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1. INTRODUCTION

Given a probability measure p on the space of invertible n x n complex
matrices satisfying a mild integrability condition, we have, by Oseledec’s
Theorem, n random exponents r; > ro > ... > r, > —oo such that for
almost every sequence ...gg...g1 € GL,(C) the limit lim } log ||g, . . . g1v||
exists for every v € C" \ {0} and equals one of the r;, i = 1...n, see
Gol’dsheid and Margulis [?] or Ruelle [?] or Oseledec [?]. The numbers
r1,...,Tn are called Lyapunov exponents. In our context we may call them
random Lyapunov exponents or even just random exponents. If the measure
is concentrated on a point A, these numbers lim & log | A"v|| are log |\, ... ,
log |A,| where A\;(A) = \;, i = 1...n, are the eigenvalues of A written with
multiplicity and [A1] > |A2] > ... > |\

The integrability condition for Oseledec’s Theorem is

g € GL,(C) — log™(||g]|) is p — integrable
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where for a real valued function f, f* = max[0, f]. Here we will assume
more so that all our integrals are defined and finite, namely:

(%) g € GL,(C) — log™(||g]|) and log™(|lg~}||) are u—integrable.
We will prove:

Theorem 1. If u is a unitarily invariant measure on GL,, (C) satisfying (x)
then, fork=1,...,n

/A ZlogM )ldu(A i

€GL.(C) i

By unitary invariance we mean p(U (X)) = p(X) for all unitary transfor-
mations U € U, (C) and all y-measurable X C GL,(C).

Corollary 2.

"
/AeGLn Zlog |Ai(A)|du(A >Z7’Z .

Theorem ?7 is not true for general measures on GL,,(C) or GL,(R) even

for n = 2. Consider

10 11
A: A:
() (1)

and give probability 1/2 to each. Then the left hand integral is zero but as
is easily seen the right hand sum is positive. So, in this case the inequality
goes the other way. We do not know a characterization of measures which
make Theorem 77 valid. We would find such a characterization interesting.

The numbers Zle r; have a direct geometric interpretation. Let G,, 1(C)
denote the Grassmannian manifold of £ dimensional vector subspaces in C",
A|G, i, the restriction of A to the subspace G,, ; and v the natural unitarily
invariant probability measure on G, ;(C).

Theorem 3. If u is a unitarily invariant probability measure on GL,,(C)
satisfying (x) then,

k
Zri :/ / log | Det (A|Gy i) |dv(G k) d(A).
= AEGLy(C) J G, 1 €Gp 1 (C)

We may then restate Theorem 77 in the form we prove it.
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Theorem 4. If p is a unitarily invariant probability measure on GL,(C)
satisfying (*) then, fork=1,... ,n

/ Zlogu Nauwy= [ f log | Det (4] Gy, ) di(G ) dps(A).
AEGL,(C AEGL,(C) JGpy 1 €Gr 1 (T)

There is a considerable literature on random Lyapunov exponents and
quite general criteria which guarantee that they are non-zero and even dis-
tinct. According to Bougerol and Lacroix in 1985 in [?] “The subject matter
initiated by Bellman was fully developed by Furstenberg, Guivarc’h, Kesten,
Le Page and Raugi.” We refer to [?] for references prior to 1985 and to three
others: Gol’dsheid and Margulis [?], Guivarc’h and Raugi [?] and Ledrappier
[?].

Our interest in Theorem 7?7 and Theorem 77 was motivated by some ques-
tions in dynamical systems theory, see Burns, Pugh, Shub and Wilkinson
[?]. Theorem ?? for k = 1, the orthogonal group and GL,(R) was raised
there.

We also get a version of Theorem ?? without the logarithms.

Theorem 5. Let p be a unitarily invariant probability measure on GL,,(C)
satisfying (*) and 1 <k <n. Then

/ H\A Nauy= [ f | Det (AlGn)ldV(Gr ) du(A).
AEGLy(C AEGL,(C) /Gy 4 €G,y 1(C)

There is a special case of Theorems ?? and 77 of that is good to keep in
mind. Our proof relies it.

Let A € GL,(C) and p be the Haar measure on U,(C) (the unitary
subgroup of GL,,(C)) normalized to be a probability measure. In this case
Theorem 7?7 becomes:

Theorem 6. Let A € GL,(C). Then, for 1 <k <n,

k
/ 3 log (U A)du(U) > / log | Det (A|Gyi)|di(Grr)
U€U,(C) G k€Gp (C)

i=1
and

/ T[4 () = / | Det (AlGy ) dv (G ).
U€U,(C) G, k€Gn,k(C)

=1

When k£ = 1, |\i(UA)| = p(UA) is the spectral radius of UA. The
Grassmannian manifold is identical to the complex projective space P,,_1(C).
Integration on this manifold can be reduced to the unit sphere S?*~1 in R?"
so that
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Corollary 7. Let A € GL,,(C). Then

| toglp@ANau@) = [ log|Asfav(a)
U€eU,(C) 2

reS§2n—1

and

res§2n—1

[ A= [ Asdv(a).
UeU,(C) 2
We expect a similar result for orthogonally invariant probability measures

on GL,(R) but we have not proven it. Here we content ourselves with the
case n = 2.

Theorem 8. Let p be a probability measure on GlLo(R) satisfying
g € GLy(R) — log™(||g|) and log™(|lg~||) are p—integrable.
a. If u is a SO2(R) invariant measure on GL (R) then,

/ log |1 (A)|djs(A) = / / log | Az |[dS (x)dju(A).
AeGL] (R) A€eGLJ (R) JzeS!

b. If p is a SO2(R) invariant measure on GL; (R), whose support is not con-
tained in RQ9(R) i.e. in the set of scalar multiples of orthogonal matrices,
then

/ log [As(A)]du(A) > / / log || Az||dS* (z)du(A).
A€EGL; (R) A€GL; (R) Jaest

Here GLJ (R) (resp. GL; (R)) is the set of invertible matrices with posi-
tive (resp. negative) determinant. Theorem ?7? is proved in section 5.

2. A MORE GENERAL THEOREM.

Theorem 77 is actually a special case of the much more general Theorem
7?7 below. Before we state Theorem 77 we need some preliminaries.

A flag F'in C" is a sequence of vector subspaces of C": F' = (Fy, Fs, ..., F,),
with F; C F;y1 and Dim F; = i. The space of flags is called the flag man-
ifold and we denote it by [F,,(C). Now it is easy to see that F,,(C) may be
represented by GL,,(C)/R,(C) or by U,(C)/T"(C), where R,,(C) is the sub-
group of GL,,(C) of upper triangular matrices and T"(C) is the subgroup of
GL,,(C) consisting of diagonal matrices with complex numbers of modulus
1, so T*(C) = U,(C) NR,(C). Regarding F,(C) as U,(C)/T"(C) we see
that F,(C) has a natural U, (C)-invariant probability measure.

An invertible linear map A : C" — C" naturally induces a map Ay on
flags by

Ay(F1, Fy, ... F,) = (AFy, AF,,... | AF,).
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The flag manifold and the action of a linear map A on F,(C) is closely
related to the QR algorithm, see Shub and Vasquez [?] for a discussion of
this. In particular if F' is a fixed flag for A i.e. AyF = F, then A is upper
triangular in a basis corresponding to the flag F', with the eigenvalues of A
appearing on the diagonal in some order: A;(A, F), ..., A\, (4, F).

Let

G={A€GL,(C) : |M(A)] > M(A)] >...> [M(A)]}.

Then, there is a unique flag F such that A4(F) = F and such that \;(A, F') =
Ai(A) fori=1,... ,n. We call this flag the QR flag of A and let QR : G —
F,,(C) be the map which associates to A € G its QR flag. It follows from
Shub-Vasquez [?] and the discussion of fixed point manifolds below that QR
is a smooth mapping.

Now fix A € GL,(C), define U,(C)A ={UA : U € U,(C)} and consider
Ga =GN (U,(C)A). Assume that G4 # (. If we restrict QR to G4 then
QR : Gy — F,(C) is in fact a locally trivial fibration whose fibers are the
orbits of a T™(C) action we now describe.

Let D € T*(C) and U € U,(C) and let QR(UA) = U1R,(C) where
Uy € U,(C). Let

D4:T"(C) x Gy — Gy
be defined by ®4(D,UA) = Uy DU; U A. Tn section 4 we establish

Proposition 1. 1) ®4(D,UA) is well defined.

2) QR(A(D,UA)) = QR(UA).

3) &4 : T"(C) x G4 — G4 is an action of T"(C) on G4 whose orbits are
the fibers of QR : G4 — F,(C).

4) If D = Diag(dy, ... ,d,) then \i(®4(D,UA)) = d;\;(UA) and in partic-
ular | ;| is constant on the fibers of QR : Gy — F,(C) fori=1,... ,n.

Let
Va={(UF)eU,(C) xF,(C) : (UA)F = F}.

We denote by IT; and Il the restrictions to V4 of the projections U, (C) x
F,(C) — U,(C) and U, (C) xF,(C) — F,(C). We define an action of T"(C)
on V4 denoted U, : T"(C) x V4 — V4 by

U 4(D)(U, U, T™(C)) = (U; DU; U, U T(C)).

Proposition 2. 1) V4 is well defined and smooth.
2) The orbits of VU 4 are the fibers of Iy : V4 — F,(C).



We consider the manifold
V={(AF) € GL,(C) xF,(C) : A4F =F}

and the restrictions to V of the two projections GL,(C) x F,,(C) — GL,(C)
and GL,(C) x F,,(C) — F,(C) which we again denote by II; and IIs. By
the Jordan Canonical Form Theorem the map II; is surjective. Except on a
set of positive codimension, Hl_l(A) consists of n! points corresponding to
the permutations of the eigenspaces of A € GL,(C). The fibers of the map
Il are more complicated.

For ¢ € C\ {0} we write cU,(C) to mean {cU : U € U,(C)}.

Definition 9. Let f: GL,(C) x F,(C) — R be continuous.

1) f is Un(C) or unitarily invariant if f(UA, F) = f(A, F) for all (A, F) €
GL,(C) x F,,(C) and U € U,(C), and if f|cU,(C) x F,(C) is constant for
every c € C\ {0}.

2) For B € GL,(C) let g(B) = max(p ey f(B, F'). We say that f is T"(C)
or torally invariant if g(®(D,B)) = g(B) for all A € G, B € G4 and
D e T*(C).

Examples of U, (C) and T"(C) invariant functions are
1) For 1 <k <mnlet fp(A, F) = |Det (A|Fy)| where F' = (Fy, F»,... ,F,) €
F,(C).
2) log fr(A, F) where fi(A, F) is as in 1).

Remark 10. If AyF = F then | Det (A|F},)| = [T, |Ni(4, F)|.

Given a continuous f : GL,(C) x F,(C) — R, let g : GL,,(C) — R be
defined by g(B) = max(p ryev f(B, I).

Theorem 11. Let f : GL,(C) x F,(C) — R be continuous, unitarily and
torally invariant. Let p be a unitarily invariant probability measure on

GL,(C) satisfying (). Then

[ sz [ A ),
A€eGL,(C) A€eGL, (C) J FeF,(C)

It is now fairly simple to see how Theorem ?? implies Theorem ?77. If
fe(A, F) = log|Det (A|F})| then, by Remark 7?7, g(A) = Zle log [Ai(A)]
where [A1(A)] > [M(A)] > ... > | A (A)| are the absolute values of the
eigenvalues of A. So the left hand integrals in Theorem ?? and 77 are
the same. To see that the right hand integrals are the same consider the
natural fibration Il : F,(C) — G, x(C) given by Iy(F1,...,F,) = Fj.



Then | Det (Al F')| = | Det (A|F}))| and it is easy to see that

[ g pet(almjan(r) = [ log | Det (A|Gp ) |di(Go ).
FeF,,(C) G,k €Gn,K(C)

We will say more about this in section 4. So we are done.

We now turn to the proof of Theorem 7?7 which follows from the consid-
eration of a special case.

Let A € GL,,(C). We put Haar measure p on U, (C) normalized to be a

probability measure. Thus the next proposition is a special case of Theorem
7?7

Proposition 3. Let f: GL,(C) x F,,(C) — R be continuous, unitarily and
torally invariant. Let

Va={(U,F)ecU,C) xF,(C) : (UAF =F}
and g(B) = max(p pyev, f(B, F). Then

/ g(UA)du(U) 2/ / fWUA, F)dv(F)du(U).
U€U,(C) UeUn(C) JFeF,(C)

We now see that Proposition 77 implies Theorem ?7. Disintegrate the
measure 4 of Theorem ?? along the orbits of U, (C) obtaining U, (C) invari-
ant probability measures on each orbit. Identifying an orbit with U, (C) we
see that these measures are left invariant on U, (C) hence they are Haar mea-
sures. Now Proposition 7?7 applies orbit by orbit. Integrating the inequality
over the space of orbits proves Theorem ?77.

Note that it is sufficient to prove Proposition 7?7 when A is not a constant
times a unitary matrix, for otherwise g(UA) and f(UA, F') are both equal
to the constant in the definition of unitary invariance. Thus the integrals
are equal since they are equal to this constant. We will assume below that
A is not a constant times a unitary matrix i.e. A is not conformal.

Note that in Proposition 77 the right hand integral does not depend on
U since f is unitarily invariant. Thus it is not necessary to integrate over
U, (C), the first integral is constant.

Now we restate Proposition 77 in its simpler form.

Proposition 4. Let f : F,(C) — R be continuous and torally invariant,
suppose A is not unitary or a scalar times a unitary. Let

Va={(UF)cU,(C) xF,(C) : (UAF =F}.
Let g(B) = max(g pyev, f(F). Then

/ o(U)du(U) > / F(F)du(F).
UeU,(C)

FeF,(C)



Now we outline the proof of Proposition 77. We use the diagram

Va
Iy 1T

/ N\
Un(C) Fn(C)

to transfer the right hand integral over [F,,(C) to an integral over U, (C).
First we identify a subset of U, (C) over which we will integrate.

Let G; be the open subset of U, (C) consisting of those U such that the
eigenvalues of U A are of distinct modulus. In this case we write them as

where [A1] > ... > |\,
Proposition 5. G is an open set of full measure in U,(C), i.e. u(Gy) = 1.

Lemma 1. Let f : F,(C) — R be continuous and torally invariant. Let
9(B) = max(B,F)ev f(F). Then

N(UA, FY| ™2
[N B SI(a) | ([EEce s G
FeF,(C) UeGq (U,F)eV 4 j<i ]( )
JI D (I I
Vet cES,, j<i a(j)

with X, the group of permutations over the set {1,2,... ,n}.

Proposition 7?7 and Lemma ?? are proved in section 4. Proposition ?? and
77 follow from Proposition 77, Lemma 7?7 and from the next proposition.

Proposition 6.

Jree,#® 3 11

oeX, j<t

o(7)

—2
au(U) = /U _ oU)du(v).

U(J

We will prove Proposition 7?7 in Section 4 by decomposing the two inte-
grals along the fibers of the QR fibration on which g(U) is constant.

Proposition 7. The normal Jacobian of the QR fibration is H]Q ‘ f\‘—;

where N\ = N\;(UA) are the eigenvalues of UA with |\1| > ... > |\,|. Hence

| a3 T1 e

dp(U) =

1-— pur B
/FEIE‘n((C)g( /(1ng > 11 TN dp(QR™(F))(U)dv(F)

UEE j<t Aj




and

/UeGl g(U)dM(U) N /FeIFn(C) g(U) /UEQRl(F) H

1<t

‘2
LN
Aj

Proposition 7?7 is proved in Section 4. Finally in Section 4 we prove

Proposition 8.

/UGQRl(F) H

1<

'2
LN
Aj

QR (F))(U) = /U o ZH — )

UEE 7<t

Now Proposition 7?7 and Proposition 7?7 prove Proposition 7?7 and we
are done. To summarize it remains to prove Theorem ?7, Proposition 77,
Proposition ??, Proposition ??, Lemma 77, Proposition 7?7 and Proposition
??

3. MANIFOLDS OF FIXED POINTS

The manifolds V and V4 are manifolds of fixed points. In this section we
discuss integration formulas for manifolds of fixed points and prove Lemma
7?7 and Proposition ??7. We begin by recalling the co-area formula.

3.1. The Co-area Formula. Let X and Y be real Riemannian manifolds.
We denote by dX and dY the associated volume forms. Suppose F': X —
Y is a smooth surjective map and suppose that the derivative DF(x) :
T:X — Typ)Y is surjective for almost all € X. The horizontal space
H, of T,;X is defined as the orthogonal complement to Ker DF'(z). The
horizontal derivative of F' at x is the restriction of DF(x) to H,. The
normal Jacobian NJ(F(x)) is the absolute value of the determinant of the
horizontal derivative defined almost everywhere on X:

NJ(F(z)) = [Det (DF(z)|m,) |-
The map F defines a fibration of X with base Y and fibers F~1(y), y € Y.

Integration over X with respect to this fibration generalizes Fubini’s formula:

Theorem 12. (Co-area Formula) Let F : X — Y be a smooth map of
real Riemannian manifolds satisfying the preceeding surjectivity conditions.
Then, for any integrable f : X — R

RECE /Y/F N (’))d L) (@)Y (y).

Remark 13. In the co-area formula, dX and dY are the volume forms
associated with the Riemannian structures over X and Y, dF~!(y) is the
volume form on F~!(y) equipped with the induced metric.

o(z) B

du(QR™(F))(U)dv(F).

dp(QR™

HE))().



10

Remark 14. The co-area formula also extends to complex Riemannian
manifolds. In that case the normal jacobian is equal to

NJ(F(z)) = | Det (DF(z)|n,) [*

This follows immediately from the fact that if A : C* — C" is a complex
linear map and Ag : R?® — R?" the real map it defines, then

| Det Ag| = | Det AJ2.

Remark 15. When DF(x) : T X — T,)Y is onto, the normal Jacobian is

equal to
NJ(F(z)) = (Det DF(z)DF(z)*)Y/?
so that

_ () i
fo @ = [ G DR DRG0

and in the complex case (see Remark 77)

" z) = f(ﬂﬂ) -1 z
/x _ @) / L / o, B DR PG W)

Remark 16. The co-area formula also extends to the case of maps I :

X — Y between algebraic varieties by considering the restriction of F' to the
smooth part of X.

3.2. Manifolds of Fixed Points. Let 7 and M be compact Riemannian
manifolds and a smooth map ® : 7 x M — M be given. Let

UV:FxM-—->MxM
be defined by ¥(f,m) = (®(f,m), m). Suppose V is transversal to
A={(m,m) : me M} CMxM.
Then
V=U"YA)={(f,m) e FxM : &(f,m)=m}

is a submanifold in F x M. We denote by Il and Il the restrictions to
V of the projections F x M — F and F x M — M. By Sard’s Theorem,
almost all f € F are regular values of IIx : V — F. For these f € F the

corresponding fixed points m € M, i.e. (f,m) € V, are isolated in M. Since
M is compact these fixed points are finite.

Theorem 17. Let Fy denote the set of f € F which are reqular values of
IIr. Let G: M — R be a continuous function. Then
NJ(Ip(f,m))

s = | e, O T NI )

dF(f).
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Remark 18. The integral is taken over the set F of regular values of I1£.
We note that f € Fy if and only if for all m € M, such that (f,m) € V,
idr, m — Dpqg®(f,m) is invertible.
Proof. We apply the co-area formula to the function G(m)NJ(ILy(f,m))/ Vol IL 4 (m)
defined over V with respect to the projection II,. This gives
/ G(m)NJ (I (f, m))
(fmev  Vollly(m)

dV(f,m) =

Gm)NJ(IIpq(f,m)) . B . .
/me/vt /(f,m)ean(m) VolHXj(m)NJ(HM(ﬁm))dHM(m>(f’m)dM<m) _/meM G(m)dM(m).

We now apply the same formula to the same function with respect to the the
projection ITx. We notice that the fiber H;_-l( f) consists in a finite number
of fixed points so that:

GlmIN T (fm) o NI )
Jymes ™ orttgony 0= 2, SN ) )

and we are done.

Now we compute the normal Jacobians in terms of the partial derivatives
of & : Fx M — M. The Riemannian structure we put on V is the restriction
of the product structure on F x M.

Lemma 2. Let f € Fy and (f,m) € V. Then the tangent space of V at

(f,m) is

TV = A{(f, ) € TyFxTuM 1 = (idr, sa—Dpa®(f,m)) " Dr®@(f,m) f}.
Proof. This is a consequence of Remark 77.

If we put together Lemma ?7, Theorem 7?7, and Blum-Cucker-Shub-Smale
[?] Lemma 3, page 242, we have:

Theorem 19. Let G : M — R be a continuous function. Then, for real

manifolds
/ G(m)dM(m) =
meM

| Det (DF®(f,m)Drd(f,m)*)|*/?
VolIIy (m)| Det (idr,, pm — Daa®@(f,m))|

G(m)
mellZ' (f)
For complex manifolds this formula becomes

/ _, GlmdM(m) =

dF(f).

fEFH

‘ Det (D]:(I)(f7 m)qu)(f, m)*)|

G(m) - :
FEFH megf‘:m VolII  (m)| Det (idr,, pm — Daa®(f,m))[2

dF(f).
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Similarly we may also evaluate integrals defined on F using the fibration
over M. Suppose that S : Fy — V is a smooth section of V defined on Fy,
or on an open set of Fy i.e. IIxS =idg, .

Theorem 20. Let H : Fn — R be an integrable function defined on Fy, or
on an open set in Fu. Then, for real manifolds

/ H(f)dF(f) =
feFm

‘ Det (idTmM — DM(I)(f, m))’
/meM /(HMS)I(m) H(f) ’ Det (D]—'q)(f, m)D]__q)('ﬂ m)*)‘1/2 df(f)

and for complex manifolds

[ mnar) =
JE€Fn
| Det (idTmM — DM(I)(f, m))|2
/meM /(HMS>1(m) B Bet (Dra(r,mbDra(f,m)) -

4. PROOFS OF THEOREM 77?7, PROPOSITIONS 1, 2, 5, LEMMA 1 AND OF
PROPOSITIONS 7 AND 8.

4.1. Proof of Theorem 77?. If not explicitely stated this Theorem is in-
herent in the works of Furstenberg, Guivarc’h, Raugi, Gol’dsheid, Margulis
and possibly other sources. See also Bougerol-Lacroix. We sketch a proof.

We consider two auxilliary spaces and maps:
1) [T, GL,(C) equipped with the product measure /i, and o : [[;2; GL,(C) <
the one sided shift:

o(coigp--91)=(--9p---g2)-

2) 172, GL,,(C)xG,, x(C) with the measure ixv and the map 7 : [[;2; GL,(C)x
Gy (C) <= defined by

(o gp-91),Gng) = (0(.. . gp---91), 91(Gng))-

[ is invariant and ergodic for o and i x v is invariant for 7 (here we use the

unitary invariance of u). It follows from Birkoff’s Ergodic Theorem and the
invariance of the measure /ixv for the map 7 that lim ;1) log | Det (gp ... 91|Gnk)|

exists a.e. in [[;2; GL,(C)xG,, (C), and the integral of lim % log | Det (gp - .- 91|Gn.i)|
equals fAeGLn(C) fGn,keGn,k(C) log | Det (A|Gy, k) |dv (G i )dp(A). Now by Os-

eledec’s theorem for almost all § = (... gy ... g1) the limit lim % log | Det (gp ... g1|Gni)|
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k
exists for almost all Gy, ;, and equals Z 7i. S0
i=1

k
Z r; = / / log | Det (A|Gy 1) |dv(G k) du(A).
= A€EGLA(C) J Gy 1 €Gyp 1 (C)

4.2. Proofs of Propositions 77 and ?77. We now turn, in section 3, to
the case that F = U,(C), M =TF,(C), V=V, and (U, F) = (UA)4(F).

Lemma 3. Suppose (UA)y(UT™(C)) = U;T*(C). Then, for any V €
U, (C) one has

(VA)(U,T*(C)) = Uh T*(C)
if and only if there exists D € T"(C) such that UyDU; U = V.

Proof. If (VA)y(U;T*(C)) = U;T*(C) then U1R,(C) = VAUR,(C) =
VU U AUR,(C) = VU 'U;R,(C). So U;'UV'U R, (C) = R,(C) and
U'UV—1Uy is in R, (C) NU,(C) = T*(C). So there is a D € T"(C) with
UV-'=U,DU; " and V = U;D'U;'U.

On the other hand for, D € T"(C), U; DUy 'UAUR,,(C) = U; DU; 'U1R,,(C) =
U1DR,,(C) = U1R,(C). So we are done.

Proof of Proposition ??. 1) If QR(UA) = Ui1R,,(C) = U{R,,(C) then U] =
U, D' for some D' € T*(C). Thus U;DU; 'UA = UyD'DD''UUA =
U1 DU YU A. From QR(UA) = Ui R, (C) we get (UA);U1R,(C) = U1R,,(C)
so that UA = U;RU; ! for some R € R,(C). This gives ®4(D,UA) =
U\DU'UA = U, DU;'U;RU;" = U;DRU;'. Thus the eigenvalues of
®4(D,UA) have distinct modulus and @4 is well defined.

2) Using UA = U1 RU; " we get ®4(D,UA)U, = Uy DU 'UAU, = Uy DR
so that

QR(®4(D,UA)) = QR(UA) = UiR,(C).
3) This assertion is exactly Lemma ?7.
4) \i(®4(D,UA)) = d;\;(UA) is proved in 1). and |\;| constant on the
fibers of QR described in 3) and we are done.

Proof of Proposition ?77. Similar to the proof of Proposition ??. it also
uses Lemma ?77.

4.3. Proof of Lemma ?7?7. Lemma 77 has an immediate consequence:

Lemma 4. a) The volume of the fibers Il 1 (F), for F € F,,(C), with Iy :
V4 — F,(C), is constant and equal to Vol T™(C).

b) The volume of the fibers QR™Y(F), for F € F,,(C), is constant and equals
Vol T"(C).
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Next we turn our attention to the term | Det Dy, )@ (U, F) Dy, ) ®(U, F)*|.
If we fix a flag I then Dy, c)®(U, F) = Dy, )®r(U) where ®p(U) =
UUT*(C) and U; defined by AyF = U;T"(C). Next we prove that the
normal Jacobian of ®x(U) is constant.

Proposition 9. Let U,(C) act on U,(C)/T"(C) by ®r(U) = UU;T™(C).
Then the normal jacobian of ®r(U) is independent of F, Uy and U and
equals Vol T"(C).

Proof. First consider the case Uy = I,,. Then ®p(U) = UT™(C) is the
projection from U, (C) to U,(C)/T"(C). Before normalizing the Riemannian
metric on U,(C)/T"(C) to make the volume 1, the normal to the fiber is
mapped isometrically to the tangent space of U,(C)/T"(C). Now Ry, :
U, (C) — U, (C) defined by Ry, (U) = UU; is an isometry of U, (C) and the
fibers of @ are the reciprocal images by Ry, of the fibers of ®; . So the
normal jacobians are constant. After normalization, the normal jacobians
must equal Vol T"(C) to make Vol U, (C) equal 1.

Corollary 21. |Det Dy, c)®(U, F') Dy, «)®(U, F)*| = VolT"(C) for any
F eF,(C) and U € U,(C).

Proof. By Remark ?? | Det Dy, c)®(U, F') Dy, (c)®(U, F')*| is equal to the
normalized Jacobian of ®(U) and we apply Proposition ?7.
Finally we have from Shub-Vasquez [?]

1 — 2o

Proposition 10. | Det (id—Dg, c)®(U, F)| =[] i
oy

)\l(UA,F) and ‘)\1| >0 > |)\n|

j<i ‘ where A\g(;) =

Making the substitutions in Theorem ?? given by Corollary 7?7 and Propo-
sition ?? we have

Theorem 22. Let f: F,(C) — R be continuous. Then

/F o ) = / S ]I

VES wpyen! j<i

This proves Lemma 77.
4.4. Proof of Proposition ??. Similarly substituting in Theorem 7?7 gives
Theorem 23. Let g : Gy — R be integrable. Then

[ swawr=[ [ o]
UeGy FelF,(C) (U,F)eHI;n(C)(F)

j<u

2

dIizt

1 - Frn(C)

Aoti) (F)(U)dv(F).
Ao (i)

This theorem proves Proposition ?77.
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4.5. Proof of Proposition ?7. Since the fibers QR™(F) for a given F €
Gy are isometric to T"(C) we have to prove the equality

Ao(iy |~
/ I1l1- i du(T™(C / # du(T™(C)).
"(C) j<i j n(C) UEE j<z 1-— "
Let us denote the Van der Monde determinant
IR VRN Vi
VO, ) = | ! oo =] = M)
F I SV B

The first integral is equal to

i [2 V(AL )

/n(c)gl— @)= [ PR ©),

The Van der Monde is equal to

VL. )= Y e(@)A]W gt
O'Gzn

Here the sum is taken for any permutation ¢ in the symmetric group and
€(0) = %1 denotes is signature. The square of the absolute value of this Van
der Monde is

|V()\1, . ’)\n)’2 = Z 6(0’)6(7‘))\(17(1)715\71-(1)71 o )\g(n)—l)\ﬂ'(n)—l.

n
o, TEX,

Now we integrate these products over a product of circles:

[ TR g = o [ (it (o)~ (R)db
0<0 <27 0<0 <27

Since dfj, is a probability measure, this last integral is equal to 1 when
o(k) = 7(k) and 0 otherwise. For this reason

/n(@) H

1<t

‘20(1)—2 ‘)\ |20’(n)—2

Z A A
Hj<i‘)‘j|2

The second integral is equal to

Ao(i) |~

2
/ ZH— dp(T"(C)) =

UGE 1<t

/ Z |V()\17 7 A ?
n(C) o |V(>\0(1)7 . . '

1%

7<i

[ auroy = 3]

ocEY, <1t

a(j)
Aj

U(n) |2
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The first and second integral are equal if and only if

Z ‘)\1|20(1)—2 o |)\n|20(n)—2 _ Z H |)\O'(j)|2

oEY, oEX, j<i

or, in other terms, if and only if

Yo PO AP = N ) P ) PO g
O’EZn O'Ezn

This last inequality is obvious.

4.6. Proof of Proposition ??. G; is clearly open and semi-algebraic in
U, (C). For this reason, “full measure in U, (C)” is equivalent to “dense in
U, (C)”. We shall prove now this last property.
Consider VLA C [Un((C)XUn((C) defined by (Ul, UQ) S VLA when (UQ*UlAUQ)Z‘J =

0 for ¢ > j, that is the flag defined by Us is fixed by (U1A)x. Vi 4 is a con-
nected smooth real algebraic manifold. It is a locally trivial bundle over V4
with fiber T"(C). Since the map (Uy, Uz) — UjU; AU, taking U, (C) x U, (C)
into GL,,(C) is transversal to the upper triangular matrices, which can be
seen by varying U; alone, it follows that V; 4 is also a smooth variety. So
a polynomial which vanishes on an open set in Vi 4 vanishes identically. It
will suffice to prove that the set of (U1, Us) € Vi 4 such that U; A has dis-
tinct eigenvalue modules is dense in Vq 4. Now the eigenvalues of U A are
the diagonal elements of Us;U; AUs. The set of (U, Usz) € Vi 4 where there
are equal modulus eigenvalues on the diagonal is given by the equations

(Pik) (UsU1AU3); i(UsU1AU3); 5 = (Us Ui AU2) 1 1 (Us UL AU ) g -

So, if we show for each (i, k) that there are (Uy,Usz) such that the equality
fails, then the variety defined by P; . is nowhere dense and the finite union
of nowhere dense sets is nowhere dense. Let A = V1DV, be a singular
decomposition of A: V; and V3 are in U,,(C) and D = Diag(dy, ... ,d,) with
0<dy <...<d, Weknow by the hypothesis that there are at least two
distinct d;. This gives two unitary matrices U; and Us such that

U;UlAUQ = Diag(dl, N ,dn)

with some pair (d;,,d;,) of different moduli. By composing Us with a per-
mutation matrix P, P*U5U; AUy P permutes d;,, d;, to any two positions
we wish, so we are done.
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5. PROOF OF THEOREM 77.

We may decompose the measure p along SO2(R) orbits. Then we are
reduced to comparing the integrals

/ log | A1 (RgA)|djs(6) = / log | A(6) 6
S@Q(R) St
for Det A > 0 and
/ log [\t (Rg A)|du(6) > / log | A(6) |d6
S04 (R) st

for Det A < 0 unless A is a constant times a reflection in which case equality
holds.

Without loss of generality we may assume that |Det A] = 1 and hence
that \q(RgpA)A2(RgA) = £1 for all § as Det A = +1. Now we consider

Va = {(Rg,z) € SO2(R) x S' : (RyA)x = '}

and the two projections Ilgg,®) : Va4 — SO2(R) and Ig1 : V4 — S!. Then

/ log [|A(6)[|d8 =
st
A2(RoA)

A
log |\ (RgA ‘ +log Ao (RpA du(0) =
L o PR L= SEEES] Hloma(Ro ) 1~ SHEE | ()
No(RoA) | ‘ M(RoA) [~
log | A1 (RgA —|1- du(6
/S@Q( R) gl o ) (‘ A1 (RoA) A2 (RoA) H0)
Now for AMjAa =1
Ao |” ‘ A 1 1
1-= —[1-F = =1
) A
‘ A1 A2 -2 -1
while for )\1)\2 = —
)\2 )\1 1 1 >\1 + )\2
' A ’ A2 1-— :\\—f — i—; AL — A2
This proves Theorem 77 except for the possibility that Det A = —1 and

log ||A(0)|| is identically zero, i.e. A is a reflection.
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