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Abstract. In the first part of this paper we study dynamical systems from the point of view of
algebraic topology. What features of all dynamical systems are reflected by their actions on the
homology of the phase space? In the second part we study recent progress on the conjecture
that most partially hyperbolic dynamical systems which preserve a smooth invariant measure
are ergodic, and we survey the known examples. Then we speculate on ways these results may
be extended to the statistical study of more general dynamical systems. Finally, in the third part,
we study two special classes of dynamical systems, the structurally stable and the affine. In the
first case we study the relation of structural stability to entropy, and in the second we study stable
ergodicity in the homogeneous space context.
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1. Introduction

We study discrete differentiable dynamical systems f : M → M on a smooth closed
manifold of dimension m.† Thus, f ∈ Diffr (M) or Endr (M), the Cr diffeomor-
phisms or endomorphisms of M respectively, where 1 ≤ r ≤ ∞, and occasionally,
r = 0.

What can be said about differentiable dynamical systems? The best things that
can be said concern all systems. When we cannot make statements about all systems
we may content ourselves with most systems. We expect that properties which hold
for most systems hold for a specific system under consideration, but we cannot be
sure until we have proven it.

Section 2 concerns properties which may hold for all dynamical systems, mainly
properties from algebraic topology. Principal among these is the Entropy Conjecture
which relates the topological entropy of a dynamical system to the induced map on
the homology groups.

In Section 3 we turn from all to most. We investigate the time honored role of
(a) some hyperbolicity, especially as it concerns (b) the stable and unstable manifolds

∗The author would like to thank Charles Pugh for years of collaboration and also for help in preparing this
article.

† “Closed” means that M is compact and has empty boundary.
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of points, (c) their intersections and (d) the equivalence relation these intersections
define in the manifold. In the by now classical uniformly hyperbolic case, the equiv-
alence classes form Smale’s spectral decomposition and the behavioral properties
entailed are structural stability, SRB measures, and ergodicity in the volume preserv-
ing Anosov case.

Uniformly hyperbolic systems are some, not most dynamical systems. So from
the point of view of hoping to describe most dynamical systems we relax the structural
properties to some hyperbolicity . Our goal is to understand how hypotheses about
(a)–(d) affect ergodicity of volume preserving diffeomorphisms and whether these
hypotheses hold for most partially hyperbolic volume preserving diffeomorphisms.
Later we speculate on how they may affect the existence of SRB measures. Our theme
is that a little hyperbolicity goes a long way toward ergodicity. Part of our problem
is that the (un)stable manifolds, their intersections, and the equivalences they define
are topological objects, while the desired results we wish to conclude are measure
theoretic. Working in mixed categories raises rather severe technical difficulties, some
of which have only recently been overcome.

We conjecture that most volume preserving partially hyperbolic dynamical sys-
tems (initially studied by Brin and Pesin) are ergodic, and we survey the rather sub-
stantial recent results in this direction, especially by Keith Burns andAmie Wilkinson,
and Federico and Jana Rodriguez Hertz and Raul Ures. Here we first confront the role
of the equivalence relation on M induced by the strong stable and unstable manifolds
and their intersections. This equivalence relation divides the manifold into accessi-
bility classes. The main problem is to understand the relationship of the topologically
defined accessibility classes of a partially hyperbolic dynamical system to the mea-
sure theoretically defined ergodic components via the Anosov–Hopf argument for
ergodicity.

In Section 4.1 we study flows on homogeneous spaces and more generally affine
diffeomorphisms. The ergodic theory of affine diffeomorphisms and flows on homo-
geneous spaces is extremely well developed. It relies to a large extent on the structure
of Lie groups and representation theory. The ergodicity results in Section 3 apply
outside of the homogeneous space context and per force use different techniques such
as the accessibility relationship and julienne quasi-conformality. Juliennes are dy-
namically defined sets and quasi-conformality applies to the holonomy maps of the
invariant stable and unstable manifolds. How good are these techniques when applied
back in the homogeneous space context where a more elaborate set of tools is available
for the study of ergodicity and stable ergodicity? While the proofs are very different
there is a remarkable coincidence between those affine diffeomorphisms which are
stably ergodic when considered with respect to affine perturbations and those which
are stably ergodic with respect to all perturbations. Some rather interesting cases
remain unresolved. The coincidence of results makes us feel that we have landed in
the right place with our definitions of accessibility and makes the outstanding cases
even more interesting.
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In Section 4.2 we see how the results of Section 2 and 3 relate to one another.
The SRB measures were initially proven to exist for uniformly hyperbolic dynamical
systems. The Entropy Conjecture holds for these diffeomorphisms and we consider
how sharp it is. How much complexity must a diffeomorphism have beyond that
which is forced by the Entropy Inequality? Of particular interest are the Morse–
Smale diffeomorphisms. The study of these diffeomorphisms has a deep connection
to the theory of the structure of manifolds in high dimensions accomplished by Smale.
Yet there are new invariants and obstructions.

The relations between dynamics and algebraic topology studied in Sections 2
and 4.2 may hold for all r ≥ 1 but there are definite distinctions between the ergodic
theory of C1 and C2 dynamical systems, so in Sections 3 and 4.1 we mostly assume
that r ≥ 2. Sections 2 and 4.2 and Sections 3 and 4.1 may be read independently of
one another. But I think it would be a mistake to disassociate them. For one thing, the
hyperbolic systems are partially hyperbolic. To understand the partially hyperbolic
we must first understand the hyperbolic. For another, the variational principle ties
measure theoretic entropy to topological entropy. (See for example Problem 3 of
Section 2.) One of the main themes of this talk are the structures that link and the ties
that bond the topological and measure theoretic in the presence of smoothness and
some hyperbolicity. Moreover, what is true for all must be taken into consideration
when studying most.

2. All differentiable dynamical systems

What dynamical properties hold for all dynamical systems f ? The answer often
depends on the degree of differentiability of f .

• Every continuous dynamical system supports an invariant probability measure.

• Every Lipschitz dynamical system has finite topological entropy, but non-
Lipschitz systems can have infinite topological entropy.

• Every C∞ dynamical system satisfies the Entropy Inequality explained below,
but this can fail for Lipschitz dynamical systems that are not continuously
differentiable.

Let us recall the concept of entropy and the statement of the Entropy Conjecture.
The topological entropy of f measures the growth rate of its epsilon distinguishable
orbits. It makes sense for any continuous endomorphism of a compact metric space,
f : X → X. Given ε > 0 and n ∈ N, let N(f, n, ε) be the maximum cardinality of a
subset A ⊂ X such that for each pair of distinct points x, y ∈ A there is an iterate f j

with 0 ≤ j ≤ k and
d(f j (x), f j (y)) > ε.

Then, h(f, ε) is the exponential growth rate of h(f, n, ε) as n → ∞, namely

h(f, ε) = lim sup
n→∞

1

n
ln h(f, n, ε).
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The supremum of h(f, ε) over all ε > 0, or what is the same thing, its limit as ε → 0,
is the topological entropy of f , h(f ). In [New1], Newhouse surveys how the concept
of entropy fits into the Cr category.

There is a corresponding growth rate in algebraic topology. The map f : M →
M induces a homology homomorphism f∗ : H∗(M, R) → H∗(M, R). Under f n∗ ,
homology classes grow no more rapidly than sn where s = s(f∗) is the spectral radius
of f∗, i.e., the modulus of the largest eigenvalue of f∗i : Hi(M, R) → Hi(M, R),
0 ≤ i ≤ m.

Entropy Conjecture ([Sh2]). For all Cr dynamical systems, r ≥ 1, we have the
Entropy Inequality

h(f ) ≥ ln s(f∗).

Of course, the conjecture for r = 1 implies all the others, so this is the principal
case. But if it fails for r = 1 and holds for larger r , this is also interesting. The
Entropy Conjecture is true for C∞ dynamics, but remains unknown for Cr dynamics,
1 ≤ r < ∞. The positive result is due to Yomdin, [Yom], who compares the growth
rate of the volumes of submanifolds of M under iteration of f to the entropy. See
also [Gro2].

The Entropy Conjecture is in general false for Lipschitz endomorphisms already
on the 2-sphere, and also for Lipschitz or piecewise linear homeomorphisms in di-
mension four or larger, [Pu]. For C1 f , Misiurewicz and Przytycki [MiPr] prove that
h(f ) ≥ ln(degree(f∗m)). Some entropy lower bounds are known for continuous
endomorphisms in terms of the growth rate of the induced map on the fundamental
or first homology group, [Ma1], [Bo], [FaSh]. These imply entropy lower bounds for
homeomorphisms of manifolds below dimension 4 by Poincaré duality. See [MaPr]
for recent results.

Here are some more problems which are of a similar nature, relating algebraic
topology to differentiable dynamics. We use the notation

GR(an) = lim sup
n→∞

1

n
ln an

to denote the exponential growth rate of a sequence (an) in (0, ∞].
Let V and W be closed smooth submanifolds of complementary dimension in

the closed manifold M , and let f be a smooth endomorphism of M . Let Nn denote
the number of distinct points of intersection of f n(V ) with W and let In denote the
intersection of the homology classes f n∗[V ] and [W ], where [V ] and [W ] are the
homology classes in M represented by V and W .

Problem 1. Is GR(Nn) ≥ GR(In)?

A special case of this problem concerns the Lefschetz formula. Let Nn(f ) be
the number of geometrically distinct periodic points of f of period n. Let L(f n) =∑m

i=0(−1)i trace(f∗i : Hi(M) → Hi(M)).
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Problem 2. Is GR(Nn(f )) ≥ GR(|L(f n)|)?
By the transversality theorem the inequalities in the last two problems hold Cr

generically. The question is: Do they always hold? It is known that if f is C1 and
L(f n) is unbounded then so is Nn(f ) [ShSu1]. This fails for Lipschitz maps.

A first interesting case is a smooth degree two map, f , of the 2-sphere. Let Nn be
the number of distinct periodic points of f of period n.

Problem 3. Is GR(Nn) ≥ ln 2?

The results of [MiPr] concerning topological entropy and degree and of Katok
[Ka] comparing GR(Nn) to topological entropy for diffeomorphisms in dimension 2
make a start on this problem.

All these examples fall into the following general framework. Let F be a functor
from the category of manifolds to another category. Since a dynamical system f may
be iterated so may F(f ). We ask to compare the asymptotic behavior of the iterates
of F(f ) and f . Here, we considered the functors of algebraic topology. Later the
structures we consider and questions we ask for most or some f consider functors
such as the tangent bundle, measures, the de Rham complex, etc.

3. Most differentiable dynamical systems

Since the range of dynamical behavior exhibited by all dynamical systems seems too
large to admit a meaningful universal description applicable to all systems, many at-
tempts have been made to describe features of most dynamical systems. SRB measures
were introduced by Sinai, Ruelle and Bowen in the 1970s in the study of uniformly
hyperbolic dynamical systems. The space integrals for continuous functions with re-
spect to these measures predict the time averages of almost every Lebesgue point in the
manifold. It is a fundamental result of Sinai, Ruelle and Bowen [Si], [Ru1], [BoRu]
that a finite number of SRB measures exist for C2 hyperbolic dynamics (technically
Smale’s Axiom A and no cycle systems.) Ruelle [Ru2] suggested that these measures
apply much more generally. Much effort in dynamical systems in recent years has
focused on Ruelle’s suggestion. One widespread optimistic program dating from the
late 1970s suggests that most systems have a finite (or perhaps countable) collection
of ergodic SRB measures. For volume preserving diffeomorphisms of closed man-
ifolds this program can not be correct because the KAM phenomenon insures the
robust existence of positive measure sets of codimension one tori with quasi-periodic
motions [ChSu], [Yoc], [Xi]. These tori have no non-zero Lyapunov exponents. So
the existence of some non-zero exponents may be decisive for the program.

3.1. Partially hyperbolic diffeomorphisms. In contrast, we have suggested that a
little hyperbolicity goes a long way towards ergodicity of volume preserving diffeo-
morphisms and hence (trivially) a unique SRB measure. Concretely our principal



6 Michael Shub

results are limited to C2 partially hyperbolic volume preserving diffeomorphisms.
These systems are generalizations of Anosov (globally hyperbolic) dynamical sys-
tems. In the Anosov case volume preserving C2 diffeomorphisms are proved to be
ergodic [An], [AnSi], [Ho]. Brin and Pesin [BrPe] studied ergodicity of partially
hyperbolic diffeomorphism with an accessibility property. The hypotheses of their
ergodicity theorem were too limiting to be broadly applicable. In fact they prob-
ably almost never hold, [ShWi2], [HiPe]. In a series of papers [GrPuSh] , [Wi1],
[PuSh3], [PuSh4], [PuSh5], [BuWi2], [BuWi3], [RHRHUr] these hypotheses have
been replaced by ones quite generally applicable.

More precisely:

Definition. A diffeomorphism f : M → M is partially hyperbolic if there is a con-
tinuous Tf -invariant splitting T M = Eu ⊕ Ec ⊕ Es such that Tf is hyperbolic on
Eu ⊕ Es and the hyperbolicity dominates Tf on Ec in the sense that for some τ , λ

with 1 ≤ τ < λ and positive constants c, C we have the following:

(a) For all v ∈ Eu and all n ≥ 0, cλn|v| ≤ |Tf n(v)|.
(b) For all v ∈ Es and all n ≥ 0, |Tf n(v)| ≤ Cλ−n|v|.
(c) For all v ∈ Ec and all n ≥ 0, cτ−n|v| ≤ |Tf n(v)| ≤ Cτn|v|.
(d) The bundles Eu, Es are non-zero.

Condition (d) is present to avoid triviality. Without it, every diffeomorphism
would be partially hyperbolic, for we could take Ec as T M . Sometimes, one only
requires Eu ⊕ Es 
= 0, but for simplicity we use the stronger assumption (d) in this
paper.

Partial hyperbolicity means that under Tf n, vectors in Ec grow or shrink more
gradually than do vectors in Eu and Es. The center vectors behave in a relatively
neutral fashion. The definition can be recast in several different ways. For instance,
expansion of Eu under positive iteration of Tf can be replaced by contraction under
negative iteration. Also, non-symmetric rates can be used for expansion and con-
traction. More significantly, one could permit pointwise domination instead of the
absolute domination as above. See [Puj], [BoDíVi] for a discussion of dominated
splitting. All of these refinements to the notion of partial hyperbolicity are exploited
by Burns and Wilkinson in their result discussed below.

Given a smooth manifold M , fix a smooth volume μ on M . Then we say f is
volume preserving if it preserves this volume and we write the set of μ preserving Cr

diffeomorphisms of M as Diffr
μ(M).

A diffeomorphism is ergodic if it preserves a measure and each measurable in-
variant set is a zero set or the complement of a zero set. No measurable invariant
set has intermediate measure. Ergodicity is stable if it persists under perturbation of
the dynamical system. Towards our theme that a little hyperbolicity goes a long way
toward ergodicity and more optimistically toward the goal of finding SRB measures,
we have our main conjecture.
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Main Conjecture. Among the volume preserving Cr partially hyperbolic dynamical
systems for r ≥ 2, the stably ergodic ones form an open and dense set.

An approach to the Main Conjecture via two additional conjectures consists in
generalizing the Anosov–Hopf proof of the ergodicity of Anosov systems (Ec = {0})
by studying the accessibility relationship. The Anosov–Hopf argument proceeds as
follows. If x, y are forward asymptotic then the time average of continuous functions
along the orbit of x equals the time average along the orbit of y. Reversing time,
the same is true for f −1 and points x, y which are asymptotic in negative time.
Now the Birkhoff ergodic theorem says that positive time averages equal negative
time averages almost everywhere. So we say x ∼ y if x and y are positive or
negative asymptotic and extend ∼ to an equivalence relation on M . In principle by
the Birkhoff theorem time averages should be constant on equivalence classes and
we may prove ergodicity by proving that the equivalence classes are measure zero or
one. There are severe technical difficulties to this program but it can be made to work
in the Anosov and the partially hyperbolic cases with some extra hypotheses. We say
x, y ∈ M are us-accessible if there is a piecewise differentiable path joining x to y

and tangent either to Eu or Es at every point of differentiability. A diffeomophism is
e-(ssentially) accessible (in the measure theoretic sense) if the only subsets of M

saturated with respect to us-accessibility have measure 0 or 1. A diffeomorphism is
us-accesssible if M itself is a us-accessibility class. us-accessibility obviously implies
e-accessibility.‡

Conjecture A. Every C2 volume preserving e-accessible partially hyperbolic dif-
feomorphism is ergodic.

Conjecture B. The partially hyperbolic diffeomorphisms with the us-accessibility
property are open and dense in the Cr partially hyperbolic diffeomorphisms for every
r ≥ 1, volume preserving or not.

Conjectures A and B obviously imply the main conjecture.
Conjecture A was proven with two technical hypotheses in [PuSh4], center bunch-

ing and dynamical coherence. Burns and Wilkinson [BuWi2], [BuWi3] have since
removed the dynamical coherence hypothesis and improved the center bunching con-
dition. The center bunching condition puts bounds on the ratios of the expansions
and contractions in Eu and Es as compared to Ec. If Tf |Ec is close to conformal the
center bunching conditions are satisfied.§

‡Note that the us-accessibility classes are contained in the ∼ equivalence classes we defined above. They are
much more amenable to use in proofs.

§Burns and Wilkinson’s center bunching conditions suppose that there are continuous positive functions
ν(p), ν̂(p), γ (p), γ̂ (p) such that for every p ∈ M:

1. ν(p), ν̂(p) < 1 and ν(p) < γ (p) < γ̂ (p)−1 < ν̂(p)−1.
2. ‖ Tpf (v) ‖< ν(p) for v ∈ Es(p),

γ (p) <‖ Tpf (v) ‖< γ̂ (p)−1 for v ∈ Ec(p),

‖ Tpf (v) ‖> ν̂(p)−1 for v ∈ Eu(p) .
3. ν(p) < γ (p)γ̂ (p) and ν̂(p) < γ (p)γ̂ (p).
The second condition is the partial hyperbolicity and the third the center bunching.
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We say that f is BW partially hyperbolic and center bunched, if it satisfies the
Burns–Wilkinson conditions.

Theorem (Burns–Wilkinson [BuWi3]). Let f be C2, volume preserving, BW partially
hyperbolic and center bunched and essentially accessible. Then f is ergodic and in
fact a K-automorphism.

When the dimension of the center bundle Ec is one the bunching conditions are
automatically satisfied. So it follows as a simple corollary that:

Corollary (Burns–Wilkinson). Conjecture A is true when dimension Ec is one.

Even more is true when the dimension of the center bundle Ec is one, Federico
and Jana Rodrigues Hertz, and Raul Ures prove the Main Conjecture.

Theorem ([RHRHUr]). When the dimension of Ec is one, Conjecture A, Conjecture B
for volume preserving diffeomorphisms and hence the Main Conjecture all are true.

Towards Conjecture B in general there is [DoWi] in the C1 topology.
The major new elements in the proofs of the series of theorems on stable ergodicity

of partially hyperbolic systems are dynamically defined sets called juliennes which
can be used to estimate Lebesgue volumes either directly or by proving that they form
a Lebesgue density basis and an analysis of the stable and unstable holonomy maps
which are julienne quasi-conformal.

Partial hyperbolicty and center bunching are easily seen to be open conditions
and us-accessibility is frequently easily proven to hold in an open neighborhood of
a given example. Sometimes even e-accessibility is (not so easily) proved to hold in
the neighborhood of a given example [RH]. The situation is good enough to be able
to conclude stable ergodicity in the C2 topology of quite a few examples. Here are
several examples. See [BuPuShWi], [PuSh5] for more details and for more on the
current state of affairs.

1. The product of a volume preserving Anosov diffeomorphism and any other vol-
ume preserving diffeomorphism can be arbitrarily C∞ closely approximated by
a partially hyperbolic, us-accessible stably ergodic diffeomorphism [ShWi1],
[BuPuShWi], as long as the hyperbolicity of the Anosov diffeomorphism is
strong enough to produce a partially hyperbolic splitting of the tangent bundle.
(Conjecturally an open and dense set of perturbations is ergodic.) So the KAM
phenomenon seems to be dominated by the hyperbolic phenomenon and ergod-
icity of weakly coupled systems of KAM and Anosov type should be expected
to be ergodic.

2. The time t map of the geodesic flow of a manifold of negative curvature is
stably ergodic.

3. Skew products which are compact group extensions over standard Anosov dif-
feomorphisms are generically us-accessible andC2 stably ergodic, [Br1], [Br2],
[BuWi1], [FiPa].
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4. Ergodic toral automorphisms having a two dimensional invariant subspace with
isometric derivative and some mild extra technical conditions are Cr stably
ergodic for a fairly large r [RH].

5. Partially hyperbolic affine diffeomorphisms of finite volume compact homo-
geneous spaces of simple Lie groups are stably ergodic. We discuss these
below.

Systems whose Lyapunov exponents are non-zero, called non-uniformly hyper-
bolic, were introduced by Pesin and play a large role in the ergodic theory of volume
preserving diffeomorphisms and the study of SRB measures. Pesin’s paper [Pe1]
raises the question if in dimension bigger than two those diffeomorphisms without
zero Lyapunov exponents are generic. We have mentioned above that KAM theory
produces open sets of volume preserving diffeomorphisms with positive measure sets
of invariant tori which have no hyperbolicity. So the answer to the question is “no”.
But it may be an either/or situation.

Problem 4 ([ShWi2]). Is it true for generic f ∈ Diffr
μ(M) that for almost every

ergodic component of f either all the Lyapunov exponents of f are 0 or none of the
Lyapunov exponents of f are 0 (μ-a.e.)?

For some partially hyperbolic diffeomorphisms zero exponents were perturbed
away in [ShWi2], which produces pathological center foliations. More of this is car-
ried out in [HiPe] and for the C1 topology in [BaBo]. So there is some evidence that
the answer to the problem is “yes” at least for stably ergodic or partially hyperbolic
diffeomorphisms. The problem is even interesting when restricted to ergodic diffeo-
morphisms so there is only one ergodic component. When r = 1, Mañé and Bochi
prove for two dimensional manifolds that generically all the exponents are zero or the
diffeomorphism is Anosov [Mañ1], [Boc].

3.2. Possible Extensions. How might the Anosov–Hopf argument be transported
from the category of volume preserving diffeomorphisms to most of Diffr (M)? and
especially to the existence of SRB measures? Here we enter a more speculative realm.
First we recall the definition of SRB measures and some suggestions from [ShWi2].

Given f ∈ Diffr (M) (not necessarily preserving μ) a closed f invariant set
A ⊂ M and an f invariant ergodic measure ν on A, we define the basin of A to be
the set of points x ∈ M such that f n(x) → A and for every continuous function
φ : M → R

lim
n→∞

1

n
(φ(x) + · · · + φ(f n(x))) →

∫
A

φ(x) dν.

ν is an SRB measure and A an SRB attractor (or an ergodic attractor) if the μ measure
of the basin of A with respect to μ is positive.

It follows from the definition that a diffeomorphism has at most countably many
SRB measures. We can more formally describe the Sinai, Ruelle and Bowen [Si],
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[Ru1], [BoRu] result already referred to. If f is a C2 Axiom A no cycle diffeomor-
phism then μ almost every point in M is in a basin of an SRB measure and there are
only finitely many SRB measures. It is this result that one would like to extend into
a (more) general context.

The next problem obviously presents itself from the presentation.

Problem 5. For r ≥ 2 is it true for the generic f in Diffr (M) that the union of the
basins of the SRB attractors of f has full μ measure in M?

This natural question is on the minds of quite a few people. See for example
[Ru1], [BuPuShWi], [Pa], [Vi1], [You1], [You2], [BoDíVi]. One way to approach
the problem along the lines of the Anosov–Hopf argument and as in [Pe1], [PuSh1]
might be via an analogue of the either/or question on Lyapunov exponents for volume
preserving diffeomorphisms above . For r ≥ 2 there is no known analogue without the
volume preserving hypothesis of the robust positive measure set of invariant tori with
zero Lyapunov exponents which occurs via KAM theory. See [Vi2], [BuPuShWi].

Problem 6. For r ≥ 2 is it true for the generic f in Diffr (M) and any weak limit ν

of the push forwards 1
n

∑n
1 f

j∗μ that almost every ergodic component of ν has some
exponents not equal to 0 (ν-a.e.)? All exponents not equal to 0?

Partially hyperbolic systems are a natural domain to begin considering problems
[5] and [6]. When the volume is not preserved and we distinguish future behavior
from the past the accessibility equivalence relation has to be adapted. Even for
partially hyperbolic f it is not entirely clear how to do this. So suppose f partially
hyperbolic . Let W uu(x) and W ss(x) denote the strong unstable and stable manifolds
which are known to exist tangent to the Eu and Es foliations. For x, y ∈ M define
x > y if W uu(x) ∩ W ss(y) 
= ∅. Transitivize > to a partial order on M and declare
x ∼ y if x > y and y > x. The ∼ equivalence classes may play a role similar to
us-accessibility classes.

Problem 7. For the generic partially hyperbolic f , do all ∼ equivalence classes which
are minimal with respect to > have SRB measures?

3.3. A little hyperbolicity. Now that we have given a lot of examples, we return
to our theme that a little hyperbolicity goes a long way towards ergodicity. We ask
how often can we prove that hyperbolicity does exist in the guise of some non-zero
Lyapunov exponents. Some specific families of non-uniformly hyperbolic dynamical
systems have been worked out which contain positive measure sets in the parameter
space with SRB measures having non-zero Lyapunov exponents. Most prominent
among these families are the quadratic and Henon families, see [Ja], [Ly], [Be],
[BeCa], [You1], [You2], [Vi1]. The proofs are difficult. One would like to find a
fairly general principle which guarantees that a family has a positive measure set of
parameters which have an SRB measure with a positive Lyapunov exponent.
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One attempt posits that rich enough families of dynamical systems should have
members with positive Lyapunov exponents. Examples have been constructed with
uncertain but evocative results. Let M have a Riemannian metric and let G be a group
of isometries of M which is transitive on the projectivized tangent bundle of M . Let
μ be the Riemannian volume. Let fε be a family of Cr dynamical systems defined on
M depending on ε. For fixed ε, consider the family Gfε = {gfε, g ∈ G}. Give Gfε

the push forward of the Haar measure on G. If fε preserves μ let H(ε) be the average
over Gfε of the entropy of gfε with respect to μ. This is the case in example 3 below.
If fε does not preserve μ but gfε has a unique SRB measure for each g ∈ G, let H(ε)

be the average over Gfε of the entropy of gfε with respect to this SRB measure. This
is the case in examples 1 and 2 below. We compare H(ε) to the random Lyapunov
exponents with respect to random products of elements of Gfε which we shall call

R(ε) =
∫

PT M

ln|Tfε(v)| dv,

where PT M is the projectivized tangent bundle of M . It is usually easy to see that
R(ε) is positive. When H(ε) is positive then there are obviously positive measure
sets in the parameter space with positive Lyapunov exponents and positive entropy.
Here are the results for a few families.

1. Blaschke products ([PujRoSh]). The family of dynamical systems does not
depend on ε; we take fε = B where

B(z) = θ0

n∏
i=1

z − ai

1 − zai

,

n ≥ 2, ai ∈ C, |ai | < 1, i = 1, . . . , n, and θ0 ∈ C with |θ0| = 1.

The group G is the unit circle T in the complex plane, C. Its elements are
denoted by θ . Now we take

TB = {θB}{θ∈T}.

Then
H(ε) ≥ R(ε).

(H(ε) is always positive.)

2. Expanding maps of the circle ([LlShSi]). Here the dynamical systems are
fk,α,ε : S

1 → S
1 which when written mod 1 are of the form

fk,α,ε : x �→ kx + α + ε sin(2πx). (3.1)

The group is S
1, α ranges over S

1 and k ≥ 2. Then for small ε the average
over α of the entropy H(ε) is smaller than R(ε), while the max over α of the
entropies of fk,α,ε is larger than R(ε). In the case of the averages the difference
is on the order of ε2k+2. H(ε) is again obviously positive.
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3. Twist maps of the sphere ([LeShSiWi]). For ε > 0, we define a one-parameter
family of twist maps fε as follows. Express S

2 as the sphere of radius 1/2
centered at (0, 0) in R × C, so that the coordinates (r, z) ∈ S

2 satisfy the
equation

|r|2 + |z|2 = 1/4.

In these coordinates define a twist map fε : S
2 → S

2, for ε > 0, by

fε(r, z) = (r, exp(2πi(r + 1/2)ε)z).

The group is SO(3). So SO(3)fε = {gfε, g ∈ SO(3)}.
For small ε, H(ε) seems experimentally to be positive and is provably less
than R(ε). R(ε) tends to infinity with ε and experimentally R(ε) and H(ε)

are asymptotic. If we add a small fixed amount of randomization δ to the each
g in gfε and average the Lyapunov exponents of this randomized family over
g ∈ SO(3), we obtain Rδ(ε) which is indeed asymptotic to R(ε) as ε → ∞.

4. Linear maps ([DeSh]). If, instead of dynamical systems, we consider a linear
map A ∈ GL(n, C) and the family SU(n)A, then the average of the logarithms
of the k biggest moduli of eigenvalues of UA over U ∈ SU(n) is greater than
or equal to the sum of the k largest Lyapunov exponents of random products of
matrices from SU(n)A.

There may be a general principle operating here that we have not put our finger
on yet.

4. Some differentiable dynamical systems

4.1. Affine diffeomorphisms. The ergodic theory of affine diffeomorphisms of ho-
mogeneous spaces has been much studied in its own right, see for example [St1],
and contains some of the principal examples studied in smooth dynamics such as the
geodesic and horocycle flows on surfaces of constant negative curvature and toral
automorphisms. Here we study the question of ergodicity of affine diffeomorphisms
in the context of partially hyperbolic dynamical systems with Cr perturbations. Our
methods of proof recover the stable ergodicity of affine diffeomorphisms when they
are stably ergodic among affine perturbations and usually extend this stability to Cr

perturbations. On this last point there remain some open problems.
Suppose that G is a connected Lie group, A : G → G is an automorphism, B is a

closed subgroup of G with A(B) = B, g ∈ G is given, and the affine diffeomorphism

f : G/B → G/B

is defined as f (xB) = gA(x)B. It is covered by the diffeomorphism

f = Lg � A : G → G,



All, most, some differentiable dynamical systems 13

where Lg : G → G is left multiplication by g.

An affine diffeomorphism f induces an automorphism of the Lie algebra g = TeG,
a(f ) = Adg �TeA, where Adg is the adjoint action of g, and g splits into generalized
eigenspaces,

g = gu ⊕ gc ⊕ gs,

such that the eigenvalues of a(f ) are respectively outside, on, or inside the unit circle.
These eigenspaces and the direct sums gcu = gu⊕gc, gcs = gc⊕gs are Lie subalgebras
and hence tangent to connected subgroups Gu, Gc, Gs, Gcu, Gcs.

Proposition ([PuShSt1]). Let f : G/B → G/B be an affine diffeomorphism as above
such that G/B is compact and supports a smooth G-invariant volume. Let G∗ be
any of the groups Gu, Gc, Gs, Gcu, Gcs. Then the orbits of the left G∗-action on
G/B foliate G/B. Moreover, f exponentially expands the Gu-leaves, exponentially
contracts the Gs-leaves, and affects the Gc-leaves subexponentially.

Now we characterize partial hyperbolicity, bunching and accessibility in the con-
text of affine diffeomorphisms. Let h denote the smallest Lie subalgebra of g con-
taining gu ∪ gs. It is not hard to see that h is an ideal in g. We call it the hyperbolic
Lie subalgebra of f , and we denote by H the connected subgroup of G tangent to h,
calling it the hyperbolic subgroup of f . Finally, let b denote the Lie algebra of B,
b ⊂ g.

Theorem ([PuSh4]). Let f : G/B → G/B be an affine diffeomorphism as above
such that G/B is compact and supports a smooth G-invariant volume. Then

(a) f is partially hyperbolic if and only if the hyperbolic Lie subalgebra of f is
not contained in the Lie algebra of B, h 
⊂ b.

(b) If f is partially hyperbolic then it is center bunched.

(c) f has the us-accessibility property if and only if g = b + h.

(d) f has the e-accessibility property if and only if HB = G.

When the stable and unstable foliations are smooth, as in the affine case, us-
accessibility is stable. Thus we have:

Theorem ([PuSh4]). Let f : G/B → G/B be an affine diffeomorphism as above
such that G/B is compact and supports a smooth G-invariant volume. Then f is
stably ergodic among C2 volume preserving diffeomorphisms of G/B if (merely) the
hyperbolic Lie subalgebra h is large enough that g = b + h.

If G is simple then any nontrivial h is large enough since it is an ideal.
Suppose that A ∈ SL(n, R) has some eigenvalues that are not of modulus one,

and suppose that � is a uniform discrete A-invariant subgroup of SL(n, R). Set
M = SL(n, R)/�. Then left multiplication by A, LA : M → M , is stably ergodic in
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Diff2
μ(M). The case where n is large and all but two eigenvalues have modulus one

is interesting, in that the dimension of Gu and Gs is n − 1 while the dimension of Gc

is (n − 1)2, so the dimension of Gc is much larger than that of Gu and Gs.
At the other extreme are abelian groups. If G = R

n and B = Z
n then translations

on the torus, T
n = R

n/Z
n are ergodic if the entries of the element defining the trans-

lation are rationally independent, but they are never stably ergodic. An automorphism
A of T

n is ergodic if and only if A has no eigenvalues that are roots of unity. A little bit
of algebra quickly shows that the hypothesis that A has no eigenvalues which are roots
of unity is equivalent to the hypothesis that HZ

n = R
n where H is the hyperbolically

generated subgroup of R
n.

We have concentrated on the accessibility condition because accessibility is a topo-
logical property and as such it is not difficult to stipulate easily verifiable conditions
which guarantee that it persists under small perturbations.

In a recent remarkable paper, Federico Rodriguez Hertz gives the first examples
of a stably e-accessible diffeomorphisms that are not us-accessible, [RH]. They are
ergodic, non-hyperbolic diffeomorphisms of tori. The first such occurs in dimension
four.

Rodriguez Hertz sometimes uses a technical assumption on the automorphism A,
which we will refer to as the Rodriguez Hertz condition, namely that the character-
istic polynomial of A is irreducible over the integers and it can not be written as a
polynomial in tk , k ≥ 2.

Theorem ([RH]). Let A be an ergodic toral automorphism of T
n.

(a) If n ≤ 5 then A is stably ergodic in Diff22
μ (Tn).

(b) If n ≥ 6, Ec is two-dimensional, and A satisfies the Rodriguez Hertz condition
then A is stably ergodic in Diff5(Tn).

The differentiability degrees 22 and 5 are not misprints.
Part of Rodriguez Hertz’proof involves an alternative. Either the perturbation is us-

accessible or the stable and unstable manifold foliations are differentiably conjugate to
the foliations of the linear example and hence the perturbation has the e-accessibility
property.

Problem 8. Is every ergodic toral automorphism stably ergodic in the Cr topology
for some r?

The next result is an approximate solution of this problem.

Theorem ([ShWi1]). Every ergodic toral automorphism of T
n that is an isometry on

the center bundle Ec can be approximated arbitrarily well in Diff∞
μ (Tn) by a stably

us-accessible, stably ergodic diffeomorphism.

Further examples of partially hyperbolic stably ergodic diffeomorphisms are con-
sidered in [BuPuShWi]. These include skew products, frame flows, and Anosov-like
diffeomorphisms.
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The next theorem shows that the condition for stable ergodicity of affine diffeo-
morphisms among perturbations which are restricted to be left multiplication by group
elements near the identity is the same as e-accessibility. Hence, the julienne proof of
stable ergodicity applies to prove the stable ergodicity of these affine diffeomorphisms
among affine perturbations as well. This phenomenon is discussed in [PuShSt2].

Theorem ([St2]). Suppose that f : G/B → G/B is an affine diffeomorphism such
that M = G/B is compact and supports a smooth G-invariant volume. Then the
following are equivalent.

(a) f is stably ergodic under perturbation by left translations.

(b) HB = G where H is the hyperbolically generated subgroup of G.

Corollary. Suppose that f : G/B → G/B is an affine diffeomorphism such that
M = G/B is compact and supports a smooth G-invariant volume. Assume that G is
simple. Then stable ergodicity of f with respect to perturbation by left translations
is equivalent to stable ergodicity among C2 volume preserving perturbations.

This corollary and the result of Rodriguez Hertz naturally lead to a generalization
of Problem 10.

Problem 9. For an affine diffeomorphism f of a compact, finite volume G/B, is
stable ergodicity of f with respect to perturbation by left translations equivalent to
stable ergodicity among C2 volume preserving perturbations?

We end our discussion of partially hyperbolic diffeomorphisms with a question
from [BuPuShWi] of a very different nature. We have used both the strong unstable
and strong stable foliations in our proof of ergodicity, but we do not know an example
where this is strictly necessary.

Problem 10. For a partially hyperbolic C2 ergodic diffeomorphism f with the e-
accessibility property, are the unstable and stable foliations already ergodic and
uniquely ergodic?

Unique ergodicity of for horocycle flows was proved by Furstenberg [Fu]. Bowen
and Marcus [BoMa] proved the unique ergodicity of the strong stable and unstable
manifold foliations in the case where f is the time-one map of a hyperbolic flow.
Rodriguez Hertz’ result adds more cases in which the invariant foliations are uniquely
ergodic, namely those in which they are differentiably conjugate to the invariant foli-
ations of a linear ergodic toral automorphism. Starkov [PuShSt2] proves that unique
ergodicity of the strong stable or unstable foliations for all affine diffeomorphisms
which are stably ergodic under perturbation by left translation.

In the topological category Bonatti, Díaz, and Ures [BoDíUr] prove the minimality
of the stable and unstable foliations for an open and dense set of robustly transitive
diffeomorphisms.
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4.2. Models. Two dynamical systems f : M → M and g : N → N are topologi-
cally conjugate if there is a homeomorphism h : M → N such that hf = gh. The
dynamical system f is structurally stable if there is a Cr neighborhood of f such that
every g in U is topologically conjugate to f .¶ By the work of Smale, Palis [PaSm],
Robbin [Ro] and Robinson [Rob], diffeomorphisms that satisfy Smale’s Axiom A and
the strong transversality condition are structurally stable. Mañé [Mañ2] in general
and Liao [Li] also in dimension 2 prove that in the C1 topology this condition is also
necessary. The C2 Axiom A strong transversality diffeomorphisms also have finitely
many attractors which have SRB measures. These Axiom A strong transversality
diffeomorphisms are extraordinarily appealing since they have all the properties we
hope for. They are fairly well understood. Yet there remain interesting questions about
them. Some of the issues are discussed in [Su]. I will denote the set of Axiom A
strong transversality diffeomorphisms of M by ASr (M).‖

Since topological entropy is a topological conjugacy invariant and C∞ is dense
inCr the Entropy Inequality holds for allCr structurally stable diffeomorphisms. How
sharp is the Entropy Inequality as a lower bound for the entropy of dynamical systems
in ASr (M)? Smale [Sm3] proved that every isotopy class of diffeomorphisms contains
an element of ASr (M). Since the fundamental group can contribute information about
the entropy not readable in the homology groups, we restrict ourselves to simply
connected manifolds.∗∗

Problem 11. Let M be simply connected. Let I be an isotopy class of diffeomor-
phisms of M . Is there a sequence of diffeomorphisms, fn ∈ I ∩ ASr (M) such that
h(fn) → ln(s(f∗))?

If the restriction that the diffeomorphism lie in ASr (M) is removed then it is even
unknown whether equality may be achieved in the Entropy Inequality within every
isotopy class of diffeomorphisms. There are examples where equality may not be
achieved with elements of ASr (M). A diffeomorphism in ASr (M) with zero entropy
is necessarily Morse–Smale. As a result of [ShSu2], [FrSh] and [Le], it is known
that there are isotopy classes of diffeomorphisms of simply connected manifolds for
which ln(s(f∗)) = 0, yet there is no Morse–Smale diffeomorphism in the class. Are
there diffeomorphisms in ASr (M) with arbitrarily small topological entropy in these
classes? If not, what is a lower bound on the entropy?

Model elements of ASr (M) are constructed in every isotopy class of diffeomor-
phisms in [ShSu2], [Fr2], [Mal1] from information on chain complexes for M and
chain complex endomorphisms induced by f . This work is closely related to Smale’s
work on the structure of manifolds. See also [Sh2], [Sh3] for more discussion of this
point. There are further relations between stability and homology theory established

¶We restrict ourselves to dynamical systems in Diffr (M) even though the same concepts apply in Endr (M)

and to structural stability as opposed to Omega stability for the sake of simplicity of exposition.
‖AS is a fortuitous selection of letters since Anosov, Sinai, Smale, Axiom A and Strong all begin with A and S.

∗∗See Maller [Mal1], [Mal2] for non-simply connected manifolds.
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in [ShWil], [RuSu] where the entropy conjecture was first proven for C1 diffeomor-
phisms satisfying Smale’s axioms. This work is also related to our next problem.

To close our discussion of structurally stable diffeomorphisms, I recall one other
outstanding problem.

Problem 12. Are all Anosov diffeomorphisms infra-nil?

Smale [Sm2], considered the nil-manifold setting for Anosov diffeomorphisms
which was later extended by example [Sh1] to infra-nil manifolds where the corre-
sponding examples of expanding maps were considered. All expanding maps are
infra-nil by the results of [Sh1], [Fr1] and Gromov [Gro1] on groups of polynomial
growth. For Anosov diffeomorphisms defined on a manifold M , it is known that if M

is an infra-nil manifold then the diffeomorphism is conjugate to an affine example,
[Ma2]. It is not known if all manifolds M supporting Anosov diffeomorphisms are
infra-nil manifolds. If one of the bundles Es or Eu is one dimensional then problem
is answered in the affirmative by [New2]. Perhaps the best results go back to [Fr1].

Questions about the classification of manifolds admitting partially hyperbolic dif-
feomorphisms are raised in section 20 of [PuSh5].

We end the paper by mentioning a few surveys which go into greater depth on
some of the issues we have considered, [Sm2], [Fr2], [Sh1], [Sh3], [BuPuShWi],
[PuSh5], [Pe3], [BoDíVi].
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