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Abstract. In this paper we study the dynamics on T
2 and C

2 of a two-dimensional Blaschke
product. We prove that in the case when the Blaschke product is a diffeomorphism of T

2

with all periodic points hyperbolic then the dynamics is hyperbolic. If a two-dimensional
Blaschke product diffeomorphism of T

2 is embedded in a two-dimensional family given
by composition with translations of T

2, then we show that there is a non-empty open set
of parameter values for which the dynamics is Anosov or has an expanding attractor with
a unique SRB measure.

1. Introduction
A (finite) Blaschke product is a map of the form

B(z) = θ0

n∏
i=1

z − ai

1 − zai

where n ≥ 2, ai ∈ C, |ai | < 1, i = 1 . . . n and θ0 ∈ C with |θ0| = 1. B is a rational mapping
of C, it is an analytic function in a neighborhood of the closed unit disc D, and B maps the
unit circle T to itself. Blaschke products are interesting in their own right but also from
the point of view of more general complex dynamics. For example, from the Riemann
mapping theorem it follows that any meromorphic map such that its Julia set bounds an
invariant simply connected neighborhood in C is conjugate to a Blaschke product which is
expanding on the unit circle [CG].

In [PRS] we studied the family of Blaschke products {Bθ }{θ∈T}, where Bθ := θ B, as
dynamical systems on T from the point of view of finding lower bounds for the average
entropy of members of the family. In [PRS] we first show that either Bθ has a fixed
sink or indifferent point or the dynamics is expanding. We show that, for an open set U
of θ , Bθ is expanding. Then we give a lower bound for the integral of the entropy h(Bθ )

over U , where the entropy is the measure theoretic entropy with respect to the absolutely
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continuous invariant measure for the expanding Bθ . This measure is also the SRB measure
for Bθ .

In the present brief paper we make a start on the study of the dynamics of a two-
dimensional Blaschke product of the form

F(z, w) = (A(z)B(w), C(z)D(w)), (1.1)

and of the form

F(z, w) =
(

A(z)

B(w)
,

D(w)

C(z)

)
, (1.2)

which are considered as dynamical systems on T × T where A, B, C, D are one-
dimensional Blaschke products and we allow the possibility that some of the degrees of
A, B, C, D may also be one. We concentrate our study on the case of Blaschke products
that are diffeomorphisms of T

2. We will call the Blaschke products of type (1.1) that
are diffeomorphisms of T

2 Blaschke product diffeomorphisms; the Blaschke products
of type (1.2) that are diffeomorphisms of T

2 will be called quotient Blaschke product
diffeomorphisms. If the periodic points of a Blaschke product diffeomorphism are
hyperbolic the diffeomorphism is hyperbolic (see Theorem 3.10). Moreover, some are
Anosov diffeomorphisms. In some cases we show that the Julia set of a Blaschke
product considered as a map of C

2 is contained in T
2. Observe that the result stated

in Theorem 3.10 is similar to that obtained for one-dimensional Blaschke product
endomorphisms.

These results could help to gain some insight into the dynamics of certain meromorphic
maps on C

2.
In [PRS], we raise the question of whether similar results as that stated for one-

dimensional Blaschke product families might hold for two-dimensional Blaschke product
families. The family now depends on two parameters (θ, φ) ∈ T × T,

F(θ,φ)(z, w) = (θ A(z)B(w), φC(z)D(w)).

We show in Theorem 4.1 that if F is a diffeomorphism of T × T then there is an open
set of parameter values for which there is a SRB measure with positive entropy that is
either supported on the whole torus, in which case the diffeomorphism is Anosov, or on a
hyperbolic attractor. This is analogous to our result in one dimension. As opposed to [PRS]
who employ techniques from complex analysis, our proofs rely on results from real
dynamics, especially [PS1, PS2]. We wonder whether our results on Blaschke products
have simpler proofs more along the lines of complex dynamics. The Blaschke product
diffeomorphisms we consider as above are precisely the analytic maps on a neighborhood
of D × D mapping D × D to itself and T × T diffeomorphically to itself (see [R]).

2. Examples
The Blaschke product

B(z) = θ0

n∏
i=1

z − ai

1 − zai

is a degree n, orientation-preserving immersion of the circle. It follows that the
two-dimensional Blaschke product diffeomorphisms F we are considering induce
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isomorphisms of the fundamental group of the torus, Z × Z, which given as a matrix are
of the form

NF =
[

n m
k j

]

with n, m, k, j positive integers that are the degrees of A, B, C, D, respectively.
Moreover, det(N ) = 1 since F is an orientation-preserving diffeomorphism of T × T.
From the form of NF we see that NF maps the positive orthant into itself and NF is
a hyperbolic linear map. It is sometimes convenient to consider the torus T

2 as R
2/Z

2

and to write F additively as follows. Given a Blaschke product B : C → C, there exists
b : R → R with

b′ > 0,

such that
B(e2π i x ) = e2π ib(x).

Now, given F(z, w) = (A(z)B(w), C(z)D(w)), let a, b, c, d be the corresponding
transformations acting on R. Therefore

F(e2π i x , e2π iy) = (e2π i(a(x)+b(y)), e2π i(c(x)+d(y))).

So, given F we can take the map

F̂ : T
2 → T

2,

F̂(x, y) = (F̂1(x, y), F̂2(x, y)) = (a(x) + b(y), c(x) + d(y)).

Observe that for (z, w) = (e2π i x , e2π iy) ∈ T
2 we have

Fn(z, w) = (e2π i F̂n
1 (x,y), e2π i F̂n

2 (x,y)).

The linear part of F̂ is the matrix NF above, i.e. F̂ = NF + � where � is doubly periodic.
An invariant set � for f : M → M is said to be hyperbolic if it is compact,the tangent
bundle T�M can be decomposed as T�M = Es ⊕ Eu invariant under D f and there exist
C > 0 and 0 < λ < 1 such that

|D f n
|Es (x)| ≤ Cλn, |D f −n

|Eu(x)| ≤ Cλn

for all x ∈ � and for every positive integer n. Moreover, a diffeomorphism f : M → M is
said to be Anosov if M itself is a hyperbolic set for f . In the case where M = T

n , and f
is Anosov, L( f ) = T

n , where L( f ) is the limit set of f (the closure of the accumulation
points of all backward and forward trajectories) [M]. It is not known if this last property is
true for all Anosov diffeomorphisms of compact manifolds.

2.1. Blaschke products induced by a linear Anosov diffeomorphisms. Now let us start
with a matrix N ∈ SL(2, Z),

N =
[

n m
k j

]

with n, m, k, j positive integers. Let

FN (z, w) = (znwm, zkw j )
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and observe that FN is a Blaschke product diffeomorphism. It follows that

F̂N (x, y) = N (x, y) = (nx + my, kx + j y),

so F̂N is a linear Anosov diffeomorphism induced by N on T
2 and T

2 is a hyperbolic set
for FN .

If we take

N−1 =
[

j −m
−k n

]

it follows that

FN−1(z, w) = (z jw−m, z−kwn)

is a quotient Blaschke product diffeomorphism.

From the discussion above we see that F is in the homotopy class of the linear Anosov
diffeomorphism NF . So Question 4.2 of §4 makes sense from the homotopy point of view.

2.1.1. The Dynamics in C
2 of Blaschke products induced by a linear Anosov

diffeomorphism. Now we discuss the dynamics of FN in C
2.

LEMMA 2.1. �(FN ) = {(0, 0)} ∪ T
2} and FN is an Axiom A diffeomorphism acting on

C
2 \ {C × {0} ∪ {0} × C}.

Proof. Writing z and w in polar coordinates, z = r exp(2π i x), w = s exp(2π iy), it
follows that

FN (r exp(2π i x), s exp(2π iy)) = (rnsm exp 2π i(nx + my), rks j exp 2π i(kx + j y)).

Studying the map (r, s) → (rnsm, rks j ) for r, s ≥ 0, it follows that its non-wandering set
consists of two points: (0, 0), (1, 1). �

The stable manifold of T
2 is contained in {|z| < 1} × {|w| > 1} ∪ {|z| > 1} × {|w| < 1}

and the unstable manifold of T
2 is contained in {|z| < 1} × {|w| < 1} ∪ {|z| > 1} ×

{|w| > 1}. The map FN fails to be a diffeomorphism at C × {0} ∪ {0} × C which are
critical points for FN .

2.1.2. Perturbation of Blaschke products induced by a linear Anosov diffeomorphism.
The next theorem follows from classical results on the stability of Axiom A systems.

THEOREM 2.2. Let FN be a Blaschke product diffeomorphism induced by N ∈ Sl(2, Z).
Then, for any rational map G on C

2 close enough to FN it follows that �(G) = {{S} ∪ H},
such that S is a fixed attracting point, and H is a hyperbolic set homeomorphic to a two-
dimensional torus. Moreover, if G is a diffeomorphism of C

2 \ {C × {0} ∪ {0} × C} it is
an Axiom A diffeomorphism.
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3. General dynamics of the Blaschke products
Definition 3.1. An f -invariant set � is said to have a dominated splitting, if the tangent
bundle over � is decomposed into two invariant subbundles T�M = E ⊕ F , such that there
exist C > 0 and 0 < λ < 1 with the following property:

|D f n
|E(x)||D f −n

|F( f n(x))
| ≤ Cλn for all x ∈ �, n ≥ 0.

This concept was introduced independently by Mañé, Liao and Pliss, as a first step
toward proving that structurally stable systems satisfy a hyperbolicity condition on the
tangent map. A dominated splitting is a natural way to relax hyperbolicity.

THEOREM 3.2. Let a, b, c, d be C1-smooth immersions from S1 to S1 that preserve
orientation. Let f : T

2 → T
2 be given by

f (θ, φ) = (a(θ) + b(φ), c(θ) + d(φ)).

Then the positive cone field is preserved by D f and if f is a diffeomorphism then f has a
dominated splitting on all of T

2†.

Proof. Observe that

D f =
[

a′ b′
c′ d ′

]
.

Let C+ be the positive cone bounded by the directions spanned by the vectors (1, 0)

and (0, 1). Observe that DF(C+) is properly contained in C+. The existence of a
dominated splitting follows from standard arguments (see, for instance, [BDV, p. 293]). �

COROLLARY 3.3. Given a two-dimensional Blaschke product diffeomorphism

F(z, w) = (A(z)B(w), C(z)D(w)),

then F̂ has a dominated splitting on all of T
2 and the complexification of this dominated

splitting is a dominated splitting for F |T2 with respect to the complex derivative of F.

THEOREM 3.4. Let a, b, c, d be C1-smooth immersions from S1 to S1 such that a, d
preserve orientation and b, c reverse orientation. Let f : T

2 → T
2 be given by

f (θ, φ) = (a(θ) + b(φ), c(θ) + d(φ)).

Then the positive cone field bounded by the directions spanned by the vectors (1, 0)

and (0, −1) is preserved by T f and if f is a diffeomorphism then f has a dominated
splitting on all of T

2‡.

Proof. The proof is similar to that of Theorem 3.2. �

COROLLARY 3.5. Given a two-dimensional quotient Blaschke product diffeomorphism

F(z, w) =
(

A(z)

B(w)
,

D(w)

C(z)

)
,

then F̂ has a dominated splitting on all of T
2 and the complexification of this dominated

splitting is a dominated splitting for F |T2 with respect to the complex derivative of F.

† If f is not a diffeomorphism there is a dominated splitting on the inverse limit space.
‡ If f is not a diffeomorphism there is a dominated splitting on the inverse limit space.
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Now we can apply results from real dynamics about diffeomorphisms with dominated
splittings (Theorem B in [PS1]). Recall that �( f ) is the non-wandering set of f .

THEOREM 3.6. [PS1] Let f ∈ Diff2(M2) and assume that � ⊂ �( f ) is a compact
invariant set exhibiting a dominated splitting such that any periodic point is a hyperbolic
periodic point of saddle type. Then, � = �1 ∪ �2 where �1 is hyperbolic and �2

consists of a finite union of periodic simple closed curves C1, . . . , Cn, normally hyperbolic,
and such that f mi : Ci → Ci is conjugate to an irrational rotation (mi denotes the
period of Ci ).

In the next two propositions we show that periodic simple closed curves do not occur
for Blaschke product diffeomorphisms and that there is at most one sink.

PROPOSITION 3.7. Let F be a Blaschke product diffeomorphism. Then F does not have
any normally hyperbolic simple closed invariant curves.

Proof. If C is an invariant simple closed curve for F then either C represents a non-trivial
element of the fundamental group of T

2 fixed by NF or C bounds a disc. Since NF

is a hyperbolic linear map it has no non-trivial fixed elements, so the first eventuality is
impossible. In the second case the bundle E which is tangent to C cannot be extended over
the disc bounded by C contradicting the fact that there is a dominated splitting defined on
all of T

2. �

PROPOSITION 3.8. A two-dimensional Blaschke product, F, has at most one attracting or
semi-attracting periodic point, which is necessarily a fixed point, in D × D.

Proof. Since D × D is invariant for F , Fn is a normal family in D × D. If z0 ∈ D × D is an
attracting or a semi-attracting periodic point of F then some subsequence Fnk converges
to the constant map z0 on an open set in, and hence all of the interior of, D × D. Let j be
the period of z0. It follows that F jn(z) converges to z0 for all z in the interior of D × D.
Thus z0 is the unique attracting periodic point in D × D. �

QUESTION 3.9. Is there a version of Proposition 3.8 which counts the number of repellors,
even for Blaschke products which are birational equivalences?

We can now describe the dynamics of Blaschke product diffeomorphisms.

THEOREM 3.10. Let F be either a Blaschke product diffeomorphism or a quotient
Blaschke product diffeomorphism such that any periodic point in T

2 is a hyperbolic
periodic point. Then, F|T2 is an Axiom A diffeomorphism. Moreover, one of the following
options holds:
(1) F|T2 is Anosov and L(F|T2) = T

2,
(2) L(F|T2) = S ∪ H ∪ Sa ∪ R,
(3) L(F|T2) = S ∪ H,
(4) L(F|T2) = H ∪ Sa ∪ R,
where S is a set formed by a single attracting fixed point, R is a set formed by a finite
number of repelling periodic points, Sa is a finite number of isolated saddles and H is a
non-trivial maximal transitive hyperbolic invariant set in T

2. In the last case it follows
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that H is an attractor in T
2. Moreover, the order relation is given by R → Sa → H → S

(where A → B if W u(A) ∩ W s(B) �= ∅). In the case when S is empty, F |T2 has a unique
S RB measure with positive entropy.

The proof of the theorem is long and complicated.

Proof. Step (1). Since F has a dominated splitting on all of T
2, the complement of

the basins of the periodic attracting and repelling points of F satisfies the hypotheses
of Theorem 3.6. It is a hyperbolic set by Theorem 3.6 and Proposition 3.7. Arguing
as in [PS1, §2] we see that F has only finitely many periodic attracting and repelling
periodic points and is Axiom A. By Proposition 3.8, there is at most one attracting periodic
point (which must be fixed and which we denote by S). We denote the repelling periodic
points by R. If S and R are both empty then all of T

2 is a hyperbolic set, and we are in
Option (1).

Step (2). To see that one of our four options hold, it is sufficient to see that, with the
exception of finitely many saddles (which we denote by Sa), all the remaining hyperbolic
saddles belong to one non-trivial homoclinic class (which we denote by H), i.e. their stable
and unstable manifolds intersect transversally. We prove this in Step (3). Transversality
of the intersection of stable and unstable manifolds of saddles is guaranteed by dominated
splitting, since unstable manifolds of saddles are tangent to F while stable manifolds are
tangent to E .

Step (3). From the fact that NF is a hyperbolic linear map with positive entries it follows
that Trace(Fn∗ ) → +∞ as n → ∞ and this implies, by the Lefschetz formula and [SS] or
Nielsen theory, that the number of periodic points goes to infinity. So Closure(Per(F))

contains a non-trivial homoclinic class. It remains to prove that there is a unique non-
trivial homoclinic class. First, note that if p and q are distinct hyperbolic saddles and
W s(p) ∩ W u(q) �= ∅ then W s(p) and W u(q) have infinite length. It follows from the
finiteness of the spectral decomposition and local product structure for Axiom A basic sets
that there are at most finitely many hyperbolic saddles with the property that their stable or
unstable manifolds have finite length. We denote this set of saddles by Sa . We now prove
that the closure of the set of hyperbolic saddles with the property that at least one branch of
its unstable manifold and at least one branch of its stable manifold is of unbounded length
is a unique homoclinic class (denoted with H). This will finish Step (3). For the proof we
prove some lemmas.

LEMMA 3.11. There exists h : T
2 → T

2 continuous, onto and homotopic to the identity
such that h ◦ F = A ◦ h, where A is the linear Anosov map induced by NF . That is, F
is semiconjugate to A. Moreover, let p be a periodic point of F such that one of its
unstable branches has unbounded length. Then it follows that h(γ u(p)) ⊂ W u(h(p)) and
h(γ u(p)) has unbounded length, where γ u(p) is the branch of W u(p) \ {p} such that
the corresponding unstable branch has unbounded length. The same holds for the stable
branches.

To prove Lemma 3.11 we use the following lemma.

LEMMA 3.12. Let F̂ : R
2 → R

2 be the lift of F to R
2. Then F̂ = A + P such that A

is a linear Anosov map and P is periodic and there exists H : R
2 → R

2 continuous and
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onto such that H ◦ F̂ = A ◦ H, that is, F̂ is semiconjugate to A. Moreover, there exists
a constant K1 such that ‖H − Id‖ < K1. Also, for any m ∈ Z

2 we have H(x + m) =
H(x) + m.

Proof. The proof can be found in Theorem 2.2 of [Fr]. The main ingredient to construct
the semiconjugacy is the global product structure of A. An alternate approach uses the fact
that the shadowing lemma holds for any pseudo-orbit. �

Now we turn to the proof of Lemma 3.11.

Proof. Observe that Lemma 3.12 implies the existence of h. Moreover, since h is a
semiconjugacy we also conclude that h(γ u(p)) ⊂ W u(h(p)). In fact, if x ∈ W u(p) then
there exists xi → p such that f i (xi ) = x . So h(xi ) → h(p), Ai (h(xi ) = h( f i (xi ) = h(x)

and h(x) ∈ W u(h(p)). Similarly, semiconjugacies map stable manifolds to stable
manifolds. We have to show now that the length of h(γ u(p)) is unbounded. Since γ u

has infinite length we may find periodic saddle points whose stable manifolds cross γ u in
infinitely many points. Consider an embedded loop γ consisting of a connected subarc
of γ u and a short piece of stable arc β of a periodic saddle r . This loop is not contractable
to a point. In fact, if it is not the case, let D be the disc bounded by γ . Observe that
there it is a non-singular vector field X defined on D induced by the subbundle F of
the dominated splitting with the property that X is inward pointing on D, which is a
contradiction. Therefore, it follows that N n

F ([γ ]) = [Fn(γ )] (where NF is the linear map
acting on the fundamental group) goes to infinity. Since h induces the identity map on the
fundamental group of T

2, [An(h(γ ))] also goes to infinity in the fundamental group of T
2.

Since the length of An(h(β)) is bounded, the length of An(h(γ u)) goes to infinity. �

In the next lemma we will use Lemma 3.11 to conclude that the closure of all the
periodic points such that at least one branch of its unstable manifold and at least one branch
of its stable manifold is not bounded is a unique homoclinic class.

LEMMA 3.13. Let p and q be hyperbolic saddle points of F such that p has an unbounded
unstable branch and q has an unbounded stable branch. Then these branches have non-
empty intersection.

Proof. Let p be a periodic point with an unbounded unstable branch and let q be a periodic
point with an unbounded stable branch. Let γ u(p) be the branch of W u(p) \ {p} with
unbounded length. Let γ s(q) be the branch of W s(q)) \ {q} with unbounded length.
From Lemma 3.11 it follows that h(γ u(p)) is an arc of unbounded length contained in
the unstable manifold of h(p). Since W u(h(p)) and W s(h(q)) intersect transversally
(recall that, since A is a linear Anosov, for any pair of periodic point of A, any of their
stable and unstable branches intersect each other), it follows that h(γ u(p)) and h(γ s(q))

intersect infinitely often and the long arcs in h(γ u(p)) and h(γ s(q)) have arbitrarily large
intersections. Now if we complete a long arc in γ u(p) to a closed loop γ (p) adding
a small arc in W s(r1) and a long arc in γ s(q) to a closed loop γ (q) adding a small
arc in γ u(r2) for appropriately chosen saddles r1, r2, we see that h(γ (p)) and h(γ (q)

intersect homologically with as large an intersection number as we wish. Since h induces
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the identity map in homology so do γ (p) and γ (q), and then by construction so do γ u(p)

and γ s(q). �

This concludes the proof of Step (4).
Step (5). If S is empty then H is an expanding attractor, which always carries a SRB

measure of positive entropy. �

Using the spectral decomposition theorem for dominated splitting (see [PS2]) similar
results as that stated in Theorem 3.10 can be obtained without assuming that the periodic
points are hyperbolic.

4. Families of Blaschke products
Now, given a two-dimensional Blaschke product diffeomorphism F(z, w) = (A(z)B(w),

C(z)D(w)), we consider the following two-parameter family:

F(θ,φ)(z, w) = (θ A(z)B(w), φC(z)D(w)), (θ, φ) ∈ T × T.

THEOREM 4.1. Let F be a Blaschke product diffeomorphism. Then there exists an open
set U ⊂ T

2 such that if (θ, φ) ∈ U then it follows that F(θ,φ)|T2 satisfies the first or last
option of Theorem 3.10, i.e. F(θ,φ) is Anosov or L(F(θ,φ)|T2) is the union of a finite number
of repelling periodic points and saddles and a hyperbolic non-trivial attractor. In either
case F(θ,φ)|T2 has a unique S RB measure of positive entropy.

QUESTION 4.2. Are there always parameter values (θ, φ) such that F(θ,φ) is Anosov?

Proof. Let U be the set of parameter (θ, φ) such that F(θ,φ) has neither a sink nor a
semi-attracting fixed point in T

2. U is obviously open. We will show it is non-empty.
Assume by contradiction that U is empty. Since, for any (θ, φ), F(θ,φ) has at most one
attracting or a semi-attracting fixed point, then there is a continuous function from T

2

to T
2, (θ, φ) → s(θ, φ), such that s(θ, φ) is either a sink or a semi-attracting fixed point

for F(θ,φ). However, if s(θ, φ) is a semi-attracting fixed point for F(θ,φ) for some (θ, φ),
from the fact that F(θ,φ) has a dominated splitting, it follows that s(θ, φ) is a saddle
node and there is an invariant center manifold containing the saddle node; we can then
choose a nearby parameter value to bifurcate the point to make it disappear. The resulting
system then has no attracting or semi-attracting fixed point, contradicting the hypothesis
that U is empty. Therefore, we may assume that s(θ, φ) is a hyperbolic sink, with a
dominated splitting for every value of (θ, φ). It follows that Id − DF(θ,φ)(s(θ, φ)) is
an isomorphism and |det(Id − DF(θ,φ)(s(θ, φ)))| < 1. By the implicit function theorem,
Ds(θ, φ) = (Id − DF(θ,φ)(s(θ, φ)))−1. So s is a covering map from the torus to itself and
|det(Ds(θ, φ))| > 1 for all (θ, φ). Hence the map s is at least two to one. However this is
impossible since F(θ1,φ1)(x) = F(θ2,φ2)(x) for any x in the torus implies (θ1, φ1) = (θ2, φ2).
So U is not empty.

To finish, it is enough to show that there is an open and dense set of parameter values
such that all the periodic point are hyperbolic. By Theorem 3.10 it is enough to show there
is a dense set of parameter values such that all the periodic points are hyperbolic since it
follows from Theorem 3.10 that these systems are stable. This last fact follows from a
standard Kupka–Smale argument. There are finitely many periodic points of any period,
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and if q is a non-hyperbolic periodic point, since F has a dominated splitting, we find an
invariant center manifold containing the point q and we can choose a nearby parameter
value to bifurcate the point into a hyperbolic one. It follows that the set of parameter
values with diffeomorphisms with all periodic points of a given period hyperbolic is open
and dense. Hence the set with all periodic points hyperbolic is residual and hence dense. �

Observe that in the case when F(θ,φ)|T2 has a unique SRB measure μ(θ,φ) of positive
entropy, it follows that

hμ(θ,φ)
=

∫
T2

log ‖DF‖ dμ(θ,φ) = λ+
(θ,φ) > 0,

where λ+
(θ,φ) is the positive Lyapunov exponent. On the other hand, when F(θ,φ)|T2 has

either a sink or a semi-attracting fixed point, then the SRB measure is a Dirac measure on
the sink or the semi-attracting fixed point, and therefore we can also define the metrical
entropy related to these measures. We wonder whether it is possible to obtain lower
bounds for ∫

T×T
hμ(θ,φ)

dθ dφ,

similar to those we have obtained in [PRS].

5. Final remarks, questions and some generalizations
5.1. Julia sets. Let F : C

2 \ P → C
2 be an analytic function, where P is a set of

poles given by a finite union of codimension-one submanifolds. Let us assume that,
given F analytic on C

2 \ P , there exists a finite number of one-dimensional complex
submanifolds {li } such that F has an analytic inverse

F−1 : C
2
∖ [⋃

i

li
]

→ C
2.

Observe that this is the case for the quotient Blaschke diffeomorphisms. It is possible to
define K ± as the sets

K + = {(z, w) ∈ C
2 \ P : ∃ neighborhood U of (z, w) such that Fn|U is a normal family}

K − =
{
(z, w) ∈ C

2
∖ [⋃

i

li
]

: ∃ neighborhood U of (z, w) such that

F−n
|U is a normal family and

[⋃
i

li
]

∩ F−n(U ) = ∅ ∀n > 0
}
.

We define the Julia set J as

J = C
2
∖ [

K + ∪ K − ∪
⋃

i

li ∪ P
]
.

It follows immediately that
H ⊂ J (F).

QUESTION 5.1. Is it true that
H = J (F)?
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5.2. Some general version for analytic diffeomorphisms. Some of the result stated here
can be stated in a more general setting using classical results of complex analysis (see [R]).

Remark 5.2. Any analytic function on D × D that keeps T
2 invariant is a Blaschke product.

In fact, this can be easily checked in the following way. Fixing w ∈ S1, it follows
that z → F1(z, w) (where F1 is the first coordinate of F) is an analytic function on D

1 that
keeps S1 invariant and, therefore, is a one-dimensional Blaschke product

F1(z, w) = B(w)

n∏
i=1

z − ai (w)

1 − zai (w)
,

where w → B(w) is an analytic function that preserves S1 and
∏n

i=1 (z − ai (w))/

(1 − zai (w)) is an analytic function. In particular, it follows that B(w) is also a Blaschke
product. To finish, observe that in the quotient complex conjugation is used so, to keep
analyticity, it follows that the symmetric functions of the ai (w) are constant functions.

Using the Riemann mapping theorem and Theorem 3.10 the next remark follows.

Remark 5.3. Let F be an analytic map in cl(U ) × cl(V ) → C
2 such that U, V are two

connected open sets in C. Let us assume that F(U × V ) ⊂ U × V , F(∂U × ∂V ) =
∂U × ∂V , and F|∂U×∂V is a diffeomorphism (where ∂W denotes the boundary of W ).
Then, the thesis of Theorem 3.10 holds on ∂U × ∂V .
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