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Abstract. We prove a linear bound on the average total curvature of the central
path of linear programming theory in terms of the number of independent variables
of the primal problem, and independent of the number of constraints.

1. Introduction

Consider a linear programming problem in the following primal/dual form:

min (c, x) and max (b, y).
Ax—s=b ATy =c¢
s>0 y=>0

Here m > n > 1 and A is an m x n real matrix assumed to have rank n, b € R™
and ¢ € R" are given vectors, b is not in the range of A, and c is nonzero, y, s € R”
and x € R" are unknown vectors (s is the vector of slack variables).

Our principal result bounds the total curvature of the union of all the central
paths associated with all the feasible regions obtained by considering all the 2"
possible sign conditions

s,-s,-O, i=1,...,m,

where ¢; is either > or <.
Formal definitions will be given in subsequent sections. The rest of the results
in the Introduction follow from the next theorem which requires the rest of the

paper.

Theorem 1.1. Letm > n > 1. Let A be an m x n matrix of rank n, and let
b € R" and ¢ € R", b not in the range of A, and ¢ nonzero. The sum over all
2™ sign conditions of the total curvature of the primal/dual central paths (resp.,

—1
primal central paths, dual central paths) is less than or equal to 2mn " " )

(resp., 2m(n — 1) <m; 1), 2nn <m; 1)).

Theorem 1.1 allows us to conclude various results on the average curvature of
the central paths corresponding to various probability measures on the space of
problems. We begin with our main motivating example.

Central paths are numerically followed to the optimal solution of linear pro-
gramming problems by interior-point methods. For relevant background material
on interior-point methods, see Renegar [21]. Our point in studying the total cur-
vature is that curves with small total curvature may be easy to approximate with
straight lines. So, small total curvature may contribute to the understanding of why
long-step interior-point methods are seen to be efficient in practice. In Dedieu and
Shub [9] we studied the central paths of linear programming problems defined
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on strictly feasible compact polyhedra (polytopes)! from a dynamical systems
perspective. In this paper we optimistically conjectured that the worst-case total
curvature of a central path is O (n). Our first average result and main theorem lend
some credence to this conjecture, proving it on the average.

If we assume that the primal polyhedron {x|Ax — b = s > 0} is compact and
strictly feasible (i.e., has nonempty interior), then the primal and dual problems
have central paths which are each the projection of a primal/dual central path and
all these central paths lead to optimal solutions. So for our purposes we will get a
meaningful number if we divide the total curvature of the central paths of all the
strictly feasible polytopes arising from all possible sign conditions by the number
of distinct strictly feasible polytopes associated with the 2™ sign conditions:

Ax —s =b, s; & 0, i=1,...,m,

where ¢; is either > or <. The cardinality of the set of these polytopesis < " n_ 1)

and equality holds for almost all (A, b), see Section 6. When equality holds we
say (A, b) is in general position.

We use Theorem 1.1 to give an upper bound on the sum of the curvatures.

We obtain the following average result:

Main Theorem. Letm > n > 1. Let A be an m X n matrix of rank n, and
let b € R™ and ¢ € R", ¢ nonzero such that (A, b) is in general position. Then
the average total curvature of the primal/dual central paths (resp., primal central
paths, dual central paths) of the strictly feasible polytopes defined by (A, b) is less
than or equal to 2z n (resp., 2w (n — 1), 2n).

We may also average over more general probability measures on the data A,
b, c¢ defining the problem. First we more precisely define the space of problems
P and measures u, v we consider P = [ x R™ x R”". Here I is the open set of
rank(n), m x n real matrices, and we assume for convenience that no row of any
element of [ is identically zero. Let D be the group with 2" elements consisting
of those m x m diagonal matrices whose diagonal entries are all either 1 or —1.
So for D € D, D acts on P by D((A, b, ¢)) = (DA, Db, c). The set of problems
defined by the orbit of (A, b, ¢) under the action of D is the same as considering
(A, b, ¢) with all possible sign conditions, so each orbit has 2™ distinct elements.
We say that a probability measure w is sign invariant if it is invariant under the
action of D, i.e., D, = u for all D € D.

We now generalize Theorem 1 once again averaging over problems with a
strictly feasible primal polytope.

Let u be a sign-invariant probability measure on the data A, b, c. If the set of
(A, b, c) in P, such that (A, b) are in general position, has full measure we will

! The feasible region for a linear programming problem is a polyhedron; a compact polyhedron is
a polytope.
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say that p is full (for general position). This is the case, for example, if @ is
supported on a finite union of orbits of D through elements in general position or
if u is absolutely continuous with respect to the Lebesgue measure, see Section 6.
For instance, an independent Gaussian probability distribution with zero mean and
arbitrary variance for each coefficient of the data is sign invariant and full.

Corollary 1.2. Let m > n and let pu be a sign-invariant and full (for general
position) probability measure on P. Let Feas be the set of data A, b, ¢ with a
strictly feasible primal polytope. Let v be the conditional probability measure
(with respect to Feas) defined for any measurable V by

_ n(V N Feas)

vV = w(Feas)

Then, the average (with respect to v) total curvature of the primal/dual central
path (resp., primal central path, dual central path) is less than or equal to 2n
(resp., 2w (n — 1), 27n).

This corollary, while almost immediate, requires a little proof which we carry
out in Section 6. There is another version of Corollary 1.2 which is perhaps a little
more natural from the point of view of regions which have central paths defined
for all positive parameter values. We state it below but don’t prove it as the proof is
the same as for Corollary 1.2. For a primal/dual central path to exist for all positive
parameter values a necessary and sufficient condition is that both primal and dual
problems are strictly feasible: see [29], [32]. If this is the case we say that the
primal/dual polyhedra are jointly strictly feasible. Every strictly feasible primal
polytope gives rise to primal/dual jointly strictly feasible polyhedra, but there are
more of the latter generally among the polyhedra arising from the 2™ possible
sign conditions in a linear programming problem. Generally, the number of jointly

strictly feasible primal/dual polyhedra is ’: . We may see this simply since there

are generally ’:: vertices to the primal polyhedra and at each vertex almost all
nonzero c¢ select a unique primal polyhedron for which that vertex minimizes the
optimization problem, see [1]. When the number is (’Z) we say that (A, b, ¢) isin

joint general position. If we consider a sign-invariant probability measure which
is full (for joint general position), i.e., the set of problems (A, b, ¢) which are in
joint general position has full measure, we get a slight improvement of Corollary
1.2.

Corollary 1.3. Let m > n and let | be a sign-invariant and full (for joint
general position) probability measure on P. Let Feas be the set of data A, b, ¢ with
Jjoint strictly feasible primal/dual polyhedra. Let v be the conditional probability
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measure (with respect to Feas) defined for any measurable V by

w(V N Feas)

v(V) =
V) (Feas)
Then, the average (with respect to v) total curvature of the primal /dual central path
(resp., primal central path, dual central path) is less than or equal to 2rn(m—n) /m
(resp., 2w (n — 1)(m — n)/m, 2nn(m — n)/m).

2. Description of the Central Path

When the optimal value is attained, the primal and dual problems have the same
value and the optimality conditions may be written as

Ax —s =b,
ATy =c,
sy =0,
y=0,s5>0,

where sy denotes the componentwise product of these two vectors. The primal /dual
central path of this problem is the curve (x (), s(n), y(r)), 0 < pu < oo, given
by

Ax —s =b,
ATy =c,
sy = e,
y>0,s>0,

2.1

where e denotes the vector in R™ of all 1’s.

The primal central path is the curve (x (), s(un)), 0 < u < oo, defined as the
curve of minimizers of the function —u >} In(s;) + ¢ x restricted to the primal
polyhedron. By the use of Lagrange multipliers one sees that this is the curve
defined by the existence of a vector y(u) satisfying the equations (2.1). Thus the
primal central path is the projection of the primal/dual central path into the (x, s)
subspace.

Similarly, the dual central path is the curve y(u), 0 < pu < oo, defined as
the curve of maximizers of the function Y| In(y;) + bTy restricted to the dual
polyhedron. By use of Lagrange multipliers one sees that this curve is defined by
the existence of vectors x(u), s(u) satisfying (2.1). So the dual central path is the
projection of the primal/dual central path on the y subspace.

Note, as we have alluded to in the Introduction, that when the primal polyhedron
is compact and strictly feasible the primal central path is defined forall0 < & < oo
and then so are the primal/dual and dual central paths.
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3. Curvature

Let ¢ : [a,b] — R" be a C?> map with nonzero derivative: ¢(t) # O for any
t € [a, b]. We denote by [ the arc length

1) = / 1)l dr.

To the curve ¢ is associated another curve on the unit sphere, called the Gauss
curve, defined by

= é(t) e s,
lle@)]

which may also be parametrized by the arc length / of ¢:

tela,b] — y@)

le[0,L] — ¢e)es !,
with L the length of the curve ¢. The curvature is
0 d c(l)
k() = —e();
di

see Spivak [28, Chap. 1]. In terms of the original parameter we have

k(1)

I d ( () > NP = e@)(e@), €1))

= — = . 3.2
el dr \le@ll le@* G-

The total curvature K is the integral of the norm of the curvature vector

L
K:/ el di.
0

Thus, K is equal to the length of the Gauss curve on the unit sphere S"~! C R”.
To compute K we use integral geometry; the next section is devoted to that.

4. An Integral Geometry Formula

Lety(t),a <t <b,beaC 1 parametric curve contained in the unit sphere sn—1
with at most a countable number of singularities (i.e., y (¢) = 0). The parameter
interval is not necessarily finite: —oo < a < b < oo. Let us denote by G, ,,_; the
Grassmannian manifold of hyperplanes through the origin contained in R”. We
also denote by dG (H) the unique probability measure on G, ,—; invariant under
the action of the orthogonal group.
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Theorem 4.1. The length of v is equal to

b
L(y) =/

where #(H N y) denotes the number of parameters a <t < b such that y(t) € 'H:
#(H N y) is the number of intersections counted with multiplicity.

d ()
EV

dt:rr/ #HNy)dG(H),
HEGn,n—l

Proof. If y is an embedding, then Theorem 4.1 follows from Santal6 [23, Chap.
18, Sect. 6], or also see Shub and Smale [25, Sect. 4], where a similar theorem is
proved for projective spaces, or Edelman and Kostlan [11]. Now the set of # such
that dy (t)/dt # 0 may be written as a countable union of intervals on each of
which y is an embedding. O

Definition 4.2. The parametric curve y is transversal to H € G, ,_; (we also
say H is transversal to ) when y (¢) ¢ ‘H at the intersection points.

Corollary 4.3. If the number of intersections counted with multiplicity satisfies
#(H Ny) < B forall transversal H € G, ,_1, then

b
L(y) =/

Proof. By a usual application of Sard’s theorem, see Golubitsky and Guillemin
[12], nontransversality is a zero measure event. Thus, the integral giving L(y) only
needs to be evaluated on the set 7 of H € G, ,—; such that 7 is transversal to y.
Since d G (H) is a probability measure we get

dt < mB.

d
Eﬂt)

L(y) = 71/ #HNy)dG(H) < nB/ dG(H) = 7 B. O
HeT HeT

In order to bound the number of transversal intersections of the Gauss curve
with a hyperplane H, we will need the following fact: let

F:RxR — R,
(,z2) = Fu(z) = F(u,2),

be of class C2, and assume that we are in the conditions of the Implicit Function
Theorem, namely F), (cp) = 0 and DF,, (cy) (the derivative of F with respect to
the z variables) has full rank. Let c(w) : [uo — &, o + €] — R” be the associated
implicit function, ¢(ug) = ¢o and F,(c(un)) = 0, and let ¢(u) (resp., FM) denote
the derivative of ¢ (resp., F') with respect to w.

Let H denote a hyperplane, with normal vector 4:

H={zeR :(hz)=0}L
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Lemma 4.4. In the conditions above, if the Gauss curve y (i) = e¢(w)/lle(w)ll
intersects 'H transversally for © = g, then (c(uo), €(Lo), o) is a zero of the
function

Fu©)
®(c, &, ) = | DF,(e) ¢+ Eyu(c) | . 4.3)
(h,¢)

Moreover, D® has full rank at that point.
Proof. Equations (4.3-1) and (4.3-2) vanish because of the Implicit Function

Theorem. Equation (4.3-3) is zero because of the intersection hypothesis. We
write D®(c, ¢, 1) as the block matrix:

DF,(c) 0 Fy(c)
D® = | D’F,(¢)® ¢+ DF,(c) DF,(¢c) DF,(c)¢+F,(c)|, (44
0 h' 0

where D? F,(c)®¢is the linear map y — D? F, (c)(¢, y). By hypothesis, DF,, (c)
is invertible. Hence, the block LU factorization of the matrix in (4.4) is

I DF,(c) 0 F.(c)
D®(c, ¢, u) = | Ly I DF,(¢c) Uxy |,
0 Ah'DF, (07! 1 Uss

where, using (4.3),

Ly = (D*F.(¢) ®¢) DF,(¢)"' + DF,(¢)DF,(c)”",
Uy = 2DF,(c) ¢+ F,(c) + D*F,(c)(¢, &),
Uss= —h" (2DF,(c) 'DF,(c) ¢+DF,(c) ' F,(¢)+ DF,(¢c) ' D*F,(c)(¢, ¢)).

Note that, by construction, F, (c(u)) = 0. Differentiating once with respect to i,
we obtain (4.3-2). Differentiating once again,

DF,(c(1))é + D*F,(e(0))(€, €) + 2D F,, (e()é + Fy(e(n)) = 0.
Solving for € and substituting into Us3, we obtain
Uy =h'é.

We need to show that Us3 # 0. Our hypothesis was that y (t) ¢ H. Multiplying
equation (3.2) by h” on the left, we obtain

R0
Clle@?

Hence, Us; does not vanish and D® is nonsingular at (cg, €9, (o). O

h'y (1)
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5. A Bézout Bound for Multihomogeneous Systems

According to Theorem 4.1 to estimate the length of a curve we have to count
the number of points in a certain set. To give such an estimate we use the multi-
homogeneous Bézout theorem. While this theorem is well known to algebraic
geometers, topologists, and homotopy method theorists, the computation of the
Bézout number is usually only carried out in the bihomogeneous case in textbooks.
Morgan and Sommese [19] prove the theorem and give a simple description of
how to compute the number, which we repeat here.

Let f = (fi)1<i<n be a system of n complex polynomial equations in n + m
complex variables. These variables are partitioned into m groups Xy, ..., X,, with
k; + 1 variables in the jth group. f; is said to be multihomogeneous if for any
index j there exists a degree d;; such that, for any scalar A € C,

Xy A X X)) = A% (X0, X Xo).

In this case the system f is called multihomogeneous. The Bézout number B asso-
ciated with this system and this structure is defined as the coefficient of []}_, {fj
in the product [T/_, "7, di;¢;.

We say that (Xi,..., X,,) € C""™ is a zero for f when f(Xi,...,X,) =
0. In that case, f(A;Xy,...,AnX,y) = 0 for any m-tuple of complex scalars
(A1, ..., Ap). For this reason it is convenient to associate a zero to a point in the
product of projective spaces PX (C) x - - - x P (C). We use the same notation for a
point in PX (C) x - - - x P (C) and for any representative (X1, - - -, X,,) € C"*.

We say that a zero (X1, ..., X,,) € PX(C) x - - - x P%(C) is nonsingular when
the derivative

Df(Xy,..., X, :C""" —~ C"

is surjective. Notice that this definition is independent of the representative
(X1,..., Xm) € C*™™™ We have

Theorem 5.1 (Multihomogeneous Bézout Theorem). Let f be a multihomoge-
neous system. Then the number of isolated zeros of f in PX'(C) x --- x Pk (C)
is less than or equal to B. If all the zeros are nonsingular, then f has exactly B
zeros.

6. The Total Curvature of the Central Path on the Average

To the matrix A and the vector b not in the range of A, we associate the set of
admissible points of the primal problem via the set of equalities—inequalities

Ax —s =b, s > 0.
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We may also consider the other polyhedra contained in the subspace Ax —s = b
and defined by the inequalities

s; & 0, 1<i<m,
where ¢ = (eq, ..., &,) is one of the 2™ vectors of sign conditions.

Let (A, b) denote the set of such primal strictly feasible polyhedra contained
in the subspace Ax —s = b and let Q(A, b) be the set of those which are compact.

Lemma 6.1. For almost all A and b,

#O(A, b) = Rx(m,n) = (m; 1) .

Proof. This statement was proved by Buck [8] for A and b in general position.
In particular, since A and b are in general position except in a set of measure zero,
Lemma 6.1 holds for almost all A and b. |

Proposition 6.2. A probability measure on P which is absolutely continuous
with respect to Lebesgue measure is full.

Proof. The set of (A, b, c) in P where (A, b) is not in general position has zero
Lebesgue measure by the above lemma and by Fubini’s theorem, thus it has zero
measure for any measure absolutely continuous with respect to Lebesgue. |

Now we prove Corollary 1.2 of the Introduction assuming the Main Theorem.

Proof. The group D acts freely on P, so let P/~ denote the orbit space. Then
we may decompose the measure p on the orbits of D. Since p is sign invariant
each point in the orbit gets equal measure and the same is true for the condi-
tional measure v, i.e., each strictly feasible polytope in the orbit of D gets equal
measure when the measure v is decomposed on orbits. Now we average over the
orbits of points in general position, apply the Main Theorem, and then average
over P/~. O

It remains to prove Theorem 1.1.
The proof of this theorem requires Lemmas 6.3, 6.4, and Proposition 6.5 below.

Lemma 6.3. For each F € F (A, b), the Gauss curves associated with the cen-
tral paths cpp (F), cp(F), and cp(F) are well defined.

Proof. The primal/dual (resp., primal; resp., dual) central path associated with
a polyhedron F € F (A, b) satisfies the system of polynomial equations

Ax —s—Db
F,(x,s,y) = ATy —¢c | =0 (6.5)
sy — ue

with u > 0, and this system is the same for all those polyhedra.
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Let Dy denote the diagonal matrix with diagonal entries s;. Since sy = ue
(equation (6.5-3)), D; is invertible. The derivative of F, is equal to

A —-I 0
DF,(x,s,y)=]10 0 AT
0 Dy, D
and it factors as
I 0 O I -1 0 A 0 I 0
0 0 I||—uD! I Dy uD'A 0 0 I}
0 I O 0 ATDS_1 I —MATD;2A I 0 O

Therefore, since A has full column rank, i > 0 and s; # 0, this derivative is
nonsingular and we are in the conditions of the Implicit Function Theorem. The
speed vector

¢=(x,5,9) = —DF,(x(), y(), 2(w) " Fu((x (), y(w), ()

is the unique solution of the implicit equations

Ax —s =0,
ATy =0, (6.6)
sy +sy =e.

The Gauss curve for the primal/dual problem is (x, s, y)/|[(x, s, ¥)||. Notice that
because of (6.6-3), s and y cannot together be equal to 0 so that this curve is well
defined.

The Gauss curve associated to the primal (resp., dual) central path is
x,8)/11(x, s)|| (resp., ¥/|IyI). Those curves are well defined, for suppose that
s = 0. Then equations (6.5-3) and (6.6-3) combined give

Sy = usy.
Hence, dividing componentwise by s and then multiplying by AT, one obtains
c=ATy=uATy =0

which contradict the hypothesis ¢ # 0. Suppose now y = 0. Then, by the same
reasoning one obtains s = ws. Hence, by (6.6-1), s is in the range of A. Then
by (6.5-1), b is in the range of A, contradiction. Thus, we showed that the Gauss
curves for the primal/dual, primal and dual central paths are well defined. O

A point of the curve ypp is the image under the map
(x,5,y)

(x5s7y7x7j7y) = —
Ges s, 9
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of a point (x, s, y, X, §, y) satisfying the systems (6.5) and (6.6) for some p > 0.
Similarly, a point of the curve yp (resp., yp) is the image of such a point under the
map

( (5. 9) (x,8)
X, 8,¥,X,8,y) > TR
1, $)
L. y
(resp.,(x,s,y,x,s,y) — ﬂ)
y

The symbol * stands for PD, P, or D. These cases will be known as the
primal/dual, the primal and the dual case, respectively.

Lemma 6.4. [t is assumed as above that F € F(A, b) and that ¢, and y, are
defined as above. Let u € R", v € R™, w € R™ be not all zero.

(1) Each transversal intersection of the Gauss curve ypp with the hyperplane
Hep = {(X,5,¥) culx +vls +wly =0}
is the image of a nonsingular solution of the polynomial system

Ax—s—b
ATy —¢
sy — pe

(x,8,9,%,8,9, ) = Ax — 5 =0 (6.7

ATy
sy +sy—e
_uT)'c +ols + wTy'_

@A,h,c,u,v.w

such that p > 0.
(2) Let w = 0. Each transversal intersection of the Gauss curve yp with the
hyperplane

Hp = {(x,$) :ulx +v7s =0)

is the image of a nonsingular solution of the polynomial system (6.7).
(3) Letu = 0 and v = 0. Each transversal intersection of the Gauss curve yp
with the hyperplane

Hp={y:w'y =0}

is the image of a nonsingular solution of the polynomial system (6.7).

Proof.  Part(1)is Lemma4.4, where F), and D F, are computed in (6.5) and (6.6).

Part (2) follows from the fact that any transversal intersection of yp with the
hyperplane u”x + v’s = 0 corresponds to a transversal intersection of ypp
with the hyperplane u”% 4+ v7s + 07y = 0. Indeed, if yp(u) = (%, $)/||%, 5]
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we set ypp(u) = (x,5,5)/]1x, S, yll. Then (u, v)"yp(u) = 0 if and only if
(,v,0)" ypp(n) = 0.

Now, assume that the intersection of yp with u” x + v7s = 0 is transversal.
Then,

d 1
— @, 0,0 ypp(p) = @ F + 05+ 0" )
aﬂ/ ”'x’ s, y“
. . .0 1
+ @ x+oTs + OTy)—f
o llx, s, vl
1
= ——— @i +0"§+0"§)
X, s, Yl
TR
= D ) 0,
llx,s, yIl 9
and therefore the intersection of ypp with u” x +v75+07y = 01is also transversal.
The proof of part (3) is similar. O

Proposition 6.5. Letm > n > 1. Let A be an m x n matrix of rank n, and let
b € R" and ¢ € R", ¢ nonzero. Then, for any transversal hyperplane H.,, the
polynomial system (6.7) has at most

m—1
BPDEZR( " )

nonsingular solutions (x, s, y,x,85,y, ) E R" X R" x R" x R" x R" x R" x R
with u > 0.
If, furthermore, we have w = 0, the number of nonsingular solutions is bounded

above by
Br <201 — 1)(’”; 1).

If instead we have u = 0 and v = 0, the number of nonsingular solutions is

still bounded above by
m—1
Bp <2n ( n ) .

The proof of Proposition 6.5 is long, and is postponed to Section 7.

Proof of Theorem 1.1.  The total curvature is the sum of the lengths of the Gauss
curves corresponding to strictly feasible regions. According to Corollary 4.3, a
bound B, for the number of intersections (counted with multiplicity) of the as-
sociated Gauss curves with a transversal hyperplane gives the bound 753, for
the length. Finally, by Lemma 6.4 and Proposition 6.5, 5, may be taken as in
Proposition 6.5. O
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7. Proof of Proposition 6.5

The proof of Proposition 6.5 is quite long, and occupies all of this section. There
are actually three cases, that are quite similar and will be treated in parallel.
We proceed as follows:

7.1.  Complexification of the Equations

The first step is to complexify the equations, i.e., to keep the coefficients fixed and
to consider the variables as complex instead of real.

Lemma 7.1. The number of nonsingular solutions of (6.7) in R¥T2m+1 yyith

w > 0 is bounded above by the number of nonsingular solutions of (6.7) in
C4mA2m+1 i i ?é 0.

Proof. A real root s, in particular, a complex root. It is nonsingular if and only if
the determinant of the Jacobian matrix of the derivative does not vanish. The non-
vanishing of this determinant does not depend on whether the matrix is considered
as real or complex. O

Note that when we complexify the equations, the terms u” x +v7§ 4+ w7 y stand
for the usual transpose.
A standard application of Bézout’s theorem implies that

Lemma 7.2. The number of nonsingular solutions of (6.7) in C*"+2m+1 yith
w # 0 is bounded above by 2*".

This estimate, while ensuring finiteness, is not sharp enough for our theorem.

7.2.  Continuation of Nonsingular Roots

More formally, we denote by App the set of all complex A, b, ¢, u, v, w where A
has rank n, ¢ # 0, and u, v, w are not simultaneously zero. We also denote by .4p
(resp., Ap) the intersection of App with the linear space w = 0 (resp., u = 0 and
v =0).

Then, B, will denote the maximal number of nonsingular complex roots of
(6.7) with u # 0, where * is one of PD, P, D and the maximum is taken over all
parameters in A,. As in Lemma 7.2, B, is finite. Hence this maximal number is
attained, and at that point all the nonsingular complex roots may be continued in
a certain neighborhood. Thus,

Lemma 7.3. The maximal number B, of nonsingular complex roots is attained
in a certain open set of A,.
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Proof. Asin Lemma 7.2, B, is attained for some parameter (A, b, ¢, u, v, w).
By the Implicit Function Theorem, the nonsingular complex roots of (6.7) with

u # 0 can be continued to nonsingular complex roots with u # 0, in a certain

neighborhood of the parameter (A, b, ¢, u, v, w). O

7.3. Nondegeneracy at the Maximum

The following fact will be needed in the sequel:

Proposition 7.4. The complex roots of (6.7) with u # 0 are all nonsingular,
almost everywhere in A,.

Proof. Let X = {x,s,y,x,5,y, 0 € C**+2+l - - 0}. We consider the
evaluation function

ev: A, x X — Cmt2nt]
. . . . A’h’ JUL, . . .
(A,b,c,u,v,w; x,8,y,X,8,y, 0) > @H2CEUY(x gy x, 8,9, 1),

where ® was defined in (6.7).
0 is a regular value of ev if and only if Dev(A,b,c,..., ) is onto when
ev(A,b,c, ..., n) =0 (see [12, Chap. II Sec. 1]).

Lemma 7.5. 0 is a regular value for ev.

This lemma guarantees that V = ev~!(0) is a smooth manifold and dim V =
dim A,.
Now we consider the natural projection 7r; : V — A,. By Sard’s theorem, the

regular values of 1 have full measure in A,. Sincedim V = dim A,, (A, b, ..., w)
is aregular value if and only if Dz is an isomorphism at every point (A, b, ..., 1)
such that w; (A, b, ..., u) = (A, b, ..., w). For such systems, all the roots with
W # 0 are nonsingular. O

Proof of Lemma 7.5. We first reorder the equations and the variables of (6.7) as
follows:

Ax —s—b
ATy —¢
uTx +vTs +w'y
ev(b,c,u,v,w,y,s,y,x,x,5, A, ) = sy — e . (7.8)
Ax —§
sy +sy—e
ATy
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In order to show that Dev has full rank 4m + 2n + 1, we will show that a certain
submatrix has rank 4m + 2n 4 1. Namely, we will consider only the derivatives
with respect to variables b to x, and derivation with respect to x, s, A, and u will
be omitted. We obtain the block matrix

—1
-1 AT
X777 of  wl T
Dy, . iev = Dy
—1 A
D; D, D
AT

Recall that ;& # 0, hence no coordinate of s or y can vanish and the diagonal
matrices D and D, have full rank.
Performing row operations on the previous matrix, one obtains

-1
—1 AT
xTSTy-T oI wT ul
Dy, ;ev=L Dy
—1 A
Dy D,A
—A"D;'DyA |

for an invertible lower triangular matrix L. Since not all of x;, §;, y; can be zero
(Lemma 6.3) and Dy has full rank, it remains only to check that —A” DD, A
has also full rank. This follows from the identity

—A"D'D,A = — (D' AT (D1 A)

and from the fact that A has full rank.
Hence, Dev has rank 4m + 2n + 1, and we are done. O

7.4. Genericity

In this section we show that it is sufficient to bound the number of nonsingular
roots of systems satisfying conditions (1) through (4) of Proposition 7.6.

Let K C {1,...,m}. We define Sk as the linear space of all {s € C" : s, =0
forall k € K}.

Proposition 7.6. Let m > n. There is a point (A, b, ¢, u, v, w) € A, such that:

(1) The maximal number B, of nonsingular complex solutions of (6.7) with
w # 0 is attained at this point.
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(2) All the solutions at that point are nonsingular.

(3) For any K C {l1,...,m}, the linear space Sk and the affine space
(ker ATYL — b intersect if and only if n — #K > 0. In that case, the
intersection has dimension n — #K .

(4) Forany K C {1, ..., m}, the linear space Syi... myk and the affine space
(v : ATy = ¢} intersect if and only if #K — n > 0. In that case, the
intersection has dimension #K — n.

Proof. By Lemma 7.3, item (1) holds on an open set U C A*. Item (2) will fail
only on zero measure set (Proposition 7.4). For items (3) and (4), notice that with
probability one, dim(ker A7)t — b =n and dim{y : ATy = ¢} = m — n. On the
other hand, codim Sx = #K and codim Sy, .k = m — #K. Thus it is easy to
see that points where item (3) or (4) fails lie in a finite union of zero measure sets.

Hence, items (2) to (4) will hold on a subset of A* of full measure which has a
nonempty intersection with the open set of Lemma 7.3. O

This result has the following consequence: to give a bound for the number of
nonsingular solutions of the system (6.7) with © # 0, we can replace the initial
data by the data (A, b, ¢, u, v, w) of Proposition 7.6.

Also, for convenience, we will count the number of isolated roots of the corre-
sponding system, which is the same.

7.5.  Simplification of the Equations

Lemma 7.7. Set ii = u + ATv. The polynomial systems (6.7) and (71.9) below
have the same solutions with u # 0 so that the isolated solutions of (6.7) with
u # 0 are identical to the isolated solutions of (7.9) with u # 0.

[ Ax —s—b ]
ATy —¢
sy — ue

W, (x,s,y,X,8,y) = AX — 5§ =0. (7.9)
ATy

wy +y*% —y

| aTx+w'y |

Proof. This last system is obtained from (6.7) by the transformation
\IJkZCDk, lfkfs»
Vs = yPs — yP3, (7.10)
v, = o, + UT(D4.

When i # 0, then no component of y is zero so the solutions of (6.7) and the
solutions of (7.9) coincide. O
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Letgy,...,gnrnand f € C", y, 8 and let w € C"" be such that:

(@ (g1,...,8m_n) is abasis of ker AT;
(b) ATf=¢;

© y=f+2"vigs

(d) y=73"\"9;g; and

(e) w; :ngj, j=1,...,m—n.

We will denote by g;; the ith coordinate of g;, by G the m x (m — n) matrix
with entries g;;, by A; the ith row of the matrix A,7 = 1,...,m, and by Af =
(A" A)~1AH the Moore—Penrose inverse of A (injective); AAT is the orthogonal
projection onto range A while ATA = I,

Lemma 7.8. The system (7.9) has the same solutions as

(x — AT(s +b)]
GT(b+s)
ATy —¢

L. Sy — ue

Quxsyts =] TN =0 (7.11)
ATy

Wy +y*% =y

i atx +w'y ]

Proof. Equations (7.11-2) are equivalent to b + s € (ker A7)+, thatis, b + s €
range A. Under this assumption, x = Af(s +b) gives Ax = b+ s. Thus (7.11-1)
and (7.11-2) imply (7.9-1). Conversely, if Ax = b+ s we getb+s € range A and
x = AT(s + b), that is, (7.11-1) and (7.11-2). O

7.6.  Elimination of Variables

Let us now introduce a new polynomial system with the same number of zeros:

GT(b+s)
s(f+Gy)—wu
Eu(s,%,7,8) = | uGs + (f + Gy)* | =0. (7.12)
Ax — (f+ Gy)
aTx +wTs

We also define the following maps:

A:C"xC'xC"""xC""xC—->C"xC"xC"xC"xC"xC" xC,

A(s, %, v, 8, ) = (AT(s + b), 5, f + Gy, %, Ax, G8, ),



J.-P. Dedieu, G. Malajovich, and M. Shub

and the projection

OF19

MMy :C"xC" " xC'"xC"xC"xC"xC"xC—->C""xC"xC"xC,

[oa78(21, 22, 23, 24, 25, 26, 27, 28) = (22, 24, 27, 28)-

Lemma 7.9. The construction of system (7.12) is such that the diagram

Q

(C4m+2n+l N (C4m+2n+l

(CSm—n-H (C3m—n+l

=
=

is commutative. Moreover,

o478

(D) If (s, x, y, 8, w) is a solution of (7.12), then (x, s, y, x, s, y, u) = A(s, X,
y, 8, 1) is a solution of (7.11).
(2) Any solution (x, s, y, x,s,y, u) of (7.11) is equal to A(s, x, y, 8, ) fora
unique solution of (7.12).
(3) Any isolated solution of (7.11) with u # 0 corresponds to an isolated
solution of (7.12) with u # 0.

Proof. The proof is easy and left to the reader.

O

Now we look at equations (7.12-3), (7.12-4) as a linear system of m + 1 equa-
tions in the m unknowns (8, x), with coefficients depending on y and n. When
(s, X, y, 8, u) is a solution of (7.12) with u # 0, those equations have a solution if
and only if the determinant of the corresponding augmented matrix vanishes. We
can write the augmented matrix as

_l/«gll

M(y, p)=

HEm1
- ﬁjl

Mgim—n a1 Q1(y)

:u“gln,m—n am1 Qm (J/)
ﬁ)mfn 121

a,Q1(y)  fi+ Z;:ln Vi&1j ]

Amn Qm (J/) fm + Z;VI:—IM V_jgm_/'

Un

0

(7.13)

where Q; (y) = (fi +)_j—/" v;&i;)*. By dividing the first m —n columns by 1« and
then multiplying the last row by 1, we obtain a new matrix M’ whose determinant
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vanishes if and only if the determinant of M vanishes:

gu 0 &m-n an@i(y) - an,,Qi(y) fi +Z_’/"=_ln )’jgl_/_
M (y, w) =
8m1 e gm,mfn A Qm ()’) e Amn Qm ()/) ,fm + Z;”;" ngmj
_ﬁ)l ﬁ)m—n [,Lﬁ] Hfﬁn 0 _
(7.14)
Its determinant is the same as the determinant of
Cen -+ gm—n  anQi(y) -+ anQi(y) Nil 7]
M'(y, u) =
8m1 e 8m,m—n am1 Qm(y) o Amn Qm ()’) f;n
L®1 o W nuy niy —Z)/iwi_

We now have to distinguish the three cases of Proposition 6.5. In the primal /dual
case, we define the eliminating polynomial ipp(y, ) = det M"(y, w). In the dual
case, we also define hp(y) = det M"(y, 1) but now, since & = 0, the eliminating
polynomial is independent of 1. In the primal case, w = 0 and we notice that the
last row of M” is divisible by w. Hence, we set hp(y) = = det M"(y, ).

Lemma 7.10. With the notations above, (s, X, y, 8, ) is a solution of (7.12) with
u # 0 if and only if

si(fi + 200 vig) — 1
1)
My, | *
Y(s,x,y,0, ) = —1 =0,
GT(b+ys)
si(fi + 2005 vigi) —si(h + 205" vi81))
L hi(y, w)

(7.16)
and n # 0.

Proof. The system Y = 0 is the same as & = 0 plus the equation i(y, u) =0
which is a consequence of E = 0 as has been explained previously. |
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Lemma 7.11.  The number of isolated solutions of the system (7.16) with u # Ois
less than or equal to the number of isolated solutions with s, ( fi +Z;:l" vig1;) #0
of
GT(b+ys)
O, y) = | silfi + 270" vigi) —si(fi + 27" vigij) | =0, 7.17)
ha(y, fi + 3205 vig1))

where the range for i in the second equation is 2 <i < m.

Proof. This lemma is a consequence of the following facts:

e Anisolated solution (s, x, y, &, i) of (7.16) gives an isolated solution (s, y)
of (7.17).

e Two distinct solutions (s, x, y, 8, u) and (s', X", y’, 8, u') of (7.16) with
w # 0and u' # 0 give two distinct solutions (s, y) and (s’, ') of (7.17)
with s (fi + 270" vjg1)) # 0and sy (fi + 227" vig1) # 0.

The first fact is true because (7.17) is a subsystem of (7.16).
Let us prove the second assertion. Let (s, X, v, 8, u) and (s, X', y, 8, u') be
two solutions of (7.16) with s1(fi + 27" yjg1;) # 0. Our aim is to prove that

(x,8, n) = (x',8, u). Wehave clearly u = ' # Oand s; (f; +Z;:1" vi&ij) #0
for each i. Moreover, (x, §) is given by the system

8

—1

. 6
uG Diag (Q;(y)A [+ Gy i |=0
W i 0 1

This system has a unique solution if and only if rankM (y, u) = m. Let us prove
that the m x m submatrix

[1GDiag (Qi(y)) Al

is nonsingular. Let « € C"~" and B € C" be given. If

[1GDiag (Q;(y))Al m =0,

then
uGa + Diag (Qi(y))AB = 0
so that, multiplying by AT, we get
A" Diag (Qi(y)AB = 0.

Since (f; + 372" ¥;&ij)* > 0 and rankA = n the matrix A” Diag (Q;(y))A is
positive definite and, consequently, 8 = 0. Thus uGa = 0 so that « = 0 because
@ # 0 and rankG = m — n. This completes the proof. O
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7.7. The Bézout Bound

To count the number of isolated roots of this last system we use the multi-
homogeneous Bézout bound givenin Theorem 5.1. For this purpose we bthomogen-
ize the system (7.17): we introduce the homogenizing variables sy in the first group
of variables and y in the second group. We obtain the system

G' (sob +5)
OG0, 5, v0, ¥) = | Sivo fi + 27 vigii) —sivofi + 27 vigi) | = 0.
h«(yo, v, S0,8) =0.

(7.18)
Here h, (v, ¥, S0, §) is just the homogenization of £, (y, s).

Lemma 7.12.

(1) The system (7.18) is bihomogeneous in the groups of variables (so, s) €
(Cerl and ()/(), )/) c Chl*l’l“rl.
(2) There are m — n equations of multidegree (1,0) and m — 1 equations of
multidegree (1, 1). The multidegree of the last equation depends on whether
* stands for PD, P, or D:
The multidegree of hpp is (1,2n + 1).
The multidegree of hp is (0, 2n — 2).
The multidegree of hy is (0, 2n + 1).
(3) (s, y) isanisolated solution of (7.17) ifand only if (1, s, 1, v) is anisolated
solution of (7.18).
(4) The number of isolated solutions of (7.18) is bounded as follows:

When * is equal to PD, by 2n (m n_ l) + (7;)’

when x is equal to P, by 2n — 2) (m n_ 1); and

when x is equal to D, by 2n + 1) <m ; 1).

Proof. Assertion (1) holds by construction.
For the second assertion, we write down the Laplace expansion of the determi-
nant of M” in equation (7.15) in terms of the last row:

det M"(y, p) = D (=D)" 1 Cy 4+ 3 (=)™ it € + (Z w%) c.
j=1 j j=1

i=1

The cofactors C;, C/, and C” have multidegree (0, 2n), (0, 2n —2), and (0, 2n),
respectively. They get multiplied to factors of multidegree (0, 0), (1, 1), and (0, 1).
Hence, det M” has multidegree at most (1, 2n + 1).
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The cofactors C; and C” are irrelevant to the primal case, since w = 0. In this
case,

det M"(y, ) = ) (=D)"""1i; .
i=1

Moreover, hp was defined as ;! det M” and hence the multidegree of hp is
0,2n —2).

Similarly, the cofactors C are irrelevant to the dual case, and hence deg ip =
0,2n+1).

The third assertion comes from a classical fact: when both product spaces are
equipped with the usual topology, the canonical injection

i :C" xC"™" - P"(C) x P"(C)

is open and continuous.

By the Multihomogeneous Bézout Theorem (Theorem 5.1), the number of
isolated solutions in the primal/dual case (x = PD) is no more than the coefficient
of £{"¢;"™" in the expression

MG+ )" @G+ Cr+ D).

In the primal/dual case (item (6)), this coefficient is precisely

e (")) = () ()

The primal and dual cases are similar. O

7.8.  The Spurious Roots

Except for the primal case, the number of roots we have obtained is still too big to
give the bound announced in Theorem 1.1. We have to eliminate some of them to
obtain the right result.

There are three classes of bihomogeneous solutions (sy, s, ¥, ¥) of the sys-
tem (7.18).

(1) Roots at infinity are roots for which yy = 0 or 5o = 0. We will not worry
about roots at infinity here.

(2) Spurious roots. These are the finite roots for which u = 0, that is, sy = 0
oryofi + 27" vjg1; = 0.

(3) Legitimate roots are all the other solutions.

Notice that solutions (s, y, 1) of the system (7.17) with sy (fi + 37" ¥;€1;) # 0
always correspond to legitimate roots of (7.18).
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Lemma 7.13. The number of spurious roots of (6.7) for x one of PD or D
is (m)
n
Proof. We will only deal with the primal/dual case, the dual case being exactly
the same.
The idea of the proof is to produce a bijection from the spurious roots to the

class of subsets K C {1, ..., m} of cardinality n.
Since i = s1(fi+ ;" ¥;81;) = 0, spurious roots are the zeros of the system

GTS = —S()GTb,
siwfi + 25 vigi) =0, i=1,....m, (7.19)
hep (Yo, ¥, S0, 8) = 0.

Let (o, ¥, S0, s) be a spurious root. Since spurious roots are finite we assume
thatyy = landsy = 1. Weset K = K(s) = {k € {1,...,m} : sy = 0}. Then, the
system (7.19) breaks into

GT(s+b) =0, withs € Sk,
i+ X5 vig =0, i ¢K, (7.20)
hpp(y,s) =0.

The first equation is equivalent to saying that s € Sk and s + b € (ker A7)*.
Again, this is the same as saying that s € Sg N ((ker A7)+~ — b).

If the cardinality of K is strictly larger than n, then Proposition 7.6, item (3),
guarantees that the intersection of Sk with the affine space (ker A# )L+ b is empty.
Therefore the cardinality of K is at most n.

The second equation of (7.20) is satisfied if and only if the preimage of ¢ by
the ith nonzero coordinate of a point y at the intersection.

If the cardinality of K is strictly smaller than 7, then the intersection is empty
because of Proposition 7.6, item (2).

Therefore K has cardinality n. Conversely, let K be a cardinality n subset of
{1, ..., m}. Then, because of Proposition 7.6, item (3), Sk and (ker A#)* — b do
intersect. Because of item (4), the spaces (A7)~!(c) and St1,...mpk also have a
nonempty intersection.

Therefore, equations (7.20-1, 2) admit a finite common solution (1, y, 1, s).
Here, it is crucial to use the fact that we are in the primal/dual or dual case, and
hence h, is the determinant of M” in (7.15) or, equivalently, the determinant of M’
in (7.14). It will follow that &, (yo, ¥, So, ) = 0. This happens because, fori ¢ K,
Q; will vanish in (7.13). Also fori ¢ K, M'(y, )i m+1 = 0.

Since p was replaced by s1(fi + > ;1) in the last row of (7.14), the matrix
M'(y, u) has (after reordering) an (m —n+ 1) x (n+ 1) block of zeros. This means
that an (n + 1)-dimensional subspace is mappedintoam +1— (m —n+1) = n-
dimensional subspace. Hence h,(y, s) = det M'(y, u) = 0. O
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Notice that spurious roots must be isolated. Otherwise, there would be a com-
ponent of nonisolated roots of (6.7) for u # 0, and this would contradict Proposi-
tion 7.6, item (2). Hence, when * is one of PD or D, we can subtract the number
of spurious roots from the bounds obtained in Lemma 7.12, and Proposition 6.5
follows. Notice that the bound for the dual case is not sharp.

8. Concluding Remarks

1. Beling and Verma [5] is a predecessor to our paper. They prove a similar
result to our Proposition 6.5 but only for subspaces defined by the vanishing of
one of the coordinates and their estimate is not as strong.

2. We have estimated the curvature by the number of complex roots of a system
of equations including possibly roots at infinity. In fact, only real and finite roots
count. The number of real roots is in general much less and can in some contexts be
compared with the square root of the number of complex roots; see Shub and Smale
[24], Edelman and Kostlan [11], McLennan [17], Rojas [22], and Malajovich and
Rojas [15], [16]. Thus the total curvature, at least on average, may be very small
indeed for large problems. We find a better understanding of the total curvature of
the central path in worst- and average-case analysis an interesting problem.

3. There is a body of literature on the curvature of the central path, relating
the curvature to the complexity of Newton-type algorithms that approximate the
central path and produce approximations to the solutions: see Sonnevend, Stoer,
and Zhao [26], [27], Zhao and Stoer, [31], and Zhao [33], [34]. These papers use a
different notion of curvature, closer to 1/y where y is Smale’s y; see also Dedieu
and Smale [10]. The integral of these quantities is infinite.

4. The Riemannian geometry of the central path has been studied by quite a
few authors; see Karmarkar [13], Bayer and Lagarias [2], [3], [4], and Nesterov
and Todd [20].

5. Vavasis and Ye [30] study regions where the tangent vectors to the central
path stay in definite cones. Curvature estimates may be used as a refinement of
this information.

6. Malajovich and Meer [14] showed that the problem of computing (or even
approximating up to a fixed constant) the sharpest multihomogeneous Bézout
bound for a system of polynomial equations is actually NP-hard.
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