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Abstract. In this paper we revisit once again, see Shub and Sullivan (Ergod. Th. & Dynam.
Sys. 5 (1985), 285–289), a family of expanding circle endomorphisms. We consider
a family {Bθ } of Blaschke products acting on the unit circle, T, in the complex plane
obtained by composing a given Blaschke product B with the rotations about zero given by
multiplication by θ ∈ T. While the initial map B may have a fixed sink on T, there is
always an open set of θ for which Bθ is an expanding map. We prove a lower bound for
the average measure theoretic entropy of this family of maps in terms of

∫
ln |B ′(z)| dz.

1. Introduction
Several papers have suggested the possibility of giving lower bounds for the average
entropy or Lyapunov exponents in a rich enough family of dynamical systems [BPSW,
LSSW]. A particular consequence would establish the existence of positive entropy for a
positive measure set of parameters in terms of comparatively easily computable quantities.
A linear algebra analogue is proven in [DS]. In this paper we accomplish the task for
families of (finite) Blaschke products. In these families it is fairly easy to establish the
existence of positive measure sets of parameters which define expanding maps of the circle.
Here we give a lower bound for the average entropy of these expanding maps with respect
to the natural invariant measures which are absolutely continuous with respect to Lebesgue
measure.

A (finite) Blaschke product is a map of the form

B(z) = θ0

n∏
i=1

z− ai

1 − zai
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where n ≥ 2, ai ∈ C, |ai | < 1 , i = 1, . . . , n, and θ0 ∈ C with |θ0| = 1. B is a rational
mapping of C, it is an analytic function in a neighborhood of the unit disc D, and B maps
the unit circle T to itself. In this paper we consider the family of Blaschke products,

{Bθ }{θ∈T} = {θB}{θ∈T}.

THEOREM 1.1. Given a family of Blaschke products {Bθ }{θ∈T}, one of the next two options
holds for any θ ∈ T:
(1) Bθ is an expanding map, i.e. there are n = n(θ), and λ = λ(θ) > 1 such that

|Bnθ ′
(x)| > λ;

(2) Bθ has a unique attracting or indifferent fixed point in T.

Moreover, the set of θ ∈ T satisfying the first option is a non-empty open set.

In the next theorem, we relate the previous option with the statistical behaviour of Bθ .
Let λ be Lebesgue measure on T normalized to be a probability measure, λ(T) = 1.

THEOREM 1.2. Given a family of Blaschke products {Bθ }{θ∈T} it follows that, for all θ ,
the push forwards of Lebesgue measure Bnθ�(λ) converge to a measure µθ which is:
(1) absolutely continuous with respect to Lebesgue if Bθ satisfies condition (1) of

Theorem 1.1; or
(2) a Dirac delta measure supported on an attracting or indifferent fixed point of Bθ

on T.

As a consequence of Theorem 1.2, it follows that, for any θ for whichBθ has an absolute
continuous invariant measure, we can define the metric entropy, hθ , of Bθ with respect to
µθ and it satisfies

hθ =
∫
T

ln |B ′(z)| dµθ .

In the next theorem we give a lower bound for the average measure theoretic entropy of
this family of maps in terms of

∫
ln |B ′(z)| dz.

THEOREM 1.3. Given a family of Blaschke products {Bθ }{θ∈T} it follows that:
(a) ∫

hθ dθ ≥
∫
T

ln |B ′(z)| dz

with equality if and only if |B ′(z)| ≥ 1 for all z ∈ T;
(b) more precisely,∫

hθ dθ =
∫
T

ln+ |B ′(z)| dz +
∫
T

|B ′(z)| ln− |B ′(z)| dz.

Here ln+ equals ln when it is positive and zero otherwise, while ln− equals ln when it
is negative and zero otherwise. When hθ is positive it equals the Lyapunov exponent of Bθ
with respect to µθ , i.e. for almost every point with respect to Lebesgue measure,

hθ = lim
n→+∞

1

n
ln |Bn′

(z)|.
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So we could equally well state our results with respect to Lyapunov exponents.
The quantity

∫
T

ln |B ′(z)| dz is easily seen to be the Lyapunov exponent of the random
product of elements of the family {Bθ }{θ∈T}. The inequality in part (a) of Theorem 1.3
proves that the mean of the deterministic exponents is greater than or equal to the random
exponent. So we have achieved here in dimension one the unachieved goal of [LSSW] in
dimension two.

Most of the proofs of the previous theorems could be assembled from results already
in the literature. We give alternate largely self-contained proofs in the following sections.
The proofs consist of three parts:
(1) for all θ , Theorem 1.1 or 1.2 holds;
(2)

∫
Bnθ�(λ) dθ = λ for all n;

(3) let φ : T → R be continuous, then
∫
T
φ dλ = ∫ ( ∫

T
φ dµθ(z)

)
dθ .

The proofs are completed by applying (3) to ln |B ′(z)|, applying (1) and (2), and
changing variables for those θ for which µθ is supported on a contracting or indifferent
fixed point. This proves (b) and (a) follows. The proofs are carried out in detail in the
following sections.

2. The fixed points of B
For any Blaschke product B as above, the equation z = B(z) has at most n+ 1 zeros in the
complex plane, C. So B : C → C has at most n+1 fixed points in C. The map B : T → T

has degree n. By the Lefschetz formula B has −(n − 1) fixed points counted with index
on T. Thus B has at least (n − 1) expanding fixed points on T and at most (n + 1) fixed
points in all.

PROPOSITION 2.1. One of the following three mutually exclusive cases holds.
(a) B has all its fixed points on T. There is exactly one of them, z0, that is a sink and the

other n are expanding.
(b) B has n − 1 fixed points on T, all expanding. It has one fixed point inside the disc

which is a sink, and one outside. These two fixed points are related by the formula
z0 → 1/z0 (hence, they lie on the same ray passing through the origin).

(c) B has all its fixed points on T. There is one that is an indifferent saddle node fixed
point, B(z0) = z0 and B ′(z0) = 1.

In all three cases there is an open set of points in the disc which tend to z0 under
iteration of B.

Proof. If B ′(z) �= 1 for all fixed points of B on the circle, by the Lefschetz formula we can
have n expanding fixed points and one sink on the circle, or n− 1 expanding points on the

circle. In the first case we are in situation (a). In the second case, since B(z)B(z−1) = 1
for all z ∈ C, we must be in case (b). The fact that the fixed point in the interior of the disc
is attracting follows from direct calculation or the Schwarz lemma. Case (c) represents the
remaining cases. �

2.1. Iterates of B. The sequence Bn(z) is uniformly bounded in the unit disc (i.e. it is
a normal family). Let z0 be the attracting or indifferent fixed point in Proposition 2.1.
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Observe that a sink or an indifferent fixed point of a rational mapping of C always attracts
an open set of points. Therefore, there is an open set of points in which {Bn(z)}n converges
uniformly to z0. Thus, by Vitali’s convergence theorem the sequence {Bn(z)}n converges
uniformly on compact sets of the open unit disc to z0. Thus, Bn(z) → z0 for any z in the
open unit disc. Incidentally, this proves that the fixed point z0 described in Proposition 2.1
is unique in the closed unit disc as an attracting or indifferent fixed point.

2.2. B composed with rotations. We now consider the one-parameter family of
functions Bθ = θB. Our main interest will be when θ goes around the circle, but we
will also consider c taking values in the disc, D.

For every θ consider the set of fixed points of Bθ . As θ goes around the circle the fixed
points of Bθ will be in situations (a), (b) or (c) described before. Case (c) will happen at
most a finite number of times. For every θ ∈ T we define α(θ) as the unique sink of B if
we are in situations (a) or (b). In case (c), α(θ) is the unique indifferent fixed point of Bθ
(but in fact this case is irrelevant for our ultimate discussion because it is measure zero in
the parameter). For all z0 ∈ T(C) such that |B ′(z0)| ≤ 1, there is one value of θ (namely
θ = z0/B(z0)) such that z0 is a fixed sink or indifferent point of Bθ . Thus, all these values
belong to the range of α. Finally, if |c| < 1 we define α(c) as the unique fixed point of Bc
inside the unit disc.

PROPOSITION 2.2. The function α is analytic in the open unit disc and continuous in the
closed unit disc.

Proof. By the implicit function theorem the attracting fixed points of Bθ vary analytically
with θ in the closed disc minus the finite set of θ for which Bθ has an indifferent fixed
point in T, the values of which provide a continuous extension of the function. �

The next corollary is an obvious extension of our discussion of iterates to Bc for c ∈ D.

COROLLARY 2.3. Let z0 be inside the open unit disc and c in the closed disc. ThenBnc (z0)

converges to α(c).

3. Expanding maps and proof of Theorem 1.1
PROPOSITION 3.1. If θ0 ∈ T and α(θ0) is in the open unit disc, then there is an n > 0
such that |Bn′θ0

(z)| > 1 for all z ∈ T. That is, Bθ0 is expanding.

Proof. Suppose z0 is a fixed point of Bθ0 inside the disc. Let Cr be a disk of radius r ,
r < 1, and center 0 that contains z0. Since Bnθ0

converges uniformly to z0, there is some
n such that Bnθ0

(Cr) ⊂ Cr . This implies that θBnθ0
has a fixed point in Cr for all θ ∈ T.

This means that Bnθ0
never has an attracting or indifferent fixed point on the unit circle;

hence, the set {z ∈ T : |Bn′θ0
(z)| ≤ 1} is empty. �

Observe that this finishes the first part of Theorem 1.1. In fact, if the attracting fixed
point of Bθ is in the open unit disc then the map is expanding; if not, it has a unique fixed
point in the circle which is either attracting or an indifferent saddle-node point. Now we
proceed to finish the proof of Theorem 1.1.
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Proof of Theorem 1.1. By Proposition 3.1 it is enough to show that there exists θ0 such
that α(θ0) is in the open unit disc. Let us assume that there is an x0 such that |B ′(x0)| = 1
(otherwise, the thesis of the theorem holds for every θ ∈ T). Therefore, there exists
θ0 such that Bθ0(x0) = x0 and so x0 is an indifferent saddle node. This implies that
there is an ε0 > 0 and an open interval J0 in T containing x0 such that either, for every
θ ∈ (θ0, θ0 + ε0), Bθ does not have a fixed point in J0 and, for every θ ∈ (θ0 − ε0, θ0),
Bθ has a sink in J0, or, for every θ ∈ (θ0 − ε0, θ0), Bθ does not have a fixed point in J0

and, for every θ ∈ (θ0, θ0 + ε0), Bθ has a sink in J0. Let us assume that the first option
holds. To conclude the theorem, it is enough to show that there exists ε1 such that for, every
θ ∈ (θ0, θ0 + ε1), Bθ does not have a sink or an indifferent fixed point in the complement
of J0. If not, there is a sequence θn → θ0 such that Bθn has a sink or indifferent fixed point
contained in J c0 . But then so does Bθ0 , which contradicts the uniqueness of the fixed point
x0 among indifferent or attracting fixed points of Bθ0 . �

4. Push forwards of Lebesgue measure. Proof of Theorems 1.2 and 1.3

If B has a fixed point z0 on the circle then the Dirac measure, µz0 , corresponding to that
point is left invariant byB. Given a point z0 in the interior of the unit disc, we letµz0 denote
the absolutely continuous measure on the circle T defined in any of three equivalent ways.

• Let h : T → C be continuous and let h̃ be its harmonic extension to the disc.
Then

∫
T
h dµz0 = h̃(z0).

• Let
∫
T
h dµz0 = ∫

T
hPz0 dλ, where Pz0 is the Poisson kernel and λ is the Lebesgue

measure.
• Let Az0 be a fractional linear transformation mapping 0 to z0 that preserves the unit

disc. Then µz0 = Az0�(λ).

PROPOSITION 4.1. Let B be a Blaschke product. Then B�(µz0) = µB(z0). Thus, if B has
a fixed point z0 inside the disc then the absolutely continuous measure given by µz0 is left
invariant by B.

Proof. Let h : T → C be continuous and let h̃ be its harmonic extension to the disc.
Then

∫
T
h dB�(µz0) = ∫

T
h◦B d(µz0) = h̃ ◦ B(z0). SinceB is analytic, h̃◦B is harmonic,

and thus h̃ ◦ B(z0) = h̃ ◦ B(z0) = ∫
T(C) h dµB(z0). �

For every c ∈ D we write νc = µα(c). Then |α(c)| < 1 if and only if νc is absolutely
continuous with respect to Lebesgue measure on T and for θ ∈ T it follows that |α(θ)| < 1
if and only if Bθ is expanding. If |α(θ)| = 1 then νθ is the Dirac measure supported on
α(θ).

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. By Corollary 2.3, Bnθ (0) converges to α(θ). It follows that Bnθ�(λ)
converges to the measure νθ defined above. When Bθ is expanding, then νθ is absolutely
continuous with respect to Lebesgue, and hθ = ∫

T
ln |B ′

θ (z)| dνθ = ∫
T

ln |B ′(z)| dνθ
(see [L]). In the case that Bθ has an attracting or indifferent fixed point, it follows that
the push forward converges to a Dirac measure supported on this point. �
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Remark 4.2. Theorem 1.2 has a version for C2 dynamical systems which we could have
used here with a little work (see [M]).

Now we prove item (2) of the proof of the theorems as mentioned in the introduction.

PROPOSITION 4.3.
∫
T
Bnθ�(λ) dθ = λ for all n.

Proof. For any continuous function h : T → R,
∫∫
T
h dBnθ�(λ) dθ = ∫

h̃(Bnθ (0)) dθ and,
since the map c → Bnc (0) is an analytic function of c in the unit disc and at c = 0,
Bnc (0) = 0, it follows that

∫
h̃(Bnθ (0)) dθ = h̃ ◦ Bn0 (0) = h̃(0). �

Remark 4.4. Proposition 4.3 can also be proved by Fourier series as was done in [LSSW,
§§4.11 and 4.12].

PROPOSITION 4.5. Let φ : T → R be continuous. Then
∫
T
φ dλ = ∫ ( ∫

T
φ dνθ (z)

)
dθ .

Proof. By the Lebesgue dominated convergence theorem,
∫ (∫

T

φ dνθ (z)

)
dθ = lim

∫ (∫
T

φ dBnθ�(λ)

)
dθ =

∫
T

φ dλ. �

Now we proceed to give the proof of Theorem 1.3.

Proof of Theorem 1.3. We consider the sets Tl = {θ ∈ T | νθ is absolutely continuous},
Td = {θ ∈ T | νθ is Dirac} and Ta = {z ∈ T | |B ′(z)| ≤ 1}:

∫
T

ln |B ′(z)| dλ =
∫
Tl

ln |B ′(z)| dνθ dθ +
∫
Td

ln |B ′(α(θ))| dθ

=
∫
Tl

hθ dθ +
∫
Ta

(1 − |B ′(z)|) ln |B ′(z)| dλ

where this last equality follows from the fact that dθ = (1 − |B ′(z)|) dλ. Finally, subtract
the last term on the right from the term on the left to prove the theorem. �

5. Remarks, questions and conclusions
We have given a lower bound and exact integral estimates for the average entropy of a
family of Blaschke products with respect to the SRB measures determined by iterates of
members of the family. In [LSSW], similar estimates for a family of diffeomorphisms
of the sphere were discussed, but nothing positive was proven for deterministic products
as were considered here. The success with Blaschke products suggests other families of
examples.
(1) What about the family θf where f is an immersion of the circle of finite smoothness,

or even a Cr topological covering with a cubic singularity?
(2) What about similar estimates for the quadratic family of maps of the unit interval,

normalized to have the unit interval as the image? Is there a meaningful measure on
the space of parameters which is absolutely continuous with respect to Lebesgue and
for which positive estimates of the mean entropy can be relatively easily proven?
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(3) LetA1, A2, andA3 be fractional linear transformations of the unit disc. Let (θ, ψ) ∈
T×T and consider the family of diffeomorphisms of the two torus T×T defined by

Bθ,ψ (w, z) = (θA1(w)A2(w)ψA3(z), θA2(w)ψA3(z)).

Then these diffeomorphisms are all isotopic to the usual linear Anosov
diffeomorphism of the two torus, which is usually written additively (in the Anosov
case, A1(w) = A2(w) = w and A3(z) = z). Can one estimate the average entropy
of SRB measures associated to this family of diffeomorphisms? Is the set of (θ, ψ)
for which Bθ,ψ is Anosov non-empty? Is the set of (θ, ψ) for which Bθ,ψ has an
SRB measure of positive entropy of positive measure?

(4) Our theorem involves a probability measure µ on a space of parameters P of
dynamical systems of a manifold M with a probability measure ν. What can
be said about the existence of measures satisfying: for almost all p ∈ P ,
lim[(1/n)∑f

j
p�(ν)] converges to a measure νp and lim[(1/n)∑∫

f
j
p�(ν) dµ] = ν

or, even as in item (2) of the introduction, that
∫
f np�(ν) dµ = ν for all n?
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