
April 8, 2005 17:44 01236

International Journal of Bifurcation and Chaos, Vol. 15, No. 3 (2005) 827–839
c© World Scientific Publishing Company

NEWTON FLOW AND INTERIOR POINT METHODS
IN LINEAR PROGRAMMING

JEAN-PIERRE DEDIEU
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31062 Toulouse cedex 04, France

MIKE SHUB
Department of Mathematics, University of Toronto,

100 St. George Street, Toronto, Ontario M5S 3G3, Canada

Received January 12, 2004; Revised June 17, 2004
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1. Introduction

In this paper we take up once again the subject
of the geometry of the central paths of linear pro-
gramming theory. We study the boundary behavior
of these paths as in [Megiddo & Shub, 1989], but
from a different perspective and with a different
emphasis. Our main goal will be to give a global pic-
ture of the central paths even for degenerate prob-
lems as solution curves of the Newton vector field,
N(x), of the logarithmic barrier function which we
describe below. See also [Bayer & Lagarias, 1989a,
1989b, 1991]. The Newton vector field extends to
the boundary of the polytope. It has the properties
that it is tangent to the boundary and restricted to
any face of dimension i it has a unique source with
unstable manifold dimension equal to i, the rest
of the orbits tending to the boundary of the face.
Every orbit tends either to a vertex or one of these
sources in a face. See Corollary 4.1. This highly cel-
lular structure of the flow lends itself to the conjec-
ture that the total curvature of these central paths
may be linearly bounded by the dimension n of
the polytope. The orbits may be relatively straight,

except for orbits which come close to an orbit in a
face of dimension i which itself comes close to a sin-
gularity in a boundary face of dimension less than i.
This orbit is then forced to turn almost parallel to
the lower dimensional face so its tangent vector may
be forced to turn as well. See the two figures at the
end of this paper. As this process involves a reduc-
tion of the dimension of the face it can only hap-
pen for the dimension of the polytopetimes. So our
optimistic conjecture is that the total curvature of
a central path is O(n). We have verified the conjec-
ture in an average sense in [Dedieu et al.]. It is not
difficult to give an example showing that O(n) is
the best possible for the worst case. Such an exam-
ple is worked out in [Megiddo & Shub, 1989]. The
average behavior may be however much better. Ulti-
mately we hope that an understanding of the cur-
vature of the central paths may contribute to the
analysis of algorithms which use them. In [Vavasis
& Ye, 1996] the authors explore similar structure to
give an algorithm whose running time depends only
on the polytope.

We prove in Corollary 4.1 that the extended
vector field is Lipschitz on the closed polytope.
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Under a genericity hypothesis we prove in
Theorem 5.1 that it extends to be real analytic on
a neighborhood of the polytope. Under the same
genericity hypothesis we prove in Theorem 5.2 that
the singularities are all hyperbolic. The eigenval-
ues of −N(x) at the singularities are all +1 tan-
gent to the face and −1 transversal to the face. In
dynamical systems terminology the vector field is
Morse–Smale. The vertices are the sinks. Finally,
we mention that in order to prove that N(x)
always extends continuously to the boundary of
the polytope we prove Lemma 4.2 which may be
of independent interest about the continuity of the
Moore–Penrose inverse of a family of linear maps of
variable rank.

2. The Central Path is a Trajectory
of the Newton Vector Field

Linear programming problems are frequently pre-
sented in different formats. We will work with one of
them here which we find convenient. The polytopes
defined in one format are usually affinely equivalent
to the polytopes defined in another. So we begin
with a discussion of Newton vector fields and how
they transform under affine equivalence. This mate-
rial is quite standard. An excellent source for this
fact and linear programming in general is [Renegar,
2001].

Let Q be an affine subspace of Rn (or a Hilbert
space if you prefer, in which case, assume Q is
closed). Denote the tangent space of Q by V. Sup-
pose that U is an open subset of Q. Let f : U → R

be twice continuously differentiable. The deriva-
tive Df(x) belongs to L(V, R), the linear maps
from V to R. So Df(x) defines a map from U to
L(V, R). The second derivative D2f(x) is an ele-
ment of L(V, L(V, R)). Thus D2f(x) is a linear map
from a vector space to another isomorphic space and
D2f(x) may be invertible.

Definition 2.1. If f is as above and D2f(x)
is invertible we define the Newton vector field,
Nf (x) by

Nf (x) = −(D2f(x))−1Df(x).

Note that if V has a nondegenerate inner
product 〈 , 〉 then the gradient of f , grad f(x) ∈ V,
and Hessian, hess f(x) ∈ L(V, V), are defined by

Df(x)u = 〈u, grad f(x)〉

and

D2f(x)(u, v) = 〈u, (hess f(x))v〉.

It follows then that Nf (x) = −(hess f(x))−1

grad f(x).
Now let A be an affine map from P to Q whose

linear part L is an isomorphism. Suppose U1 is open
in P and A(U1) ⊆ U . Let g = f ◦ A.

Proposition 2.1. A maps the solution curves of Ng

to the solution curves of Nf .

Proof. By the chain rule Dg(y) = Df(A(y))L and

D2g(y)(u, v) = D2f(A(y))(Lu,Lv).

So u= Ng(y) if and only if D2g(y)(u, v)=−Dg(y)(v)
for all v if and only if D2f(A(y))(Lu,Lv) =
−Df(A(y))Lv for all v, i.e. Nf (A(y)) = L(u) or
LNg(y) = NfA(y). This last is the equation ex-
pressing that the vector field Nf is the push for-
ward by the map of the vector field Ng and hence
the solution curves of the Ng field are mapped by
A to the solution curves of Nf . �

Now we make explicit the linear programming
format used in this paper, define the central paths
and relate them to the Newton vector field of the
logarithmic barrier function.

Let P be a compact polytope in Rn defined by
m affine inequalities

Aix ≥ bi, 1 ≤ i ≤ m.

Here Aix denotes the matrix product of the row
vector Ai = (ai1, . . . , ain) by the column vector
x = (x1, . . . , xn)T , A is the m×n matrix with rows
Ai and we assume rank A = n. Given c ∈ Rn, we
consider the linear programming problem

(LP ) min
Aix≥bi

1≤i≤m

〈c, x〉.

Let us denote by

f(x) =
m∑

i=1

ln(Aix − bi)

(ln(s) = −∞ when s ≤ 0) the logarithmic bar-
rier function associated with the description Ax ≥ b
of P. The barrier technique considers the family of
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nonlinear convex optimization problems

(LP (t)) min
x∈Rn

t〈c, x〉 − f(x)

with t > 0. The objective function

ft(x) = t 〈c, x〉 − f(x)

is strictly convex, smooth, and satisfies

lim
x→∂P
x∈IntP

ft(x) = ∞.

Thus, there exists a unique optimal solution γ(t) to
(LP (t)) for any t > 0. This curve is called the cen-
tral path of our problem. Let us denote as Dx the
m × m diagonal matrix Dx = Diag(Aix − bi). This
matrix is nonsingular for any x ∈ Int P. We also let
e = (1, . . . , 1)T ∈ Rm,

g(x) = grad f(x) =
m∑

i=1

AT
i

Aix − bi
= AT D−1

x e

and

h(x) = hess f(x) = −AT D−2
x A.

Since ft is smooth and strictly convex the central
path is given by the equation grad ft(γ(t)) = 0 i.e.

g(γ(t)) = tc, t > 0.

When t → 0, the limit of γ(t) is given by

−f(γ(0)) = min
x∈Rn

−f(x).

It is called the analytic center of P and denoted
by cP .

Lemma 2.1. g : Int P → Rn is real analytic and
invertible. Its inverse is also real analytic.

Proof. For any c ∈ Rn the optimization problem

min
x∈Rn

〈c, x〉 − f(x)

has a unique solution in Int P because the objective
function is smooth, strictly convex and P is com-
pact. Thus g(x) = c has a unique solution that is g
bijective. We also notice that, for any x, Dg(x) is
nonsingular. Thus g−1 is real analytic by the inverse
function theorem. �

According to this lemma, the central path is the
inverse image by g of the ray cR+. When c varies

in Rn we obtain a family of curves. Our aim in this
paper is to investigate the structure of this family.

For a subspace B ⊂ Rm we denote by ΠB the
orthogonal projection Rm → B. Let b1, . . . , br be
a basis of B and let us denote by B the m × r
matrix with columns of the vectors bi. Then ΠB,
also denoted ΠB , is given by ΠB = B(BT B)−1BT =
BB† (B† is the generalized inverse of B equal to
(BTB)−1BT because B is injective).

Definition 2.2. The Newton vector field associated
with g is

N(x) = −Dg(x)−1g(x)

= (AT D−2
x A)−1AT D−1

x e

= A†DxΠD−1
x Ae.

It is defined and analytic on Int P.

Note that the expression A†DxΠD−1
x Ae is

defined for all x ∈ Rn for which Aix−bi is not equal
to 0 for all i. Thus N(x) is defined by the rational
expression in Definition 2.2 for almost all x ∈ Rn.
Later we will prove that this rational expression has
a continuous extension to all Rn.

Lemma 2.2. The central paths γ(t), c ∈ Rn, are the
trajectories of the vector field −N(x).

Proof. A central path is given by

g(γ(t)) = tc, t > 0,

for a given c ∈ Rn. Let us change variable: t = exp s
and d(s) = γ(t) with s ∈ R. Then

g(d(s)) = exp(s)c, s ∈ R,

so that
d

ds
g(d(s)) = exp(s)c = g(d(s)).

Let us denote ḋ(s) = (d/ds)d(s). We have

d

ds
g(d(s)) = Dg(d(s))ḋ(s)

thus

ḋ(s) = Dg(d(s))−1g(d(s)) = −N(d(s))

and d(s) is a trajectory of the Newton vec-
tor field. Conversely, if ḋ(s) = −N(d(s)) =
Dg(d(s))−1g(d(s)), s ∈ R, then

d

ds
g(d(s)) = Dg(d(s))ḋ(s) = g(d(s))
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so that

g(d(s)) = exp(s)g(d(0))

which is the central path related to c = g(d(0)).
�

Remark 2.1. The trajectories of N(x) and −N(x)
are the same with time reversed. As t → ∞, γ(t)
tends to the optimal points of the linear program-
ming problem. So we are interested in the positive
time trajectories of −N(x).

Lemma 2.3. The analytic center cP is the unique
singular point of the Newton vector field N(x), x ∈
Int P.

Proof. N(x) = 0 if and only if g(x) = 0, that is
x = cP . �

3. An Analytic Expression for the
Newton Vector Field

In this section we compute an analytic expression
for N(x) which will be useful later. For any sub-
set Kn ⊂ {1, . . . ,m}, Kn = {k1 < · · · < kn}, we
denote by AKn the n×n submatrix of A with rows
Ak1 , . . . , Akn , by bKn the vector in Rn with coordi-
nates bk1 , . . . , bkn , and by uKn the unique solution
of the system AKnuKn = bKn when the matrix AKn

is nonsingular. With these notations we have:

Proposition 3.1. For any x ∈ Int P,

N(x) =

∑
Kn⊂{1,...,m}
det AKn �=0

(x − uKn)(det AKn)2
∏

l �∈Kn

(Alx − bl)2

∑
Kn⊂{1,...,m}
det AKn �=0

(det AKn)2
∏

l �∈Kn

(Alx − bl)2

Proof. Let us denote Π =
∏m

l=1 (Alx − bl)
and Πk =

∏
l �=k (Alx − bl) . We already know

(Definition 2.2) that N(x) = (AT D−2
x A)−1AT D−1

x e
with

(AT D−2
x A)ij =

m∑
k=1

akiakj

(Akx − bk)2

=
1

Π2

m∑
k=1

akiakjΠ2
k

=
1

Π2
Xij

where X is the n × n matrix given by Xij =∑m
k=1 akiakjΠ2

k. Moreover

(AT D−1
x e)i =

m∑
k=1

aki

Akx − bk

=
1
Π

m∑
k=1

akiΠk

=
1
Π

Vi

where V is the n vector given by Vi =
∑m

k=1 akiΠk.
This gives

N(x) = ΠX−1V.

To compute X−1 we use Cramer’s formula:
X−1 = cof (X)T/det(X) where cof (X) denotes the
matrix of cofactors: cof (X)ij = (−1)i+j det(Xij)
with Xij the n−1×n−1 matrix obtained by deleting
in X the ith row and jth column. We first compute
det X. We have

det X =
∑
σ∈Sn

ε(σ)X1σ(1) · · ·Xnσ(n)

where Sn is the group of permutations of {1, . . . , n}
and ε(σ) the signature of σ. Thus

det X =
∑
σ∈Sn

ε(σ)
n∏

j=1

m∑
kj=1

akjjakjσ(j)Π
2
kj

=
∑

1≤kj≤m
1≤j≤n

Π2
k1

· · ·Π2
kn

ak11 · · · aknn

×
∑
σ∈Sn

ε(σ)ak1σ(1) · · · aknσ(n)

=
∑

1≤kj≤m
1≤j≤n

Π2
k1

· · ·Π2
kn

ak11 · · · aknn detAk1···kn
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where Ak1···kn is the matrix with rows Ak1 · · ·Akn .
When two or more indices kj are equal the cor-
responding coefficient detAk1···kn is zero. For this
reason, instead of this sum taken for n indepen-
dent indices kj we consider a set Kn ⊂ {1, . . . ,m},
Kn = {k1 < · · · < kn}, and all the possible permu-
tations σ ∈ S(Kn). We obtain

det X =
∑

Kn⊂{1,...,m}
σ∈S(Kn)

Π2
σ(k1) · · ·Π2

σ(kn)

× aσ(k1)1 · · · aσ(kn)n det Aσ(k1)···σ(kn)

=
∑

Kn⊂{1,...,m}
Π2

k1
· · ·Π2

kn

×
∑

σ∈S(Kn)

ε(σ)aσ(k1)1 · · · aσ(kn)n detAk1···kn

=
∑

Kn⊂{1,...,m}
Π2

k1
· · ·Π2

kn
(detAKn)2 .

Note that, for any l = 1, . . . ,m, the product
Π2

k1
· · ·Π2

kn
contains (Alx − bl)2n if l �∈ Kn and

(Alx − bl)2n−2 otherwise. For this reason

det X = Π2n−2
∑

Kn⊂{1,...,m}
(det AKn)2

×
∏

l �∈Kn

(Alx − bl)2.

Let us now compute Y = cof (X)T V . We have

Yi =
n∑

j=1

(−1)i+j det(Xji)Vj

=
n∑

j=1

(−1)i+j det(Xji)
m∑

k=1

akjΠk

=
m∑

k=1

Πk

n∑
j=1

(−1)i+j det(Xij)akj

because X is symmetric. This last sum is the
determinant of the matrix with rows X1 · · ·
Xi−1AkXi+1 · · ·Xn so that

Yi =
m∑

k=1

Πk

∑
σ∈Sn

ε(σ)X1σ(1) · · ·Xi−1σ(i−1)akσ(i)

×Xi+1σ(i+1) · · ·Xnσ(n)

=
m∑

k=1

Πk

∑
σ∈Sn

ε(σ)akσ(i)

n∏
j=1
j �=i

m∑
kj=1

akjjakjσ(j)Π
2
kj

=
m∑

k=1

Πk

∑
σ∈Sn

ε(σ)akσ(i)

×
m∑

kj=1
1≤j≤n

j �=i

ak11ak1σ(1)Π
2
k1

· · · aknnaknσ(n)Π
2
kn

=
m∑

k=1

Πk

m∑
kj=1

1≤j≤n
j �=i

ak11 · · · aknnΠ2
k1

· · ·Π2
kn

×
∑
σ∈Sn

ε(σ)ak1σ(1) · · · akσ(i) · · · aknσ(n)

which gives

Yi =
m∑

k=1

Πk

m∑
kj=1

1≤j≤n
j �=i

ak11 · · · aknnΠ2
k1

· · ·Π2
kn

× detAk1···ki−1kki+1···kn .

By a similar argument as before we sum up for
any set with n − 1 elements Kn−1 ⊂ {1, . . . ,m},
Kn−1 = {k1 < · · · < ki−1 < ki+1 < · · · < kn} and
for any permutation σ ∈ S(Kn−1). We obtain as
previously

Yi =
m∑

k=1

Πk

∑
Kn−1⊂{1,...,m}

Π2
k1

· · ·Π2
kn

× detAi
k1···ki−1ki+1···kn

detAk1···ki−1kki+1···kn

with Ai
k1···ki−1ki+1···kn

the matrix with rows Akj
,

j ∈ Kn−1 and the ith column removed. The quan-
tity Alx − bl appears in the product ΠkΠ2

k1
· · · Π2

kn

with an exponent equal to

• 2n − 1 when l �= k and l �∈ Kn−1,
• 2n − 2 when l = k and l �∈ Kn−1,
• 2n − 3 when l �= k and l ∈ Kn−1,
• 2n − 4 when l = k and l ∈ Kn−1.

In this latter case, two rows of the matrix
Ak1···ki−1kki+1···kn are equal and its determinant is
zero. Thus, each term Alx−bl appears at least 2n−3
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times so that

Yi = Π2n−3
m∑

k=1
Kn−1

(Akx − bk)
∏
l �=k

l �∈Kn−1

(Alx − bl)2 detAi
k1···ki−1ki+1···kn

det Ak1···ki−1kki+1···kn .

The ith component of the Newton vector field is equal to N(x)i = ΠYi/det X so that

N(x)i =

m∑
k=1

Kn−1

(Akx − bk)
∏
l �=k

l �∈Kn−1

(Alx − bl)2 det Ai
k1···ki−1ki+1···kn

detAk1···ki−1kki+1···kn

∑
Kn

(det AKn)2
∏

l �∈Kn

(Alx − bl)2
.

Instead of a sum taken for k and Kn−1 in the numerator we use a subset Kn ⊂ {1, . . . ,m} equal to the union
of k and Kn−1. Notice that detAk1···ki−1kki+1···kn = 0 when k ∈ Kn−1 so that this case is not considered.
Conversely, for a given Kn = {k1 · · · kn}, we can write it in n different ways as a union of k = kj and
Kn−1 = Kn\{kj}. For these reasons we get

N(x)i =

∑
Kn

(
n∑

j=1

(Akj
x − bkj

) det Aji
Kn

detAKn,i,j

) ∏
l �∈Kn

(Alx − bl)2

∑
Kn

(det AKn)2
∏

l �∈Kn

(Alx − bl)2

with Aji
Kn

the matrix obtained from AKn in deleting the jth row and ith column, and AKn,i,j obtained
from AKn in removing the line Aj , and in reinserting it as the ith line, the other lines remaining with the
same ordering. Note that det AKn,i,j = (−1)i+j det AKn thus

N(x)i =

∑
Kn

(
n∑

j=1

(Akj
x − bkj

)(−1)i+j det Aji
Kn

)
det AKn

∏
l �∈Kn

(Alx − bl)2

∑
Kn

(det AKn)2
∏

l �∈Kn

(Alx − bl)2
.

In fact this sum is taken for the sets Kn such
that AKn is nonsingular, otherwise, the coefficient
det AKn vanishes and the corresponding term is
zero.

According to Cramer’s formulas, the expression
(−1)i+j det Aji

Kn
/det AKn is equal to

(
A−1

Kn

)
ij
. Thus

n∑
j=1

(Akj
x − bkj

)(−1)i+j detAji
Kn

= (A−1
Kn

(AKnx − bKn))i

= xi −
(
A−1

Kn
bKn

)
i
= xi − uKn,i.

We get

N(x)i =

∑
Kn

(xi − uKn,i)(det AKn)2
∏

l �∈Kn

(Alx − bl)2

∑
Kn

(det AKn)2
∏

l �∈Kn

(Alx − bl)2

and we are done. �

4. Extension to the Faces of P
Our aim is to extend the Newton vector field,
defined in the interior of P, to its different faces.
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Let PJ be the face of P defined by

PJ = {x ∈ Rn :Aix = bi for any i ∈ I

and Aix ≥ bi for any i ∈ J}.
Here I is a subset of {1, 2, . . . ,m} containing mI

integers, J = {1, 2, . . . ,m}\I and mJ = m − mI .

Definition 4.1. The face PJ is regularly described
when the relative interior of the face is given by

ri − PJ = {x ∈ Rn :Aix = bi for any i ∈ I

and Aix > bi for any i ∈ J}.
The polytope is regularly described when all its
faces have this property.

We assume here that P is regularly described.
This definition avoids, for example, in the descrip-
tion of a PJ a hyperplane defined by two inequal-
ities: Aix ≥ bi and Aix ≤ bi instead of Aix = bi.
Note that every face of a regularly described P has
a unique regular description, the set I consists of all
indices i such that Aix = bi on the face. The affine
hull of PJ is denoted by

FJ = {x = (x1, . . . , xn)T ∈ Rn :
Aix = bi for any i ∈ I}

which is parallel to the vector subspace

GJ = {x = (x1, . . . , xn)T ∈ Rn :
Aix = 0 for any i ∈ I}.

We also let

EJ = {y = (y1, . . . , ym)T ∈ Rm :
yi = 0 for any i ∈ I}.

EI is defined similarly.
Let us denote by AJ (resp. AI) the mJ × n

(resp. mI × n) matrix whose ith row is Ai, i ∈ J
(resp. i ∈ I). AJ defines a linear operator AJ : Rn →
RmJ . We also let

bJ :GJ → RmJ , bJ = AJ |GJ

so that

bT
J : RmJ → GJ , bT

J = ΠGJ
AJ .

Here, for a vector subspace E, ΠE denotes the
orthogonal projection onto E. Let Dx,J (resp.
Dx,I) be the diagonal matrix with diagonal entries

Aix − bi, i ∈ J (resp. i ∈ I). It defines a linear
operator Dx,J : RmJ → RmJ .

Since the faces of the polytope are regularly
described, for any x ∈ ri−PJ , Dx,J is nonsingular.

PJ is associated with the linear program

(LPJ) min
x∈PJ

〈c, x〉.

The barrier function

fJ(x) =
∑
i∈J

ln(Aix − bi)

is defined for any x ∈ FJ and finite in ri − PJ the
relative interior of PJ . The barrier technique con-
siders the family of nonlinear convex optimization
problems (LPJ (t))

min
x∈FJ

t〈c, x〉 − fJ(x)

with t > 0. The objective function

ft,J(x) = t〈c, x〉 − fJ(x)

is smooth, strictly convex and

lim
x→∂PJ

ft,J(x) = ∞,

thus (LPJ (t)) has a unique solution γJ(t) ∈ ri−PJ

given by

Dft,J (γJ(t)) = 0.

For any x ∈ ri − PJ , the first derivative of fJ

is given by

DfJ(x)u =
∑
i∈J

Aiu

Aix − bi
= 〈AT

J D−1
x,JeJ , u〉

with u ∈ GJ and eJ = (1, . . . , 1)T ∈ RmJ . We have

gJ(x) = grad fJ(x) = ΠGJ
AT

J D−1
x,JeJ

= bT
J D−1

x,JeJ .

The second derivative of fJ at x ∈ ri−PJ is given by

D2fJ(x)(u, v) = −
∑
i∈J

(Aiu)(Aiv)
(Aix − bi)2

= −〈AT
J D−2

x,JAJv, u〉

= −〈bT
J D−2

x,JbJv, u〉
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for any u, v ∈ GJ so that

DgJ(x) = hess fJ(x) = −bT
J D−2

x,JbJ .

To PJ we associate the Newton vector field
given by

NJ(x) = −DgJ(x)−1gJ (x), x ∈ ri − PJ .

We have:

Lemma 4.1. For any x ∈ ri − PJ this vector field
is defined and

NJ(x) = (bT
J D−2

x,JbJ)−1bT
J D−1

x,JeJ

= b†JDx,JΠim(D−1
x,JbJ)eJ ∈ GJ .

Proof. We first have to prove that DgJ(x) is non-
singular and that NJ(x) ∈ GJ . This second point
is clear. For the first, we take u ∈ GJ such that
DgJ (x)u = 0. This gives AJu = bJu = 0 which
implies Au = 0 because u ∈ GJ that is AIu = 0.
Since A is injective we get u = 0. By the same
argument we see that bJ is injective so that bT

J bJ is
nonsingular. The first expression for NJ(x) comes
from the description of gJ and DgJ . We have

NJ(x) = (bT
J D−2

x,JbJ)−1bT
J D−1

x,JeJ

=
(
bT
J bJ

)−1
bT
J Dx,JD−1

x,JbJ

×(bT
J D−2

x,JbJ)−1bT
J D−1

x,JeJ

= b†JDx,JΠ
im(D−1

x,JbJ)eJ ∈ GJ . �

The curve γJ(t), 0 < t < ∞, is the central path
of the face PJ . It is given by

γJ(t) ∈ FJ and DfJ(γJ(t)) − tc = 0

that is

x ∈ FJ , AT
J D−1

x,JeJ − tc ∈ G⊥
J and γJ(t) = x

or, projecting on GJ ,

Aix = bi, i ∈ I, bT
J D−1

x,JeJ − tΠGJ
c = 0

and γJ(t) = x.

When t → 0, γJ(t) tends to the analytic center
γJ(0) of PJ defined as the unique solution of the
convex program

−fJ(γJ (0)) = min
x∈FJ

−fJ(x).

The analytic center is also given by

Aix = bi, i ∈ I, bT
J D−1

x,JeJ = 0 and γJ(0)= x

so that γJ(0) is the unique singular point of NJ in
the face PJ .

We now investigate the properties of this
extended vector field: continuity, derivability and
so on. We shall investigate the following abstract
problem: for any y ∈ Rm we consider the linear
operator

Dy : Rm → Rm

given by the m×m diagonal matrix Dy = Diag(yi).
Let P be a vector subspace in Rm. Then, for any
y ∈ Rm with nonzero coordinates, the operator

Dy ◦ ΠD−1
y (P ) : Rm → Rm

is well defined. Can we extend its definition to any
y ∈ Rm? The answer is yes and proved in the
following

Lemma 4.2. Let y ∈ EJ be such that yi �= 0 for
any i ∈ J .

Then Dy|EJ
:EJ → EJ is nonsingular and

lim
y→y

Dy ◦ ΠD−1
y (P ) = Dy|EJ

◦ Π(Dy|EJ
)−1(P∩EJ).

Proof. To prove this lemma we suppose that I =
{1, 2, . . . ,m1} and J = {m1 +1, . . . ,m1 +m2 = m}.

Let us denote p = dimP . P is identified to an
n × p matrix with rank P = p. We also introduce
the following matrices:

Dy =
(

Dy,1 0
0 Dy,2

)
, P =

(
U 0
V W

)
.

The different blocks appearing in these two matri-
ces have the following dimensions: Dy,1:m1 × m1,
Dy,2:m2 ×m2, U :m1 × p1, V :m2 × p1, W :m2 × p2.
We also suppose that the columns of

„
0

W

«
are a basis

for P∩EJ and those of
„

U

V

«
a basis of the orthogonal

complement of P∩EJ in P that is (P∩EJ)⊥∩P. Let
us notice that p2 ≤ m2 and rank W = p2 and also
that p1 ≤ m1 and rank U = p1. Let us prove this
last assertion. Let Ui, 1 ≤ i ≤ p1 be the columns
of U . If α1U1 + · · · + αp1Up1 = 0, we have

α1

(
U1

V1

)
+ · · · + αp1

(
Up1

Vp1

)

=
(

0
α1V1 + · · · + αp1Vp1

)
.
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The left-hand side of this equation is in (P ∩EJ)⊥∩
P and the right-hand side in P ∩ EJ . Thus this
vector is equal to 0 and since rank P = p we get
α1 = · · · = αp1 = 0.

For every subspace X in Rm with dim X = p
identified with an m × p rank p matrix we have

ΠX = X(XT X)−1XT .

This gives here

ΠD−1
y P

=

(
D−1

y,1U 0

D−1
y,2V D−1

y,2W

)

×
(

UT D−2
y,1U + V T D−2

y,2V V T D−2
y,2W

W TD−2
y,2V W T D−2

y,2W

)−1

×
(

UT D−1
y,1 V T D−1

y,2

0 W T D−1
y,2

)

and

ΠEJ
=

(
0 0

0 Im2

)
.

We also notice that

DyΠD−1
y P = DyΠEI

ΠD−1
y P + DyΠEJ

ΠD−1
y P .

We have

lim
y→y

DyΠEI
ΠD−1

y P = 0.

This is a consequence of the two following

‖ΠEI
ΠD−1

y P‖ ≤ 1

because it is the product of two orthogonal projec-
tions and

lim
y→y

DyΠEI
= DyΠEI

= 0.

We now have to study the limit

lim
y→y

DyΠEJ
ΠD−1

y P .

Let us denote A = UT D−2
y,1U . The following identi-

ties hold:

DyΠEJ
ΠD−1

y P

=

(
Dy,1 0

0 Dy,2

)(
0 0

0 Im2

)(
D−1

y,1U 0

D−1
y,2V D−1

y,2W

)

×
(

UT D−2
y,1U + V T D−2

y,2V V T D−2
y,2W

W T D−2
y,2V W T D−2

y,2W

)−1(
UT D−1

y,1 V T D−1
y,2

0 W TD−1
y,2

)

=

(
0 0

V W

)[(
A 0

0 Im2

)(
Im1 + A−1(V T D−2

y,2V ) A−1(V T D−2
y,2W )

W TD−2
y,2V W T D−2

y,2W

)]−1(
UT D−1

y,1 V T D−1
y,2

0 W TD−1
y,2

)

=

(
0 0

V W

)(
Im1 + A−1(V T D−2

y,2V ) A−1(V T D−2
y,2W )

W T D−2
y,2V W T D−2

y,2W

)−1(
A−1(UT D−1

y,1) A−1(V T D−1
y,2)

0 W TD−1
y,2

)
.

We will prove later that

lim A−1 = lim A−1
(
UT D−1

y,1

)
= 0

when y → y. Since

lim
y→y

Dy,2 = Dy,2
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is a nonsingular matrix we get

lim
y→y

DyΠEJ
ΠD−1

y P

=

(
0 0

V W

)(
Im1 0

W T D−2
y,2V W T D−2

y,2W

)−1

×
(

0 0

0 W T D−1
y,2

)

=

(
0 0

0 W (W TD−2
y,2W )−1W TD−1

y,2

)

and this last matrix represents the operator

Dy|EJ
◦ Π(Dy |EJ

)−1(P∩EJ)

as announced in this lemma.
To achieve the proof of this lemma we have to

show that

lim A−1 = lim A−1
(
UT D−1

y,1

)
= 0

with A = UT D−2
y,1U . In fact it suffices to prove

lim A−1 = 0 because

‖A−1(UT D−1
y,1)‖2

= ‖A−1(UT D−1
y,1)(A

−1(UT D−1
y,1))

T ‖
= ‖A−1‖.

Since U is full rank, the matrix UT U is positive
definite so that

µ = min Spec(UT U) > 0.

Let us denote � the ordering on square matrices
given by the cone of non-negative matrices. We have

D−2
y,1 � 1

max y2
i

Im1 � 1
‖y‖2

Im1

so that

UT D−2
y,1U � 1

‖y‖2
UT U � µ

‖y‖2
Ip1.

Taking the inverses changes this inequality in the
following

0 ≺ (UT D−2
y,1U)−1 ≺ ‖y‖2

µ
Ip1 → 0

when y → y and we are done. �

Corollary 4.1. The vector field N(x) extends con-
tinuously to all of Rn. Moreover it is Lipschitz on
compact sets. When all the faces of the polytope P
are regularly described, the continuous extension of
N(x) to the face PJ of P equals NJ(x). Conse-
quently any orbit of N(x) in the polytope P tends to
one of the singularities of the extended vector field,
i.e. either to a vertex or an analytic center of one
of the faces.

Proof. It is a consequence of Definition 2.2,
Lemmas 4.1 and 4.2 and the equality A†

Jy = A†y for
any y ∈ EJ that N(x) extends continuously to all
of Rn and equals NJ(x) on PJ . Moreover a rational
function which is continuous on Rn has bounded
partial derivatives on compact sets and hence is
Lipschitz. Now we use the characterization of the
vectorfield restricted to the face to see that any orbit
which is not the analytic center of a face tends to
the boundary of the face and any orbit which enters
a small enough neighborhood of a vertex tends to
that vertex. �

Remark 4.1. We have shown that N(x) is Lipschitz.
We do not know an example where it is not ana-
lytic and wonder as to what its order of smoothness
is, in general. In the next section we will show it is
analytic generically.

5. Analyticity and Derivatives

In Sec. 3 we gave the following expression for the
Newton vector field:

N(x)

=

∑
Kn⊂{1,...,m}

det Kn �=0

(x − uKn)(det AKn)2
∏

l �∈Kn

(Alx − bl)2

∑
Kn⊂{1,...,m}

det Kn �=0

(det AKn)2
∏

l �∈Kn

(Alx − bl)2

for any x ∈ Int P. Under a mild geometric assump-
tion, the denominator of this fraction never vanishes
so that N(x) may be extended in a real analytic
vector field.

Theorem 5.1. Suppose that for any x ∈ ∂P con-
tained in the relative interior of a codimension d
face of P, we have Aki

x = bki
for exactly d indices

in {1, . . . ,m} and Alx > bl for the other indices. In
that case the line vectors Aki

, 1 ≤ i ≤ d, are linearly
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independent. Moreover, for such an x∑
Kn⊂{1,...,m}

det Kn �=0

(det AKn)2
∏

l �∈Kn

(Alx − bl)2 �= 0

so that N(x) extends analytically to a neighborhood
of P.

Proof. Under this assumption, for any x ∈ P, there
exists a subset Kn ⊂ {1, . . . ,m} such that the sub-
matrix AKn is nonsingular and Alx− bl > 0 for any
x �∈ Kn. �

Our next objective is to describe the singular
points of this extended vector field.

Theorem 5.2. Under the previous geometric ass-
umption, the singularities of the extended vector
field are: the analytic center of the polytope and the
analytic centers of the different faces of the polytope,
including the vertices. Each of them is hyperbolic: if
x ∈ ∂P is the analytic center of a codimension d
face F of P, then the derivative DN(x) has n − d
eigenvalues equal to −1 with corresponding eigen-
vectors contained in the linear space F0 parallel to
F and d eigenvalues equal to 1 with corresponding
eigenvectors contained in a complement of F0.

Proof. The first part of this theorem, about the
−1 eigenvalues, is the consequence of two facts.

The first one is a well-known fact about the Newton
operator: its derivative is equal to −id at a zero
(if N(x) = 0, then DN(x) = D(−Dg(x)−1g(x)) =
D(−Dg(x)−1)g(x) − Dg(x)−1Dg(x) = −id). The
second fact is proved in Sec. 4: the restriction of
N(x) to a face is the Newton vector field associated
with the restriction of g(x) to this face.

We have now take care of the 1 eigenvalues. To
simplify the notations we suppose that Aix = bi for
1 ≤ i ≤ d, Aix > bi when i + 1 ≤ i ≤ m, and
N(x) = 0. N is analytic and its derivative in the
direction v is given by

DN(x)v =
Num∑

Kn⊂{1,...,m}
det Kn �=0

(det AKn)2
∏

l �∈Kn

(Alx − bl)2

with

Num =
∑

Kn⊂{1,...,m}
det Kn �=0

v(det AKn)2
∏

l �∈Kn

(Alx − bl)2

+
∑

Kn⊂{1,...,m}
det Kn �=0

(x − uKn)(det AKn)2

×
∑

l0 �∈Kn

2Al0v(Al0x − bl0)
∏

l �∈Kn
l �=l0

(Alx − bl)2

which gives

DN(x)v = v +

∑
Kn

det Kn �=0

(x − uKn)(det AKn)2
∑

l0 �∈Kn

2Al0v(Al0x − bl0)
∏

l �∈Kn
l �=l0

(Alx − bl)2

∑
Kn⊂{1,...,m}

det Kn �=0

(detAKn)2
∏

l �∈Kn

(Alx − bl)2
= v + Mv

where M is, up to a constant factor (i.e. constant in v), the n × n matrix equal to

∑
Kn

det Kn �=0
l0 �∈Kn

(detAKn)2(Al0x − bl0)

( ∏
l �∈Kn
l�=l0

(Alx − bl)2
)

(x − uKn)Al0

which is also equal to

∑
{1, . . . , d}⊂Kn

det Kn �=0
d+1≤l0≤m

l0 �∈Kn

(det AKn)2

Al0x − bl0

( ∏
l �∈Kn

(Alx − bl)2
)

(x − uKn)Al0
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because Aix = bi when 1 ≤ i ≤ d and Aix > bi

otherwise.
To prove our theorem we have to show that

dim ker M ≥ d. This gives at least d independent
vectors vi such that Mvi = 0, that is, DN(x)vi = vi;
thus 1 is an eigenvalue of DN(x) and its multi-
plicity is ≥ d. In fact it is exactly d because we
already have the eigenvalue −1 with multiplicity
n − d. The inequality dim ker M ≥ d is given by
rank M ≤ n − d. Why is it true? M is a linear
combination of rank 1 matrices (x − uKn)Al0 so
that the rank of M is less than or equal to the
dimension of the system of vectors x − uKn with
Kn as before. Since {1, . . . , d} ⊂ Kn, Aix = bi

when 1 ≤ i ≤ d, and AuKn = bKn we have
A(x − uKn) = (0, . . . , 0, yd+1, . . . , ym)T . From the
hypothesis, the line vectors A1, . . . , Ad defining the
face F are independent, thus the set of vectors
u ∈ Rn such that the vector Au ∈ Rm begins by
d zeros has dimension n − d and we are done. �
Remark 5.1. The last theorem implies that N(x) is
Morse–Smale in the terminology of dynamical sys-
tems. Recall also that we are really interested in

the positive time trajectories of −N(x). For −N(x)
the eigenvalues at the critical points are multiplied
by −1 so in the faces the critical points of −N(x)
are sources and their stable manifolds are transverse
to the faces.

6. Example

Let us consider the case of a triangle in the plane.
Since the Newton vector field is affinely invariant
(Proposition 2.1) we may only consider the triangle
with vertices (0, 0), (1, 0) and (0, 1). A dual descrip-
tion is given by the three inequalities x ≥ 0, y ≥ 0,
−x − y ≥ −1 which correspond to the following
data:

A =




1 0

0 1

−1 −1


 , B =




0

0

−1


 ,

D(x,y) =




x 0 0

0 y 0

0 0 1 − x − y


 .

Newton vector field in the triangle

–0.2

0

0.2

0.4

0.6

0.8

1

y

–0.2 0.2 0.4 0.6 0.8 1

x

The corresponding Newton vector field is given
by the rational expressions

N(x, y) =




xz2 − x2z + xy2 − x2y

z2 + y2 + x2

x2y − xy2 + yz2 − y2z

z2 + y2 + x2




with z = 1 − x − y. This vector field is analytic on
the whole plane. The singular points are the three
vertices, the midpoints of the three sides and the
center of gravity. The arrows in the figure are for
−N(x) and the critical points are clearly sources in
their faces.
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Five trajectories.

–0.2

0.2

0.4

0.6

0.8

1

1.2

y

–0.2 0.2 0.4 0.6 0.8 1 1.2

x

References

Bayer, D. & Lagarias, J. [1989a] “The non-linear geom-
etry of linear programming I: Affine and projective
scaling trajectories,” Trans. Amer. Math. Soc. 314,
499–526.

Bayer, D. & Lagarias, J. [1989b] “The non-linear geom-
etry of linear programming II: Legendre transform
coordinates and central trajectories,” Trans. Amer.
Math. Soc. 314, 527–581.

Bayer, D. & Lagarias, J. [1991] “Karmarkar’s linear pro-
gramming algorithm and Newton’s method,” Math.
Progr. A50, 291–330.

Dedieu, J.-P., Malajovich, G. & Shub, M. “On the
curvature of the central path of linear programming
theory,” to appear.

Meggido, N. & Shub, M. [1989] “Boundary behaviour
of interior point algorithms in linear programming,”
Math. Oper. Res. 14, 97–146.

Renegar, J. [2001] A Mathematical View of Interior-
Point Methods in Convex Optimization (SIAM,
Philadelphia).

Vavasis, S. & Ye, Y. [1996] “A primal-dual accelerated
interior point method whose running time depends
only on A,” Math. Progr. A74, 79–120.




