
⎛

⎝
∑

|α|=di ,αk≥1

dαk

(
di

α0 . . . αn

)−1∣
∣ai

α

∣
∣2

⎞

⎠

1/2

‖Ak‖ ≤ D‖f ‖‖Ak‖,

where ‖Ak‖ is the norm of the k-th row of A. We conclude that

‖f ′
i ‖ ≤ D‖f ‖

n∑

k=0

‖Ak‖ ≤ nD‖f ‖
(

n∑

k=0

‖Ak‖2

)1/2

= nD‖f ‖‖A‖F ,
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and the lemma follows. �

Lemma 3 Let f be a homogeneous polynomial of degree d , and A be a square
matrix of size n + 1. Then

‖f ◦ A‖ ≤ ‖f ‖‖A‖d,

where f ◦ A ∈H(d) is the homogeneous polynomial defined by (f ◦ A)(z) = f (Az).

Proof First, assume that A = Diag(σ0 ≥ · · · ≥ σn) is a diagonal matrix, with nonneg-
ative entries. Let f = ∑

|α|=d aαXα . Then

f ◦ A(X) =
∑

|α|=d

aασ
α0
0 · · ·σαn

n Xα,

and we conclude that

‖f ◦ A‖2 =
∑

|α|=d

(
d

α

)−1

|aα|2σ 2α0
0 · · ·σ 2αn

n ≤ σ 2d
0

∑

|α|=d

(
d

α

)−1

|aα|2 = ‖A‖2d‖f ‖2,

and the lemma follows in this case. Now for the general case, let A = UDV ∗ be a
singular value decomposition of A. Then

‖f ◦ A‖ = ‖f ◦ UDV ∗‖ = ‖f ◦ UD‖ ≤ ‖f ◦ U‖‖D‖d = ‖f ‖‖A‖d,

as wanted. �

Lemma 4 Let ψ̂1 : V̂ −→H(d) and ψ̂2 : V̂ −→ C
n+1 be two mappings, such that

(
ψ̂1(f, ζ ), ψ̂2(f, ζ )

) ∈ V̂ , ∀(f, ζ ) ∈ V̂ .

Consider the mapping ψ̂ = ψ̂1 × ψ̂2 : V̂ −→ V̂ , ψ̂(f, ζ ) = (ψ̂1(f, ζ ), ψ̂2(f, ζ )). As-
sume that ψ̂ is differentiable, and that the associated mapping ψ : V −→ V is well
defined in some open set containing (f, ζ ) ∈ V . Then

∥
∥Dψ(f, ζ )

∥
∥2 ≤ ‖Dψ̂1(f, ζ )‖2

‖ψ̂1(f, ζ )‖2
+ ‖Dψ̂2(f, ζ )‖2

‖ψ̂2(f, ζ )‖2
,

where some representatives f, ζ of norm equal to 1 have been chosen.

Proof Let f,h and ζ, η be chosen representatives of norm equal to 1, ψ̂(f, ζ ) =
(αh,βη), where

α = ∥
∥ψ̂1(f, ζ )

∥
∥, β = ∥

∥ψ̂2(f, ζ )
∥
∥.

Note that the derivative of

πf : f ⊥ �→ P(H(d))

ḟ �→ f + ḟ



Found Comput Math

is an isometry at 0. The same holds for the (similarly defined) mappings πh : h⊥ −→
P(H(d)), πζ : ζ⊥ −→ P(Cn+1) and πη : η⊥ −→ P(Cn+1). Hence,

∥
∥Dψ(f, ζ )

∥
∥ = ∥

∥D(ψ̄f,ζ )(0,0)
∥
∥,

where ψ̄f,ζ = (πh × πη)
−1 ◦ ψ ◦ (πf × πζ ) is this mapping between affine spaces.

Now, we define the mappings

π̂f : f ⊥ �→ f + f ⊥,

ḟ �→ f + ḟ

π̂ζ : ζ⊥ �→ ζ + ζ⊥,

ζ̇ �→ ζ + ζ̇ ,

Θh,η : (
H(d) \ h⊥) × (

C
n+1 \ η⊥) −→ h⊥ × η⊥

(u, x) �→
( ‖h‖2

〈u,h〉u − h,
‖η‖2

〈x,η〉x − η

)

.

The derivatives of π̂f and π̂ζ at 0 are again isometries. Moreover, we can easily check
that

∥
∥DΘh,η(αh,βη)(u, x)

∥
∥2 ≤ ‖u‖2

α2
+ ‖x‖2

β2
.

Finally, observe that

ψ̄f,ζ = Θh,η ◦ ψ̂ ◦ (π̂f × π̂ζ ).

We conclude that

∥
∥Dψ̄f,ζ (0,0)(ḟ , ζ̇ )

∥
∥2 = ∥

∥DΘh,η(αh,βη)
(
Dψ̂(f, ζ )(ḟ , ζ̇ )

)∥
∥2

≤ ‖Dψ̂1(f, ζ )(ḟ , ζ̇ )‖2

α2
+ ‖Dψ̂2(f, ζ )(ḟ , ζ̇ )‖2

β2
,

and thus,

∥
∥Dψ̄f,ζ (0,0)

∥
∥2 ≤ ‖Dψ̂1(f, ζ )‖2

α2
+ ‖Dψ̂2(f, ζ )‖2

β2
.

The lemma follows. �

Lemma 5 Let 〈·, ·〉∗ be any dot product in R
k+1 and let S

k∗(r) ⊆ R
k+1 be the radius

r sphere for that dot product. Let a, b ∈ S
k∗(r) be any two points, a �= −b. Let xt be

the curve

xt = r
(1 − t)a + tb

‖(1 − t)a + tb‖∗
⊆ S

k∗(r).

Then for any 0 ≤ t ≤ 1,

∥
∥(1 − t)a + tb‖∗‖ẋt

∥
∥∗ ≤ 2r2.
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Proof Observe that xt = Θ1 ◦ Θ2(t), where

Θ2 : [0,1] −→ R
k+1,

t �→ (1 − t)a + tb,

Θ1 : R
k+1 −→ S

k∗(r),

x �→ r
x

‖x‖ .

Hence,

‖ẋt‖∗ ≤ ∥
∥DΘ1

(
Θ2(t)

)∥
∥∗

∥
∥DΘ2(t)

∥
∥∗ = ∥

∥DΘ1
(
Θ2(t)

)∥
∥∗‖a − b‖∗.

Now,

DΘ1(x)(v) = r

‖x‖∗

(

v − 〈v, x〉∗
‖x‖2∗

x

)

.

Now, observe that 〈v,x〉∗
‖x‖2∗

x is the projection of v onto Span(x), and we conclude that

∥
∥DΘ1(x)

∥
∥∗ ≤ r

‖x‖∗
,

so the lemma follows. �

Lemma 6 The norm of the derivative of πL(d)
satisfies the following inequality:

∥
∥DπL(d)

(f, ζ )
∥
∥ ≤ √

3D2 ‖f ‖
‖h‖ ,

where (h, ζ ) = πL(d)
(f, ζ ).

Proof Let f and ζ be chosen representatives, ‖f ‖ = ‖ζ‖ = 1. We denote by
π̂L(d)

: Ŵ(d) −→ L̂(d) ⊆ Ŵ(d) the affine version of the mapping πL(d)
, and (h, ζ ) =

π̂L(d)
(f, ζ ), so that ‖h‖ ≤ ‖f ‖ = 1. Then we are under the assumptions of Lemma 4.

Moreover, for ḟ ∈ f ⊥ and ζ̇ ∈ ζ⊥, we have:

Dπ̂L(d)
(f, ζ )(ḟ , ζ̇ ) = (ḣ, ζ̇ ),

where ḣ = (ḣ1, . . . , ḣn) is defined by ḣi = pi + qi , pi ⊥ qi , and

pi(z) = (di − 1)〈z, ζ 〉di−2〈z, ζ̇ 〉Dfi(ζ )(z),

qi(z) = 〈z, ζ 〉di−1(D(2)fi(ζ )(ζ̇ , z) + Dḟi(ζ )(z)
)
.

We conclude that ‖ḣi‖2 = ‖pi‖2 + ‖qi‖2. We estimate each of these two norms sep-
arately. From (3.2) and (3.1), we conclude:

‖pi‖ ≤ (di − 1)‖ζ̇‖∥∥Dfi(ζ )
∥
∥ ≤ (D − 1)‖ζ̇‖∥∥Dfi(ζ )

∥
∥.

Inequality (3.3) yields

‖pi‖ ≤ D(D − 1)‖fi‖‖ζ̇‖.
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On the other hand, again (3.2) and (3.1) imply

‖qi‖ ≤ ∥
∥D(2)fi(ζ )(ζ̇ )

∥
∥ + ∥

∥Dḟi(ζ )
∥
∥.

Inequality (3.3) yields

‖qi‖ ≤ D(D − 1)‖fi‖‖ζ̇‖ + D‖ḟi‖.

We conclude that

‖ḣ‖2 =
n∑

i=1

‖ḣi‖2 ≤ 3D2(D − 1)2‖ζ̇‖2 + 2D2‖ḟ ‖2 ≤ 3D2(D − 1)2
∥
∥(ḟ , ζ̇ )

∥
∥2

.

Hence, from Lemma 4,

∥
∥DπL(d)

(f, ζ )
∥
∥2 ≤ 3D2(D − 1)2

‖h‖2
+ 1 ≤ 3D4

‖h‖2
.

We have chosen a representative such that ‖f ‖ = 1. Now, observe that if we multiply
f by λ ∈ C

∗ then h is multiplied by the same quantity. The lemma follows. �

Proposition 3 The following inequalities hold.

∥
∥Dϕ(L, ζ )

∥
∥ ≤ D3/2, (3.4)

∥
∥Dφ(f, ζ )

∥
∥ ≤ √

2D3/2. (3.5)

Proof First we prove inequality (3.4). Observe that

Dϕ(L, ζ )(L̇, ζ̇ ) = (ġ, ζ̇ ),

where ġ = (ġ1, . . . , ġn) satisfies ġi = pi + qi , ġi ⊥ π1(ϕ(L, ζ )) and

pi(z) = d
1/2
i (di − 1)〈z, ζ 〉di−2〈z, ζ̇ 〉Liz,

qi(z) = d
1/2
i 〈z, ζ 〉di−1L̇iz.

Moreover, observe that pi ⊥ qi . Indeed, by unitary invariance it suffices to prove this
in the case that ζ = e0. Now in this case,

pi(z) = d
1/2
i (di − 1)z

di−2
0 hi(z1, . . . , zn), qi(z) = d

1/2
i z

di−1
0 h′

i (z1, . . . , zn),

for some polynomials hi, h
′
i . We conclude that pi and qi have no monomials in com-

mon, and hence they are orthogonal.
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From (3.1) and (3.2),

‖pi‖ ≤ D1/2(D − 1)‖ζ̇‖‖Li‖, ‖qi‖ ≤ D1/2‖L̇i‖.
We conclude that

‖ġ‖2 =
n∑

i=1

(‖pi‖2 + ‖qi‖2) ≤ D(D − 1)2‖ζ̇‖2‖L‖2
F + D‖L̇‖2

F .

Hence,

∥
∥Dϕ(L, ζ )(L̇, ζ̇ )

∥
∥2 = ‖ġ‖2

‖π1(ϕ(L, ζ ))‖2
+ ‖ζ̇‖2

= ‖ġ‖2

‖L‖2
F

+ ‖ζ̇‖2 ≤ D
(D − 1)2‖ζ̇‖2‖L‖2

F + ‖L̇‖2
F

‖L‖2
F

+ ‖ζ̇‖2

≤ D3

(
‖L̇‖2

F

‖L‖2
F

+ ‖ζ̇‖2

)

= D3
∥
∥(L̇, ζ̇ )

∥
∥2

,

and (3.4) follows.
Finally, we prove (3.5). Observe that for (f, ζ ) ∈ L̃(d) and (ḟ , ġ) ∈ T(f,ζ )L̃(d), we

have that

Dφ(f, ζ )(ḟ , ζ̇ ) = (L̇, ζ̇ ) ∈ Tφ(f,ζ )L̃(1),

where L̇ = (L̇1, . . . , L̇n) is the linear map defined as

L̇i(z) = d
−1/2
i

(
D(2)fi(ζ )(ζ̇ , z) + Dḟi(ζ )(z)

)
.

We conclude that

‖L̇i‖2 ≤ 2

di

(∥
∥D(2)fi(ζ )(ζ̇ )

∥
∥2 + ∥

∥Dḟi(ζ )
∥
∥2)

.

Inequality (3.3) yields

‖L̇i‖2 ≤ 2D(D − 1)2‖fi‖2‖ζ̇‖2 + 2D‖ḟi‖2.

Thus,

‖L̇‖2
F ≤ 2D(D − 1)2‖f ‖2‖ζ̇‖2 + 2D‖ḟ ‖2.

We conclude that

∥
∥Dφ(f, ζ )(ḟ , ζ̇ )

∥
∥2 = ‖L̇‖2

‖π1(φ(f, ζ ))‖2
F

+ ‖ζ̇‖2

≤ 2D(D − 1)2‖f ‖2‖ζ̇‖2 + 2D‖ḟ ‖2

‖Diag(d
−1/2
i )Df (ζ )‖2

F

+ ‖ζ̇‖2.
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On the other hand, observe that if f ∈ L̃(d), the following equality holds:

‖f ‖ = ∥
∥Diag

(
d

−1/2
i

)
Df (ζ )

∥
∥

F
.

We conclude that

∥
∥Dφ(f, ζ )(ḟ , ζ̇ )

∥
∥2 ≤ 2D

‖ḟ ‖2

‖f ‖2
+ (

2D(D − 1)2 + 1
)‖ζ̇‖2

≤ 2D3
(‖ḟ ‖2

‖f ‖2
+ ‖ζ̇‖2

)

= 2D3
∥
∥(ḟ , ζ̇ )

∥
∥2

,

and inequality (3.5) follows. �

Corollary 4 Let Γt be a curve in L̃(1), t ∈ [0,1]. Then

Length
(
ϕ(Γt )

) ≤ D3/2 Length(Γt ).

Now, let Γt be a curve in L̃(d), t ∈ [0,1]. Then

Length
(
φ(Γt )

) ≤ √
2D3/2 Length(Γt ).

Finally, let Γt be a curve in W(d), t ∈ [0,1]. Then

Length
(
πL(d)

(Γt )
) ≤ √

3D2 Length(Γt ).

Proof For the first inequality, denote ft = π1(ϕ(Lt , ζt )). Then

Length
(
ϕ(Γt )

) =
∫ 1

0
μnorm(ft , ζt )

∥
∥(ḟ , ζ̇ )

∥
∥dt

≤
∫ 1

0
μnorm(Lt , ζt )

∥
∥Dϕ(L, ζ )

∥
∥
∥
∥(L̇, ζ̇ )

∥
∥dt.

From Proposition 3, this is less than or equal to

∫ 1

0
μnorm(Lt , ζt )D

3/2
∥
∥(L̇, ζ̇ )

∥
∥dt = D3/2 Length(Γt ),

as wanted.
For the second inequality, let Lt = π1(φ(ft , ζt )), and observe that

Length
(
φ(Γt )

) =
∫ 1

0
μnorm(Lt , ζt )

∥
∥(L̇, ζ̇ )

∥
∥dt

≤
∫ 1

0
μnorm(ft , ζt )

∥
∥Dφ(f, ζ )

∥
∥
∥
∥(ḟ , ζ̇ )

∥
∥dt.
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From Proposition 3, this is less than or equal to

∫ 1

0
μnorm(ft , ζt )

√
2D3/2

∥
∥(ḟ , ζ̇ )

∥
∥dt = √

2D3/2 Length(Γt ).

The third inequality is proved in the very same way, using Lemma 6 instead of Propo-
sition 3. �

4 Proof of Propositions 1 and 2

4.1 Proof of Proposition 1

First, assume that ζ = e0.
We choose a representative of f, such that ‖f ‖ = √

n. As f (e0) = 0, the matrix
Diag(d

−1/2
i )Df (e0) may be written as

Diag
(
d

−1/2
i

)
Df (e0) = (

0 ŪDV̄ ∗) ,

where Ū , V̄ ∈ Un are unitary matrices, and D = Diag(σ1 ≥ · · · ≥ σn > 0) is a diago-
nal matrix with real positive entries. Moreover, as μnorm(f, ζ ) ≥ √

n always,

√
n ≤ μnorm(f, ζ ) = ‖f ‖

σn

=
√

n

σn

,

and we conclude that σn ≤ 1. We denote

R =
(

1 0
0 Ū V̄ ∗

)

∈ Un+1.

Observe that

Diag
(
d

−1/2
i

)
D(g ◦ R)(e0) = (

0 Ū V̄ ∗) .

We define the curve

Γ ′
t = (ft , e0) =

(√
n

(1 − t)f + tg ◦ R

‖(1 − t)f + tg ◦ R‖ , e0

)

⊆ S√
n(H(d)) × {e0},

where S√
n(H(d)) is the radius

√
n sphere in the space H(d). Then we define Γt as the

projection of Γ ′
t on P(H(d)) × {e0}.

From Lemma 5, we know that
∥
∥(1 − t)f + tg ◦ R

∥
∥‖ḟt‖ ≤ 2n.

Moreover, the following equality also holds,

Diag
(
d

−1/2
i

)
Dft(e0) =

√
n

‖(1 − t)f + tg ◦ R‖
(
0 Ū

(
(1 − t)D + tIn

)
V̄ ∗).
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Hence, the following equality holds,

μnorm(ft , e0) = ‖ft‖
∥
∥
(
Diag

(
d

−1/2
i

)
Dft(e0) |e⊥

0

)−1∥∥ = ‖(1 − t)f + tg ◦ R‖
(1 − t)σn + t

.

We conclude that

Length(Γt ) ≤ Length(Γ ′
t )√

n
=

∫ 1

0
μnorm(ft , e0)

‖ḟt‖√
n

dt

=
∫ 1

0

‖(1 − t)f + tg ◦ R‖‖ḟt‖
((1 − t)σn + t)

√
n

dt ≤
∫ 1

0

2
√

n

(1 − t)σn + t
dt

= 2
√

n
ln 1

σn

1 − σn

≤ 2
√

n(1 − lnσn) = 2
√

n

(

1 + ln
μnorm(f, e0)√

n

)

.

For the general case, consider the pair (f ◦ U,U∗ζ = e0) ∈ V(d). Then there exists a
unitary matrix R ∈ Un and a path Γ ′

t ⊆ V(d) such that

Γ ′
0 = (f ◦ U,e0), Γ ′

1 = (g ◦ R,e0),

Length
(
Γ ′

t

) ≤ 2
√

n

(

1 + ln
μnorm(f ◦ U,e0)√

n

)

= 2
√

n

(

1 + ln
μnorm(f, ζ )√

n

)

.

We just consider the path Γt = (ft , ζ ), where

ft = f ′
t ◦ U∗.

4.2 Proof of Proposition 2

First, assume that (d) = (1). Then g = (0 In). Let Ut be a curve in Un+1 such that
U0 = In and U1 = U . Then we consider the curve

Γt = (g ◦ Ut,U
∗
t e0) ⊆ L̃(1).

The following holds.

Length(Γt ) =
∫ 1

0
μnorm

(
g ◦ Ut ,U

∗
t e0

)
√

‖g ◦ U̇t‖2
F

‖g ◦ Ut‖2
F

+ ∥
∥U̇∗

t e0
∥
∥2 dt

≤ √
2n

∫ 1

0
‖U̇t‖F dt = √

2nLength(Ut ).

From Lemma 1, we can choose Ut such that Length(Ut ) ≤ π
√

n + 1. Finally, this
curve in L̃(1) can be projected into L(1), and the proposition follows in the case that
(d) = (1). Now for the general case, let φ(g, e0) = ((0 In), e0) ∈ L̂(1) and (L′, ζ ) =
φ(g ◦ U,ζ ) ∈ L̂(1). Observe that L′ = (0 In)U . Hence, there exists a curve Γt ⊆ L̂(1)

joining φ(g, e0) and φ(g ◦ U,ζ ), and such that

Length(Γt ) ≤ 2πn.
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Now from Corollary 4, the curve ϕ(Γt ) ⊆ L̃(d), joining (g, e0) and (g ◦ U,e0), has
length bounded by 2πnD3/2, and so has its projection into L(d).
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