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Mathématique
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1. Introduction

Given a probability measure µ on the space of invertible n × n complex
matrices satisfying a mild integrability condition, we have, by Oseledec’s
Theorem, n random exponents r1 ≥ r2 ≥ . . . ≥ rn ≥ −∞ such that for
almost every sequence . . . gk . . . g1 ∈ GLn(C) the limit lim 1

k log ‖gk . . . g1v‖
exists for every v ∈ Cn \ {0} and equals one of the ri, i = 1 . . . n, see
Gol’dsheid and Margulis [?] or Ruelle [?] or Oseledec [?]. The numbers
r1, . . . , rn are called Lyapunov exponents. In our context we may call them
random Lyapunov exponents or even just random exponents. If the measure
is concentrated on a point A, these numbers lim 1

n log ‖Anv‖ are log |λ1|, . . . ,
log |λn| where λi(A) = λi, i = 1 . . . n, are the eigenvalues of A written with
multiplicity and |λ1| ≥ |λ2| ≥ . . . ≥ |λn|.

The integrability condition for Oseledec’s Theorem is

g ∈ GLn(C)→ log+(‖g‖) is µ− integrable
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where for a real valued function f , f+ = max[0, f ]. Here we will assume
more so that all our integrals are defined and finite, namely:

(∗) g ∈ GLn(C)→ log+(‖g‖) and log+(‖g−1‖) are µ−integrable.

We will prove:

Theorem 1. If µ is a unitarily invariant measure on GLn(C) satisfying (∗)
then, for k = 1, . . . , n,∫

A∈GLn(C)

k∑
i=1

log |λi(A)|dµ(A) ≥
k∑

i=1

ri.

By unitary invariance we mean µ(U(X)) = µ(X) for all unitary transfor-
mations U ∈ Un(C) and all µ-measurable X ⊆ GLn(C).

Corollary 2. ∫
A∈GLn(C)

n∑
i=1

log+|λi(A)|dµ(A) ≥
n∑

i=1

ri
+.

Theorem ?? is not true for general measures on GLn(C) or GLn(R) even
for n = 2. Consider

A1 =

(
1 0
1 1

)
, A2 =

(
1 1
0 1

)
,

and give probability 1/2 to each. Then the left hand integral is zero but as
is easily seen the right hand sum is positive. So, in this case the inequality
goes the other way. We do not know a characterization of measures which
make Theorem ?? valid. We would find such a characterization interesting.

The numbers
∑k

i=1 ri have a direct geometric interpretation. Let Gn,k(C)
denote the Grassmannian manifold of k dimensional vector subspaces in Cn,
A|Gn,k the restriction of A to the subspace Gn,k and ν the natural unitarily
invariant probability measure on Gn,k(C).

Theorem 3. If µ is a unitarily invariant probability measure on GLn(C)
satisfying (∗) then,

k∑
i=1

ri =
∫

A∈GLn(C)

∫
Gn,k∈Gn,k(C)

log |Det (A|Gn,k)|dν(Gn,k)dµ(A).

We may then restate Theorem ?? in the form we prove it.
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Theorem 4. If µ is a unitarily invariant probability measure on GLn(C)
satisfying (∗) then, for k = 1, . . . , n∫

A∈GLn(C)

k∑
i=1

log |λi(A)|dµ(A) ≥
∫

A∈GLn(C)

∫
Gn,k∈Gn,k(C)

log |Det (A|Gn,k)|dν(Gn,k)dµ(A).

There is a considerable literature on random Lyapunov exponents and
quite general criteria which guarantee that they are non-zero and even dis-
tinct. According to Bougerol and Lacroix in 1985 in [?] “The subject matter
initiated by Bellman was fully developed by Furstenberg, Guivarc’h, Kesten,
Le Page and Raugi.” We refer to [?] for references prior to 1985 and to three
others: Gol’dsheid and Margulis [?], Guivarc’h and Raugi [?] and Ledrappier
[?].

Our interest in Theorem ?? and Theorem ?? was motivated by some ques-
tions in dynamical systems theory, see Burns, Pugh, Shub and Wilkinson
[?]. Theorem ?? for k = 1, the orthogonal group and GLn(R) was raised
there.

We also get a version of Theorem ?? without the logarithms.

Theorem 5. Let µ be a unitarily invariant probability measure on GLn(C)
satisfying (∗) and 1 ≤ k ≤ n. Then∫

A∈GLn(C)

k∏
i=1

|λi(A)|dµ(A) ≥
∫

A∈GLn(C)

∫
Gn,k∈Gn,k(C)

|Det (A|Gn,k)|dν(Gn,k)dµ(A).

There is a special case of Theorems ?? and ?? of that is good to keep in
mind. Our proof relies it.

Let A ∈ GLn(C) and µ be the Haar measure on Un(C) (the unitary
subgroup of GLn(C)) normalized to be a probability measure. In this case
Theorem ?? becomes:

Theorem 6. Let A ∈ GLn(C). Then, for 1 ≤ k ≤ n,∫
U∈Un(C)

k∑
i=1

log |λi(UA)|dµ(U) ≥
∫

Gn,k∈Gn,k(C)
log |Det (A|Gn,k)|dν(Gn,k)

and ∫
U∈Un(C)

k∏
i=1

|λi(UA)|dµ(U) ≥
∫

Gn,k∈Gn,k(C)
|Det (A|Gn,k)|dν(Gn,k).

When k = 1, |λ1(UA)| = ρ(UA) is the spectral radius of UA. The
Grassmannian manifold is identical to the complex projective space Pn−1(C).
Integration on this manifold can be reduced to the unit sphere S2n−1 in R2n

so that
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Corollary 7. Let A ∈ GLn(C). Then∫
U∈Un(C)

log |ρ(UA)|dµ(U) ≥
∫

x∈S2n−1

log ‖Ax‖dν(x)

and ∫
U∈Un(C)

|ρ(UA)|dµ(U) ≥
∫

x∈S2n−1

‖Ax‖dν(x).

We expect a similar result for orthogonally invariant probability measures
on GLn(R) but we have not proven it. Here we content ourselves with the
case n = 2.

Theorem 8. Let µ be a probability measure on GL2(R) satisfying

g ∈ GL2(R)→ log+(‖g‖) and log+(‖g−1‖) are µ−integrable.

a. If µ is a SO2(R) invariant measure on GL+
2 (R) then,∫

A∈GL+
2 (R)

log |λ1(A)|dµ(A) =
∫

A∈GL+
2 (R)

∫
x∈S1

log ‖Ax‖dS1(x)dµ(A).

b. If µ is a SO2(R) invariant measure on GL−2 (R), whose support is not con-
tained in RO2(R) i.e. in the set of scalar multiples of orthogonal matrices,
then∫

A∈GL−2 (R)
log |λ1(A)|dµ(A) >

∫
A∈GL−2 (R)

∫
x∈S1

log ‖Ax‖dS1(x)dµ(A).

Here GL+
2 (R) (resp. GL−2 (R)) is the set of invertible matrices with posi-

tive (resp. negative) determinant. Theorem ?? is proved in section 5.

2. A More General Theorem.

Theorem ?? is actually a special case of the much more general Theorem
?? below. Before we state Theorem ?? we need some preliminaries.

A flag F in Cn is a sequence of vector subspaces of Cn: F = (F1, F2, . . . , Fn),
with Fi ⊂ Fi+1 and Dim Fi = i. The space of flags is called the flag man-
ifold and we denote it by Fn(C). Now it is easy to see that Fn(C) may be
represented by GLn(C)/Rn(C) or by Un(C)/Tn(C), where Rn(C) is the sub-
group of GLn(C) of upper triangular matrices and Tn(C) is the subgroup of
GLn(C) consisting of diagonal matrices with complex numbers of modulus
1, so Tn(C) = Un(C) ∩ Rn(C). Regarding Fn(C) as Un(C)/Tn(C) we see
that Fn(C) has a natural Un(C)-invariant probability measure.

An invertible linear map A : Cn → Cn naturally induces a map A] on
flags by

A](F1, F2, . . . , Fn) = (AF1, AF2, . . . , AFn).
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The flag manifold and the action of a linear map A on Fn(C) is closely
related to the QR algorithm, see Shub and Vasquez [?] for a discussion of
this. In particular if F is a fixed flag for A i.e. A]F = F , then A is upper
triangular in a basis corresponding to the flag F , with the eigenvalues of A

appearing on the diagonal in some order: λ1(A,F ), . . . , λn(A,F ).
Let

G = {A ∈ GLn(C) : |λ1(A)| > |λ2(A)| > . . . > |λn(A)|}.

Then, there is a unique flag F such that A](F ) = F and such that λi(A,F ) =
λi(A) for i = 1, . . . , n. We call this flag the QR flag of A and let QR : G→
Fn(C) be the map which associates to A ∈ G its QR flag. It follows from
Shub-Vasquez [?] and the discussion of fixed point manifolds below that QR

is a smooth mapping.
Now fix A ∈ GLn(C), define Un(C)A = {UA : U ∈ Un(C)} and consider

GA = G ∩ (Un(C)A). Assume that GA 6= ∅. If we restrict QR to GA then
QR : GA → Fn(C) is in fact a locally trivial fibration whose fibers are the
orbits of a Tn(C) action we now describe.

Let D ∈ Tn(C) and U ∈ Un(C) and let QR(UA) = U1Rn(C) where
U1 ∈ Un(C). Let

ΦA : Tn(C)×GA → GA

be defined by ΦA(D,UA) = U1DU−1
1 UA. In section 4 we establish

Proposition 1. 1) ΦA(D,UA) is well defined.
2) QR(ΦA(D,UA)) = QR(UA).
3) ΦA : Tn(C) × GA → GA is an action of Tn(C) on GA whose orbits are
the fibers of QR : GA → Fn(C).
4) If D = Diag(d1, . . . , dn) then λi(ΦA(D,UA)) = diλi(UA) and in partic-
ular |λi| is constant on the fibers of QR : GA → Fn(C) for i = 1, . . . , n.

Let

VA = {(U,F ) ∈ Un(C)× Fn(C) : (UA)]F = F}.

We denote by Π1 and Π2 the restrictions to VA of the projections Un(C)×
Fn(C)→ Un(C) and Un(C)×Fn(C)→ Fn(C). We define an action of Tn(C)
on VA denoted ΨA : Tn(C)× VA → VA by

ΨA(D)(U,U1Tn(C)) = (U1DU−1
1 U,U1Tn(C)).

Proposition 2. 1) ΨA is well defined and smooth.
2) The orbits of ΨA are the fibers of Π2 : VA → Fn(C).
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We consider the manifold

V = {(A,F ) ∈ GLn(C)× Fn(C) : A]F = F}

and the restrictions to V of the two projections GLn(C)×Fn(C)→ GLn(C)
and GLn(C) × Fn(C) → Fn(C) which we again denote by Π1 and Π2. By
the Jordan Canonical Form Theorem the map Π1 is surjective. Except on a
set of positive codimension, Π1

−1(A) consists of n! points corresponding to
the permutations of the eigenspaces of A ∈ GLn(C). The fibers of the map
Π2 are more complicated.

For c ∈ C \ {0} we write cUn(C) to mean {cU : U ∈ Un(C)}.

Definition 9. Let f : GLn(C)× Fn(C)→ R be continuous.
1) f is Un(C) or unitarily invariant if f(UA,F ) = f(A,F ) for all (A,F ) ∈
GLn(C) × Fn(C) and U ∈ Un(C), and if f |cUn(C) × Fn(C) is constant for
every c ∈ C \ {0}.
2) For B ∈ GLn(C) let g(B) = max(B,F )∈V f(B,F ). We say that f is Tn(C)
or torally invariant if g(ΦA(D,B)) = g(B) for all A ∈ G, B ∈ GA and
D ∈ Tn(C).

Examples of Un(C) and Tn(C) invariant functions are
1) For 1 ≤ k ≤ n let fk(A,F ) = |Det (A|Fk)| where F = (F1, F2, . . . , Fn) ∈
Fn(C).
2) log fk(A,F ) where fk(A,F ) is as in 1).

Remark 10. If A]F = F then |Det (A|Fk)| =
∏k

i=1 |λi(A,F )|.

Given a continuous f : GLn(C) × Fn(C) → R, let g : GLn(C) → R be
defined by g(B) = max(B,F )∈V f(B,F ).

Theorem 11. Let f : GLn(C) × Fn(C) → R be continuous, unitarily and
torally invariant. Let µ be a unitarily invariant probability measure on
GLn(C) satisfying (∗). Then∫

A∈GLn(C)
g(A)dµ(A) ≥

∫
A∈GLn(C)

∫
F∈Fn(C)

f(A,F )dν(F )dµ(A).

It is now fairly simple to see how Theorem ?? implies Theorem ??. If
fk(A,F ) = log |Det (A|Fk)| then, by Remark ??, g(A) =

∑k
i=1 log |λi(A)|

where |λ1(A)| ≥ |λ2(A)| ≥ . . . ≥ |λn(A)| are the absolute values of the
eigenvalues of A. So the left hand integrals in Theorem ?? and ?? are
the same. To see that the right hand integrals are the same consider the
natural fibration Πk : Fn(C) → Gn,k(C) given by Πk(F1, . . . , Fn) = Fk.
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Then |Det (A|ΠkF )| = |Det (A|Fk)| and it is easy to see that∫
F∈Fn(C)

log |Det (A|Fk)|dν(F ) =
∫

Gn,k∈Gn,k(C)
log |Det (A|Gn,k)|dν(Gn,k).

We will say more about this in section 4. So we are done.
We now turn to the proof of Theorem ?? which follows from the consid-

eration of a special case.
Let A ∈ GLn(C). We put Haar measure µ on Un(C) normalized to be a

probability measure. Thus the next proposition is a special case of Theorem
??.

Proposition 3. Let f : GLn(C)× Fn(C)→ R be continuous, unitarily and
torally invariant. Let

VA = {(U,F ) ∈ Un(C)× Fn(C) : (UA)]F = F}

and g(B) = max(B,F )∈VA
f(B,F ). Then∫

U∈Un(C)
g(UA)dµ(U) ≥

∫
U∈Un(C)

∫
F∈Fn(C)

f(UA,F )dν(F )dµ(U).

We now see that Proposition ?? implies Theorem ??. Disintegrate the
measure µ of Theorem ?? along the orbits of Un(C) obtaining Un(C) invari-
ant probability measures on each orbit. Identifying an orbit with Un(C) we
see that these measures are left invariant on Un(C) hence they are Haar mea-
sures. Now Proposition ?? applies orbit by orbit. Integrating the inequality
over the space of orbits proves Theorem ??.

Note that it is sufficient to prove Proposition ?? when A is not a constant
times a unitary matrix, for otherwise g(UA) and f(UA,F ) are both equal
to the constant in the definition of unitary invariance. Thus the integrals
are equal since they are equal to this constant. We will assume below that
A is not a constant times a unitary matrix i.e. A is not conformal.

Note that in Proposition ?? the right hand integral does not depend on
U since f is unitarily invariant. Thus it is not necessary to integrate over
Un(C), the first integral is constant.

Now we restate Proposition ?? in its simpler form.

Proposition 4. Let f : Fn(C) → R be continuous and torally invariant,
suppose A is not unitary or a scalar times a unitary. Let

VA = {(U,F ) ∈ Un(C)× Fn(C) : (UA)]F = F}.

Let g(B) = max(B,F )∈VA
f(F ). Then∫

U∈Un(C)
g(U)dµ(U) ≥

∫
F∈Fn(C)

f(F )dν(F ).
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Now we outline the proof of Proposition ??. We use the diagram

VA
Π1

↙
Π2

↘
Un(C) Fn(C)

to transfer the right hand integral over Fn(C) to an integral over Un(C).
First we identify a subset of Un(C) over which we will integrate.

Let G1 be the open subset of Un(C) consisting of those U such that the
eigenvalues of UA are of distinct modulus. In this case we write them as

λi = λi(UA), 1 ≤ i ≤ n,

where |λ1| > . . . > |λn|.

Proposition 5. G1 is an open set of full measure in Un(C), i.e. µ(G1) = 1.

Lemma 1. Let f : Fn(C) → R be continuous and torally invariant. Let
g(B) = max(B,F )∈VA

f(F ). Then∫
F∈Fn(C)

f(F )dν(F ) =
∫

U∈G1

∑
(U,F )∈VA

f(F )
∏
j<i

∣∣∣∣1− λi(UA,F )
λj(UA,F )

∣∣∣∣−2

dµ(U) ≤

∫
U∈G1

g(U)
∑

σ∈Σn

∏
j<i

∣∣∣∣1− λσ(i)

λσ(j)

∣∣∣∣−2

dµ(U)

with Σn the group of permutations over the set {1, 2, . . . , n}.

Proposition ?? and Lemma ?? are proved in section 4. Proposition ?? and
?? follow from Proposition ??, Lemma ?? and from the next proposition.

Proposition 6.∫
U∈G1

g(U)
∑

σ∈Σn

∏
j<i

∣∣∣∣1− λσ(i)

λσ(j)

∣∣∣∣−2

dµ(U) =
∫

U∈G1

g(U)dµ(U).

We will prove Proposition ?? in Section 4 by decomposing the two inte-
grals along the fibers of the QR fibration on which g(U) is constant.

Proposition 7. The normal Jacobian of the QR fibration is
∏

j<i

∣∣∣1− λi
λj

∣∣∣−2

where λi = λi(UA) are the eigenvalues of UA with |λ1| > . . . > |λn|. Hence∫
U∈G1

g(U)
∑

σ∈Σn

∏
j<i

∣∣∣∣1− λσ(i)

λσ(j)

∣∣∣∣−2

dµ(U) =

∫
F∈Fn(C)

g(U)
∫

U∈QR−1(F )

∑
σ∈Σn

∏
j<i

∣∣∣∣∣∣
1− λσ(i)

λσ(j)

1− λi
λj

∣∣∣∣∣∣
−2

dµ(QR−1(F ))(U)dν(F )
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and∫
U∈G1

g(U)dµ(U) =
∫

F∈Fn(C)
g(U)

∫
U∈QR−1(F )

∏
j<i

∣∣∣∣1− λi

λj

∣∣∣∣2 dµ(QR−1(F ))(U)dν(F ).

Proposition ?? is proved in Section 4. Finally in Section 4 we prove

Proposition 8.∫
U∈QR−1(F )

∏
j<i

∣∣∣∣1− λi

λj

∣∣∣∣2 dµ(QR−1(F ))(U) =
∫

U∈QR−1(F )

∑
σ∈Σn

∏
j<i

∣∣∣∣∣∣
1− λσ(i)

λσ(j)

1− λi
λj

∣∣∣∣∣∣
−2

dµ(QR−1(F ))(U).

Now Proposition ?? and Proposition ?? prove Proposition ?? and we
are done. To summarize it remains to prove Theorem ??, Proposition ??,
Proposition ??, Proposition ??, Lemma ??, Proposition ?? and Proposition
??.

3. Manifolds of fixed points

The manifolds V and VA are manifolds of fixed points. In this section we
discuss integration formulas for manifolds of fixed points and prove Lemma
?? and Proposition ??. We begin by recalling the co-area formula.

3.1. The Co-area Formula. Let X and Y be real Riemannian manifolds.
We denote by dX and dY the associated volume forms. Suppose F : X →
Y is a smooth surjective map and suppose that the derivative DF (x) :
TxX → Tf(x)Y is surjective for almost all x ∈ X. The horizontal space
Hx of TxX is defined as the orthogonal complement to Ker DF (x). The
horizontal derivative of F at x is the restriction of DF (x) to Hx. The
normal Jacobian NJ(F (x)) is the absolute value of the determinant of the
horizontal derivative defined almost everywhere on X:

NJ(F (x)) = |Det (DF (x)|Hx) |.

The map F defines a fibration of X with base Y and fibers F−1(y), y ∈ Y.
Integration over X with respect to this fibration generalizes Fubini’s formula:

Theorem 12. (Co-area Formula) Let F : X → Y be a smooth map of
real Riemannian manifolds satisfying the preceeding surjectivity conditions.
Then, for any integrable f : X→ R∫

x∈X
f(x)dX(x) =

∫
y∈Y

∫
x∈F−1(y)

f(x)
NJ(F (x))

dF−1(y)(x)dY(y).

Remark 13. In the co-area formula, dX and dY are the volume forms
associated with the Riemannian structures over X and Y, dF−1(y) is the
volume form on F−1(y) equipped with the induced metric.
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Remark 14. The co-area formula also extends to complex Riemannian
manifolds. In that case the normal jacobian is equal to

NJ(F (x)) = |Det (DF (x)|Hx) |2.

This follows immediately from the fact that if A : Cn → Cn is a complex
linear map and AR : R2n → R2n the real map it defines, then

|Det AR| = |Det A|2.

Remark 15. When DF (x) : TxX→ Tf(x)Y is onto, the normal Jacobian is
equal to

NJ(F (x)) = (Det DF (x)DF (x)∗)1/2

so that∫
x∈X

f(x)dX(x) =
∫

y∈Y

∫
x∈F−1(y)

f(x)
(Det DF (x)DF (x)∗)1/2

dF−1(y)(x)dY(y)

and in the complex case (see Remark ??)∫
x∈X

f(x)dX(x) =
∫

y∈Y

∫
x∈F−1(y)

f(x)
Det DF (x)DF (x)∗

dF−1(y)(x)dY(y).

Remark 16. The co-area formula also extends to the case of maps F :
X→ Y between algebraic varieties by considering the restriction of F to the
smooth part of X.

3.2. Manifolds of Fixed Points. Let F andM be compact Riemannian
manifolds and a smooth map Φ : F ×M→M be given. Let

Ψ : F ×M→M×M

be defined by Ψ(f,m) = (Φ(f,m),m). Suppose Ψ is transversal to

∆ = {(m,m) : m ∈M} ⊂M×M.

Then
V = Ψ−1(∆) = {(f,m) ∈ F ×M : Φ(f,m) = m}

is a submanifold in F ×M. We denote by ΠF and ΠM the restrictions to
V of the projections F ×M → F and F ×M →M. By Sard’s Theorem,
almost all f ∈ F are regular values of ΠF : V → F . For these f ∈ F the
corresponding fixed points m ∈M, i.e. (f,m) ∈ V, are isolated inM. Since
M is compact these fixed points are finite.

Theorem 17. Let Ft denote the set of f ∈ F which are regular values of
ΠF . Let G :M→ R be a continuous function. Then∫

m∈M
G(m)dM(m) =

∫
f∈Ft

∑
m∈Π−1

F (f)

G(m)
NJ(ΠM(f,m))

VolΠ−1
M(m)NJ(ΠF (f,m))

dF(f).
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Remark 18. The integral is taken over the set Ft of regular values of ΠF .
We note that f ∈ Ft if and only if for all m ∈ M, such that (f,m) ∈ V,
idTmM −DMΦ(f,m) is invertible.

Proof. We apply the co-area formula to the function G(m)NJ(ΠM(f,m))/ VolΠ−1
M(m)

defined over V with respect to the projection ΠM. This gives∫
(f,m)∈V

G(m)NJ(ΠM(f,m))
VolΠ−1

M(m)
dV(f,m) =∫

m∈M

∫
(f,m)∈Π−1

M (m)

G(m)NJ(ΠM(f,m))
VolΠ−1

M(m)NJ(ΠM(f,m))
dΠ−1

M(m)(f,m)dM(m) =
∫

m∈M
G(m)dM(m).

We now apply the same formula to the same function with respect to the the
projection ΠF . We notice that the fiber Π−1

F (f) consists in a finite number
of fixed points so that:∫

(f,m)∈V

G(m)NJ(ΠM(f,m))
VolΠ−1

M(m)
dV(f,m) =

∫
f∈Ft

∑
m∈Π−1

F (f)

G(m)
NJ(ΠM(f,m))

VolΠ−1
M(m)NJ(ΠF (f,m))

dF(f)

and we are done.
Now we compute the normal Jacobians in terms of the partial derivatives

of Φ : F×M→M. The Riemannian structure we put on V is the restriction
of the product structure on F ×M.

Lemma 2. Let f ∈ Ft and (f,m) ∈ V. Then the tangent space of V at
(f,m) is

T(f,m)V = {(ḟ , ṁ) ∈ TfF×TmM : ṁ = (idTmM−DMΦ(f,m))−1DFΦ(f,m)ḟ}.

Proof. This is a consequence of Remark ??.
If we put together Lemma ??, Theorem ??, and Blum-Cucker-Shub-Smale

[?] Lemma 3, page 242, we have:

Theorem 19. Let G : M → R be a continuous function. Then, for real
manifolds ∫

m∈M
G(m)dM(m) =∫

f∈Ft

∑
m∈Π−1

F (f)

G(m)
|Det (DFΦ(f,m)DFΦ(f,m)∗)|1/2

VolΠ−1
M(m)|Det (idTmM −DMΦ(f,m))|

dF(f).

For complex manifolds this formula becomes∫
m∈M

G(m)dM(m) =∫
f∈Ft

∑
m∈Π−1

F (f)

G(m)
|Det (DFΦ(f,m)DFΦ(f,m)∗)|

VolΠ−1
M(m)|Det (idTmM −DMΦ(f,m))|2

dF(f).
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Similarly we may also evaluate integrals defined on F using the fibration
over M. Suppose that S : Ft → V is a smooth section of V defined on Ft

or on an open set of Ft i.e. ΠFS = idFt .

Theorem 20. Let H : Ft → R be an integrable function defined on Ft or
on an open set in Ft. Then, for real manifolds∫

f∈Ft

H(f)dF(f) =

∫
m∈M

∫
(ΠMS)−1(m)

H(f)
|Det (idTmM −DMΦ(f,m))|

|Det (DFΦ(f,m)DFΦ(f,m)∗)|1/2
dF(f)

and for complex manifolds ∫
f∈Ft

H(f)dF(f) =

∫
m∈M

∫
(ΠMS)−1(m)

H(f)
|Det (idTmM −DMΦ(f,m))|2

|Det (DFΦ(f,m)DFΦ(f,m)∗)|
dF(f).

4. Proofs of Theorem ??, Propositions 1, 2, 5, Lemma 1 and of

Propositions 7 and 8.

4.1. Proof of Theorem ??. If not explicitely stated this Theorem is in-
herent in the works of Furstenberg, Guivarc’h, Raugi, Gol’dsheid, Margulis
and possibly other sources. See also Bougerol-Lacroix. We sketch a proof.

We consider two auxilliary spaces and maps:
1)
∏∞

i=1 GLn(C) equipped with the product measure µ̂, and σ :
∏∞

i=1 GLn(C)←↩

the one sided shift:

σ(. . . gp . . . g1) = (. . . gp . . . g2).

2)
∏∞

i=1 GLn(C)×Gn,k(C) with the measure µ̂×ν and the map τ :
∏∞

i=1 GLn(C)×
Gn,k(C)←↩ defined by

τ((. . . gp . . . g1), Gn,k) = (σ(. . . gp . . . g1), g1(Gn,k)).

µ̂ is invariant and ergodic for σ and µ̂× ν is invariant for τ (here we use the
unitary invariance of µ). It follows from Birkoff’s Ergodic Theorem and the
invariance of the measure µ̂×ν for the map τ that lim 1

p log |Det (gp . . . g1|Gn,k)|
exists a.e. in

∏∞
i=1 GLn(C)×Gn,k(C), and the integral of lim 1

p log |Det (gp . . . g1|Gn,k)|
equals

∫
A∈GLn(C)

∫
Gn,k∈Gn,k(C) log |Det (A|Gn,k)|dν(Gn,k)dµ(A). Now by Os-

eledec’s theorem for almost all ĝ = (. . . gp . . . g1) the limit lim 1
p log |Det (gp . . . g1|Gn,k)|
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exists for almost all Gn,k and equals
k∑

i=1

ri. So

k∑
i=1

ri =
∫

A∈GLn(C)

∫
Gn,k∈Gn,k(C)

log |Det (A|Gn,k)|dν(Gn,k)dµ(A).

4.2. Proofs of Propositions ?? and ??. We now turn, in section 3, to
the case that F = Un(C),M = Fn(C), V = VA and Φ(U,F ) = (UA)](F ).

Lemma 3. Suppose (UA)](U1Tn(C)) = U1Tn(C). Then, for any V ∈
Un(C) one has

(V A)](U1Tn(C)) = U1Tn(C)

if and only if there exists D ∈ Tn(C) such that U1DU−1
1 U = V.

Proof. If (V A)](U1Tn(C)) = U1Tn(C) then U1Rn(C) = V AU1Rn(C) =
V U−1UAU1Rn(C) = V U−1U1Rn(C). So U−1

1 UV −1U1Rn(C) = Rn(C) and
U−1

1 UV −1U1 is in Rn(C) ∩ Un(C) = Tn(C). So there is a D ∈ Tn(C) with
UV −1 = U1DU−1

1 and V = U1D
−1U−1

1 U.

On the other hand for, D ∈ Tn(C), U1DU−1
1 UAU1Rn(C) = U1DU−1

1 U1Rn(C) =
U1DRn(C) = U1Rn(C). So we are done.

Proof of Proposition ??. 1) If QR(UA) = U1Rn(C) = U ′1Rn(C) then U ′1 =
U1D

′ for some D′ ∈ Tn(C). Thus U ′1DU ′1
−1UA = U1D

′DD′−1U−1
1 UA =

U1DU−1
1 UA. From QR(UA) = U1Rn(C) we get (UA)]U1Rn(C) = U1Rn(C)

so that UA = U1RU−1
1 for some R ∈ Rn(C). This gives ΦA(D,UA) =

U1DU−1
1 UA = U1DU−1

1 U1RU−1
1 = U1DRU−1

1 . Thus the eigenvalues of
ΦA(D,UA) have distinct modulus and ΦA is well defined.
2) Using UA = U1RU−1

1 we get ΦA(D,UA)U1 = U1DU−1
1 UAU1 = U1DR

so that
QR(ΦA(D,UA)) = QR(UA) = U1Rn(C).

3) This assertion is exactly Lemma ??.
4) λi(ΦA(D,UA)) = diλi(UA) is proved in 1). and |λi| constant on the
fibers of QR described in 3) and we are done.

Proof of Proposition ??. Similar to the proof of Proposition ??. it also
uses Lemma ??.

4.3. Proof of Lemma ??. Lemma ?? has an immediate consequence:

Lemma 4. a) The volume of the fibers Π−1
2 (F ), for F ∈ Fn(C), with Π2 :

VA → Fn(C), is constant and equal to Vol Tn(C).
b) The volume of the fibers QR−1(F ), for F ∈ Fn(C), is constant and equals
Vol Tn(C).
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Next we turn our attention to the term |Det DUn(C)Φ(U,F )DUn(C)Φ(U,F )∗|.
If we fix a flag F then DUn(C)Φ(U,F ) = DUn(C)ΦF (U) where ΦF (U) =
UU1Tn(C) and U1 defined by A]F = U1Tn(C). Next we prove that the
normal Jacobian of ΦF (U) is constant.

Proposition 9. Let Un(C) act on Un(C)/Tn(C) by ΦF (U) = UU1Tn(C).
Then the normal jacobian of ΦF (U) is independent of F , U1 and U and
equals Vol Tn(C).

Proof. First consider the case U1 = In. Then ΦF (U) = UTn(C) is the
projection from Un(C) to Un(C)/Tn(C). Before normalizing the Riemannian
metric on Un(C)/Tn(C) to make the volume 1, the normal to the fiber is
mapped isometrically to the tangent space of Un(C)/Tn(C). Now RU1 :
Un(C)→ Un(C) defined by RU1(U) = UU1 is an isometry of Un(C) and the
fibers of ΦF are the reciprocal images by RU1 of the fibers of ΦIn . So the
normal jacobians are constant. After normalization, the normal jacobians
must equal Vol Tn(C) to make Vol Un(C) equal 1.

Corollary 21. |Det DUn(C)Φ(U,F )DUn(C)Φ(U,F )∗| = Vol Tn(C) for any
F ∈ Fn(C) and U ∈ Un(C).

Proof. By Remark ?? |Det DUn(C)Φ(U,F )DUn(C)Φ(U,F )∗| is equal to the
normalized Jacobian of ΦF (U) and we apply Proposition ??.

Finally we have from Shub-Vasquez [?]

Proposition 10. |Det (id−DFn(C)Φ(U,F )| =
∏

j<i

∣∣∣1− λσ(i)

λσ(j)

∣∣∣ where λσ(i) =
λi(UA,F ) and |λ1| > . . . > |λn|.

Making the substitutions in Theorem ?? given by Corollary ?? and Propo-
sition ?? we have

Theorem 22. Let f : Fn(C)→ R be continuous. Then∫
F∈Fn(C)

f(F )dν(F ) =
∫

U∈G1

∑
(U,F )∈Π−1

Un(C)

f(F )
∏
j<i

∣∣∣∣1− λσ(i)

λσ(i)

∣∣∣∣−2

dµ(U).

This proves Lemma ??.

4.4. Proof of Proposition ??. Similarly substituting in Theorem ?? gives

Theorem 23. Let g : G1 → R be integrable. Then∫
U∈G1

g(U)dµ(U) =
∫

F∈Fn(C)

∫
(U,F )∈Π−1

Fn(C)
(F )

g(U)
∏
j<i

∣∣∣∣1− λσ(i)

λσ(i)

∣∣∣∣2 dΠ−1
Fn(C)(F )(U)dν(F ).

This theorem proves Proposition ??.
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4.5. Proof of Proposition ??. Since the fibers QR−1(F ) for a given F ∈
G1 are isometric to Tn(C) we have to prove the equality

∫
Tn(C)

∏
j<i

∣∣∣∣1− λi

λj

∣∣∣∣2 dµ(Tn(C)) =
∫

Tn(C)

∑
σ∈Σn

∏
j<i

∣∣∣∣∣∣
1− λσ(i)

λσ(j)

1− λi
λj

∣∣∣∣∣∣
−2

dµ(Tn(C)).

Let us denote the Van der Monde determinant

V (λ1, . . . , λn) =

∣∣∣∣∣∣∣∣∣
1 λ1 . . . λn−1

1

1 λ2 . . . λn−1
2

. . . . . . . . . . . .

1 λn . . . λn−1
n

∣∣∣∣∣∣∣∣∣ =
∏
j<i

(λi − λj).

The first integral is equal to∫
Tn(C)

∏
j<i

∣∣∣∣1− λi

λj

∣∣∣∣2 dµ(Tn(C)) =
∫

Tn(C)

|V (λ1, . . . , λn)|2∏
j<i |λj |2

dµ(Tn(C)).

The Van der Monde is equal to

V (λ1, . . . , λn) =
∑

σ∈Σn

ε(σ)λσ(1)−1
1 . . . λσ(n)−1

n .

Here the sum is taken for any permutation σ in the symmetric group and
ε(σ) = ±1 denotes is signature. The square of the absolute value of this Van
der Monde is

|V (λ1, . . . , λn)|2 =
∑

σ,τ∈Σn

ε(σ)ε(τ)λσ(1)−1
1 λ̄

τ(1)−1
1 . . . λσ(n)−1

n λ̄τ(n)−1
n .

Now we integrate these products over a product of circles:∫
0<θk<2π

λ
σ(k)−1
k λ̄

τ(k)−1
k dθk = |λk|σ(k)+τ(k)−2

∫
0<θk<2π

exp(iθk(σ(k)−τ(k)))dθk.

Since dθk is a probability measure, this last integral is equal to 1 when
σ(k) = τ(k) and 0 otherwise. For this reason∫

Tn(C)

∏
j<i

∣∣∣∣1− λi

λj

∣∣∣∣2 dµ(Tn(C)) =
∑

σ∈Σn

|λ1|2σ(1)−2 . . . |λn|2σ(n)−2∏
j<i |λj |2

.

The second integral is equal to∫
Tn(C)

∑
σ∈Σn

∏
j<i

∣∣∣∣∣∣
1− λσ(i)

λσ(j)

1− λi
λj

∣∣∣∣∣∣
−2

dµ(Tn(C)) =

∫
Tn(C)

∑
σ∈Σn

|V (λ1, . . . , λn)|2

|V (λσ(1), . . . , λσ(n))|2
∏
j<i

∣∣∣∣λσ(j)

λj

∣∣∣∣2 dµ(Tn(C)) =
∑

σ∈Σn

∏
j<i

∣∣∣∣λσ(j)

λj

∣∣∣∣2 .
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The first and second integral are equal if and only if∑
σ∈Σn

|λ1|2σ(1)−2 . . . |λn|2σ(n)−2 =
∑

σ∈Σn

∏
j<i

|λσ(j)|2

or, in other terms, if and only if∑
σ∈Σn

|λ1|2σ(1)−2 . . . |λn|2σ(n)−2 =
∑

σ∈Σn

|λσ(1)|2(n−1)|λσ(2)|2(n−2) . . . |λσ(n−1)|2.

This last inequality is obvious.

4.6. Proof of Proposition ??. G1 is clearly open and semi-algebraic in
Un(C). For this reason, “full measure in Un(C)” is equivalent to “dense in
Un(C)”. We shall prove now this last property.

Consider V1,A ⊂ Un(C)×Un(C) defined by (U1, U2) ∈ V1,A when (U∗2 U1AU2)i,j =
0 for i > j, that is the flag defined by U2 is fixed by (U1A)#. V1,A is a con-
nected smooth real algebraic manifold. It is a locally trivial bundle over VA

with fiber Tn(C). Since the map (U1, U2)→ U∗2 U1AU2 taking Un(C)×Un(C)
into GLn(C) is transversal to the upper triangular matrices, which can be
seen by varying U1 alone, it follows that V1,A is also a smooth variety. So
a polynomial which vanishes on an open set in V1,A vanishes identically. It
will suffice to prove that the set of (U1, U2) ∈ V1,A such that U1A has dis-
tinct eigenvalue modules is dense in V1,A. Now the eigenvalues of U1A are
the diagonal elements of U∗2 U1AU2. The set of (U1, U2) ∈ V1,A where there
are equal modulus eigenvalues on the diagonal is given by the equations

(Pi,k) (U∗2 U1AU2)i,i(U∗2 U1AU2)i,i = (U∗2 U1AU2)k,k(U∗2 U1AU2)k,k.

So, if we show for each (i, k) that there are (U1, U2) such that the equality
fails, then the variety defined by Pi,k is nowhere dense and the finite union
of nowhere dense sets is nowhere dense. Let A = V1DV2 be a singular
decomposition of A: V1 and V2 are in Un(C) and D = Diag(d1, . . . , dn) with
0 < d1 ≤ . . . ≤ dn. We know by the hypothesis that there are at least two
distinct di. This gives two unitary matrices U1 and U2 such that

U∗2 U1AU2 = Diag(d1, . . . , dn)

with some pair (di1 , di2) of different moduli. By composing U2 with a per-
mutation matrix P , P ∗U∗2 U1AU2P permutes di1 , di2 to any two positions
we wish, so we are done.
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5. Proof of Theorem ??.

We may decompose the measure µ along SO2(R) orbits. Then we are
reduced to comparing the integrals∫

SO2(R)
log |λ1(RθA)|dµ(θ) =

∫
S1

log ‖A(θ)‖dθ

for Det A > 0 and∫
SO2(R)

log |λ1(RθA)|dµ(θ) >

∫
S1

log ‖A(θ)‖dθ

for Det A < 0 unless A is a constant times a reflection in which case equality
holds.

Without loss of generality we may assume that |Det A| = 1 and hence
that λ1(RθA)λ2(RθA) = ±1 for all θ as Det A = ±1. Now we consider

VA = {(Rθ, x) ∈ SO2(R)× S1 : (RθA)x = x}

and the two projections ΠSO2(R) : VA → SO2(R) and ΠS1 : VA → S1. Then∫
S1

log ‖A(θ)‖dθ =

∫
SO2(R)

log |λ1(RθA)|
∣∣∣∣1− λ2(RθA)

λ1(RθA)

∣∣∣∣−1

+log |λ2(RθA)|
∣∣∣∣1− λ1(RθA)

λ2(RθA)

∣∣∣∣−1

dµ(θ) =

∫
SO2(R)

log |λ1(RθA)|

(∣∣∣∣1− λ2(RθA)
λ1(RθA)

∣∣∣∣−1

−
∣∣∣∣1− λ1(RθA)

λ2(RθA)

∣∣∣∣−1
)

dµ(θ).

Now for λ1λ2 = 1∣∣∣∣1− λ2

λ1

∣∣∣∣−1

−
∣∣∣∣1− λ1

λ2

∣∣∣∣−1

=
1

1− λ2
λ1

− 1
λ1
λ2
− 1

= 1

while for λ1λ2 = −1∣∣∣∣1− λ2

λ1

∣∣∣∣−1

−
∣∣∣∣1− λ1

λ2

∣∣∣∣−1

=
1

1− λ2
λ1

− 1
1− λ1

λ2

=
λ1 + λ2

λ1 − λ2
< 1.

This proves Theorem ?? except for the possibility that Det A = −1 and
log ‖A(θ)‖ is identically zero, i.e. A is a reflection.
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