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ABSTRACT. In 1954, F. Mautner gave a simple representation theoretic argu-
ment that for compact surfaces of constant negative curvature, invariance of a
function along the geodesic flow implies invariance along the horocycle flows
(these are facts which imply ergodicity of the geodesic flow itself), [M|. Many
generalizations of this Mautner phenomenon exist in representation theory,
[Stl]. Here, we establish a new generalization, Theorem 2.1, whose novelty
is mostly its method of proof, namely the Anosov-Hopf ergodicity argument
from dynamical systems. Using some structural properties of Lie groups, we
also show that stable ergodicity is equivalent to the unique ergodicity of the
strong stable manifold foliations in the context of affine diffeomorphisms.

1. Introduction. Beginning with [GPS| the first two authors have been studying
stable ergodicity of volume preserving partially hyperbolic diffeomorphisms on a
compact manifold M. The most recent survey on the subject is [PS3]. A key issue
is the way in which the strong stable and strong unstable manifolds foliate M.
To prove ergodicity one assumes essential accessibility, namely that every Borel set
S C M which consists simultaneously of whole strong stable leaves and whole strong
unstable leaves has measure zero or one. Such a set S is said to be us-saturated.
As essential accessibility is a measure theory concept, it is difficult to verify and
even more difficult to prove stable under perturbation. A stronger assumption is
full accessibility! in which it is required that M and the empty set are the only
us-saturated sets. In many cases full accessibility is stable under perturbation, and
this leads to stable ergodicity.

The second author was supported in part by an NSERC Discovery Grant.
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I In previous papers, we referred to full accessibility as us-accessibility, and to a stronger
condition as homotopy accessibility. The latter is always stable under perturbation and is often a
consequence of the former.
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We have conjectured that the stably ergodic diffeomorphisms are open and dense
among C? volume preserving partially hyperbolic diffeomorphisms. Our plan of
attack was to prove that an open and dense subset of partially hyperbolic diffeo-
morphisms are fully accessible. As already noted, this seems far easier than the
similar assertion for essential accesssibility, so we focused on the full accessibility
property. The following recent developments, however, caused us to reconsider our
position and to shift our attention more in the direction of essential accessibility.

(a) Among affine diffeomorphisms of finite volume, compact homogeneous spaces,
those which are stably ergodic among left translations are precisely those with
the essential accessibility property [St3]. (These are also precisely those which
are K-automorphisms.) In other words, affine stable ergodicity is equivalent
to essential accessibility. The proof relies significantly on the structural prop-
erties of Lie groups.

(b) As was shown by Federico Rodgriguez Hertz, essential accessibility without
full accessibility sometimes leads to (nonlinear) stable ergodicity, [RH].

(¢) The Mautner phenomenon from representation theory leads to a proof of
half of the affine stable ergodicity result mentioned in (a), while in [PS2] we
establish a nonlinear version of the Mautner phenomenon, which we apply to
nonlinear stable ergodicity.

Below, we give a proof of the Mautner phenomenon in the case it is used for (a),
but instead of structural properties of Lie groups or their representation theory, we
use Birkhoff’s theorem as in the Hopf-Anosov argument for the ergodicity of Anosov
systems. This proof makes us feel we have landed in the right place.

We would like to see a unified explanation of these Mautner phenomena, one
that might generalize Rodriguez-Hertz’s theorem to all essentially accessible affine
diffeomorphisms. To this end we wondered what more of a potentially useful nature
could be said about the strong stable and unstable manifold foliations. The third
author has extended the results in his monograph [St1], and answered question 6.8
of [BPSW] for affine diffeomorphisms — namely, in the affine, essentially accessible
case, the strong stable or strong unstable manifold foliations are uniquely ergodic.
See Theorem [3.1! below.

2. The Mautner phenomenon. Roughly speaking the Mautner phenomenon
refers to invariance of a function along trajectories of one flow implying invariance
along certain transverse flows. Mautner first observed the phenomenon in an affine
ergodicity proof — invariance of a function along the geodesic flow (for a compact
surface of constant negative curvature) implies invariance along the horocycle flows.
See [M]. It has been generalized considerably by Auslander-Green, Dani and Moore
for the ergodic theory of flows on homogeneous spaces. See [St1] for references,
proofs and a discussion of the results.

A version of the Mautner phenomenon applies precisely to prove the ergodicity
of the essentially accessible affine diffeomorphisms of finite volume, compact homo-
geneous spaces. In [PS3] we sketched a proof of this result. Below, we do a better
job. The proof is quite close in structure to the best proof we have for partially
hyperbolic diffeomorphisms with the essential accessibility property, see [PS2] and
[PS3].
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Let G be a connected Lie group, and B C G a closed subgroup such that G/B
is compact and of finite volume, i.e., G/B admits finite G-invariant volume.? Let
f € Aff(G/B) be an affine map of G/B, i.e., f = L, 0 A, where L, : G/B — G/B
is left translation by a fixed element ¢ € G and A : G/B — G/B is a map induced
by a fixed automorphism A € Aut(G) such that A(B) = B. The covering map
f=LsoA:G — G makes

G — @G # G
| | |
¢/B—A L qp—Li  qm

commute and induces an automorphism df of the Lie algebra g. With respect to
df, the Lie algebra g splits into generalized eigenspaces g = g* @ g @ g° such that
the eigenvalues of df are respectively outside, on, or inside the unit circle. The
corresponding connected subgroups G*, G¢, and G* are the unstable, central, and
stable horospherical subgroups. Their orbits form the (strong) unstable, center, and
(strong) stable foliations for f on G/B. These facts are proved in [PSS].

Let H C G be the subgroup generated by G* and G®. It is normal and called the
hyperbolic subgroup for f. See [PS1]. Under the previous conditions, the version
of the Mautner phenomenon that we prove is:

Theorem 2.1. Every f-invariant L' function ¢ : G/B — R is essentially constant
on cosets tHDB.

Since the values of an L' function are ambiguous on a zero set, the meaning
of Theorem 2.1] is this: we assume that for almost every y = aB € G/B = M,
o(f(y)) = ¢(y), and we conclude that there is a zero set Z C M such that for each
pair y,y’ € M \ Z that lie in a common left coset of HB, we have ¢(y) = ¢(v').

Corollary 2.2. If HB = G then f is ergodic.

Remark. According to Dani (see [St1] §1), f is a K-automorphism if and only if
G = HB. G = HB is the same as essential accessibility and equivalent to the stable
ergodicity of f among left translation perturbations [St3].

We give the proof of the theorem modulo some facts which should be standard
and the Hopf-Anosov argument which are proven below.

Proof of Theorem 2.1. We are given an affine manifold M = G/B and an L!
function ¢ : M — R which is invariant under the affine diffeomorphism f : M — M,
and we claim that ¢ is essentially constant along left cosets of HB. By the Hopf-
Anosov argument (Lemma 2.4), ¢ is essentially constant along the leaves of the
strong stable and strong unstable foliations, which, as stated above, are the left
orbits of Lie subgroups G° and G*. That ¢ is invariant along the left orbits of G*

and G" is equivalent to the fact that ¢ is g invariant for every ¢g in G° and G
2 “Finite volume” includes the requirement that the measure on G/B be G-invariant. In
particular, if G = SL(2,R), I' is a uniform discrete subgroup, and T is the subgroup of upper
triangular matrices then
(a) the homogeneous space G/T is of finite volume, but
(b) the homogeneous space G/T ~ S! is not of finite volume because there is no G-invariant
measure on it.
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(Lemma 2.7)), that is there is a zero set Z such that for all g € G* U G® and for all
y,gy € M\ Z we have ¢(y) = ¢(gy). We claim that ¢ is also essentially constant
along H-orbits, where H is the subgroup generated by G* and G*.

Because H is normal, its orbits foliate M. Take any h € H. It is expressed as a
product

h=g1-92-9n

where g1, ..., g, are alternately in G* and G*. Now
Zn=2ZUg'Zu ... Ug'Z

is a zero set, and for all y € M \ Z;, we have ¢(y) = ¢(hy). Using Lemma 2.7 again
implies that ¢ is essentially constant along left H-orbits. Since H is normal, left
orbits are the same as right orbits and Lemma 2.7 gives a zero set Z" such that for
all h € H and for all y,yh € M \ Z" we have

o(y) = p(yh)
where yh = xhB and y = xB. Clearly we also have

¢(yhd) = ¢(zhbB) = ¢p(zhB) = d(yh) = ¢(y),

so H B is contained in the stabilizer of ¢. Now the stabilizer of ¢ is closed (Lemma 2.8])
so the stabilizer contains also the closure HB. Thus, for each g € HB we have a
zero set Z, such that for all y € M\ Z,, ¢(y) = ¢(yg). One more application of
Lemma 2.7 implies that ¢ is essentially constant along left cosets of HB. O

Now we turn to the lemmas used in the proof of Theorem 2.1. We make several
applications of Fubini’s Theorem, all of which the well educated reader may find
superfluous.

We say that ¢ is essentially constant along the cells of a partition P of M if,
excluding a zero set from M, ¢(z) = ¢(a') whenever x, 2’ lie in a common cell of

P.

Lemma 2.3. Suppose that X,Y are o-finite measure spaces and ¢, : X XY — R,
n=1,2,..., is a sequence of measurable functions that converges almost everywhere
to a limit ¢. If each ¢, is essentially constant along the slices X X y then the same
is true for ¢.

Proof. The hypothesis means that for each n, there is a zero set Z,, C X x Y, and
if we call its y-slice

Zn(y) = Zn N (X xy)

then the function ¢,( - ,y) is constant on (X X y) \ Z,(y). By Fubini’s Theorem
the set of slices X x y for which Z,(y) has positive X-measure is a zero set Z.
Let Z be the union of the zero sets Z/, and the zero set on which ¢, (x,y) fails to
converge to ¢(x,y). It is a zero set in X x Y. On each y-slice not in Z, ¢, (x,y)
is almost everywhere constant and converges pointwise to ¢(x,y). Hence ¢(z,y) is
essentially constant along the y-slices. O

The next lemma contains the application of Birkhoff’s theorem in the Hopf-
Anosov proof of ergodicity. We have stated and proved it more generally than it is
employed here as the foliations in our application are smooth and hence absolutely
continuous.
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Lemma 2.4. If f : M — M is a C? measure preserving, partially hyperbolic diffeo-
morphism and ¢ : M — R is a measurable f-invariant function then ¢ is essentially
constant along the leaves of the strong stable and strong unstable foliations.

Proof. Suppose at first that ¢ is L'. The Birkhoff Ergodic Theorem provides a
continuous projection 3 : L'(M,R) — Inv'(f) where

B = Tim LS ()
k=1

the limit exists almost everywhere, and Inv'(f) is the space of L' invariant func-
tions. Clearly 3(¢) = ¢. If ¢ is continuous then it is straightforward to see that if
B(1)(x) exists at one point of a strong stable manifold W*%(p) then it exists at all
points of W**(p) and has the same value. Thus, §(¢) is essentially constant along
the leaves of the strong stable foliation.

The space C°(M, R) is dense in L' (M, R), and so there is a sequence of continuous
functions 1),, that converges to ¢ in the L' sense. Since f3 is continuous, 3(¢,)
converges to ¢ in the L' sense. The Riesz Lemma gives a subsequence such that

klirn B(n,, ) (x) = ¢(x) almost everywhere.

Applying Lemma 2.3 in a W?**-foliation box is permissible because the foliation is
absolutely continuous. Hence ¢ is essentially constant along strong stable plaques.
Covering M with foliation boxes completes the proof that ¢ is essentially constant
along strong stable leaves. Replacing f with f~! gives the same assertion for the
strong unstable foliation.

Finally, if ¢ is measurable but not L', we replace it by a cut-off version

_ ) olz) iffe(z)| <L
oule) = {0 if |¢(2)] > L.

Clearly, ¢y, is L' and f-invariant. Essential constancy of ¢, along the leaves of the
strong stable and strong unstable foliations implies the same for ¢. O

Lemma 2.5. If a measurable function ¢ is almost everywhere constant on almost
every leaf of an absolutely continuous foliation F then it is essentially constant
along the leaves of F.

Proof. Let ¢ : M — R be such a function. By hypothesis there is a zero set Zy C M
that consists of whole F-leaves, and for each F-leaf L C M\ Z; there are a constant
¢(L) and a leaf-zero-set Z;, C L such that f(z) = ¢(L) for all z € L\ Zy,. Define

_JeL) ifzeLcCcM\Z
w(z) = {oo if z € Zj

It is enough to show that i is measurable. For then

Z=1{z€M:4(z) £ (=)}

is measurable and meets each leaf in a zero set. Since Z is a measurable set which
is the union of leaf zero sets, it is a zero set. (Absolute continuity of F is needed to
apply Fubini’s Theorem, while measurability of Z is needed to infer that Z is a zero
set. For recall that there is a nonmeasurable set in the plane which meets every
horizontal line in a single point.) Thus if x,2" € M \ Z lie in a common leaf then



850 CHARLES PUGH, MICHAEL SHUB AND ALEXANDER STARKOV

o(z) = Y(z) = Y(a’) = ¢(2'), which means that ¢ is essentially constant along the
leaves of F.

To check measurability of v, cover the manifold by foliation boxes U = X x Y,
inside which the leaf-plaques are discs X x y. Disintegrate the smooth measure m
on M to plaque measures m,. If S is measurable and S, = SN (X x y) then for
almost every y, S, is plaque measurable, y — m,(S,) is a measurable function, and

m(SNU) = /my(Sy) dy.

Fix any ¢ € R and apply this to the sublevel set S = ¢~1(—o0,c]. The set is
measurable and if (z,y) € U then

Y(z,y) <c = my(Sy) > 0.

Measurability of y +— m,(S,) implies that {y : m,(S,) > 0} is measurable and
therefore

{zeU:y(z) <c}
is measurable. A locally measurable set is measurable, so the sublevel set 1)~ (—o0, c]
is measurable, and ) is measurable. O

Remark. The converse to Lemma 2.5 is immediate.

Lemma 2.6. If a diffeomorphism almost leaves a measurable set S invariant then
it does leave its set of density points S™ invariant.

Proof. We assume that f: M — M is a diffeomorphism, Z = SAfS is a zero set,
and prove that fS* = S*. We have

S\ZcfScsSuz
and, since zero sets have no effect on density points,
S* = (S\2)* c (fS)* c (Suz)* = 5%,
which gives (fS)* = S*. Since a diffeomorphism preserves every density point,

(fS)* = fS*, which gives fS* = S*. .

The next lemma generalizes the fact that almost everywhere invariance of a mea-
surable function along orbits of a flow is implied by almost everywhere invariance
for each time-t map.

Lemma 2.7. Suppose that the smooth manifold M carries a smooth measure m,
¢ : M — R is a measurable function, G is a Lie group that acts smoothly on M,
and the G-orbits foliate M. The following are equivalent:
(a) ¢ is essentially constant along the orbits of G.
(b) For each g € G, there is a zero set Zy C M such that for all v € M \ Z,,
p(z) = d(gx).

Proof. We write the action of G on M as x — gzx.
Assume (a). Then there is a zero set Z C M such that if x,2’ € M \ Z belong
to a common G-orbit then ¢(z) = ¢(a’). Fix g € G and define
Zy=2Ug'Z.

Since G acts smoothly, Z, is a zero set. If z € M \ Z, then z,gx € M \ Z, and by
(a), &(z) = ¢(gx). This gives (b).
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Assume (b). We must find a zero set Z C M such that for each g € G, if
x,9x € M\ Z then ¢(x) = ¢(gx). Uncountability of G precludes taking Z to be
the union of the Z,, as g ranges through G. Since ¢ is measurable and the orbit
foliation is smooth, there is at most a zero set of orbits Znu, restricted to which ¢
is nonmeasurable. Without loss of generality we assume that Zxy = 0. Thus, each
sublevel set of ¢ meets each orbit in an orbit measurable set.

Fix a < b and set A = ¢~!(—00,a], B = ¢~1[b,o0). The sets A, B are measur-
able, and meet each orbit in measurable sets. We claim that

Z(a,b) ={z € M : both A and B meet the orbit Gz
in a set of positive orbit measure}

is a zero set.

Suppose that Z(a,b) is not a zero set. Let A™ and B* be the sets of density
points of A and B. Since AAA* is a zero set, Fubini’s Theorem implies that the
set of orbits meeting A with positive orbit measure differs by a zero set from the set
of orbits meeting A™ with positive orbit measure. Thus, there are many orbits Gz
such that A* and B* both meet Gz. Any such orbit gives p € A* and ¢ = gp € B*
for some g € G.

By (b), there is a zero set Z, such that if x € M \ Z, then ¢(gz) = ¢(x). Thus,
it x e A\ Z,, we have ¢(gz) = ¢(z) < a, which gives

94\ Z,) C A
Likewise, g7 (A\ Z,-1) C A, s0 A\ Z,-1 C gA, and
ANgA C Zy-1 U gZy,

which shows that A is almost g-invariant. By Lemma 2.6, gA* = A*. But then
gp = q € A*, which contradicts the fact that disjoint sets have disjoint sets of
density points. Therefore Z(a,b) is a zero set.

Let Zy be the union of the orbits in Z(a, b) as a, b range through pairs of rationals
with @ < b. It is a zero set. On each G-orbit not in Zj, ¢ is almost everywhere
constant. By Lemma 2.5, ¢ is essentially constant along the G-orbits, which is
(a). O

Lemma 2.8. If ¢ : M — R is measurable and o : G — Homeo(M) is a nice action
then the stabilizer

St(¢) ={g € G: ¢(x) = d(ay(x)) a.e.}
is a closed subgroup of G.

Proof. Here, “nice” means that M is locally compact, metrizable, « is continuous,
i is a regular probability measure on M, the Radon-Nikodym derivatives of oy
exist and are locally uniformly bounded. In the case at hand, p is a G-invariant
measure on the homogeneous space M = G/B, and the action is left or right G-
multiplication.

Suppose that g,g" € St(¢). Absolute continuity implies that oy is a zero-set-
preserving change of variables. Hence

poag=¢ (ae)=> goazoay =¢oay =¢ (ae).

Since agg = g 0 agr, we have gg' € St(¢). Similarly, absolute continuity of ay-1
gives

poag=¢ (ae)= doagoag1=doaz (ae),
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and hence ¢! € St(¢), which completes the proof that the stabilizer is a subgroup
of G.

To prove closedness, suppose that g, — ¢ and g,, € St(¢) for all n. Call g, = hy,
and oy = h. We must show that ¢ o h = ¢ almost everywhere. Since the issue is
local, it is enough to choose a compact neighborhood N of an arbitrary zy € X
and show that ¢ o h = ¢ almost everywhere on N. Continuity of the action and
compactness of N imply that h,|y — h|y uniformly. Thus there is a compact
neighborhood W of h(N) such that for all n > some ng, we have

ha(N) C W.

Lusin’s Theorem states that ¢ is uniformly continuous on a compact subset K C W
where we can make p(W \ K) as small as we want. Uniform local boundedness of
the Radon-Nikodym derivatives implies that we can thereby force (N \ h~1K) and
u(N\ h 1K) to be as small as we want.

Let € > 0 be given. Choose K as above so that for each n > ny,

w(Sy) < e where S,, = N \ (b1 (K) Uh, ' (K)).

Metrize W with some metric d. There is a § > 0 such that if y,yy/ € K and
d(y,y’) < 0 then |¢(y) — ¢(y')| < e. There is also an ny > ng such that for each
n > nq and each x € N we have

| (z) — h(z)] < 6.
Hence, for each n > ny and for all z € N \ S,, we have
¢ 0 hn(z) = ¢oh(z)] <e
and consequently
uf{x € N :|pohp(x)—poh(x)] > e} <e

This means that ¢ o hy|y converges to ¢ o h|y in measure. By Riesz’s Lemma,
there is a subsequence converging almost everywhere. Since ¢ o h,, = ¢, we get
¢ o h|Ny = ¢|n almost everywhere, and hence g € St(¢) as claimed. O

3. Unique Ergodicity. In this section we discuss the higher ergodic properties of
an affine diffeomorphism f: M — M under the following standing hypotheses:

(a) M = G/B is compact, G is a connected Lie group, B is a closed subgroup,
and M has a finite G-invariant volume.

(b) A is a fixed automorphism of G such that AB = B. We also denote the
quotient map as A: M — M.

(¢) f=Lso A where ais a fixed element of G.

Our main theorem is

Theorem 3.1. The following are equivalent:
(1) f is a K-automorphism of M.
(2) G* is ergodic on M.
(3) G* is minimal on M.
(4) G* is strictly ergodic on M.
According to Dani (see [St1] §1), f is a K-automorphism if and only if G = HB,

and we usually express the K-condition in this form. Recall that strict ergodicity is
unique ergodicity plus minimality.
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There are some known relations between these conditions, namely (4) = (3) =
(2). Furthermore, the G*-action on G/HB is trivial because G°* C H and H is
normal in G. Hence (2) = (1). In all these relations M need not be compact but
it should have finite volume.

It is known by the fundamental results of Ratner on unipotent flows (see [St1],
Chapter II]) that (3) = (4). To prove that (1) = (2) = (3) we need the following
result of Witte.

Theorem 3.2. [W| Let M = G/B be a finite volume homogeneous space, and let
f be a weak mizing affine automorphism of M. Then
(1) The radical of G is nilpotent.
(2) B is Zariski dense in the adjoint representation Ad : G — Aut(g). In partic-
ular, any connected subgroup of G normalized by B, is normal in G.

Let us prove that (1) = (2). Note that G*® is a unipotent subgroup of G, and
according to the Mautner phenomenon (see [Stl], Section 2), the ergodic decom-
position for the G*-action on G/B is of the form {xNB, = € G}, where N C G
is the smallest normal subgroup of G containing G°. Since B is Zariski dense
in the Ad-representation, it follows that N’ = (NB)g is normal in G. Clearly,
A(N) = N. Since A(B) = B, it follows that A(N’') = N’ and f covers an affine
map f': M’ — M’, where M' = G'/N’, G’ = G/N’, and B’ = N'B/N’. Since M’
is of finite volume, it follows that f’ keeps G’-invariant measure on M’ invariant.
But the stable horospherical subgroup for f’ in G’ is trivial, and the same is valid
for the unstable horospherical subgroup. It follows that G* € N’ and then H C N’.
But since f is a K-automorphism, G = HB. Hence N’ = G, and thus the G*-action
on M is ergodic.

It remains to show that (2) = (3), but we do not know how to do this directly.
Instead, we derive it fairly naturally in the semisimple context from a classical
result, Theorem 3.3l Then we discuss a few extensions beyond the semisimple case,
and finally we prove the general theorem in a rather different way.

Recall that f is semisimple if df : g — g is diagonalizable over C.

Theorem 3.3. [B],|V],|[EP] If f is semisimple then the conditions (2), (3), and (4)
from Theorem 3.1 are equivalent to f being weak mizing.

Corollary 3.4. (1)—(4) are equivalent when f is semisimple or a pure translation.

Proof. For such an f we claim that (1) = (4).

Suppose that f is a semisimple. By (1) it is a K-automorphism, so it is weak
mixing, and Theorem [3.3 gives (4).

Suppose that f is a pure translation, f = L, for some fixed a € G. Since the
radical of G is nilpotent, it follows that a admits a Jordan decomposition a = s X u,
where s is semisimple and u is unipotent. Since s and a have common horospherical
subgroups, it follows f = L, and L, share the same hyperbolic subgroup, and that
condition (1) or (4) is valid for f if and only if it is valid for Ls. Thus (1) for f = L,
implies (1) for Ls, and as we showed above, this implies (4) for Ly which implies
(4) for f.

We have already observed that (4) = (3) = (2) = (1), so the conditions are
equivalent. O

Trying to extend these ideas to the general case, we observe that it is no loss
of generality to assume that B is a uniform lattice in G, i.e., a discrete subgroup
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whose quotient space G/B is compact. In fact, let D C B be the maximal connected
subgroup that is normal in G. Since A(B) = B, it follows that A(D) = D. So we
can replace G/B by G'/B’, where G’ = G/D and B’ = B/D. Hence we can assume
that D is trivial, i.e., B is a quasi-lattice in G. On the other hand, by Theorem 3.2
its identity component By is normal in G. So it is trivial, i.e., B is in fact discrete.

Now let f = L, o A. One can try to reduce this to the pure translation case
handled in Corollary 3.4 by using a suspension construction as in [PSS|. The idea
is to embed some power A* into one-parameter subgroup C' C Aut(G) and replace
M = G/B by M' = G'/B’', where G = C - G’ and B’ = A*¥ . B. Then M’ is
invariant under pure translation Ly, for some h = h(a, A, k) € G’, and the action of
Lyj, on M coincides with that of f¥. So, in a sense, the general case reduces to the
pure translation case. The problem, however, is that Lj is only ergodic on M’ and
not even weak mixing. (Clearly, the G*-action on M’ also fails to be ergodic.)

So we need something else. One can try to find a semisimple affine map having
the same horospherical subgroups as f as was done for pure translations. This is
easy to do in the cases that G is either semisimple or nilpotent.

In fact, let G be semisimple. Then it is well known that the group of inner
automorphisms is of finite index in Aut(G). Hence there exists k € Nand g € G such
that for all x € G, A¥(z) = gzg~'. It follows that f¥ = L, for some h = h(a, A, k),
and we fall into the pure translation case.

Next consider the abelian case G = R", B = Z™ and assume for simplicity that
f = A€ SL(n,Z). Tt is well known that for some k € N, A¥ = S x U, where S is
semisimple, U is unipotent, and both S and U are in SL(n,Z). Hence in this case
one can replace f* = AF by its semisimple part S*.

This idea generalizes to the nilpotent case: for some k € N, f* admits Jordan
decomposition inside Aff(G/B) into semisimple and unipotent parts. As for the
general case, by Theorem 3.2, (1) implies that G is a semidirect product G =
P - N, where P is a semisimple subgroup and N is the nilradical of G. Apparently,
combining semisimple and nilpotent cases, one can decompose some power of f into
commuting semisimple and unipotent affine maps on G/B to apply Theorem [3.3.

However, this seems rather technically involved and in the general case we prefer
not to use Theorem [3.3| directly.

To summarize, it remains to prove that (2) = (3) for f = L, o A; i.e., ergodicity
of the G*-action implies minimality. If G is semisimple, this can be deduced from
Theorem [3.3| as above. Also, there is no problem if G is nilpotent. In fact, by
Furstenberg’s theorem (see [St1], §3) any ergodic homogeneous flow on a nilmanifold
is minimal and strictly ergodic. In the general case this approach can be extended
as follows.

Theorem 3.5. [St2] Let f be an affine diffeomorphism on a compact homogeneous
space M = G /B of finite volume. Then the G*-action on each invariant homoge-
neous subspace tHB C M is ergodic and minimal.

Proof of Theorem [3.1. Assume (1). Then HB = G. By Theorem 3.5, G* is
minimal on M, which is (3). As we have seen above, this gives equivalence of

(1) = (4). 0

Remark. The proof of Theorem [3.5 develops methods used by Dani in his study
of horospherical flows (see [St1], Section 13) and eventually involves Theorem 3.3l
The formulation and the proof were given in [St2] for pure translations only. How-
ever, using the suspension construction as above, one easily reduces to the pure
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translation case. Note that no assumptions on ergodic properties of the f-action
are needed in Theorem 3.5l
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