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We study the geometry of the central paths of linear programming theory. These paths are the
solution curves of the Newton vector field of the logarithmic barrier function. This vector field
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1.

In this paper we take up once again the subject
of the geometry of the central paths of linear pro-
gramming theory. We study the boundary behavior
of these paths as in [Megiddo & Shub, 1989], but
from a different perspective and with a different
emphasis. Our main goal will be to give a global pic-
ture of the central paths even for degenerate prob-
lems as solution curves of the Newton vector field,
N(z), of the logarithmic barrier function which we
describe below. See also [Bayer & Lagarias, 1989a,
1989b, 1991]. The Newton vector field extends to
the boundary of the polytope. It has the properties
that it is tangent to the boundary and restricted to
any face of dimension 7 it has a unique source with
unstable manifold dimension equal to 7, the rest
of the orbits tending to the boundary of the face.
Every orbit tends either to a vertex or one of these
sources in a face. See Corollary 4.1. This highly cel-
lular structure of the flow lends itself to the conjec-
ture that the total curvature of these central paths
may be linearly bounded by the dimension n of
the polytope. The orbits may be relatively straight,
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except for orbits which come close to an orbit in a
face of dimension ¢ which itself comes close to a sin-
gularity in a boundary face of dimension less than i.
This orbit is then forced to turn almost parallel to
the lower dimensional face so its tangent vector may
be forced to turn as well. See the two figures at the
end of this paper. As this process involves a reduc-
tion of the dimension of the face it can only hap-
pen for the dimension of the polytopetimes. So our
optimistic conjecture is that the total curvature of
a central path is O(n). We have verified the conjec-
ture in an average sense in [Dedieu et al.]. It is not
difficult to give an example showing that O(n) is
the best possible for the worst case. Such an exam-
ple is worked out in [Megiddo & Shub, 1989]. The
average behavior may be however much better. Ulti-
mately we hope that an understanding of the cur-
vature of the central paths may contribute to the
analysis of algorithms which use them. In [Vavasis
& Ye, 1996] the authors explore similar structure to
give an algorithm whose running time depends only
on the polytope.

We prove in Corollary 4.1 that the extended
vector field is Lipschitz on the closed polytope.
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Under a genericity hypothesis we prove in
Theorem 5.1 that it extends to be real analytic on
a neighborhood of the polytope. Under the same
genericity hypothesis we prove in Theorem 5.2 that
the singularities are all hyperbolic. The eigenval-
ues of —N(z) at the singularities are all +1 tan-
gent to the face and —1 transversal to the face. In
dynamical systems terminology the vector field is
Morse-Smale. The vertices are the sinks. Finally,
we mention that in order to prove that N(z)
always extends continuously to the boundary of
the polytope we prove Lemma 4.2 which may be
of independent interest about the continuity of the
Moore—Penrose inverse of a family of linear maps of
variable rank.

2. The Central Path is a Trajectory
of the Newton Vector Field

Linear programming problems are frequently pre-
sented in different formats. We will work with one of
them here which we find convenient. The polytopes
defined in one format are usually affinely equivalent
to the polytopes defined in another. So we begin
with a discussion of Newton vector fields and how
they transform under affine equivalence. This mate-
rial is quite standard. An excellent source for this
fact and linear programming in general is [Renegar,
2001].

Let Q be an affine subspace of R™ (or a Hilbert
space if you prefer, in which case, assume Q is
closed). Denote the tangent space of Q by V. Sup-
pose that U is an open subset of Q. Let f: U — R
be twice continuously differentiable. The deriva-
tive Df(z) belongs to L(V,R), the linear maps
from V to R. So Df(x) defines a map from U to
L(V,R). The second derivative D?f(x) is an ele-
ment of L(V, L(V,R)). Thus D?f(x) is a linear map
from a vector space to another isomorphic space and
D?f(x) may be invertible.

Definition 2.1. If f is as above and D?f(z)
is invertible we define the Newton vector field,
Ny (x) by

Ny(w) = =(D*f(x)) "' Df (x).

Note that if V has a nondegenerate inner
product (, ) then the gradient of f, grad f(z) € V,
and Hessian, hess f(z) € L(V,V), are defined by

Df(z)u = (u,grad f(x))

and

D?f (z)(u,v) = (u, (hess f(z))v).
It follows then that Ny(z) = —(hess f(z))™!
grad f(z).

Now let A be an affine map from P to Q whose
linear part L is an isomorphism. Suppose U; is open
in Pand A(U;) CU. Let g = f o A.

Proposition 2.1. A maps the solution curves of N,
to the solution curves of Ny.

Proof. By the chain rule Dg(y) = Df(A(y))L and

D%(y)(u,v) = D*f(A(y))(Lu, Lv).

So u= N,(y) if and only if D%(y)(u,v) =—Dg(y)(v)
for all v if and only if D?f(A(y))(Lu,Lv) =
—Df(A(y))Lv for all v, i.e. N¢(A(y)) = L(u) or
LNy(y) = NtA(y). This last is the equation ex-
pressing that the vector field Ny is the push for-
ward by the map of the vector field N, and hence
the solution curves of the N, field are mapped by
A to the solution curves of Ny. W

Now we make explicit the linear programming
format used in this paper, define the central paths
and relate them to the Newton vector field of the
logarithmic barrier function.

Let P be a compact polytope in R™ defined by
m affine inequalities
Here A;x denotes the matrix product of the row
vector A; = (aj1,...,a;,) by the column vector
= (z1,...,7,)", Ais the m x n matrix with rows
A; and we assume rank A = n. Given ¢ € R", we
consider the linear programming problem

(LP)

Aririlznbi (¢, x).
1<i<m

Let us denote by
f(x) = Z ln(Aix — bl>
i=1

(In(s) = —oo when s < 0) the logarithmic bar-
rier function associated with the description Ax > b
of P. The barrier technique considers the family of
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nonlinear convex optimization problems

(LP(t)) min t{c,z) — f(x)

rER?

with ¢ > 0. The objective function

fi(z) =t{c,z) — f(x)
is strictly convex, smooth, and satisfies
lim = 00.
maap‘ﬁ(m) >
z€lnt P

Thus, there exists a unique optimal solution () to
(LP(t)) for any t > 0. This curve is called the cen-
tral path of our problem. Let us denote as D, the
m x m diagonal matrix D, = Diag(A;z — b;). This
matrix is nonsingular for any x € Int P. We also let
e=(1,...,)T e R™,

m [4T -
g(x) =grad f(z) =) - = ATD;le
i=1 """ !

and
h(x) = hess f(z) = —ATD?A.

Since f; is smooth and strictly convex the central
path is given by the equation grad fi(y(t)) =0 i.e.

g(y(t)) = te,
When ¢ — 0, the limit of () is given by
—f(7(0)) = min —f(x).

reR?

t> 0.

It is called the analytic center of P and denoted
by’Cp.

Lemma 2.1. ¢g:Int P — R" is real analytic and
wnvertible. Its inverse is also real analytic.

Proof. For any ¢ € R" the optimization problem

min(c, z) — f(z)
has a unique solution in Int P because the objective
function is smooth, strictly convex and P is com-
pact. Thus g(z) = ¢ has a unique solution that is g
bijective. We also notice that, for any x, Dg(x) is
nonsingular. Thus g~! is real analytic by the inverse
function theorem. M

According to this lemma, the central path is the
inverse image by ¢ of the ray cR;. When ¢ varies

in R™ we obtain a family of curves. Our aim in this
paper is to investigate the structure of this family.

For a subspace B C R we denote by Il the
orthogonal projection R™ — B. Let by,...,b. be
a basis of B and let us denote by B the m x r
matrix with columns of the vectors b;. Then Ilg,
also denoted T, is given by Iz = B(BTB)~!BT =
BB' (B' is the generalized inverse of B equal to
(BTB)~'BT because B is injective).

Definition 2.2. The Newton vector field associated
with ¢ is
N(z) = —Dg(z)'g(x)
= (ATD2A) AT D e
= ATD, 111 e
It is defined and analytic on Int P.

Note that the expression AfD,II poia€ 18
defined for all x € R™ for which A;x —b; is not equal
to 0 for all 4. Thus N(x) is defined by the rational
expression in Definition 2.2 for almost all x € R"™.
Later we will prove that this rational expression has
a continuous extension to all R™.

Lemma 2.2. The central paths v(t), c € R™, are the
trajectories of the vector field —N(x).

Proof. A central path is given by

g (1) = te,

for a given ¢ € R™. Let us change variable: t = exp s
and d(s) = y(t) with s € R. Then

gld(s)) = exp(s)c,

t>0,

s e€R,

so that

L g(d(s)) = exp(s)e = g(d(s),

Let us denote d(s) = (d/ds)d(s). We have

g(d(s)) = Dy(d(s))d(s)

thus
d(s) = Dg(d(s)) " g(d(s)) = —N(d(s))

and d(s) is a trajectory of the Newton vec-
tor field. Conversely, if d(s) = —N(d(s)) =
Dg(d(s)) ' g(d(s)), s € R, then
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so that

g(d(s)) = exp(s)g(d(0))
which is the central path related to ¢ = ¢(d(0)).
|

Remark 2.1. The trajectories of N(x) and —N(x)
are the same with time reversed. As t — oo, Y(t)
tends to the optimal points of the linear program-
ming problem. So we are interested in the positive
time trajectories of —N(z).

Lemma 2.3. The analytic center cp is the unique
singular point of the Newton vector field N(x), x €
Int P.

Proof. N(z) = 0 if and only if g(x) = 0, that is
z=cp. B

3. An Analytic Expression for the
Newton Vector Field

In this section we compute an analytic expression
for N(x) which will be useful later. For any sub-
set K, C {1,...,m}, K, = {k1 < -+ < kp}, we
denote by A, the n x n submatrix of A with rows
Ag,s..., Ay, by bg, the vector in R" with coordi-
nates bg,,...,by,, and by ug, the unique solution
of the system Ag, ug, = b, when the matrix Ak,
is nonsingular. With these notations we have:

Proposition 3.1. For any x € Int P,

> (z—ux,)(det Ag, ) T (A —by)?

€K,

K,C{1,...m}
N([E) B det Ag,, #0
K,C{1,...m}
det Ag,, #0
Proof. Let us denote II = T[%, (Ax—10)
and Il H#k (Ajx —b;). We already know
(Definition 2.2) that N(z) = (ATD;24) ' ATD; e
with
- i@
ATD;?A),, T
( Z (Apz — by)?
k=1
1 m
= m Z akiakjﬂi
k=1
1

where X is the n X n matrix given by X;; =
Sk agiag;112. Moreover

m
(ATD;?
Z Akx — by,
k=1
m
= Z agilly
k=1
1

where V' is the n vector given by V; = > /" | agiIl.
This gives

N(z) =XV

> (det Ag,)? ] (Aix —b)?

I¢Kn

To compute X! we use Cramer’s formula:
X1 = cof (X)T/det(X) where cof (X) denotes the
matrix of cofactors: cof (X);; = (—1)""7 det(X%)
with X% the n—1xn—1 matrix obtained by deleting
in X the ith row and jth column. We first compute
det X. We have

det X = Z Xla(l) X o(n)
oc€Sy,
where S,, is the group of permutations of {1,...,n}

and €(o) the signature of o. Thus

n m
det X = " e(0) [ D an,jano i}
0ESy j:l kal
2 2
= Z Hk1 Hknakll Aknn
1<k;<m
1<j<n
Y oy
0ES,
— m2 ...112 co det A
= b T, Gk 1 e Qg det Ag, o,
1<k;<m

1<j<n
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where Ay, .., is the matrix with rows Ay, --- Ay,
When two or more indices k; are equal the cor-
responding coefficient det Ak, ...k, is zero. For this
reason, instead of this sum taken for n indepen-

dent indices kj we consider a set K,, C {1,...,m},
={k1 <--- < kp}, and all the possible permu-
tatlons o € S(K,,). We obtain
K,c{1,...m}
o€S(Kn)

X ag(kl)l cee ag(kn)n det Ag(kl)...g(kn)

- Z Hzl ... H%n
Knc{l,...m}
X Z E(O')CLa(kl)l © O (kn)n det Ak1kn
O’ES(Kn)
= > I -0} (det Ag,)*.
Knc{l,...,m}

Note that, for any [ = 1,...,m, the product
Hil---Hin contains (Ajx — by)?" if | ¢ K, and
(Ajz — b;)>"~2 otherwise. For this reason

det X =TI*""2 )" (det Ag,)?
Knc{l,...m}
X H (All’ — bl)2

I¢Kn

Let us now compute Y = cof (X)?'V. We have

Y= S (—1)1 det(X7);

j=1

S det (0 S g Ty

k=1

Z 1749 det(X)ay

I
3 |l

<.
Il
—

[
W[V13

because X is symmetric. This last sum is the

determinant of the matrix with rows Xjp---
XiflAkXi+1 st Xn so that
Y= ZHk Z o) Xio(1) * Xic10(i—1)Tho (i)
oESy,

X Xi+1a(i+1) o 'Xna(n)

I
NE

Hk Z 6( 0 )0ko (i) H Zakjaka H2
oES,

k=1 j=1k;=1
J#i
m
= Z Z aka (7)
k=1 €Sn
m
2 2
X Z gy 10k, 0(1) 1L, Qo (n) Uk,
k=1
1<j<n
J#i
m m
:Zﬂk Z PYRPIN § (AR 1 1
1 nN -tk n
k=1 k=1
1<j<n
J#i
X Z akla © Ak (i) " Akpo(n)
oESy,
which gives
m m
V= T Y apa--apnll, - 10
1 n 1 n
k=1 kj=
1<j<n
J#i

x det Akl"'ki—lkki+1"'kn'

By a similar argument as before we sum up for
any set with n — 1 elements K,y C {1,...,m},

Knq={k1 < <ki1 <kip1 < <ky}and
for any permutation o € S(K,_1). We obtain as
previously

veYmo Y mem,

k=1 Kp_1C{1,....,m}

x det A§€1---ki_1k det Ak1~~~ki_1kk

it1kn i1 kn

B . the matrix with rows Ay,
7 € K,,—1 and the ith column removed. The quan-
tity A;x — b; appears in the product HkHil ‘e H%n
with an exponent equal to

2n — 1 whenl# kand | € K,,_1,
2n —2 whenl =k and | ¢ K,,_1,
2n —3 when l # kand | € K,,_1,
2n —4 whenl=kandl € K,,_;.

In this latter case, two rows of the matrix
Ay ikkisi -k, are equal and its determinant is
zero. Thus, each term A;x—b; appears at least 2n—3
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times so that

}/; _ H2n73

NE

1 14k
n—1 1¢Kn 1

R~

(Akx — bk> H (Alac — bl>2 det Ai?l"'ki—lki-ﬁ—l“'kn det Akl"'k’z’—lkki+1'"kn'

The ith component of the Newton vector field is equal to N(z); = IIY;/det X so that

14k

Z (Akl’ — bk) H (All’ — bl)2 det AZl"'ki—1ki+1"'kn det Akl"'ki—lkki+1"'kn
k=1

Knp-1 ZQKn_
N(z)i = : 2 2
> (det Ag,)* ] (Aiz —by)
Ky I¢Kn
Instead of a sum taken for k and K, in the numerator we use a subset K,, C {1,...,m} equal to the union

of k and K,,_;. Notice that det Ay, ..k,

it1kn

= 0 when k£ € K,,_1 so that this case is not considered.

Conversely, for a given K,, = {ki---k,}, we can write it in n different ways as a union of k = k; and

K, 1 = K, \{k;}. For these reasons we get

Kn Jj=1

Z < Z(Ak]l' — bkj> det A]Ién det AKn,i,j> H (All' — bl)2

€K,

N(x); =

Knp

> (det Ag,)? ] (Aix — b)?

€K,

with Aﬁn the matrix obtained from A, in deleting the jth row and ith column, and A, ;; obtained
from A, in removing the line A;, and in reinserting it as the 7th line, the other lines remaining with the
same ordering. Note that det Ag,, ; ; = (—1)""7 det Ak, thus

K, \j=1

I¢Kn

> ( > (Agyw — b, )(—1)™ det A;';‘n> det A, ] (Aiz —b)?

Knp

In fact this sum is taken for the sets K,, such
that Ak, is nonsingular, otherwise, the coefficient
det Ak, vanishes and the corresponding term is
Zero.

According to Cramer’s formulas, the expression
(=1)"* det A% /det Ag, is equal to (A;{i)w Thus

n

> (Apya — by, )(—1)" det AY
j=1

= (A, (Ak, 2 = bK,))i

= T; — (AI_{ibKn)Z = X; — uKmi.

> (det Ag,)? T (Aiz —b)?

I¢Ky,
We get
Z(l’l — uKmi)(det AKn)Q H (All' — bl)2
Knp I¢Kn
N(z); =
> (det Ag,)* T (Aiz —bn)?
Kn I¢Kn

and we are done. W

4. Extension to the Faces of P

Our aim is to extend the Newton vector field,
defined in the interior of P, to its different faces.
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Let Pj be the face of P defined by

Pr={zeR": Ajx =0b; for any i € I
and A;x > b; for any i € J}.

Here I is a subset of {1,2,...,m} containing m;
integers, J = {1,2,...,m}\I and mjy = m — mjy.

Definition 4.1. The face Py is regularly described
when the relative interior of the face is given by

—Pr={xeR": Ajx =10b; forany i € I
and A;x > b; for any i € J}.

The polytope is regularly described when all its
faces have this property.

We assume here that P is regularly described.
This definition avoids, for example, in the descrip-
tion of a P; a hyperplane defined by two inequal-
ities: A;z > b; and A;x < b; instead of A;x = b;.
Note that every face of a regularly described P has
a unique regular description, the set I consists of all
indices 7 such that A;z = b; on the face. The affine
hull of P; is denoted by

Fy={x=(x1,...,2,)T € R":
Az =b; for any ¢ € I}

which is parallel to the vector subspace

G'J:{x:(xl,...,:vn)Tean
Ajx =0 for any i € I}.

We also let

EJ:{y:(yla'--;ym)TGle
y; = 0 for any i € I}.

Ey is defined similarly.

Let us denote by Ay (resp. A7) the my; x n
(resp. my X m) matrix whose ith row is A;, i € J
(resp. i € I). Ay defines a linear operator A;:R" —
R™7. We also let

bJZGJHRmJ, bJ:AJ’G’J

so that
bR™ — Gy, bY =Tlg,Ay.

Here, for a vector subspace F, IIp denotes the
orthogonal projection onto E. Let D, j (resp.
D, 1) be the diagonal matrix with diagonal entries

Aixz — b;, i € J (resp. @ € I). It defines a linear
operator D, j: R™/ — R™7.
Since the faces of the polytope are regularly
described, for any x € ri — Py, D, ; is nonsingular.
‘P is associated with the linear program

(LPy)

fé%(c, x).

The barrier function
= Z In(A;z
ieJ

is defined for any x € F; and finite in 77 — P the
relative interior of P;. The barrier technique con-
siders the family of nonlinear convex optimization
problems (LPj(t))

fi(x)

L B
min (¢, )

with ¢ > 0. The objective function

fra(x) = te,x) — fi(x)

is smooth, strictly convex and

li
i fr.u(x) = o0,

thus (LPj(t)) has a unique solution v;(t) € ri— Py
given by

th,J(’YJ(t)) =0.

For any x € ri — Py, the first derivative of f;

is given by
Aiu

Dfs(@ju= ) S——p = (ATD, Ve, u)
J 1 (2

with v € Gy and ey = (1,...,1)T

gs(z) = grad f;(x)

€ R™ . We have
T -1
= HGJAJD:E’JQ]
T y—1
= bJDx7JeJ'

The second derivative of f at x € ri—Pj is given by

Z Ax—b

= —(A?;D;?,AJU, u)

D?*f5(z)(u,v) =

= —(by D, %bv, u)
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for any u, v € G5 so that
Dgy(z) = hess f;(z) = —by D, 2b,.

To P; we associate the Newton vector field
given by

Ny(z) = =Dgy(x) ' gs(x),

‘We have:

r eri—Pjy.

Lemma 4.1. For any x € ri — Py this vector field
is defined and

Ny(@) = (63D, 5b0) "0 D, yes
= bT]DanHim(D;bbJ)eJ € Gy.
Proof. We first have to prove that Dg;(x) is non-
singular and that N;(z) € G;. This second point
is clear. For the first, we take u € G such that
Dgj(x)u = 0. This gives Aju = byu = 0 which
implies Au = 0 because u € G that is Aju = 0.
Since A is injective we get u = 0. By the same
argument we see that by is injective so that b?b 7 is

nonsingular. The first expression for Nj(z) comes
from the description of gy and Dg;. We have

Ny(z) = (b) D, 5b,) 05D, ey
= (6%bs) Y Du s D, by
(b5 D, 3by) 0D, e

_pt
= bJDIvJHim(D_}]bﬁeJ eGy. N

The curve v;(t), 0 < t < oo, is the central path
of the face Py. It is given by

vs(t) € Fy and  Df;(v,(t)) —tc=0
that is
x € Fy, A?D;}ej —tc € Gﬁ and yy(t) ==z
or, projecting on Gy,
Aiw=1b;, iel, biD,Ye;—tllg,c=0
and  v(t) = x.

When ¢ — 0, vs(t) tends to the analytic center
~7(0) of P; defined as the unique solution of the
convex program

—fs(7s(0)) = min —f;(z).

zeFy

The analytic center is also given by

Aix=10b;, i€, b;D;bBJZO and  v;(0)==x

so that ~;(0) is the unique singular point of N in
the face Pj.

We now investigate the properties of this
extended vector field: continuity, derivability and
so on. We shall investigate the following abstract
problem: for any y € R" we consider the linear
operator

Dy: R™ — R™

given by the m x m diagonal matrix D, = Diag(y;).
Let P be a vector subspace in R™. Then, for any
y € R™ with nonzero coordinates, the operator

is well defined. Can we extend its definition to any
y € R™? The answer is yes and proved in the
following

Lemma 4.2. Let y € E; be such that y; # 0 for
any i € J.

Then Dy|g, : Ej — Ej is nonsingular and
;L%Dy © HDy_l(P) = Dylg, o Wiy )1 (PrE)):-
Proof. To prove this lemma we suppose that I =
{1,2,...,mi}and J = {mi+1,...,mi+mg = m}.

Let us denote p = dim P. P is identified to an
n X p matrix with rank P = p. We also introduce
the following matrices:

b _(Pur 0 p_(U 0
YN0 Dyo) T \V W)

The different blocks appearing in these two matri-
ces have the following dimensions: Dy 1:m1 X my,
Dy 2:mgo x mag, U:my X p1, Vimg X p1, Wimsg X pa.
We also suppose that the columns of <V?/) are a basis
for PNE; and those of (g) a basis of the orthogonal

complement of PNE; in P that is (PNE;)NP. Let
us notice that py < mo and rank W = ps and also
that p; < my and rank U = p;. Let us prove this
last assertion. Let U;, 1 < 4 < p; be the columns
of U. If ayU;y + -+ + ap, Up, = 0, we have

U Up,
o) +-4a
! Vi " ‘/;’1

0
i)
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The left-hand side of this equation is in (PNE;)*N
P and the right-hand side in P N E;. Thus this
vector is equal to 0 and since rank P = p we get
ap = =aqp =0.

For every subspace X in R™ with dim X = p
identified with an m x p rank p matrix we have

Iy = X(XTx)"1xT.
This gives here
II

DyP

<D—1U 0 )

. y,1
D,V D, W
. (UTDy}U +VTD 3V VID 2w ) !
WTD, 3V WTD, W
. (UTDyj VTDyé>
0 WTD,;

Dyllp, o 1p

<Dy,1 0 )(0 0 ) <D%}U 0
0 Dy2)\0 Im, )\ DIV D W

. <UTD;§U +VTD 3V VID 2w ) - (

WTD, 3V WTD, W

o)

0 I, WTD, 3V

VoW WD 3V

We will prove later that

and

. 0 0
Fr=\o I, )

‘We also notice that
DyHDy_IP = DyHEIHDy_lp + DyHEJHDy—lp-
‘We have

lim D, Ty, 1, = 0.

This is a consequence of the two following

||HE1HDy—1P|| <1

because it is the product of two orthogonal projec-
tions and

lim D Ilg, = Dyllg, = 0.
Y=Y
We now have to study the limit
;Lr% D,Il1g, 11,

Let us denote A = U TD; fU . The following identi-
ties hold:

—1p.
y P

)

U'D,y VD, )
0 W'D,

<A 0><Iml+A-1<VTD;§V> A—1<VTD;§W)>]_1<UTDﬁ VTD;%>

WTD,SW 0 W'D,;

0 0\ (Im +ANVTD3V) ANVTDEW)\ ' (AT(UTD,Y) ATN(VTD)
WD, 2w '

0 WD}

lim A~! = 1im 4~ (U7 D, 1) =0

when y — 7. Since

lim Dy » = Dy

y—y



836 J.-P. Dedieu & M. Shub

is a nonsingular matrix we get

lim D, T, T, 1

y—y
V. w ) \wWrD3v wrD Zw
<O O )
X _
0 WT'Dg,

0 0
- <0 W(WTD@§W)1WTD@;>
and this last matrix represents the operator
Dylg, o Wiy -1 (PnE,)

as announced in this lemma.
To achieve the proof of this lemma we have to
show that

lim A~! = 1im 4~ (UT D) =0
with A = UTD; %U . In fact it suffices to prove
lim A~! = 0 because
A U D DII?
= AU D, (AT UTD, )T
= [ A7

Since U is full rank, the matrix UTU is positive
definite so that

1 = min Spec(UTU) > 0.

Let us denote > the ordering on square matrices
given by the cone of non-negative matrices. We have

1
D2y —— Iy, = ——=I
U maxy2 ™ [ly[2™

so that

_ 1 0
U'D2U - —UTU = L1, .
vl llyll* [[y[]2"*

Taking the inverses changes this inequality in the
following

2
0= (U"D,U)" < —”?L” Iy, =0

when y — 7 and we are done. W

Corollary 4.1. The vector field N(x) extends con-
tinuously to all of R™. Moreover it is Lipschitz on
compact sets. When all the faces of the polytope P
are reqularly described, the continuous extension of
N(z) to the face Py of P equals Nj(x). Conse-
quently any orbit of N(x) in the polytope P tends to
one of the singularities of the extended vector field,
1.e. either to a vertex or an analytic center of one

of the faces.

Proof. It is a consequence of Definition 2.2,
Lemmas 4.1 and 4.2 and the equality Ajr]y = Aty for
any y € Ej that N(x) extends continuously to all
of R™ and equals N;(x) on P;. Moreover a rational
function which is continuous on R"™ has bounded
partial derivatives on compact sets and hence is
Lipschitz. Now we use the characterization of the
vectorfield restricted to the face to see that any orbit
which is not the analytic center of a face tends to
the boundary of the face and any orbit which enters
a small enough neighborhood of a vertex tends to
that vertex. W

Remark 4.1. We have shown that N(z) is Lipschitz.
We do not know an example where it is not ana-
lytic and wonder as to what its order of smoothness
is, in general. In the next section we will show it is
analytic generically.

5. Analyticity and Derivatives

In Sec. 3 we gave the following expression for the
Newton vector field:

N(z)
> (@—ux,)(det Ak, )? T (A —by)?
K,c{1,...,m} IZKy,
B det K,,#0
> (detAg,)? [ (Aiw —by)?
K,c{1,...,m} IZKy,
det K, #0

for any x € Int P. Under a mild geometric assump-
tion, the denominator of this fraction never vanishes
so that N(z) may be extended in a real analytic
vector field.

Theorem 5.1. Suppose that for any x € OP con-
tained in the relative interior of a codimension d
face of P, we have Ap,x = by, for exactly d indices
in{1,...,m} and Ajxz > by for the other indices. In
that case the line vectors Ay, 1 <i < d, are linearly
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independent. Moreover, for such an x

> (det Ag,)? J] (Aix—b1)> #0
K,c{1,..,m} I¢K,
det Ky, #0
so that N(z) extends analytically to a neighborhood
of P.

Proof. Under this assumption, for any x € P, there
exists a subset K, C {1,...,m} such that the sub-
matrix Ak, is nonsingular and A;x —b; > 0 for any
r¢ K, 1

The first one is a well-known fact about the Newton
operator: its derivative is equal to —id at a zero
(if N(x) = 0, then DN (x) = D(—Dg(x) g(z)) =
D(~Dg(x) V)g(x) — Dg(x)'Dy(x) = —id). The
second fact is proved in Sec. 4: the restriction of
N(z) to a face is the Newton vector field associated
with the restriction of g(x) to this face.

We have now take care of the 1 eigenvalues. To
simplify the notations we suppose that A;x = b; for
1 <i<d, Aix > b when i+ 1 < i < m, and
N(xz) = 0. N is analytic and its derivative in the
direction v is given by

Our next objective is to describe the singular  p N(z) = Num
points of this extended vector field. Z (det Ag,)? H (Ajz — by)?
Theorem 5.2. Under the previous geometric ass- ngct{é’wé’gn} L K
umption, the singularities of the extended wvector .
field are: the analytic center of the polytope and the with
analytic centers of the different faces of the polytope, Num = Z v(det AKn)2 H (Ajx — bl)2
including the vertices. Fach of them is hyperbolic: if KnC{l,..m} €K,
x € JOP is the analytic center of a codimension d det Ky 7#0
face F of P, then the derivative DN (x) has n —d
etgenvalues equal to —1 with corresponding eigen- + Z (z — ug, )(det AKn)2
vectors contained in the linear space Fy parallel to K,c{1,..,m}
F and d eigenvalues equal to 1 with corresponding det Kn70
etgenvectors contained in a complement of Fy.
I g /7o XY 24v(Ar = by) [T (A —by)?
Proof. The first part of this theorem, about the log€Kn I¢Ky,
—1 eigenvalues, is the consequence of two facts. I#lo
| which gives
> (@ —uk,)(det Ak, )? Y 240(Az — b)) [] (A —by)?
Kn lo@Kn 1K,
DN(z)v=v+ det 70 Al =v+ Mv
> (det Ag,)? [T (Aiz —bn)?
K,c{1,...,m} IZKy,
det Ky, #0

where M is, up to a constant factor (i.e. constant in v), the n x n matrix equal to

Kn
det K, 0
lo gKn

which is also equal to

> (det Ag,)*(Ax — byy) <

IT (A - bl)2> (z — ug, ) A,
€K,
I#£lg

e 2
> % ( IT Az — bl)2> (z —uK,) Ay

{1,...,d}CKn
det K, #0
d+1<lp<m

lOgKn

€Ky,
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because A;x = b; when 1 < 7 < d and A;z > b;
otherwise.

To prove our theorem we have to show that
dimker M > d. This gives at least d independent
vectors v; such that Mv; = 0, that is, DN (x)v; = v;;
thus 1 is an eigenvalue of DN (x) and its multi-
plicity is > d. In fact it is exactly d because we
already have the eigenvalue —1 with multiplicity
n — d. The inequality dimker M > d is given by
rank M < n —d. Why is it true? M is a linear
combination of rank 1 matrices (v — uk,)A;, so
that the rank of M is less than or equal to the
dimension of the system of vectors x — ug, with
K,, as before. Since {1,...,d} C K,, Aixz = b;
when 1 < i < d, and Aug, = bg, we have
Alx —ug,) = (0,...,0,9%411,---,ym)’. From the

the positive time trajectories of —N(x). For —N (z)
the eigenvalues at the critical points are multiplied
by —1 so in the faces the critical points of —N(z)
are sources and their stable manifolds are transverse
to the faces.

6. Example

Let us consider the case of a triangle in the plane.
Since the Newton vector field is affinely invariant
(Proposition 2.1) we may only consider the triangle
with vertices (0,0), (1,0) and (0,1). A dual descrip-
tion is given by the three inequalities z > 0, y > 0,
—x —y > —1 which correspond to the following
data:

hypothesis, the line vectors Ay, ..., Ay defining the 1 0
face F are independent, thus the set of vectors A— 0 1 B—
u € R™ such that the vector Au € R™ begins by - ’ - ’
d zeros has dimension n — d and we are done. W -1 -1 -1
Remark 5.1. The last theorem implies that N(z) is z 0 0
Morse—Smale in the terminology of dynamical sys- D 0 0
tems. Recall also that we are really interested in (z.y) Y
| 0 0 1—z—y
Newton vector field in the triangle
~~\N | /S SSSS S SS
\\\1_////////////////
—~— N ~N——— S
—_— N~N—~—~———rv S
—— ] N\
— NANNN———— s
—— NN S
~—5s] NN\ N\ S
~NLANANANANNANANN—~ S S S S S s
\\\,\\\\\1/\L<//////
NN e N T TN | / /7~
~\\ | /S ———— "\ | /S
NN\ ////}\\\\\\\\[///
NN V%l /S NS\, [/ /S~
~\ /NSO |
— N\ | S ) N T S —
B N R VIR T X T A N
] \\\\\\\V\W<<<W\\
7 B2 N NN NN N N A VNN

The corresponding Newton vector field is given
by the rational expressions

2

z2? — 22z + a:yQ — x2y

22+y2+x2

N(z,y) =
22y — xy? +y2? — 2z
2’2 + y2 + 332

with 2 = 1 — 2 — y. This vector field is analytic on
the whole plane. The singular points are the three
vertices, the midpoints of the three sides and the
center of gravity. The arrows in the figure are for
—N(z) and the critical points are clearly sources in
their faces.
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Five trajectories.

NNV S S S S S S S
~\ /s SS
~~~\VY S S
—~—— N
i S~ S
—— a1 S
— NN\ ~——— S
— NN \N~— o S
—~ Yoz I\ AN NN S S
~~—=N\NNN\N NN\
RS 2 NN N~N\ | [ /s
NN 04 = —~N\ |\ [ /S
NN N\ (] L N\ | [ S —
~ O\ \?_[ / / N\ NN\ | /S —
~ N &S S N ——— N\, [ S —
— N\ e ) O\ TN TN | S —
=02~ 7\ S 02— S04 N\ 0F _~_ 08~ 7 1N 2
///\\\\\\\\M1</< NN S
7 g2 N N NN NN N A \ NN
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