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ABSTRACT. In this paper we consider the family of circle maps fi o, : st —
S! which when written mod 1 are of the form

fk,a,e rx— kr+ o +ESin(27T£E),

where the parameter o ranges in S' and k > 2. We prove that for small ¢ the
average over « of the entropy of fi o . with respect to the natural absolutely
continuous measure is smaller than fol log | D fi,0,e(x)|dx, while the maximum
with respect to « is larger. In the case of the average the difference is of
order of €212, This result is in contrast to families of expanding Blaschke
products depending on rotations where the averages are equal and for which
the inequality for averages goes in the other direction when the expanding
property does not hold, see [4]. A striking fact for both results is that the
maximum of the entropies is greater than or equal to f01 log | D fi,0,c (z)|dz.
These results should also be compared with [3], where similar questions are
considered for a family of diffeomorphisms of the two sphere.
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1. Introduction. Several papers have now studied lower bounds for the average
(metric) entropy or Lyapunov exponents of families of dynamical systems [2],[3],
[4]. The main point is that if the average of the entropy is bounded from below by
a real number r > 0 then some elements of the family have entropy greater than r.
So far family F of dynamical systems that have been considered are of the form of
a composition of a fixed endomorphism f : M — M and the elements of G a group
of isometries of M whose induced action on the projective or flag bundle of the
tangent bundle of M is transitive. Here the projective bundle is the bundle whose
fiber at m € M is the projective space of T,, M and the flag bundle the bundle
whose fiber is the flag manifold of T;, M.

That is, F = {g o flg € G}. The average is taken with respect to the measure
on F which is the push forward of Haar measure on (G. This average entropy is
compared to the entropy of the random products ...g;fgi_1f...g2fg1f where the
g; are chosen iid with respect to the Haar measure on G. This last quantity is usually
“easily” computable from the derivative T'f and usually easily seen to be positive,
see in particular [2],[3] and the references therein.

In this paper we consider the family of circle maps fg o, : S' — S' of the form

frae s @ — kx + o+ esin(2rz), (1)

for k € N, k > 2 and ¢ small, where the parameter o ranges in S'. So for each ¢ we
are in the context above with G equal to S! acting on itself.

Let pg.a.e be the density of the invariant measure on S! which is absolutely
continuous with respect to Lebesgue measure. The existence follows immediately
from uniform expansiveness. It can be averaged with respect to « to obtain py .
Then the following has been observed from numerical computations:

Claim 1. pyc(z) =1+ 3 ,5,Cyjcos(j2mz), where Cy ; = e2HIC=D(Cy i+ O(e))
and C‘kJ < 0.

We can also compute the average entropy of fj o with respect to a. It is given
by

I(k,e):/o Pi.e(x)10g |D fi o (x)|dz, (2)

which is obviously independent of o for maps of the form (1).
On the other hand we can compute the integral

1
J(k,e) = / log | D fivoc ()| d, (3)
0
which is also obviously independent of «. Let
A(k,e) = J(k,e) — I(k,e).

J(k,¢e) is the Lyapunov exponent of the random product as above and A(k,¢) the
deviation of the average of the deterministic entropies from the random one. Ideally
we would like to have A < 0, so that the behaviour of present family is similar to
Blaschke’s one. Indeed if f is an immediately expanding Blaschke product and
G = S!', A = 0 and for general Blaschke products A < 0, [4]. Numerically (see
Section 3 it has been observed that for our families as soon as ¢ is small and positive,
one has A non-negative. See also [3] for a similar result in two dimensions.

Claim 2. For e small A(k,e) > 0 and it behaves like e2++2.
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Yet it is striking that, even if the inequality for the average and the random goes
in the opposite direction to the heuristics, there is an inequality for the maximum,
which goes in the direction of the heuristics.

Claim 3. For ¢ small and positive, mazoesih(fr.a.e) > J(k,€), where h(fi o) is
the measure theoretic entropy of fi e with respect its absolutely continuous invari-
ant measure.

The main goal of this note is to give analytic proofs of all three Claims 1, 2
and 3. In fact Claim 2 follows immediately from Claim 1. It turns out that a
main ingredient has essentially been available for a couple of centuries, that is,
the classical formulae for the expansions of elliptic motion in terms of the mean
anomaly. In particular a key role is played by Bessel functions. Of course, this
relies strongly on the particular format of the family (1). In Section 2 we give the
proofs. In Section 3 we give the numerics which are somewhat subtle because of
the high powers of € involved.

2. Proofs. The main goal of this note is

Theorem 1. The density of the invariant measure of (1), averaged with respect
to a, is of the form given by Claim 1. Furthermore the coefficients Cy ; can be
expressed in terms of Bessel functions.

Before giving the proof, let us introduce the parameter e = —2me/k, to be used
in what follows. The reason to name it e will be clear later. We can also state the
following

Corollary 1. Claim 2 is true.
Proof. As
10g | Dfj o ()| = logk + log(1 — e cos(2mx)) = log k — e cos(2mx) + O(e?),

by using Theorem 1 and noting that log £ multiplies periodic terms with zero aver-
age, from (2) and (3) we have

1
Ak = [ (1= pclo) 18]l d
0
1 A~
= / 2P (—Cy 1 cos(2mx) + O(e))(—e cos(2mx) 4+ O(e?))dx,
0
which is obviously O(¢2¥12) with coefficient —mCy, 1 /k > 0. 0

To prove Theorem 1 we look directly for the invariant measure pj . That is,
for y € S', we ask for invariance

k
1 Pk,a,e x]

LE 7 4

Phie(y ) = kg 1 — ecos(2mx;)’ @)

where z;, j =1,...,k are the preimages of y + a under the map. More concretely,

z; is the unique solution (in R') of

kx 4+ a+esin(2rz) =y +j+ «, (5)
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where uniqueness follows from the smallness of . Dividing by k, multiplying by 27
and introducing M; = QW%, E; = 2mx; and e, as defined above, equation (5)
reads as

Ej 7ESiIlEj :Mj (6)
that is, the classical Kepler’s equation of the elliptic two-body problem. The vari-
ables M, F, e are the well-known mean anomaly, eccentric anomaly and eccentricity,
respectively. Tt is possible to express in closed form the solution of (6) as a function
of e, M; and also (1—ecos E;)~!, to be used in (4). A convenient reference for our
purposes is Chapter II in [1].

The solution of (6) is given by

1
E=M - i
+2 Z . Js(se) sin(sM),
s>1
where J, denotes the Bessel function of the first kind and order s. We recall that
these are entire functions with Taylor series, for s > 0,

—“1"(u s+2r

| |
= rl(s+r)!

and J_s(—u) = Js(u). In particular Js(u) =
s> 0.
At this point it is better to pass to exponential form. Let v = exp(iM), w =

(1+ O(u?)) around u = 0, for

(u/2)°
s!

exp(iFE). Derivation of Kepler’s equation gives (1 — ecos E)m = 1 and then

(1—ecos E)~' =%, csv®, where ¢ = Jy(se) for s € Z. In particular ¢o = 1.
In a similar way it is possible to express cos(pE),sin(pE) as functions of e, M,
or, in exponential form

w" = Zdnﬂ.vr, dp,r = gJ,._n(re) for r #0,
reZ

doo=1,ds10=—=, dno =0 otherwise .

2 )
We substitute these representations of the different functions in (4). Let z =
exp(2miy), 6 = exp(2mia), and let us represent the density as

Pk,a,s(y) = Z amz™. (7)
mEeEZ

Then (4) is written as

Z amz"™m = %Z

k
meZ j=1

(et} (S S et ).
SEZL nez reZ
where 17/9 denotes the complex number of modulus 1 and argument 2%1’. As
%Z;?:l 1(r+8)/k equals zero unless r + s = pk, p € Z, in which case it equals
1, we can collect terms in z? in (8) to obtain
apep = Z AnGp,n; where Ipn = Z Cpk—rdn,r- (9)
nez reZ

Using the properties of J; it is clear that g, ,, is exactly of order elPk=nl Furthermore
90,0 =1, gp,0 = Cpk-
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Now we want to solve (9) for the a,,. It is clear from (7) that ap = 1 (normalisation

of the density). To solve (9) we shall use an iterative procedure. Let ag)) =0 if
p # 0. Then, for j > 0, we compute

WG =03 gy ). (10
nez

At the first step we obtain ap = 0"Pg,o = O(elP*l). Every new iteration of (10)
improves the correct terms at least by an additional factor e.

But we are interested in p. Hence we need the terms independent of 6 in a, and,
for concreteness, we assume p > 0. These are terms of the form

Ip.p1 Ipr.p2 -+ - 9pg—1,pq 94,0 (11)
with p+p1 +p2+...4+pg = 0. Using the order in e of the g coefficients, as defined in
(9), we have that the minimal order is obtained using the choice g =p, p1 = ... =
pq = —1. The corresponding order is pk+1+ (p—1)(k— 1)+ k =2 + p(2k — 1)
as stated in Claim 1. A symmetric choice must be used for p < 0, giving the same
coefficient.

If p = 1 the coefficient in (11) is g1, _19-1,0. As g_10 = ¢k = J_p(—ke) =
Ji.(—2me) it has sign (—1)*. Concerning g; _; all the terms in (9) with r between
—1 and k contribute with the common factor (e/2)*+1. Hence, it is enough to prove
that, for £ > 2, the coefficient

P 0 s (it At S () el SIS SRS S I

To(k+D)! K (k=D 11l (B=2)0 220 7 1 (k=1)-(k—1)!  k-k!

(12)

is positive to show that C‘k 1 has negative sign. Skipping last term in (12) A is
1 K+ k

majorated by /:—i—l Z . The quotient of the terms j+ 1 and j in the sum

141) > 2forallj> 1. H b o™ and, therefore, th f

s(—|—3> > or all y > 1. ence,zjzl_ i and, theretore, the sum o

Kk k! 1\*
all the negative terms in A has absolute value < ZE. Then Ak—k > (1 + k:) — 2.

Taking logarithms & log (1 + %) >1-— % > log2 for k > 2, as desired. This ends
the proof of Theorem 1. a

Up to now we have proved that the entropy of the family (1), averaged with
respect to « and given by I(k,e) in (2) is less than the entropy of the randomized
map, given by J(k, e), when for each new iteration the value of « is taken at random
with uniform probability in S'. Now we want to prove Claim 3 that the maximum
of the entropies, with respect to «, exceeds J(k,e). More concretely

Theorem 2. For e small the entropy hi.o.c Of fi,a.e 15 greater than J(k,€) if o =0
for k even or if o =1/2 for k odd.

Furthermore the difference hy .. — J(k,€), for these choices of a depending on
k, is of the form Be**1(1+ O(e)) with By, > 0.

Proof. First let us compute J(k,e). Expanding as in the proof of Corollary 1 but
up to order 3 in €, one has

2 3
log |D fi.ac(x)] = logk — ecos(2nz) — % cos? (2mx) — % cos®(2mx) + O(e?),
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and it is clear that J(k,e) = logk — ( I<;2)

terms of the entropy hy .. coincide with the corresponding terms in J(k, €) to order
€% and €2 (even more terms coincide if & > 2). Hence, we proceed by looking directly
for the difference. It is given by

/0 log 1D fi.e (2)] (P e () — 1)l (13)

If k is even and « = 0 (i.e., § = 1), it is enough to use the first approximation for

the coefficient of the first harmonic (which is the dominant one in (pg () — 1)):
(1)
ay

+ O(e*). Tt turns out that the dominant

= ¢, = Ji(ke). Hence, the dominant contribution to (13) is
1
/ (—ecos(2mz))J;(ke)2 cos(2mx)dx.
0

As e = —2me/k < 0 and J(ke) = (ke/2)*(1 4+ O(e?)) > 0, the result follows for k
even.
For k odd it is enough to use a = 1/2 (i.e., § = —1) and again —Ji(ke) > 0.
Finally, we have that the difference hy o —J(k,¢), if « = 0 for k even or v = 1/2

: N L2r oy (=70)"
for k odd, has a dominant term of the form Bie**! with By, = 5?(—1) 2 0
k1 '
QW > 0, as we wanted to prove. a

3. Numerics. As mentioned at the Introduction the numerical computations of
entropy must be done with enough accuracy due to the very small values of A(k,¢)
for small e.

First we have considered a subfamily of the expanding Blaschke products as
presented in [4]. As the results are known analytically, this is used as a check of the
numerical methods.

We consider the family of maps Ty, 4,0 : S — S' given by

Z— a1 Z—ag

(14)

ZHel—alzl—aQZ7
where 6 € S. The parameters a1, as are taken real and in [0, 1). Due to the symmetry
it is enough to compute for a; < ag. It is also clear that if 8 = exp(27i«) then it is
sufficient to study the dynamics for o € [0,1/2].

Let hq, q,,0 be the entropy of the map Ty, q4,,6. It coincides with the Lyapunov
exponent if this one is positive. Otherwise it is zero. We want to check the formula

1 1
/ hayas,0d0 = / Jar a5 (2)ds, (15)
0 0
where z = exp(2mis) and the function g, 4, is defined as

Jar.az(2) = 108" (|15, ay.0(2))) + |10, a,0(2) [ N0g™ (I T5, 4, 0(2)])-

As usual, log™ is log if it is positive and zero otherwise, and log™ is log if it is
negative and zero otherwise. It is clear that the value of # € S! in the previous
formula plays no role.

To compute the Lyapunov exponent A we take a random initial value of s €
[0,1), compute z and T transient iterates. Then we compute up to a maximum
of N iterates as follows: Every L iterates (after the transient) we estimate the
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FIGURE 1. Left: Plots of the Lyapunov exponents for the maps
(14) and values of (a1, az) equal to (0.1,0.6), (0.2,0.5) and (0.3,0.9)
as a function of a € [0, 1]. The values at o = 0.5 decrease from the
first couple of parameters to the third one. Right: Values of the
integrals appearing in (15) as a function of (aj,as2). The integral
in the right (resp. left) hand side is shown in a fine (resp. rough)
grid. The agreement is clearly seen.

Lyapunov exponent. Let {A;} denote these estimates. When j is a multiple of
4 the maximum of [A; — Aj/s| and [A; — Agj 4| is computed. The value A; is
accepted as Lyapunov exponent if this maximum is less than some tolerance n. If
N iterates are carried out without stopping the process, then the last estimate of
A; is taken as Lyapunov exponent. Typical values for 7', N, L,n are in the ranges
10°—10%, 107 — 108, 10* —10°, 107° —10~*, respectively. Experimentally one needs
to reach the maximal value of N in around 1% of the cases.

Other approaches to estimate the Lyapunov exponents (see, e.g., [3] and refer-
ences therein) have also been tested with similar results.

This has been used for values of a1, as in [0,0.9] with stepsize 0.1. It is clear
that for a; = az = 0 the value is log(2) and if a; = 0 the value is independent of
a. Figure 1 left shows the value of the Lyapunov exponent as a function of a for
values of (ay,az2) equal to (0.1,0.6), (0.2,0.5) and (0.3,0.9). The three curves can
be easily identified because the values at o = 0.5 decrease from the first couple of
values to the third one.

The point z = —1 for § = —1 (i.e.,, « = 0.5) is a fixed point. It becomes
attracting when crossing the curve 3ajas + a1 + az = 1 from left to right. That
is, when az > a’(a1) = (1 — a1)/(1 + 3a1). The other fixed points do not play any
role, because they are non attracting. Hence, from that value of ay = a3(aq) on,
the Lyapunov exponent is negative at a« = 0.5 (compare with the third curve in the
figure).

Numerically one observes several phenomena. For ay < aj(a;) the Lyapunov
exponent is positive for all o while for ag > a}(aq) it changes sign. For as = a3(ay)
it is positive everywhere except at a = 0.5, where it becomes zero.

It is worth to remark the behaviour of the Lyapunov exponent around the value
of 0 (or «) where it becomes zero. Let a(aq, az) be such that A(ay, az, a(ay,as)) =
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0, assuming as > aj(ay) and afa1,a2) < 1/2 (there is a symmetric point with
afar,az2) > 1/2). It is easy to obtain an explicit (but cumbersome) formula for
afay,as). Then, for nearby « the value of A behaves as cla — a(as,az)|'/?, with
¢ > 0 to the left and ¢ < 0 to the right. The absolute value of these constants ¢, to
the left and to the right of a(a1,az2) < 1/2, is different.

Furthermore, in the critical case aa = a}(a1), the local behaviour around o = 1/2
is of the form A = c|a — 1/2|'/* for some ¢ > 0. See middle curve in Figure 1.

The integrals of the entropy, i.e., in the left hand side of (15), have been computed
by evaluation of the Lyapunov exponent on a grid of stepsize 10~2 and use of the
trapezoidal rule. It is clear that, due to the low regularity near a(ai,as), the
integrals become affected by a relatively large error when as > a3(ay). This is easy
to correct, by splitting the integral in pieces, estimating the values of the different
c and carrying out analytically the integrals in a vicinity of the critical values of a.
But even without these improvements the results are quite remarkable. Figure 1
right shows, in a grid of stepsize 0.01, the numerical value of the integral in the right
hand side of (15) using Simpson rule and extrapolation. Superimposed one can see
the values of the integrals of the left hand side of (15) computed as described above
in a grid of stepsize 0.1. The maximal observed difference has absolute value below
107%. As expected, the largest values of the differences occur for points near the
line ay = a%(aq).

Now we pass to the numerical study of (1). In fact this numerical study preceded
the statement of results in Section 1 and the proofs in Section 2. The behaviour
is different from the Blaschke case. The map (14) can be put in the form s —
Yay s (8)+ . Figure 2 shows the graphs of ¢, 4, for the three couples of parameters
of Figure 1 and the ones of & — 2z + esin(2rz) for the values £ such that the
derivatives coincide at the central point. From the graphs it is unclear how to
understand the different behaviour of both families of maps.

FIGURE 2. Graphs of the maps (14) corresponding to Figure 1 and
a = 0 (red) and of the maps (1) with the same derivative at the
central point (blue).

As we shall be faced with very small values of A(k,¢) the proposed algorithm
to compute A is not accurate enough. For small € one can use expansions of the
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invariant measure as we did in Section 2. But we wanted to proceed in a purely
numerical way to obtain independent checks.

To compute invariant measures Perron algorithm has been used for a lattice of
values of x, computation of backwards iterates and transport of the measure. It has
been required that the computed densities of the invariant measure at a given point,
Pk, (), In two successive iterates of the process (i.e., by going back m times under
f, with a total of k™ preimages, and going back m+1 times under f, with a total of
k™+1 preimages) have differences which are less than some prescribed tolerance 1,,,.
Then the computation of hy, . proceeds as in formula (2) by using pi o () instead
of pi.e(x). The integrations are done using Simpson rule and extrapolation until
different estimates give differences bounded by n;. The selection of the tolerances
Nm and 7; depends on the values of k and € and it is a delicate question if we want
to obtain the desired accuracy in reasonable computing time.

For fixed k and ¢ we can look for the average measure py -(z). Figure 3 shows,
on the left, the densities (in the vertical variable) for given values of « (tics spaced
by 0.2) and as a function of x (tics spaced 0.25). The plot corresponds to k = 2,¢ =
0.05. On the right part we show the isodensity curves, for values of the density
between 0.97 and 1.03 with step 0.005.

1.025

=

===

=

===

——
————

e

=

——

=

FIGURE 3. The density pi.(z) for k = 2,e = 0.05 and isodensity
curves. See the text for details.

We can average now with respect to « for given z. Figure 4 shows the results
for k = 2 and £ = 0.05,0.06 and 0.07. A Fourier analysis of these average measures,
Pk.e(z), shows that they are even functions of # and that the harmonic of order j
scales as €23 in perfect agreement with Theorem 1.

As one can expect, if we compute I(k,e) but using this average measure, the
result coincides with J(k, ) within the current tolerances. This is used as additional
check.

Keeping the analysis restricted to the case k = 2 we see that the difference
of densities between the Lebesgue measure and the average measure p . has, as
dominant term, a harmonic of the form ce® cos(27z), where c is a negative constant.
If we multiply by log |D fx.a.c(x)| = log(2) + me cos(2mz) + O(g?), the terms which
do not average to zero are O(g%), in agreement with the previous results. This has



inspired the proof of Theorem 2. For arbitrary k > 2 when we take the average of
next one.

|D fi,a,c(x)| over the corresponding preimages to obtain the density at # and then

average with respect to «, the terms up to order 2k in ¢ average to zero, but not

FIGURE 4. The average density py .(x) for k =2 and ¢ = 0.05,0.06,0.07.
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as a function of « on this scale.

The computed values of hy o . for kK = 2 as a function of («,¢) are displayed

in Figure 5 which has been obtained from direct computation of the Lyapunov

exponent. Values of € € [0,0.1] have been used. For e = 0.1 the dependence with

respect to « is clearly seen, while for small values of € it is hard to see any variation
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FIGURE 5. Values of the entropy ho .. as a function of a €

From values of py ., computed as described before, the values of I(k,¢) and then
A(k,e) can be obtained. Figure 6 shows the behaviour of A(k,¢) as a function of €
for different values of k. We use logarithmic scales in both axes. From left to right

the plots correspond to k = 2,...,10. Fitting by lines one finds that the slopes are
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of the form 2k + 2 as proved in corollary 1. Note that the range of values of A(k,¢)
is quite wide (roughly from 10~!* to 10~%. We recall that map (1) is expanding if

le] < e*(k) = - For every k € [2,10] the last value of & shown in Figure 6
7r

largely exceeds %5*(1{:) The numerical evidence is that A(k,¢) is always positive,
and not only for small €.

-10

FIGURE 6. Values of g for k = 2,...,10, from left to right, as
functions of €. Logarithmic scales are used in both axes.

Finally, to give a numerical evidence that the results of Theorem 2 are also valid
for large values of € we display, in Figure 7, values of hy . as a function of a.
Maxima occur for a = 0 (resp. o = 1/2) if k is even (resp. odd), in agreement with
the case € small as given by the theorem. The figure also shows that the difference
maxyest{fk,a,c} — J(k,€) is much larger than A(k,¢).

To have a more global view we have computed J(k,e) and max,egi{hk,q.} for
k =2,...,10 and € between 0 and £*(k). The values are shown in Figure 8. In
all cases the maximum exceeds the value of J. Note that with the scale used in
the plot the function I(k,e) can not be distinguished from J(k,e). We recall that
beyond €*(k) the maps are no longer everywhere expanding.
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FIGURE 7. Plots of hy, o, as a function of o showing also the values
of J(k,¢e) (upper horizontal line) and I(k, <) (lower horizontal line).
To see the differences A(k,e) between both lines a magnification
is displayed. Left plot corresponds to k = 2,¢ = 0.1. Right one to
k = 3, = 0.18. The values of hy, o shown as continuous lines have
been computed using the invariant measure. In the left plot the
values marked as points (in green) have been computed directly

from estimates of A.
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FIGURE 8. Plots of J(k,¢) (in red) and max,est {hk o} (in blue)
for k = 2,...,10, from bottom to top. In the horizontal axis we

use the variable e/e* (k).




