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Abstract. We prove a linear bound on the average total curvature of the central
path of linear programming theory in terms of the number of independent variables
of the primal problem, and independent of the number of constraints.

1. Introduction

Consider a linear programming problem in the following primal/dual form:

min
Ax − s = b

s ≥ 0

〈c, x〉 and max
ATy = c

y ≥ 0

〈b, y〉 .

Here m > n ≥ 1 and A is an m×n real matrix assumed to have rank n, b ∈ Rm

and c ∈ Rn are given vectors, b is not in the range of A, and c is nonzero, y, s ∈ Rm

and x ∈ Rn are unknown vectors (s is the vector of slack variables).
Our principal result bounds the total curvature of the union of all the central

paths associated with all the feasible regions obtained by considering all the 2m

possible sign conditions

si εi 0, i = 1, . . . ,m,

where εi is either ≥ or ≤.
Formal definitions will be given in subsequent sections. The rest of the results

in the Introduction follow from the next theorem which requires the rest of the
paper.

Theorem 1.1. Let m > n ≥ 1. Let A be an m × n matrix of rank n, and let
b ∈ Rm and c ∈ Rn , b not in the range of A, and c nonzero. The sum over all
2m sign conditions of the total curvature of the primal/dual central paths (resp.,

primal central paths, dual central paths) is less than or equal to 2πn

(
m − 1

n

)

(resp., 2π(n − 1)

(
m − 1

n

)
, 2πn

(
m − 1

n

)
).

Theorem 1.1 allows us to conclude various results on the average curvature of
the central paths corresponding to various probability measures on the space of
problems. We begin with our main motivating example.

Central paths are numerically followed to the optimal solution of linear pro-
gramming problems by interior-point methods. For relevant background material
on interior-point methods, see Renegar [21]. Our point in studying the total cur-
vature is that curves with small total curvature may be easy to approximate with
straight lines. So, small total curvature may contribute to the understanding of why
long-step interior-point methods are seen to be efficient in practice. In Dedieu and
Shub [9] we studied the central paths of linear programming problems defined
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on strictly feasible compact polyhedra (polytopes)1 from a dynamical systems
perspective. In this paper we optimistically conjectured that the worst-case total
curvature of a central path is O(n). Our first average result and main theorem lend
some credence to this conjecture, proving it on the average.

If we assume that the primal polyhedron {x |Ax − b = s ≥ 0} is compact and
strictly feasible (i.e., has nonempty interior), then the primal and dual problems
have central paths which are each the projection of a primal/dual central path and
all these central paths lead to optimal solutions. So for our purposes we will get a
meaningful number if we divide the total curvature of the central paths of all the
strictly feasible polytopes arising from all possible sign conditions by the number
of distinct strictly feasible polytopes associated with the 2m sign conditions:

Ax − s = b, si εi 0, i = 1, . . . ,m,

where εi is either≥or≤. The cardinality of the set of these polytopes is≤
(

m − 1
n

)
and equality holds for almost all (A, b), see Section 6. When equality holds we
say (A, b) is in general position.

We use Theorem 1.1 to give an upper bound on the sum of the curvatures.
We obtain the following average result:

Main Theorem. Let m > n ≥ 1. Let A be an m × n matrix of rank n, and
let b ∈ Rm and c ∈ Rn , c nonzero such that (A, b) is in general position. Then
the average total curvature of the primal/dual central paths (resp., primal central
paths, dual central paths) of the strictly feasible polytopes defined by (A, b) is less
than or equal to 2πn (resp., 2π(n − 1), 2πn).

We may also average over more general probability measures on the data A,
b, c defining the problem. First we more precisely define the space of problems
P and measures µ, ν we consider P = I × Rm × Rn. Here I is the open set of
rank(n), m × n real matrices, and we assume for convenience that no row of any
element of I is identically zero. Let D be the group with 2m elements consisting
of those m × m diagonal matrices whose diagonal entries are all either 1 or −1.
So for D ∈ D, D acts on P by D((A, b, c)) = (D A, Db, c). The set of problems
defined by the orbit of (A, b, c) under the action of D is the same as considering
(A, b, c) with all possible sign conditions, so each orbit has 2m distinct elements.
We say that a probability measure µ is sign invariant if it is invariant under the
action of D, i.e., D∗µ = µ for all D ∈ D.

We now generalize Theorem 1 once again averaging over problems with a
strictly feasible primal polytope.

Let µ be a sign-invariant probability measure on the data A, b, c. If the set of
(A, b, c) in P, such that (A, b) are in general position, has full measure we will

1 The feasible region for a linear programming problem is a polyhedron; a compact polyhedron is
a polytope.
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say that µ is full (for general position). This is the case, for example, if µ is
supported on a finite union of orbits of D through elements in general position or
if µ is absolutely continuous with respect to the Lebesgue measure, see Section 6.
For instance, an independent Gaussian probability distribution with zero mean and
arbitrary variance for each coefficient of the data is sign invariant and full.

Corollary 1.2. Let m > n and let µ be a sign-invariant and full (for general
position) probability measure on P . Let Feas be the set of data A, b, c with a
strictly feasible primal polytope. Let ν be the conditional probability measure
(with respect to Feas) defined for any measurable V by

ν(V ) = µ(V ∩ Feas)

µ(Feas)
.

Then, the average (with respect to ν) total curvature of the primal/dual central
path (resp., primal central path, dual central path) is less than or equal to 2πn
(resp., 2π(n − 1), 2πn).

This corollary, while almost immediate, requires a little proof which we carry
out in Section 6. There is another version of Corollary 1.2 which is perhaps a little
more natural from the point of view of regions which have central paths defined
for all positive parameter values. We state it below but don’t prove it as the proof is
the same as for Corollary 1.2. For a primal/dual central path to exist for all positive
parameter values a necessary and sufficient condition is that both primal and dual
problems are strictly feasible: see [29], [32]. If this is the case we say that the
primal/dual polyhedra are jointly strictly feasible. Every strictly feasible primal
polytope gives rise to primal/dual jointly strictly feasible polyhedra, but there are
more of the latter generally among the polyhedra arising from the 2m possible
sign conditions in a linear programming problem. Generally, the number of jointly

strictly feasible primal/dual polyhedra is

(
m
n

)
. We may see this simply since there

are generally

(
m
n

)
vertices to the primal polyhedra and at each vertex almost all

nonzero c select a unique primal polyhedron for which that vertex minimizes the

optimization problem, see [1]. When the number is

(
m
n

)
we say that (A, b, c) is in

joint general position. If we consider a sign-invariant probability measure which
is full (for joint general position), i.e., the set of problems (A, b, c) which are in
joint general position has full measure, we get a slight improvement of Corollary
1.2.

Corollary 1.3. Let m > n and let µ be a sign-invariant and full (for joint
general position) probability measure on P . Let Feas be the set of data A, b, c with
joint strictly feasible primal/dual polyhedra. Let ν be the conditional probability
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measure (with respect to Feas) defined for any measurable V by

ν(V ) = µ(V ∩ Feas)

µ(Feas)
.

Then, the average (with respect to ν) total curvature of the primal/dual central path
(resp., primal central path, dual central path) is less than or equal to 2πn(m−n)/m
(resp., 2π(n − 1)(m − n)/m, 2πn(m − n)/m).

2. Description of the Central Path

When the optimal value is attained, the primal and dual problems have the same
value and the optimality conditions may be written as




Ax − s = b,
AT y = c,
sy = 0,
y ≥ 0, s ≥ 0,

where sy denotes the componentwise product of these two vectors. The primal/dual
central path of this problem is the curve (x(µ), s(µ), y(µ)), 0 < µ < ∞, given
by




Ax − s = b,
AT y = c,
sy = µe,
y > 0, s > 0,

(2.1)

where e denotes the vector in Rm of all 1’s.
The primal central path is the curve (x(µ), s(µ)), 0 < µ <∞, defined as the

curve of minimizers of the function −µ∑m
1 ln(si )+ cT x restricted to the primal

polyhedron. By the use of Lagrange multipliers one sees that this is the curve
defined by the existence of a vector y(µ) satisfying the equations (2.1). Thus the
primal central path is the projection of the primal/dual central path into the (x, s)
subspace.

Similarly, the dual central path is the curve y(µ), 0 < µ < ∞, defined as
the curve of maximizers of the function µ

∑m
1 ln(yi )+ bT y restricted to the dual

polyhedron. By use of Lagrange multipliers one sees that this curve is defined by
the existence of vectors x(µ), s(µ) satisfying (2.1). So the dual central path is the
projection of the primal/dual central path on the y subspace.

Note, as we have alluded to in the Introduction, that when the primal polyhedron
is compact and strictly feasible the primal central path is defined for all 0 < µ <∞
and then so are the primal/dual and dual central paths.
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3. Curvature

Let c : [a, b] → R
n be a C2 map with nonzero derivative: ċ(t) �= 0 for any

t ∈ [a, b]. We denote by l the arc length

l(t) =
∫ t

a
‖ċ(τ )‖ dτ.

To the curve c is associated another curve on the unit sphere, called the Gauss
curve, defined by

t ∈ [a, b] → γ (t) = ċ(t)
‖ċ(t)‖ ∈ Sn−1,

which may also be parametrized by the arc length l of c:

l ∈ [0, L] → ċ(l) ∈ Sn−1,

with L the length of the curve c. The curvature is

κ(l) = d

dl
ċ(l);

see Spivak [28, Chap. 1]. In terms of the original parameter we have

κ(t) = 1

‖ċ(t)‖
d

dt

(
ċ(t)
‖ċ(t)‖

)
= c̈(t)‖ċ(t)‖2 − ċ(t)〈ċ(t), c̈(t)〉

‖ċ(t)‖4
. (3.2)

The total curvature K is the integral of the norm of the curvature vector

K =
∫ L

0
‖κ(l)‖ dl.

Thus, K is equal to the length of the Gauss curve on the unit sphere Sn−1 ⊂ Rn.

To compute K we use integral geometry; the next section is devoted to that.

4. An Integral Geometry Formula

Let γ (t), a ≤ t ≤ b, be a C1 parametric curve contained in the unit sphere Sn−1

with at most a countable number of singularities (i.e., γ̇ (t) = 0). The parameter
interval is not necessarily finite: −∞ ≤ a ≤ b ≤ ∞. Let us denote by Gn,n−1 the
Grassmannian manifold of hyperplanes through the origin contained in Rn . We
also denote by dG(H) the unique probability measure on Gn,n−1 invariant under
the action of the orthogonal group.
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Theorem 4.1. The length of γ is equal to

L(γ ) =
∫ b

a

∥∥∥∥ d

dt
γ (t)

∥∥∥∥ dt = π

∫
H∈Gn,n−1

#(H ∩ γ ) dG(H),

where #(H∩γ ) denotes the number of parameters a ≤ t ≤ b such that γ (t) ∈ H:
#(H ∩ γ ) is the number of intersections counted with multiplicity.

Proof. If γ is an embedding, then Theorem 4.1 follows from Santaló [23, Chap.
18, Sect. 6], or also see Shub and Smale [25, Sect. 4], where a similar theorem is
proved for projective spaces, or Edelman and Kostlan [11]. Now the set of t such
that dγ (t)/dt �= 0 may be written as a countable union of intervals on each of
which γ is an embedding.

Definition 4.2. The parametric curve γ is transversal to H ∈ Gn,n−1 (we also
sayH is transversal to γ ) when γ̇ (t) �∈ H at the intersection points.

Corollary 4.3. If the number of intersections counted with multiplicity satisfies
#(H ∩ γ ) ≤ B for all transversalH ∈ Gn,n−1, then

L(γ ) =
∫ b

a

∥∥∥∥ d

dt
γ (t)

∥∥∥∥ dt ≤ πB.

Proof. By a usual application of Sard’s theorem, see Golubitsky and Guillemin
[12], nontransversality is a zero measure event. Thus, the integral giving L(γ ) only
needs to be evaluated on the set T ofH ∈ Gn,n−1 such thatH is transversal to γ .
Since dG(H) is a probability measure we get

L(γ ) = π

∫
H∈T

#(H ∩ γ ) dG(H) ≤ πB
∫
H∈T

dG(H) = πB.

In order to bound the number of transversal intersections of the Gauss curve
with a hyperplaneH, we will need the following fact: let

F : R× Rr → R
r ,

(µ, z) �→ Fµ(z) = F(µ, z),

be of class C2, and assume that we are in the conditions of the Implicit Function
Theorem, namely Fµ0(c0) ≡ 0 and DFµ0(c0) (the derivative of F with respect to
the z variables) has full rank. Let c(µ) : [µ0 − ε, µ0 + ε] → R

r be the associated
implicit function, c(µ0) = c0 and Fµ(c(µ)) = 0, and let ċ(µ) (resp., Ḟµ) denote
the derivative of c (resp., F) with respect to µ.

LetH denote a hyperplane, with normal vector h:

H = {z ∈ Rr : 〈h, z〉 = 0}.
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Lemma 4.4. In the conditions above, if the Gauss curve γ (µ) = ċ(µ)/‖ċ(µ)‖
intersects H transversally for µ = µ0, then (c(µ0), ċ(µ0), µ0) is a zero of the
function

�(c, ċ, µ) =

 Fµ(c)

DFµ(c) ċ + Ḟµ(c)
〈h, ċ〉


 . (4.3)

Moreover, D� has full rank at that point.

Proof. Equations (4.3-1) and (4.3-2) vanish because of the Implicit Function
Theorem. Equation (4.3-3) is zero because of the intersection hypothesis. We
write D�(c, ċ, µ) as the block matrix:

D� =

 DFµ(c) 0 Ḟµ(c)

D2 Fµ(c)⊗ ċ + DḞµ(c) DFµ(c) DḞµ(c)ċ + F̈µ(c)
0 hT 0


 , (4.4)

where D2 Fµ(c)⊗ ċ is the linear map y �→ D2 Fµ(c)(ċ, y). By hypothesis, DFµ(c)
is invertible. Hence, the block LU factorization of the matrix in (4.4) is

D�(c, ċ, µ) =

 I

L21 I
0 hT DFµ(c)−1 1




DFµ(c) 0 Ḟµ(c)

DFµ(c) U23

U33


 ,

where, using (4.3),

L21 =
(
D2 Fµ(c)⊗ ċ

)
DFµ(c)−1 + DḞµ(c)DFµ(c)−1,

U23 = 2DḞµ(c) ċ + F̈µ(c)+ D2 Fµ(c)(ċ, ċ),

U33 = −hT
(
2DFµ(c)−1 DḞµ(c) ċ+DFµ(c)−1 F̈µ(c)+DFµ(c)−1 D2 Fµ(c)(ċ, ċ)

)
.

Note that, by construction, Fµ(c(µ)) ≡ 0. Differentiating once with respect to µ,
we obtain (4.3-2). Differentiating once again,

DFµ(c(µ))c̈ + D2 Fµ(c(µ))(ċ, ċ)+ 2DḞµ(c(µ))ċ + F̈µ(c(µ)) = 0.

Solving for c̈ and substituting into U33, we obtain

U33 = hT c̈ .

We need to show that U33 �= 0. Our hypothesis was that γ̇ (t) �∈ H. Multiplying
equation (3.2) by hT on the left, we obtain

hT γ̇ (t) = hT c̈(t)
‖ċ(t)‖2

.

Hence, U33 does not vanish and D� is nonsingular at (c0, ċ0, µ0).
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5. A Bézout Bound for Multihomogeneous Systems

According to Theorem 4.1 to estimate the length of a curve we have to count
the number of points in a certain set. To give such an estimate we use the multi-
homogeneous Bézout theorem. While this theorem is well known to algebraic
geometers, topologists, and homotopy method theorists, the computation of the
Bézout number is usually only carried out in the bihomogeneous case in textbooks.
Morgan and Sommese [19] prove the theorem and give a simple description of
how to compute the number, which we repeat here.

Let f = ( fi )1≤i≤n be a system of n complex polynomial equations in n + m
complex variables. These variables are partitioned into m groups X1, . . . , Xm with
kj + 1 variables in the j th group. fi is said to be multihomogeneous if for any
index j there exists a degree di j such that, for any scalar λ ∈ C,

fi (X1, . . . , λX j , . . . , Xm) = λdi j fi (X1, . . . , X j , . . . , Xm).

In this case the system f is called multihomogeneous. The Bézout numberB asso-
ciated with this system and this structure is defined as the coefficient of

∏m
j=1 ζ

kj

j

in the product
∏n

i=1

∑m
j=1 di jζj .

We say that (X1, . . . , Xm) ∈ Cn+m is a zero for f when f (X1, . . . , Xm) =
0. In that case, f (λ1 X1, . . . , λm Xm) = 0 for any m-tuple of complex scalars
(λ1, . . . , λm). For this reason it is convenient to associate a zero to a point in the
product of projective spaces Pk1(C)×· · ·×Pkm (C). We use the same notation for a
point in Pk1(C)× · · · ×Pkm (C) and for any representative (X1, · · · , Xm) ∈ Cn+m .

We say that a zero (X1, . . . , Xm) ∈ Pk1(C)×· · ·×Pkm (C) is nonsingular when
the derivative

D f (X1, . . . , Xm) : Cn+m → C
n

is surjective. Notice that this definition is independent of the representative
(X1, . . . , Xm) ∈ Cn+m . We have

Theorem 5.1 (Multihomogeneous Bézout Theorem). Let f be a multihomoge-
neous system. Then the number of isolated zeros of f in Pk1(C) × · · · × Pkm (C)

is less than or equal to B. If all the zeros are nonsingular, then f has exactly B
zeros.

6. The Total Curvature of the Central Path on the Average

To the matrix A and the vector b not in the range of A, we associate the set of
admissible points of the primal problem via the set of equalities–inequalities

Ax − s = b, s ≥ 0.
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We may also consider the other polyhedra contained in the subspace Ax − s = b
and defined by the inequalities

si εi 0, 1 ≤ i ≤ m,

where ε = (ε1, . . . , εn) is one of the 2m vectors of sign conditions.
Let F(A, b) denote the set of such primal strictly feasible polyhedra contained

in the subspace Ax − s = b and letQ(A, b) be the set of those which are compact.

Lemma 6.1. For almost all A and b,

#Q(A, b) = RK (m, n) =
(

m − 1
n

)
.

Proof. This statement was proved by Buck [8] for A and b in general position.
In particular, since A and b are in general position except in a set of measure zero,
Lemma 6.1 holds for almost all A and b.

Proposition 6.2. A probability measure on P which is absolutely continuous
with respect to Lebesgue measure is full.

Proof. The set of (A, b, c) in P where (A, b) is not in general position has zero
Lebesgue measure by the above lemma and by Fubini’s theorem, thus it has zero
measure for any measure absolutely continuous with respect to Lebesgue.

Now we prove Corollary 1.2 of the Introduction assuming the Main Theorem.

Proof. The group D acts freely on P, so let P/∼ denote the orbit space. Then
we may decompose the measure µ on the orbits of D. Since µ is sign invariant
each point in the orbit gets equal measure and the same is true for the condi-
tional measure ν, i.e., each strictly feasible polytope in the orbit of D gets equal
measure when the measure ν is decomposed on orbits. Now we average over the
orbits of points in general position, apply the Main Theorem, and then average
over P/∼.

It remains to prove Theorem 1.1.
The proof of this theorem requires Lemmas 6.3, 6.4, and Proposition 6.5 below.

Lemma 6.3. For each F ∈ F(A, b), the Gauss curves associated with the cen-
tral paths cPD(F), cP(F), and cD(F) are well defined.

Proof. The primal/dual (resp., primal; resp., dual) central path associated with
a polyhedron F ∈ F(A, b) satisfies the system of polynomial equations

Fµ(x, s, y) =

Ax − s − b

AT y − c
sy − µe


 = 0 (6.5)

with µ > 0, and this system is the same for all those polyhedra.
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Let Ds denote the diagonal matrix with diagonal entries si . Since sy = µe
(equation (6.5-3)), Ds is invertible. The derivative of Fµ is equal to

DFµ(x, s, y) =

A −I 0

0 0 AT

0 Dy Ds




and it factors as
I 0 0

0 0 I
0 I 0




 I
−µD−1

s I
0 AT D−1

s I




−I 0 A

Ds µD−1
s A

−µAT D−2
s A




0 I 0

0 0 I
I 0 0


.

Therefore, since A has full column rank, µ > 0 and sj �= 0, this derivative is
nonsingular and we are in the conditions of the Implicit Function Theorem. The
speed vector

ċ = (ẋ, ṡ, ẏ) = −DFµ(x(µ), y(µ), z(µ))−1 Ḟµ((x(µ), y(µ), z(µ))

is the unique solution of the implicit equations




Aẋ − ṡ = 0,
AT ẏ = 0,
ṡ y + s ẏ = e.

(6.6)

The Gauss curve for the primal/dual problem is (ẋ, ṡ, ẏ)/‖(ẋ, ṡ, ẏ)‖. Notice that
because of (6.6-3), ṡ and ẏ cannot together be equal to 0 so that this curve is well
defined.

The Gauss curve associated to the primal (resp., dual) central path is
(ẋ, ṡ)/‖(ẋ, ṡ)‖ (resp., ẏ/‖ẏ‖). Those curves are well defined, for suppose that
ṡ = 0. Then equations (6.5-3) and (6.6-3) combined give

sy = µs ẏ.

Hence, dividing componentwise by s and then multiplying by AT , one obtains

c = AT y = µAT ẏ = 0

which contradict the hypothesis c �= 0. Suppose now ẏ = 0. Then, by the same
reasoning one obtains s = µṡ. Hence, by (6.6-1), s is in the range of A. Then
by (6.5-1), b is in the range of A, contradiction. Thus, we showed that the Gauss
curves for the primal/dual, primal and dual central paths are well defined.

A point of the curve γPD is the image under the map

(x, s, y, ẋ, ṡ, ẏ) �→ (ẋ, ṡ, ẏ)

‖(ẋ, ṡ, ẏ)‖
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of a point (x, s, y, ẋ, ṡ, ẏ) satisfying the systems (6.5) and (6.6) for some µ > 0.
Similarly, a point of the curve γP (resp., γD) is the image of such a point under the
map

(x, s, y, ẋ, ṡ, ẏ) �→ (ẋ, ṡ)

‖(ẋ, ṡ)‖ ,(
resp.,(x, s, y, ẋ, ṡ, ẏ) �→ ẏ

‖ẏ‖
)
.

The symbol ∗ stands for PD, P, or D. These cases will be known as the
primal/dual, the primal and the dual case, respectively.

Lemma 6.4. It is assumed as above that F ∈ F(A, b) and that c∗ and γ∗ are
defined as above. Let u ∈ Rn , v ∈ Rm , w ∈ Rm be not all zero.

(1) Each transversal intersection of the Gauss curve γPD with the hyperplane

HPD = {(ẋ, ṡ, ẏ) : uT ẋ + vT ṡ + wT ẏ = 0}

is the image of a nonsingular solution of the polynomial system

�A,b,c,u,v,w(x, s, y, ẋ, ṡ, ẏ, µ) =




Ax − s − b
AT y − c
sy − µe
Aẋ − ṡ

AT ẏ
ṡ y + s ẏ − e

uT ẋ + vT ṡ + wT ẏ



= 0 (6.7)

such that µ > 0.
(2) Let w = 0. Each transversal intersection of the Gauss curve γP with the

hyperplane

HP = {(ẋ, ṡ) : uT ẋ + vT ṡ = 0}
is the image of a nonsingular solution of the polynomial system (6.7).

(3) Let u = 0 and v = 0. Each transversal intersection of the Gauss curve γD

with the hyperplane

HD = {ẏ : wT ẏ = 0}
is the image of a nonsingular solution of the polynomial system (6.7).

Proof. Part (1) is Lemma 4.4, where Fµ and DFµ are computed in (6.5) and (6.6).
Part (2) follows from the fact that any transversal intersection of γP with the

hyperplane uT ẋ + vT ṡ = 0 corresponds to a transversal intersection of γPD

with the hyperplane uT ẋ + vT ṡ + 0T ẏ = 0. Indeed, if γP(µ) = (ẋ, ṡ)/‖ẋ, ṡ‖
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we set γPD(µ) = (ẋ, ṡ, ẏ)/‖ẋ, ṡ, ẏ‖. Then (u, v)T γP(µ) = 0 if and only if
(u, v, 0)T γPD(µ) = 0.

Now, assume that the intersection of γP with uT ẋ + vT ṡ = 0 is transversal.
Then,

∂

∂µ
(u, v, 0)T γPD(µ) = 1

‖ẋ, ṡ, ẏ‖ (u
T ẍ + vT s̈ + 0T ÿ)

+ (uT ẋ + vT ṡ + 0T ẏ)
∂

∂µ

1

‖ẋ, ṡ, ẏ‖

= 1

‖ẋ, ṡ, ẏ‖ (u
T ẍ + vT s̈ + 0T ÿ)

= ‖ẋ, ṡ‖
‖ẋ, ṡ, ẏ‖

∂

∂µ
(u, v)T γP(µ) �= 0,

and therefore the intersection of γPD with uT ẋ+vT ṡ+0T ẏ = 0 is also transversal.
The proof of part (3) is similar.

Proposition 6.5. Let m > n ≥ 1. Let A be an m × n matrix of rank n, and let
b ∈ Rm and c ∈ Rn , c nonzero. Then, for any transversal hyperplane H∗, the
polynomial system (6.7) has at most

BPD ≤ 2n

(
m − 1

n

)

nonsingular solutions (x, s, y, ẋ, ṡ, ẏ, µ) ∈ Rn ×Rm ×Rm ×Rn ×Rm ×Rn ×R
with µ > 0.

If, furthermore, we havew = 0, the number of nonsingular solutions is bounded
above by

BP ≤ 2(n − 1)

(
m − 1

n

)
.

If instead we have u = 0 and v = 0, the number of nonsingular solutions is
still bounded above by

BD ≤ 2n

(
m − 1

n

)
.

The proof of Proposition 6.5 is long, and is postponed to Section 7.

Proof of Theorem 1.1. The total curvature is the sum of the lengths of the Gauss
curves corresponding to strictly feasible regions. According to Corollary 4.3, a
bound B∗ for the number of intersections (counted with multiplicity) of the as-
sociated Gauss curves with a transversal hyperplane gives the bound πB∗ for
the length. Finally, by Lemma 6.4 and Proposition 6.5, B∗ may be taken as in
Proposition 6.5.
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7. Proof of Proposition 6.5

The proof of Proposition 6.5 is quite long, and occupies all of this section. There
are actually three cases, that are quite similar and will be treated in parallel.

We proceed as follows:

7.1. Complexification of the Equations

The first step is to complexify the equations, i.e., to keep the coefficients fixed and
to consider the variables as complex instead of real.

Lemma 7.1. The number of nonsingular solutions of (6.7) in R4m+2m+1 with
µ > 0 is bounded above by the number of nonsingular solutions of (6.7) in
C

4m+2m+1 with µ �= 0.

Proof. A real root is, in particular, a complex root. It is nonsingular if and only if
the determinant of the Jacobian matrix of the derivative does not vanish. The non-
vanishing of this determinant does not depend on whether the matrix is considered
as real or complex.

Note that when we complexify the equations, the terms uT ẋ+vT ṡ+wT ẏ stand
for the usual transpose.

A standard application of Bézout’s theorem implies that

Lemma 7.2. The number of nonsingular solutions of (6.7) in C4m+2m+1 with
µ �= 0 is bounded above by 22m .

This estimate, while ensuring finiteness, is not sharp enough for our theorem.

7.2. Continuation of Nonsingular Roots

More formally, we denote by APD the set of all complex A, b, c, u, v, w where A
has rank n, c �= 0, and u, v, w are not simultaneously zero. We also denote byAP

(resp., AD) the intersection of APD with the linear space w = 0 (resp., u = 0 and
v = 0).

Then, B∗ will denote the maximal number of nonsingular complex roots of
(6.7) with µ �= 0, where ∗ is one of PD, P, D and the maximum is taken over all
parameters in A∗. As in Lemma 7.2, B∗ is finite. Hence this maximal number is
attained, and at that point all the nonsingular complex roots may be continued in
a certain neighborhood. Thus,

Lemma 7.3. The maximal number B∗ of nonsingular complex roots is attained
in a certain open set of A∗.
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Proof. As in Lemma 7.2, B∗ is attained for some parameter (A, b, c, u, v, w).
By the Implicit Function Theorem, the nonsingular complex roots of (6.7)with

µ �= 0 can be continued to nonsingular complex roots with µ �= 0, in a certain
neighborhood of the parameter (A, b, c, u, v, w).

7.3. Nondegeneracy at the Maximum

The following fact will be needed in the sequel:

Proposition 7.4. The complex roots of (6.7) with µ �= 0 are all nonsingular,
almost everywhere in A∗.

Proof. Let X = {x, s, y, ẋ, ṡ, ẏ, µ ∈ C
4m+2n+1 : µ �= 0}. We consider the

evaluation function

ev : A∗ × X →C
4m+2n+1

(A, b, c, u, v, w; x, s, y, ẋ, ṡ, ẏ, µ) �→�A,b,c,u,v,w(x, s, y, ẋ, ṡ, ẏ, µ),

where � was defined in (6.7).
0 is a regular value of ev if and only if Dev(A, b, c, . . . , µ) is onto when

ev(A, b, c, . . . , µ) = 0 (see [12, Chap. II Sec. 1]).

Lemma 7.5. 0 is a regular value for ev.

This lemma guarantees that V = ev−1(0) is a smooth manifold and dim V =
dimA∗.

Now we consider the natural projection π1 : V → A∗. By Sard’s theorem, the
regular values ofπ1 have full measure inA∗. Since dim V = dim A∗, (A, b, . . . , w)
is a regular value if and only if Dπ1 is an isomorphism at every point (A, b, . . . , µ)
such that π1(A, b, . . . , µ) = (A, b, . . . , w). For such systems, all the roots with
µ �= 0 are nonsingular.

Proof of Lemma 7.5. We first reorder the equations and the variables of (6.7) as
follows:

ev(b, c, u, v, w, y, ṡ, ẏ, ẋ, x, s, A, µ) =




Ax − s − b
AT y − c

uT ẋ + vT ṡ + wT ẏ
sy − µe
Aẋ − ṡ

ṡ y + s ẏ − e
AT ẏ



. (7.8)
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In order to show that Dev has full rank 4m+2n+1, we will show that a certain
submatrix has rank 4m + 2n + 1. Namely, we will consider only the derivatives
with respect to variables b to ẋ , and derivation with respect to x , s, A, and µ will
be omitted. We obtain the block matrix

Db,...,ẋ ev =




−I
−I AT

ẋT ṡT ẏT vT wT uT

Ds

−I A
Dṡ Dy Ds

AT



.

Recall that µ �= 0, hence no coordinate of s or y can vanish and the diagonal
matrices Ds and Dy have full rank.

Performing row operations on the previous matrix, one obtains

Db,...,ẋ ev = L




−I
−I AT

ẋT ṡT ẏT vT wT uT

Ds

−I A
Ds Dy A

−AT D−1
s Dy A




for an invertible lower triangular matrix L . Since not all of ẋi , ṡi , ẏi can be zero
(Lemma 6.3) and Ds has full rank, it remains only to check that −AT D−1

s Dy A
has also full rank. This follows from the identity

−AT D−1
s Dy A = −µ(D−1

s A)T (D−1
s A)

and from the fact that A has full rank.
Hence, Dev has rank 4m + 2n + 1, and we are done.

7.4. Genericity

In this section we show that it is sufficient to bound the number of nonsingular
roots of systems satisfying conditions (1) through (4) of Proposition 7.6.

Let K ⊂ {1, . . . ,m}. We define SK as the linear space of all {s ∈ Cm : sk = 0
for all k ∈ K }.

Proposition 7.6. Let m > n. There is a point (A, b, c, u, v, w) ∈ A∗ such that:

(1) The maximal number B∗ of nonsingular complex solutions of (6.7) with
µ �= 0 is attained at this point.
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(2) All the solutions at that point are nonsingular.
(3) For any K ⊂ {1, . . . ,m}, the linear space SK and the affine space

(ker AH )⊥ − b intersect if and only if n − #K ≥ 0. In that case, the
intersection has dimension n − #K .

(4) For any K ⊂ {1, . . . ,m}, the linear space S{1,...,m}\K and the affine space
{y : AT y = c} intersect if and only if #K − n ≥ 0. In that case, the
intersection has dimension #K − n.

Proof. By Lemma 7.3, item (1) holds on an open set U ⊂ A∗. Item (2) will fail
only on zero measure set (Proposition 7.4). For items (3) and (4), notice that with
probability one, dim(ker AH )⊥ − b = n and dim{y : AT y = c} = m − n. On the
other hand, codim SK = #K and codim S{1,...,m}\K = m − #K . Thus it is easy to
see that points where item (3) or (4) fails lie in a finite union of zero measure sets.

Hence, items (2) to (4) will hold on a subset ofA∗ of full measure which has a
nonempty intersection with the open set of Lemma 7.3.

This result has the following consequence: to give a bound for the number of
nonsingular solutions of the system (6.7) with µ �= 0, we can replace the initial
data by the data (A, b, c, u, v, w) of Proposition 7.6.

Also, for convenience, we will count the number of isolated roots of the corre-
sponding system, which is the same.

7.5. Simplification of the Equations

Lemma 7.7. Set û = u + AT v. The polynomial systems (6.7) and (7.9) below
have the same solutions with µ �= 0 so that the isolated solutions of (6.7) with
µ �= 0 are identical to the isolated solutions of (7.9) with µ �= 0.

�µ(x, s, y, ẋ, ṡ, ẏ) =




Ax − s − b
AT y − c
sy − µe
Aẋ − ṡ

AT ẏ
µẏ + y2ṡ − y
ûT ẋ + wT ẏ



= 0. (7.9)

Proof. This last system is obtained from (6.7) by the transformation

�k = �k, 1 ≤ k ≤ 5,

�6 = y�6 − ẏ�3,

�7 = �7 + vT�4.

(7.10)

When µ �= 0, then no component of y is zero so the solutions of (6.7) and the
solutions of (7.9) coincide.
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Let g1, . . . , gm−n and f ∈ Cm , γ , δ and let ŵ ∈ Cm−n be such that:

(a) (g1, . . . , gm−n) is a basis of ker AT ;
(b) AT f = c;
(c) y = f +∑m−n

j=1 γj gj ;
(d) ẏ =∑m−n

j=1 δj gj ; and
(e) ŵj = wT gj , j = 1, . . . ,m − n.

We will denote by gi j the i th coordinate of gj , by G the m × (m − n) matrix
with entries gi j , by Ai the i th row of the matrix A, i = 1, . . . ,m, and by A† =
(AH A)−1 AH the Moore–Penrose inverse of A (injective); AA† is the orthogonal
projection onto range A while A† A = In .

Lemma 7.8. The system (7.9) has the same solutions as

�µ(x, s, y, ẋ, ṡ, ẏ) =




x − A†(s + b)
GT (b + s)
AT y − c
sy − µe
Aẋ − ṡ

AT ẏ
µẏ + y2ṡ − y
ûT ẋ + wT ẏ



= 0. (7.11)

Proof. Equations (7.11-2) are equivalent to b + s ∈ (ker AT )⊥, that is, b + s ∈
range A. Under this assumption, x = A†(s + b) gives Ax = b + s. Thus (7.11-1)
and (7.11-2) imply (7.9-1). Conversely, if Ax = b+ s we get b+ s ∈ range A and
x = A†(s + b), that is, (7.11-1) and (7.11-2).

7.6. Elimination of Variables

Let us now introduce a new polynomial system with the same number of zeros:

�µ(s, ẋ, γ, δ) =




GT (b + s)
s( f + Gγ )− µ
µGδ + ( f + Gγ )2

Aẋ − ( f + Gγ )
ûT ẋ + ŵT δ


 = 0. (7.12)

We also define the following maps:

� : Cm × Cn × Cm−n × Cm−n × C→ C
n × Cm × Cm × Cn × Cm × Cm × C,

�(s, ẋ, γ, δ, µ) = (A†(s + b), s, f + Gγ, ẋ, Aẋ,Gδ, µ),
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and the projection

�2478 : Cn ×Cm−n ×Cn ×Cm ×Cm ×Cn ×Cm ×C→ C
m−n ×Cm ×Cm ×C,

�2478(z1, z2, z3, z4, z5, z6, z7, z8) = (z2, z4, z7, z8).

Lemma 7.9. The construction of system (7.12) is such that the diagram

�

C
4m+2n+1 −→C

4m+2n+1

� ↑ ↓ �2478

C
3m−n+1 −→ C

3m−n+1

�

is commutative. Moreover,

(1) If (s, ẋ, γ, δ, µ) is a solution of (7.12), then (x, s, y, ẋ, ṡ, ẏ, µ) = �(s, ẋ,
γ, δ, µ) is a solution of (7.11).

(2) Any solution (x, s, y, ẋ, ṡ, ẏ, µ) of (7.11) is equal to �(s, ẋ, γ, δ, µ) for a
unique solution of (7.12).

(3) Any isolated solution of (7.11) with µ �= 0 corresponds to an isolated
solution of (7.12) with µ �= 0.

Proof. The proof is easy and left to the reader.

Now we look at equations (7.12-3), (7.12-4) as a linear system of m + 1 equa-
tions in the m unknowns (δ, ẋ), with coefficients depending on γ and µ. When
(s, ẋ, γ, δ, µ) is a solution of (7.12) with µ �= 0, those equations have a solution if
and only if the determinant of the corresponding augmented matrix vanishes. We
can write the augmented matrix as

M(γ, µ)=




µg11 · · · µg1,m−n a11 Q1(γ ) · · · a1n Q1(γ ) f1 +
∑m−n

j=1 γj g1 j

...
...

...
...

...

...
...

...
...

...

...
...

...
...

...

µgm1 · · · µgm,m−n am1 Qm(γ ) · · · amn Qm(γ ) fm +
∑m−n

j=1 γj gmj

ŵ1 · · · ŵm−n û1 · · · ûn 0




(7.13)
where Qi (γ ) = ( fi +

∑m−n
j=1 γj gi j )

2. By dividing the first m−n columns byµ and
then multiplying the last row by µ, we obtain a new matrix M ′ whose determinant
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vanishes if and only if the determinant of M vanishes:

M′(γ, µ) =




g11 · · · g1,m−n a11 Q1(γ ) · · · a1n Q1(γ ) f1 +
∑m−n

j=1 γj g1 j

...
...

...
...

...

...
...

...
...

...

...
...

...
...

...

gm1 · · · gm,m−n am1 Qm(γ ) · · · amn Qm(γ ) fm +
∑m−n

j=1 γj gmj

ŵ1 · · · ŵm−n µû1 · · · µûn 0



.

(7.14)
Its determinant is the same as the determinant of

M′′(γ, µ) =




g11 · · · g1,m−n a11 Q1(γ ) · · · a1n Q1(γ ) f1

...
...

...
...

...

...
...

...
...

...

...
...

...
...

...

gm1 · · · gm,m−n am1 Qm(γ ) · · · amn Qm(γ ) fm

ŵ1 · · · ŵm−n µû1 · · · µûn −∑ γi ŵi



.

(7.15)
We now have to distinguish the three cases of Proposition 6.5. In the primal/dual

case, we define the eliminating polynomial hPD(γ, µ) = det M ′′(γ, µ). In the dual
case, we also define hD(γ ) = det M ′′(γ, µ) but now, since û = 0, the eliminating
polynomial is independent of µ. In the primal case, ŵ = 0 and we notice that the
last row of M ′′ is divisible by µ. Hence, we set hP(γ ) = µ−1 det M ′′(γ, µ).

Lemma 7.10. With the notations above, (s, ẋ, γ, δ, µ) is a solution of (7.12) with
µ �= 0 if and only if

ϒ(s, ẋ, γ, δ, µ) =




s1( f1 +
∑m−n

j=1 γj g1 j )− µ

M(γ, µ)



δ

ẋ

−1




GT (b + s)

si ( fi +
∑m−n

j=1 γj gi j )− s1( f1 +
∑m−n

j=1 γj g1 j )

h∗(γ, µ)



= 0,

(7.16)
and µ �= 0.

Proof. The system ϒ = 0 is the same as � = 0 plus the equation h(γ, µ) = 0
which is a consequence of � = 0 as has been explained previously.
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Lemma 7.11. The number of isolated solutions of the system (7.16) withµ �= 0 is
less than or equal to the number of isolated solutions with s1( f1+

∑m−n
j=1 γj g1 j ) �= 0

of

�(s, γ ) =




GT (b + s)

si ( fi +
∑m−n

j=1 γj gi j )− s1( f1 +
∑m−n

j=1 γj g1 j )

h∗(γ, f1 +
∑m−n

j=1 γj g1 j )


 = 0, (7.17)

where the range for i in the second equation is 2 ≤ i ≤ m.

Proof. This lemma is a consequence of the following facts:

• An isolated solution (s, ẋ, γ, δ, µ) of (7.16) gives an isolated solution (s, γ )
of (7.17).

• Two distinct solutions (s, ẋ, γ, δ, µ) and (s ′, ẋ ′, γ ′, δ′, µ′) of (7.16) with
µ �= 0 and µ′ �= 0 give two distinct solutions (s, γ ) and (s ′, γ ′) of (7.17)
with s1( f1 +

∑m−n
j=1 γj g1 j ) �= 0 and s ′1( f1 +

∑m−n
j=1 γ

′
j g1 j ) �= 0.

The first fact is true because (7.17) is a subsystem of (7.16).
Let us prove the second assertion. Let (s, ẋ, γ, δ, µ) and (s, ẋ ′, γ, δ′, µ′) be

two solutions of (7.16) with s1( f1 +
∑m−n

j=1 γj g1 j ) �= 0. Our aim is to prove that

(ẋ, δ, µ) = (ẋ ′, δ′, µ′). We have clearlyµ = µ′ �= 0 and si ( fi +
∑m−n

j=1 γj gi j ) �= 0
for each i . Moreover, (ẋ, δ) is given by the system

M(γ, µ)


 δ

ẋ
−1


 =

[
µG Diag (Qi (γ ))A f + Gγ
ŵ û 0

] δ

ẋ
−1


 = 0.

This system has a unique solution if and only if rankM(γ, µ) = m. Let us prove
that the m × m submatrix

[µGDiag (Qi (γ ))A]

is nonsingular. Let α ∈ Cm−n and β ∈ Cn be given. If

[µGDiag (Qi (γ ))A]

[
α

β

]
= 0,

then

µGα + Diag (Qi (γ ))Aβ = 0

so that, multiplying by AT , we get

AT Diag (Qi (γ ))Aβ = 0.

Since ( fi +
∑m−n

j=1 γj gi j )
2 > 0 and rankA = n the matrix AT Diag (Qi (γ ))A is

positive definite and, consequently, β = 0. Thus µGα = 0 so that α = 0 because
µ �= 0 and rankG = m − n. This completes the proof.
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7.7. The Bézout Bound

To count the number of isolated roots of this last system we use the multi-
homogeneous Bézout bound given in Theorem 5.1. For this purpose we bihomogen-
ize the system (7.17): we introduce the homogenizing variables s0 in the first group
of variables and γ0 in the second group. We obtain the system

�(s0, s, γ0, γ ) =




GT (s0b + s)

si (γ0 fi +
∑m−n

j=1 γj gi j )− s1(γ0 f1 +
∑m−n

j=1 γj g1 j )

h∗(γ0, γ, s0, s) = 0 .


 = 0.

(7.18)
Here h∗(γ0, γ, s0, s) is just the homogenization of h∗(γ, s).

Lemma 7.12.

(1) The system (7.18) is bihomogeneous in the groups of variables (s0, s) ∈
C

m+1 and (γ0, γ ) ∈ Cm−n+1.
(2) There are m − n equations of multidegree (1, 0) and m − 1 equations of

multidegree (1, 1). The multidegree of the last equation depends on whether
∗ stands for PD, P, or D:

The multidegree of hPD is (1, 2n + 1).
The multidegree of hP is (0, 2n − 2).
The multidegree of hD is (0, 2n + 1).

(3) (s, γ ) is an isolated solution of (7.17) if and only if (1, s, 1, γ ) is an isolated
solution of (7.18).

(4) The number of isolated solutions of (7.18) is bounded as follows:

When ∗ is equal to PD, by 2n

(
m − 1

n

)
+
(

m
n

)
;

when ∗ is equal to P, by (2n − 2)

(
m − 1

n

)
; and

when ∗ is equal to D, by (2n + 1)

(
m − 1

n

)
.

Proof. Assertion (1) holds by construction.
For the second assertion, we write down the Laplace expansion of the determi-

nant of M ′′ in equation (7.15) in terms of the last row:

det M ′′(γ, µ) =
m−n∑
j=1

(−1)m+ j−1ŵj Cj +
n∑

i=1

(−1)n+i−1µûi C
′
i +

(
m−n∑
j=1

γj ŵj

)
C ′′.

The cofactors Cj , C ′
i , and C ′′ have multidegree (0, 2n), (0, 2n−2), and (0, 2n),

respectively. They get multiplied to factors of multidegree (0, 0), (1, 1), and (0, 1).
Hence, det M ′′ has multidegree at most (1, 2n + 1).
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The cofactors Cj and C ′′ are irrelevant to the primal case, since ŵ = 0. In this
case,

det M ′′(γ, µ) = µ

n∑
i=1

(−1)n+i−1ûi C
′
i .

Moreover, hP was defined as µ−1 det M ′′ and hence the multidegree of hP is
(0, 2n − 2).

Similarly, the cofactors C ′
i are irrelevant to the dual case, and hence deg hD =

(0, 2n + 1).
The third assertion comes from a classical fact: when both product spaces are

equipped with the usual topology, the canonical injection

i : Cm × Cm−n → P
m(C)× Pm−n(C)

is open and continuous.
By the Multihomogeneous Bézout Theorem (Theorem 5.1), the number of

isolated solutions in the primal/dual case (∗ = PD) is no more than the coefficient
of ζm

1 ζ
m−n
2 in the expression

ζm−n
1 (ζ1 + ζ2)

m−1 (ζ1 + (2n + 1)ζ2) .

In the primal/dual case (item (6)), this coefficient is precisely

(2n + 1)

(
m − 1

n

)
+
(

m − 1
n − 1

)
= 2n

(
m − 1

n

)
+
(

m
n

)
.

The primal and dual cases are similar.

7.8. The Spurious Roots

Except for the primal case, the number of roots we have obtained is still too big to
give the bound announced in Theorem 1.1. We have to eliminate some of them to
obtain the right result.

There are three classes of bihomogeneous solutions (s0, s, γ0, γ ) of the sys-
tem (7.18).

(1) Roots at infinity are roots for which γ0 = 0 or s0 = 0. We will not worry
about roots at infinity here.

(2) Spurious roots. These are the finite roots for which µ = 0, that is, s1 = 0
or γ0 f1 +

∑m−n
j=1 γj g1 j = 0.

(3) Legitimate roots are all the other solutions.

Notice that solutions (s, γ, µ) of the system (7.17) with s1( f1+
∑m−n

j=1 γj g1 j ) �= 0
always correspond to legitimate roots of (7.18).



OF24 On the Curvature of the Central Path of Linear Programming Theory

Lemma 7.13. The number of spurious roots of (6.7) for ∗ one of PD or D

is

(
m
n

)
.

Proof. We will only deal with the primal/dual case, the dual case being exactly
the same.

The idea of the proof is to produce a bijection from the spurious roots to the
class of subsets K ⊂ {1, . . . ,m} of cardinality n.

Sinceµ = s1( f1+
∑m−n

j=1 γj g1 j ) = 0, spurious roots are the zeros of the system


GT s = −s0GT b,

si (γ0 fi +
∑m−n

j=1 γj gi j ) = 0, i = 1, . . . ,m,

hPD(γ0, γ, s0, s) = 0.

(7.19)

Let (γ0, γ, s0, s) be a spurious root. Since spurious roots are finite we assume
that γ0 = 1 and s0 = 1. We set K = K (s) = {k ∈ {1, . . . ,m} : sk = 0}. Then, the
system (7.19) breaks into


GT (s + b) = 0, with s ∈ SK ,

fi +
∑m−n

j=1 γj gi j = 0, i �∈ K ,

hPD(γ, s) = 0.

(7.20)

The first equation is equivalent to saying that s ∈ SK and s + b ∈ (ker AH )⊥.
Again, this is the same as saying that s ∈ SK ∩ ((ker AH )⊥ − b).

If the cardinality of K is strictly larger than n, then Proposition 7.6, item (3),
guarantees that the intersection of SK with the affine space (ker AH )⊥+b is empty.
Therefore the cardinality of K is at most n.

The second equation of (7.20) is satisfied if and only if the preimage of c by
AT and S{1,...,m}\K have a nonempty intersection. In that case, γi is associated to
the i th nonzero coordinate of a point y at the intersection.

If the cardinality of K is strictly smaller than n, then the intersection is empty
because of Proposition 7.6, item (2).

Therefore K has cardinality n. Conversely, let K be a cardinality n subset of
{1, . . . ,m}. Then, because of Proposition 7.6, item (3), SK and (ker AH )⊥ − b do
intersect. Because of item (4), the spaces (AT )−1(c) and S{1,...,m}\K also have a
nonempty intersection.

Therefore, equations (7.20–1, 2) admit a finite common solution (1, γ, 1, s).
Here, it is crucial to use the fact that we are in the primal/dual or dual case, and
hence h∗ is the determinant of M ′′ in (7.15) or, equivalently, the determinant of M ′

in (7.14). It will follow that h∗(γ0, γ, s0, s) = 0. This happens because, for i /∈ K ,
Qi will vanish in (7.13). Also for i /∈ K , M ′(γ, µ)i,m+1 = 0.

Since µ was replaced by s1( f1 +
∑
γj g1 j ) in the last row of (7.14), the matrix

M ′(γ, µ) has (after reordering) an (m−n+1)×(n+1) block of zeros. This means
that an (n + 1)-dimensional subspace is mapped into a m + 1− (m − n + 1) = n-
dimensional subspace. Hence h∗(γ, s) = det M ′(γ, µ) = 0.
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Notice that spurious roots must be isolated. Otherwise, there would be a com-
ponent of nonisolated roots of (6.7) for µ �= 0, and this would contradict Proposi-
tion 7.6, item (2). Hence, when ∗ is one of PD or D, we can subtract the number
of spurious roots from the bounds obtained in Lemma 7.12, and Proposition 6.5
follows. Notice that the bound for the dual case is not sharp.

8. Concluding Remarks

1. Beling and Verma [5] is a predecessor to our paper. They prove a similar
result to our Proposition 6.5 but only for subspaces defined by the vanishing of
one of the coordinates and their estimate is not as strong.

2. We have estimated the curvature by the number of complex roots of a system
of equations including possibly roots at infinity. In fact, only real and finite roots
count. The number of real roots is in general much less and can in some contexts be
compared with the square root of the number of complex roots; see Shub and Smale
[24], Edelman and Kostlan [11], McLennan [17], Rojas [22], and Malajovich and
Rojas [15], [16]. Thus the total curvature, at least on average, may be very small
indeed for large problems. We find a better understanding of the total curvature of
the central path in worst- and average-case analysis an interesting problem.

3. There is a body of literature on the curvature of the central path, relating
the curvature to the complexity of Newton-type algorithms that approximate the
central path and produce approximations to the solutions: see Sonnevend, Stoer,
and Zhao [26], [27], Zhao and Stoer, [31], and Zhao [33], [34]. These papers use a
different notion of curvature, closer to 1/γ where γ is Smale’s γ ; see also Dedieu
and Smale [10]. The integral of these quantities is infinite.

4. The Riemannian geometry of the central path has been studied by quite a
few authors; see Karmarkar [13], Bayer and Lagarias [2], [3], [4], and Nesterov
and Todd [20].

5. Vavasis and Ye [30] study regions where the tangent vectors to the central
path stay in definite cones. Curvature estimates may be used as a refinement of
this information.

6. Malajovich and Meer [14] showed that the problem of computing (or even
approximating up to a fixed constant) the sharpest multihomogeneous Bézout
bound for a system of polynomial equations is actually NP-hard.
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