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Introduction

The ergodic theory of uniformly hyperbolic, or “Axiom A’, diffeomor-
phisms has been studied extensively, beginning with the pioneering work
of Anosov, Sinai, Ruelle and Bowen ([An], [Si], [Ru], [Bo]). While uni-
formly hyperbolic systems enjoy strong mixing properties, they are not
dense among@! diffeomorphisms [Sm], [AS]. Using the concept of Lya-
punov exponents, Pesin introduced a weaker form of hyperbolicity, which
he termechonuniform hyperbolicityNonuniformly hyperbolic diffeomor-
phisms share several mixing properties with uniformly hyperbolic ones.
Our construction of the diffeomorphisms in this paper was motivated by
the question of whether nonuniform hyperbolicity is dense among a large
class of diffeomorphisms. As a curious by-product of our construction, we
prove that a pathological feature of central foliations — the complete failure
of absolute continuity — can exist in@'-open set of volume-preserving
diffeomorphisms.

We recall the definition of a nonuniformly hyperbolic diffeomorphism.
Areal numben is aLyapunov exponeiaf the diffeomorphisng: M — M
if there exists a nonzero vectore TM such that

. 1
lim sup— log ITg"(v)|| = A. 1)

n—o0

By Osceledets’ Theorem [Os], M is compact, then there is a detC M
which has full measure with respect to agynvariant probability meas-
ure and such that the limit in (1) exists for alle TyM with x € L. For
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a givenx € L, there are at most dirfM) different exponents, some or
all of which may be 0. The Lyapunov exponents of a uniformly hyper-
bolic diffeomorphism are never 0. A volume-preserving diffeomorphism is
nonuniformly hyperbolidf the set of points in where no exponents are 0
has full volume.

Pesin [Pe] proved that if : M — M is C? and nonuniformly hyper-
bolic, thenM may be written as the disjoint union of countably many invari-
ant sets of positive measure on whitls ergodic. He asked if nonuniform
hyperbolicity is generic in Diff(M), the space oC', volume-preserving
diffeomorphisms oM.

Pesin's question is answered in the negative for largey Cheng-

Sun [CS], Herman and Xia ([He], [Xia]; see also [Yoc]). In particular,

on any manifoldv of dimension at least 2, and for sufficiently largehere

are open sets of volume preservi@g diffeomorphisms oM all of which
posess positive measure sets of codimension one invariant tori; on each such
torus, the diffeomorphism i€! conjugate to a diophantine translation. In
these exampleall of the exponents are 0 on the invariant tori.

Nonzero exponents are not confined to the uniformly hyperbolic world,
however. Also germane to Pesin’s question are the examples of Bonatti-
Viana of volume preserving non-Axiom A diffeomorphisms all of whose
exponents are nonzero ([BV]; see also [Vi] for a dissipative example). The
examples are derived from Anosov diffeomorphisms through isotopy. They
show that uniform hyperbolicity on most dfl is sometimes enough to
ensure nonuniform hyperbolicity on all dfl. These examples have the
additional feature oftability. they lie in Ct-open sets of nonuniformly
hyperbolic diffeomorphisms.

In this paper, we start with a diffeomorphism that is not homotopic to
an Anosov diffeomorphism and which has a 0 exponent at every point.
We perturb it so that the perturbations are stably nonuniformly hyperbolic.
Directions onM with zero exponent “borrow” some hyperbolicity from
uniformly hyperbolic directions to create a new nonzero exponent that is
stable. Subsequent to early versions of this paper, Dolgopyat [Do] has found
other examples similar to those described here and has studied their mixing
properties.

Our example relies on the theory of partially hyperbolic diffeomorphisms
developed by Hirsch-Pugh-Shub [HPS], Brin-Pesin [BP], and more recently
by Pugh-Shub and others ([GPS], [Wi], [PS3], [PS4]).

A further feature of these examples is that they exhibit pathological
center foliations. Their holonomy maps are not absolutely continuous. Fo-
liations exhibiting this behavior have been referred to as “Fubini’s Night-
mare,” (also “Fubini Foiled”); Katok has previously constructed an example
of a dynamically-invariant foliation with this property, which is presented
in [Mi]. These center foliations show that the potential difficulties which
limited Brin and Pesin in their study of partially hyperbolic diffeomorphisms
and which were finally overcome in a great many cases by Grayson, Pugh
and Shub do indeed exist.
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For a compac€> manifold M with volume element, let Diff " (M) be
the space o€" diffeomorphisms oM and let Diffl;(M) be the elements of
Diff " (M) that preserve.. Endow these spaces with tfé topology,r > 1.

Let A, be the automorphism of the 2-toris? = R2/Z2, given by

i i . Let Az be the automorphism ot the 3-tords® = R3/Z3, given

A, O
by(o2 1).

Theorem I: Let 1 be Lebes%ue measure @1. Arbitrarily close to Ag
there is aC'-open set) C DiffM(T3) such that for eacly € U,

1. gis ergodic (and & -system) and nonuniformly hyperbolic.

2. There is an equivariant fibrationr : T3 — T2 such thatrg = A,w
The fibers ofr are the leaves of a foliatiovy of T3 by C? circles. In
particular, the set of periodic leaves is densdth

3. There exista.¢ > 0 such that, foru-almost everyw € T3, if v € T, T3
is tangent to the leaf oy containingw, then

1
lim =log||T,g"v| = A°.
n—oo N

4. Consequently, there exists a e T2 of full u-measure that meets
every leaf of WS in a set of leaf-measuré. The foliation Wg is not
absolutely continuous.

Since a nonuniformly hyperbolik -system is isomorphic to a Bernoulli
shift ([Pe], Theorem &), we also obtain:

Corollary: The examples in Theorem | are stably Bernoulli.

Brin, Feldman and Katok [BFK] constructed diffeomorphisms on every
manifold that are Bernoulli, and Brin [Br] showed that such examples can
be made to have all but one exponent not equal to zero. It is still an open
guestion whether every manifold of dimension greater than or equal to two
admits a nonuniformly hyperbolic Bernoulli diffeomorphism.

Proof of Theorem ISinceAs is linearly conjugate td\4, the automorphism
210
of T2 given by(l 1 O), it suffices to prove Theorem | fok,.
111
By [HPS] there is aC! open set of diffeomorphismsJ,, containing
A, for which 1.2 is satisfied. Moreover, for anfy € U, there exists & f-
invariant continuous splitting of the tangent bundld ainto 3 subbundles

TT® = E{ ® ES @ ES,

with EY, E$ and E all 1-dimensional. There are Finslers such thétis
expanded byl f, E$ is contracted byl f and the expansion and contraction
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of Tf on E§ is in between. That is, for ally € T3 and unit vectors
e EY(w), v° € E$(w) andv® € ES (w),

ri(w) = |IT, fH > 1,
r$(w) =T, f@®| < 1, and
ré(w) = T, f@%|, where ri(w) <r§w) <rf(w).

Moreover, the splitting
TT=E'9E @ ES,

varies continuously witf, as do the functions;, r§ andr$. For a volume-
preserving ergodid in Uy, there are three Lyapunov exponents, which by
Osceledets’ theorem may be expressed as integrals:

AU(F) = /T3 logr (w) du(w)
AS(f) = /T3 logr ¢ (w) du(w)
A3(f) = /T3 logr$(w) du(w)

Regardless of whetheris ergodic, the functions? (f), foré = u, c, s, are
still defined; they are the average Lyapunov exponentsf fand depend
continuously onf. While r¥, r¢, andr® depend on the choice of Finsler,
the functionsAY, A¢, and A® do not. Note that®(A;) = 0 andAY(Ay) =
—AS5(Ay) = log(m), wherem = (3+ /5)/2.

We will find a stably ergodic volume preservinfy in U; arbitarily
close toA4 for which A°(f) > 0. This will complete the proof. For, let
U, c Diff? »(T%) be aC' neighborhood off contained irJ; consisting of
ergodic dlffeomorphlsms and chosen small enoughth@aj) is small and
positive for allg € U,. Then 1.1, 1.2, 1.3 hold for alfy € U, by construction.
Let Sbe the full measure set of points whergg) exists. If any circle leaf
of "WC intersectedSin a set of positive measure, then that circle leaf would
mcrease exponentially in length under iterategoBut these lengths are
bounded by 1.2, and so |.4 follows.

It remains only to find a stably ergodic volume preservihdgn Uq,
arbitarily close toA, for whichA®(f) > 0. We find suchf in a 2-parameter
family of diffeomorphismsf, , which we now describe.

Lety : T — T be any nonconstant null-homotop®® function, letvg
be an eigenvector fo, corresponding to the eigenvaloe= (3+ v/5)/2,
and letp(X, y) = sin(2ry). Fora, b € R, let

fab = Ga o hy,
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where

ho(X, ¥, 2) = (2X+y. X +Y, 2+ X+ Y+ bp(x, y)), and
ga(X’ ya Z) = (Xa y’ Z) + (aI//(Z)UOa 0)

The diffeomorphismsfy, = hy, are skew products and fér # O they
are stably ergodic (and in fact, stably-systems). By Corollary B1 in
[BW] they are stablyK -systems if they are ergodic among skew products,
and by [AKS] they are ergodic among skew products fotal 0. (This
also follows directly from the arguments in [BW]). Thug,;, is ergodic
for a sufficiently smalla depending orb. Writing A5(a, b) = A%(fayp),

& =u,c, s, we prove in Lemma 1.2 that'(a, b) + A°(a, b) and—A3(a, b)
are constant and equal to kog).

In Section 1 we prove:

Proposition Il:  The functiom." is C? in a neighborhood 00, 0). Further,

iA“(O, b)=0, and
oa
2

1
8al2A“(o, 0) = _ugfo V' (2)%dz < 0,

whereug = ((1, 1) - vg)/(m — 1).

Thus for arbitrarily small and positive b we havef, ,,, volume preserving,
stably ergodic and®(f,p) > O. O

Our proof gives some hope that a variant of Pesin’s original question
holds true for volume-preserving diffeomorphisms: either all exponents are
zero (w-a.e.), or, as with our examples, the system may be perturbed to
become stably nonuniformly hyperbolic.

Question 1a):Forr > 1, is ittrue for genericf in DiffL(M) that for almost
every ergodic component df, either all of the Lyapunov exponents bf
are 0 or none are Oy-a.e.)?

A special case of 1a) is 1h).

Question 1b): For r > 1 does the generic ergodic diffeomorphism in
DiffL(M) have either no exponent equal to 0 or all exponents equal to 0

(n-a.e.)?

Question 1a) has an affirmative answer for 2-dimensidhah the case
r = 1; Mafe has shown that the generic diffeomorphism in ﬂiﬂl) either
has all of its Lyapunov exponents zero or is an Anosov diffeomorphism
([Ma1], [Ma2]).

An analogue of Question 1 for DIftM) is the following.
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Question 2:Forr > 1, is it true for the genericf in Diff" (M) and any

weak limitv of averages of the push forwargﬁsz’l1 f) i, that almost every
ergodic component of has some exponents not equal tovea(e.)? All

exponents not equal to 0?

Question 1b) is closest in spirit to Theorem I, which in turn gives some
credence to the possibility that 1a) is true.

One of the achievements of the theory of uniformly hyperbolic dynam-
ical systems were the theorems of Sinai, Ruelle and Bowen on invariant
measures on the attractors of a system. These attractors and measures are
now called Sinai-Ruelle-Bowen measures and SRB measures (or SRB at-
tractors), for short. They may also be called ergodic attraétors.

Given f < Diff "(M) (not necessarily preserving), a closed, f-
invariant setA ¢ M and anf -invariant ergodic measuneon A, we define
B(A, v), thebasinof A, to be the set of points € M such thatf"(x) — A
and for every continuous functiah: M — R

1 ]
lim (@00 + -+ ¢(1"(0)) > /A $) .

Definition: v is anSRB measurand A is anSRB (or ergodic) attractoif
the Lebesgue measure BfA, v) is positive.

It follows from the definition that a diffeomorphism has at most count-
ably many SRB measures. Sinai, Ruelle and Bowen proved that$o2
and f an Axiom A, no-cycle diffeomorphism (see [Si], [Ru], [Bo]), almost
every point inM with respect to Lebesgue measurés in the basin of an
SRB measure, and there are only finitely many SRB measures.

Question 3:Forr > 2, is it true for genericf in Diff" (M) that the union
of the basins of the SRB attractors bhas full Lebesgue measure h?

This natural question is on the minds of quite a few people. See [PS2],
[Pa], [BV] for discussions and examples. Question 2) might be a way to
approach Question 3) along the lines of [Pe], [PS1], [PS4].

We remark here that our construction can be slightly modified to obtain
diffeomorphisms ofT", for any n > 3, that satisfy the conclusions of
Theorem | and its corollary. In this modification, the automorphi&grof
T2 is replaced by an Anosov automorphismTdf* with one-dimensional
expanding eigenspace.

We thank Michael Herman for many conversations which clarified Ques-
tions 1-3 for us. Some of this material was presented and discussed in his

1 We take some of the conclusions of the theorems of Sinai, Ruelle, and Bowen as
a definition and warn the reader that the use of SRB measure or attractor is not uniform in
the literature. For a survey of SRB measures (using a different definition) see [You2].
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seminar during March 1998. The question of whether perturbing a skew
product diffeomorphism over an Anosov could produce nonzero exponents
was raised by Lai-Sang Young during a conversation about these questions.
We thank her for reminding us that examples such as the ones we con-
struct might exist. Numerical experiments conducted by Chai Wah Wu and
later by Niels Sondergaard convinced us of their existence and we are in-
debted to them. We also thank Charles Pugh and Clark Robinson for useful
conversations and the referee for pointing out several references to us.

1. Behavior of exponents inside the familyf, p,

Let A be a neighborhood of the origin R? such thatf,, satisfies conclu-
sion 2 of Theorem | for alb € 4. (Recall that the existence @f is ensured
by Corollary 8.3 in [HPS]). Lep", A¢ andA® be defined as in the previous
section. FoE = u,c, s, andw € A, let Efo = ngw. Note that the center-
unstable distributiorE} & ES does not depend an € «A. It is the constant
distribution spanned by the vector field&z andvg - (3/9x, 3/3y), which
we will denote byE"®. This implies that\" + A€ is the constant function
on 4, as the next lemma and the argument that follows makes precise.

Lemma 1.1 There exists £ 2-form « such thatx is nondegenerate on
EY¢, and for allw € A,
fro = ma+ B,,

wherep,, vanishes orkE"¢:
Bo(v1, v2) =0, Yvy, vy € EYC

Proof of Lemma 1.1Write vg = (Qy, ) and leta = vg - (dx, dy) A dz =
gudx A dz+ gpdy A dz 0

Usinga and the volume formdu, we may now choose for eaeta Finsler
(in fact, a continuous Riemann structure) Bhso that fors = u, c, s, the

functionsré = riw satisfy the equations:

rors(wyrs(w) =1, and )
ro(w)rg(w) =m, (3)

for all w € T3. To accomplish this, we shall choose at each peirg¢ T3
an appropriate orthonormal basiqw), v°(w), v3(w).

Forw € A, the lineE} (w) sits inside the plan&"“(w), transverse to the
line spanned byo0, 0, 1). Let v"(w) be the unique vector ik} (w) of the
form (vg, u), for someu € R. Chooser®(w) € ES (w) andvs(w) € EJ (w)
so thatw (vY(w), v°(w)) = 1 anddu (v“(w), v°(w), v5(w)). Lemma 1.1 now
gives (2), and (3) follows fronf*du = du.. From the definitions ofé (w),
we immediately obtain:
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Lemma 1.2 The functions.® and Y 4+ A¢ are constant:
23(w) = —log(m), M (w) + 1%(w) = log(m).
for w € A.

Our analysis of", A%, A% is thus reduced to a study »f.

1.1. Proof of Proposition

The proof of Proposition Il breaks into three parts. In Lemma 1.5, we show
thatA!(w) is aC? function ofw € . In Lemma 1.6 we show that the partial
derivativedr!/da is 0 ata = 0, and in Lemma 1.7 we show that\" /a2
is negative at0, 0).

As remarked above, fab € 4 andw € T2, there is a unique vector in
EY (w) of the formv" (w) = (vo, u,(w)). This defines a continuous function
u,: T3> R.

Lemma l.3 Forw = (a,b) € A,

(@) = log(m) — /T ; log(1 — ay’ (w)u, (w)) du(w).

Proof of Lemma 1.3Letgy(X, Y, 2) = X+ Y+ be(X, y). From the definition
of f,, we have:

T f Vo — [m + alﬂ/( fw(w)) [uw(w) + V@b(w) : vO]] Vo
v uw(w) uw(w) + prb(w) - Vo

_ ([m + ay’ (f,(w))ri (w)uy(fu(w))] vo>
r3(w)u( fo(w)) '

It follows that
Mo(w) = m4ay’(f,(w)Uy(f,(w)rg(w),

and sor(w) = m/(1 — ay’'(f,(w))u,(f,(w))). To obtain the formula,
integrate logr2(w)). O

We next establish the smoothnessugf
Lemma 1.4 There exists a neighborhoed of (0, 0) in R?, such that, for

eachw e T8, the functiorw — u,,(w) is C? on «. The first two derivatives
of this function depend uniformly an
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Proof of Lemma 1.4it does not affect the smoothnesswpfif we scale the
functionse andyr by a positive constant. Thus we may assume that

(¥ llollvoll + llgllo + 1)? < m. (4)

Let ' WY¢ be theC™ foliation tangent toEYC. The leaves ofw"¢ are
smoothly permuted by,,. Let X be the disjoint union of the leaves ®f"°.
Because the foliation structure " is preserved by all of thé,,, there is
a well-definedC3 map# : A9 x X — 4 x X given by:

F(w,w) = (o, f,(w)).
On Ag x X, put the metric:

d((w1, w1), (w2, w2)) = Max{d, (w1, wz), dx (w1, w2)},

wheredy is the induced Riemannian metric &randd (a1, b1), (a2, b)) =
max|a; — ay|, by — by|}. With respect to this metric, there exists a constant
o such that

d(F (w1, w1), F (w2, w2)) = pd((w1, w1), (w2, w2)),

for all w1, wy € Ag andwq, w, € X. The constanp is the inverse of the
Lipschitz norm of# ~1. A straightforward estimate shows that by shrinking
the size of the neighborhoady, we may bringp arbitrarily close to:

(¥ llollvoll + llgllo + D)~

Let B be the trivial bundle ovesty x X whose fiber.t,, = £ overw
is the set of all linear maps : E; (w) — E{ (w). SinceE, andE; are
1-dimensional, so i£. We think of 8 as the produc#ty x X x R.

With respect to theC™ splitting TX = E" = E; & E; , the map

Tf,|euec can be written: o
_ (A By
- (82

where A, : E} — EJ, B, : ES, — EJ, C, : Ej, — E;, and
K, : ES, — ES andwo = (0, 0). These maps depend irC& fashion onw
and on the basepoint € T3. Whenw = wp, we haveB =C =0,K =1,
andA =m.

Define a bundle mag; : 8 — 8B, covering¥, by:

Fi(w, w, L) = (o, f,(w), (Cp(w) + K,(w)L)(A,(w) + B, (w)L) ™).

Thenf; is C2, contracts fibers of8 at the weakest by a facter= m-1, and

has strongest base contraction by the fapter (||v/||o]lvoll + lle|l + 1)~
These estimates depend uniformly on the size of the neighborkgod
Thus, by inequality (4), there is a neighborhogd< 4 of wg, in which

cr,of2 <1
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By the C" Section Theorem of [HPS] (see also [Sh]), the unidie
invariant sections : 4 x X — £ is C2. But the graph ofs(w, w) :
By, (w) — ES (w) is preciselyE (w). We conclude thaEj (w), and thus
u,(w), is aC? function of w € 4 and ofw € X. Since WY¢ is a C®
foliation, these estimates are uniform owee T3. O

Lemma 1.5 AYis C2on 4, and

¥ (W)Ugp(w) + ay’ (w) 22
T3 1 —ay/(w)Uap(w)
Proof: By Lemma 1.4, the functiomw +— u,(w) is C? on +4, uniformly

in w. Then by the formula in Lemma 1.3Y is C? as well. Differentiating
this formula with respect ta gives (5). O

%x“(a, b) = du(w).  (5)

Settinga = 0 in (5), we obtain:

a
% 240, b) = f ¥’ (w)Uo p(w) du(w) (6)
a T3

The distributionEg ,, for the skew productfo, is invariant under transla-
tions of the form(x, y, 2) — (X, Yy, Z+ Z). This implies that the function
Uo.n(X, Y, 2) depends only or andy. On the other hand;’(x, y, 2) = ¥'(2)
depends only om. The integral in (6) is therefore equal to

/ V(2 dz / o (w) die(w) = O,
T T3

sinceyr is homotopic to a constant map. We have shown:
Lemma 1.6 For (a, b) € A,

a
™ (0,b)

The behavior of the exponents df, near (0, 0) is thus determined
by the second derivative af with respect taa. An exact computation of

this second derivative is difficult in general. For our purposes, it suffices to
compute this derivative &0, 0).

Lemmal.7

—x“(o 0) = —uof V' (2)%dz < 0,

whereug = ((1, 1) - vg)/(m — 1).
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Proof of Lemma 1.7Use “f,” to denotef, o, “u,” to denoteu, o, and “A(a)”
for AY(a, 0). Differentiating (5), we have

a'Ja(w)
) — f (w(w>ua(w)+aw () ) )
T3

1 —ay’(w)ua(w)

Bua(w) / Bua(w)
20/ ()M +ay )T
1- aw (W)Ua(w))

and settinga = 0, we obtain

a(w)

2"(0) = /(#f (w)Uo(w))? + 2¢/' (w) la=o dpe(w). (7

The mapA, = fg o is linear. It is easy to see thag(w) is the constant
functionug(w) = up = ((1, 1) - vg)/(m—1) #0
ForaeR,w=(X,y,2) € T3 andu € R, let

c+u
m+ay’ (w)(C+u)’

(@, w,u) =

wherec = (1, 1) - vo. Note thaty(a, w, Us(f;1(w))) = ua(w) and that for
|a| sufficiently small,

Ua(w) = lim y(a w, ¥(a, fotw),...v@ 7" (w),0)--)).
We compute:

’ 2
3_J/(a’ w,U) = =y (w)(C+u) ,
(Mm+ ay’(w)(c+ u))?

oa

and set = 0 to obtain:

9 ) 2
W 0wy =2 (w)(2<:+ w”
oJa m
Similarly,
oy B ay B 8_)/ B
ax (O’ U), u) - az (Oa wa u) - ay(o’ U), u) -
and

dy
. Os ,u) = —
au( w, u)
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We want to evaluatéa® |, _,. Sinceu,(w) = (@, w, Ua(f;1(w))), the
chain rule yields:

OUg(w)
oa

la=0 = —J/(a,w Ua( 3 (U))lazo

5(0, w, Uo( fg (w)))

0 _ oUga( f;l( )
+£<o, w, Up(f5 L(w))) - Tw|a:o>
_ Y E+ o(Tg ) | 1 sl w)

m?2 m ga =0

Recall thatug is the constant functioog(w) = ug, andug = (¢ + Ug)/m,
so this expression simplifies to:

UL (w) 1 ua(ft(w))

o3 lazo = =¥/ (w )o+—T|a—0- )

Iterating (8) gives

aua<w>|a_0__ . Y (woug w’<ur;_22>u8_
wherew_; = fa_j(w). Hence
;o Ua(w) _ ¥ ()Y (w_)u3
/T V)= laodu(w) = ; 5 - de(w).

The j = 0 term of this sum is- [ ¢ (w)?u3 di(w). Pulling out this term,
we have

a(w)

/(df (w)Uo(w))? + 2/ (w) la—o dp(w) =

/ ¥/ (W)Y (w_ U2
—/J(w) fduw) —23 | D ). (9)

j=1

Notice that
/T . ¥ (W)Y (w_j)ug dp(w) =

1 1 1
= uéf / / V' (2 (z—rjx — s;y) dx dy dz
0o JO JO
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wherer; ands; are integers, and = 0 if and only if j = 0, in which case
s; = 0 as well. Thus, foj > 1,

fT . ¥ (w)y' (w_j)uj dp(w) =

1 1
= U?ﬂ-‘lf f V' @¥(z—rix—sy)5dy dz
o Jo
=0.
Combining this with equations (7) and (9), we have:

/ / » u2
2O == [ wadua -2y [ L )

j=1

1
— i} [ vt

completing the proof.
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