
Digital Object Identifier (DOI) 10.1007/s002229900035
Invent. math. 139, 495–508 (2000)

 Springer-Verlag 2000

Pathological foliations and removable zero exponents

Michael Shub1,?,Amie Wilkinson 2,??

1 IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY 10598, USA
2 Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston,

IL 60208-2730, USA

Oblatum 9-VII-1998 & 23-VII-1999 / Published online: 18 October 1999

Introduction

The ergodic theory of uniformly hyperbolic, or “Axiom A”, diffeomor-
phisms has been studied extensively, beginning with the pioneering work
of Anosov, Sinai, Ruelle and Bowen ([An], [Si], [Ru], [Bo]). While uni-
formly hyperbolic systems enjoy strong mixing properties, they are not
dense amongC1 diffeomorphisms [Sm], [AS]. Using the concept of Lya-
punov exponents, Pesin introduced a weaker form of hyperbolicity, which
he termednonuniform hyperbolicity. Nonuniformly hyperbolic diffeomor-
phisms share several mixing properties with uniformly hyperbolic ones.
Our construction of the diffeomorphisms in this paper was motivated by
the question of whether nonuniform hyperbolicity is dense among a large
class of diffeomorphisms. As a curious by-product of our construction, we
prove that a pathological feature of central foliations – the complete failure
of absolute continuity – can exist in aC1-open set of volume-preserving
diffeomorphisms.

We recall the definition of a nonuniformly hyperbolic diffeomorphism.
A real numberλ is aLyapunov exponentof the diffeomorphismg : M→ M
if there exists a nonzero vectorv ∈ TM such that

lim sup
n→∞

1

n
log‖Tgn(v)‖ = λ. (1)

By Osceledets’ Theorem [Os], ifM is compact, then there is a setL ⊆ M
which has full measure with respect to anyg-invariant probability meas-
ure and such that the limit in (1) exists for allv ∈ TxM with x ∈ L. For
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a givenx ∈ L, there are at most dim(M) different exponents, some or
all of which may be 0. The Lyapunov exponents of a uniformly hyper-
bolic diffeomorphism are never 0. A volume-preserving diffeomorphism is
nonuniformly hyperbolicif the set of points in where no exponents are 0
has full volume.

Pesin [Pe] proved that iff : M → M is C2 and nonuniformly hyper-
bolic, thenM may be written as the disjoint union of countably many invari-
ant sets of positive measure on whichf is ergodic. He asked if nonuniform
hyperbolicity is generic in Diffrµ(M), the space ofCr , volume-preserving
diffeomorphisms ofM.

Pesin’s question is answered in the negative for larger by Cheng-
Sun [CS], Herman and Xia ([He], [Xia]; see also [Yoc]). In particular,
on any manifoldM of dimension at least 2, and for sufficiently larger , there
are open sets of volume preservingCr diffeomorphisms ofM all of which
posess positive measure sets of codimension one invariant tori; on each such
torus, the diffeomorphism isC1 conjugate to a diophantine translation. In
these examplesall of the exponents are 0 on the invariant tori.

Nonzero exponents are not confined to the uniformly hyperbolic world,
however. Also germane to Pesin’s question are the examples of Bonatti-
Viana of volume preserving non-Axiom A diffeomorphisms all of whose
exponents are nonzero ([BV]; see also [Vi] for a dissipative example). The
examples are derived from Anosov diffeomorphisms through isotopy. They
show that uniform hyperbolicity on most ofM is sometimes enough to
ensure nonuniform hyperbolicity on all ofM. These examples have the
additional feature ofstability: they lie in C1-open sets of nonuniformly
hyperbolic diffeomorphisms.

In this paper, we start with a diffeomorphism that is not homotopic to
an Anosov diffeomorphism and which has a 0 exponent at every point.
We perturb it so that the perturbations are stably nonuniformly hyperbolic.
Directions onM with zero exponent “borrow” some hyperbolicity from
uniformly hyperbolic directions to create a new nonzero exponent that is
stable. Subsequent to early versions of this paper, Dolgopyat [Do] has found
other examples similar to those described here and has studied their mixing
properties.

Our example relies on the theory of partially hyperbolic diffeomorphisms
developed by Hirsch-Pugh-Shub [HPS], Brin-Pesin [BP], and more recently
by Pugh-Shub and others ([GPS], [Wi], [PS3], [PS4]).

A further feature of these examples is that they exhibit pathological
center foliations. Their holonomy maps are not absolutely continuous. Fo-
liations exhibiting this behavior have been referred to as “Fubini’s Night-
mare,” (also “Fubini Foiled”); Katok has previously constructed an example
of a dynamically-invariant foliation with this property, which is presented
in [Mi]. These center foliations show that the potential difficulties which
limited Brin and Pesin in their study of partially hyperbolic diffeomorphisms
and which were finally overcome in a great many cases by Grayson, Pugh
and Shub do indeed exist.
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For a compactC∞ manifold M with volume elementµ, let Diff r (M) be
the space ofCr diffeomorphisms ofM and let Diffrµ(M) be the elements of
Diff r (M) that preserveµ. Endow these spaces with theCr topology,r ≥ 1.

Let A2 be the automorphism of the 2-torus,T2 = R2/Z2, given by(
2 1
1 1

)
. Let A3 be the automorphism ot the 3-torus,T3 = R3/Z3, given

by
(

A2 0
0 1

)
.

Theorem I: Let µ be Lebesgue measure onT3. Arbitrarily close to A3
there is aC1-open setU ⊂ Diff 2

µ(T
3) such that for eachg ∈ U,

1. g is ergodic (and aK-system) and nonuniformly hyperbolic.
2. There is an equivariant fibrationπ : T3 → T2 such thatπg = A2π

The fibers ofπ are the leaves of a foliationW c
g of T3 by C2 circles. In

particular, the set of periodic leaves is dense inT3.
3. There existsλc > 0 such that, forµ-almost everyw ∈ T3, if v ∈ TwT3

is tangent to the leaf ofW c
g containingw, then

lim
n→∞

1

n
log‖Twgnv‖ = λc.

4. Consequently, there exists a setS ⊆ T3 of full µ-measure that meets
every leaf ofWc

g in a set of leaf-measure0. The foliationW c
g is not

absolutely continuous.

Since a nonuniformly hyperbolicK -system is isomorphic to a Bernoulli
shift ([Pe], Theorem 8.1), we also obtain:

Corollary: The examples in Theorem I are stably Bernoulli.

Brin, Feldman and Katok [BFK] constructed diffeomorphisms on every
manifold that are Bernoulli, and Brin [Br] showed that such examples can
be made to have all but one exponent not equal to zero. It is still an open
question whether every manifold of dimension greater than or equal to two
admits a nonuniformly hyperbolic Bernoulli diffeomorphism.

Proof of Theorem I:SinceA3 is linearly conjugate toA4, the automorphism

of T3 given by

(
2 1 0
1 1 0
1 1 1

)
, it suffices to prove Theorem I forA4.

By [HPS] there is aC1 open set of diffeomorphisms,U1, containing
A4 for which I.2 is satisfied. Moreover, for anyf ∈ U1 there exists aT f -
invariant continuous splitting of the tangent bundle toT3 into 3 subbundles

TT3 = Eu
f ⊕ Ec

f ⊕ Es
f ,

with Eu
f , Ec

f andEs
f all 1-dimensional. There are Finslers such thatEu

f is
expanded byT f , Es

f is contracted byT f and the expansion and contraction
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of T f on Ec
f is in between. That is, for allw ∈ T3 and unit vectors

vu ∈ Eu
f (w), v

c ∈ Ec
f (w) andvs ∈ Es

f (w),

r u
f (w) = ‖Tw f(vu)‖ > 1,

r s
f (w) = ‖Tw f(vs)‖ < 1, and

r c
f (w) = ‖Tw f(vc)‖, where r s

f (w) < r c
f (w) < r u

f (w).

Moreover, the splitting

TT3 = Eu
f ⊕ Ec

f ⊕ Es
f ,

varies continuously withf , as do the functionsr u
f , r

c
f andr s

f . For a volume-
preserving ergodicf in U1, there are three Lyapunov exponents, which by
Osceledets’ theorem may be expressed as integrals:

λu( f ) =
∫

T3
log r u

f (w)dµ(w)

λc( f ) =
∫

T3
log r c

f (w)dµ(w)

λs( f ) =
∫

T3
log r s

f (w)dµ(w)

Regardless of whetherf is ergodic, the functionsλξ( f ), for ξ = u, c, s, are
still defined; they are the average Lyapunov exponents forf and depend
continuously onf . While r u, r c, andr s depend on the choice of Finsler,
the functionsλu, λc, andλs do not. Note thatλc(A4) = 0 andλu(A4) =
−λs(A4) = log(m), wherem= (3+√5)/2.

We will find a stably ergodic volume preservingf in U1 arbitarily
close toA4, for which λc( f ) > 0. This will complete the proof. For, let
U2 ⊂ Diff 2

µ(T
3) be aC1 neighborhood off contained inU1 consisting of

ergodic diffeomorphisms and chosen small enough thatλc(g) is small and
positive for allg ∈ U2. Then I.1, I.2, I.3 hold for allg ∈ U2 by construction.
Let Sbe the full measure set of points whereλc(g) exists. If any circle leaf
of Wc

g intersectedS in a set of positive measure, then that circle leaf would
increase exponentially in length under iterates ofg. But these lengths are
bounded by I.2, and so I.4 follows.

It remains only to find a stably ergodic volume preservingf in U1,
arbitarily close toA4, for whichλc( f ) > 0. We find suchf in a 2-parameter
family of diffeomorphismsfa,b which we now describe.

Let ψ : T → T be any nonconstant null-homotopicC3 function, letv0

be an eigenvector forA2 corresponding to the eigenvaluem= (3+√5)/2,
and letϕ(x, y) = sin(2πy). Fora,b ∈ R, let

fa,b = ga ◦ hb,
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where

hb(x, y, z) = (2x + y, x+ y, z+ x+ y+ bϕ(x, y)), and
ga(x, y, z) = (x, y, z)+ (aψ(z)v0,0).

The diffeomorphismsf0,b = hb are skew products and forb 6= 0 they
are stably ergodic (and in fact, stablyK -systems). By Corollary B1 in
[BW] they are stablyK -systems if they are ergodic among skew products,
and by [AKS] they are ergodic among skew products for allb 6= 0. (This
also follows directly from the arguments in [BW]). Thus,fa,b is ergodic
for a sufficiently smalla depending onb. Writing λξ(a,b) = λξ( fa,b),
ξ = u, c, s, we prove in Lemma 1.2 thatλu(a,b) + λc(a,b) and−λs(a,b)
are constant and equal to log(m).

In Section 1 we prove:

Proposition II: The functionλu is C2 in a neighborhood of(0,0). Further,

∂

∂a
λu(0,b) = 0, and

∂2

∂a2
λu(0,0) = −u2

0

∫ 1

0
ψ′(z)2 dz< 0,

whereu0 = ((1,1) · v0)/(m− 1).

Thus for arbitrarily small and positivea,b we havefa,b, volume preserving,
stably ergodic andλc( fa,b) > 0. ut

Our proof gives some hope that a variant of Pesin’s original question
holds true for volume-preserving diffeomorphisms: either all exponents are
zero (µ-a.e.), or, as with our examples, the system may be perturbed to
become stably nonuniformly hyperbolic.

Question 1a):For r ≥ 1, is it true for genericf in Diff r
µ(M) that for almost

every ergodic component off , either all of the Lyapunov exponents off
are 0 or none are 0 (µ-a.e.)?

A special case of 1a) is 1b).

Question 1b): For r ≥ 1 does the generic ergodic diffeomorphism in
Diff r

µ(M) have either no exponent equal to 0 or all exponents equal to 0
(µ-a.e.)?

Question 1a) has an affirmative answer for 2-dimensionalM in the case
r = 1; Mañ́e has shown that the generic diffeomorphism in Diff1

µ(M) either
has all of its Lyapunov exponents zero or is an Anosov diffeomorphism
([Ma1], [Ma2]).

An analogue of Question 1 for Diffr (M) is the following.
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Question 2: For r ≥ 1, is it true for the genericf in Diff r (M) and any
weak limitν of averages of the push forwards1

n

∑n
1 f j
∗µ that almost every

ergodic component ofν has some exponents not equal to 0 (ν-a.e.)? All
exponents not equal to 0?

Question 1b) is closest in spirit to Theorem I, which in turn gives some
credence to the possibility that 1a) is true.

One of the achievements of the theory of uniformly hyperbolic dynam-
ical systems were the theorems of Sinai, Ruelle and Bowen on invariant
measures on the attractors of a system. These attractors and measures are
now called Sinai-Ruelle-Bowen measures and SRB measures (or SRB at-
tractors), for short. They may also be called ergodic attractors.1

Given f ∈ Diff r (M) (not necessarily preservingµ), a closed, f -
invariant setA ⊂ M and anf -invariant ergodic measureν on A, we define
B(A, ν), thebasinof A, to be the set of pointsx ∈ M such thatf n(x)→ A
and for every continuous functionφ : M→ R

lim
n→∞

1

n
(φ(x)+ · · · + φ( f n(x)))→

∫
A
φ(x) dν.

Definition: ν is anSRB measureand A is anSRB (or ergodic) attractorif
the Lebesgue measure ofB(A, ν) is positive.

It follows from the definition that a diffeomorphism has at most count-
ably many SRB measures. Sinai, Ruelle and Bowen proved that forr ≥ 2
and f an Axiom A, no-cycle diffeomorphism (see [Si], [Ru], [Bo]), almost
every point inM with respect to Lebesgue measureµ is in the basin of an
SRB measure, and there are only finitely many SRB measures.

Question 3:For r ≥ 2, is it true for genericf in Diff r (M) that the union
of the basins of the SRB attractors off has full Lebesgue measure inM?

This natural question is on the minds of quite a few people. See [PS2],
[Pa], [BV] for discussions and examples. Question 2) might be a way to
approach Question 3) along the lines of [Pe], [PS1], [PS4].

We remark here that our construction can be slightly modified to obtain
diffeomorphisms ofTn, for any n ≥ 3, that satisfy the conclusions of
Theorem I and its corollary. In this modification, the automorphismA2 of
T2 is replaced by an Anosov automorphism ofTn−1 with one-dimensional
expanding eigenspace.

We thank Michael Herman for many conversations which clarified Ques-
tions 1–3 for us. Some of this material was presented and discussed in his

1 We take some of the conclusions of the theorems of Sinai, Ruelle, and Bowen as
a definition and warn the reader that the use of SRB measure or attractor is not uniform in
the literature. For a survey of SRB measures (using a different definition) see [You2].
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seminar during March 1998. The question of whether perturbing a skew
product diffeomorphism over an Anosov could produce nonzero exponents
was raised by Lai-Sang Young during a conversation about these questions.
We thank her for reminding us that examples such as the ones we con-
struct might exist. Numerical experiments conducted by Chai Wah Wu and
later by Niels Sondergaard convinced us of their existence and we are in-
debted to them. We also thank Charles Pugh and Clark Robinson for useful
conversations and the referee for pointing out several references to us.

1. Behavior of exponents inside the familyfa,b

Let A be a neighborhood of the origin inR2 such thatfω satisfies conclu-
sion 2 of Theorem I for allω ∈ A. (Recall that the existence ofA is ensured
by Corollary 8.3 in [HPS]). Letλu, λc andλs be defined as in the previous
section. Forξ = u, c, s, andω ∈ A, let Eξω = Eξfω . Note that the center-
unstable distributionEu

ω⊕ Ec
ω does not depend onω ∈ A. It is the constant

distribution spanned by the vector fields∂/∂z andv0 · (∂/∂x, ∂/∂y), which
we will denote byEuc. This implies thatλu + λc is the constant function
onA, as the next lemma and the argument that follows makes precise.

Lemma 1.1 There exists aC∞ 2-form α such thatα is nondegenerate on
Euc, and for allω ∈ A,

f ∗ωα = mα+ βω,
whereβω vanishes onEuc:

βω(v1, v2) = 0, ∀v1, v2 ∈ Euc.

Proof of Lemma 1.1:Write v0 = (q1,q2) and letα = v0 · (dx,dy) ∧ dz=
q1dx∧ dz+ q2dy∧ dz. ut

Usingαand the volume formdµ, we may now choose for eachωa Finsler
(in fact, a continuous Riemann structure) onT3 so that forξ = u, c, s, the
functionsr ξω = r ξfω satisfy the equations:

r u
ω(w)r

c
ω(w)r

s
ω(w) = 1, and (2)

r u
ω(w)r

c
ω(w) = m, (3)

for all w ∈ T3. To accomplish this, we shall choose at each pointw ∈ T3

an appropriate orthonormal basisvu(w), vc(w), vs(w).
Forω ∈ A, the lineEu

ω(w) sits inside the planeEuc(w), transverse to the
line spanned by(0,0,1). Let vu(w) be the unique vector inEu

ω(w) of the
form (v0,u), for someu ∈ R. Choosevc(w) ∈ Ec

ω(w) andvs(w) ∈ Es
ω(w)

so thatα(vu(w), vc(w)) = 1 anddµ(vu(w), vc(w), vs(w)). Lemma 1.1 now
gives (2), and (3) follows fromf ∗ωdµ = dµ. From the definitions ofλξ(ω),
we immediately obtain:
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Lemma 1.2 The functionsλs andλu + λc are constant:

λs(ω) = − log(m), λu(ω)+ λc(ω) = log(m).

for ω ∈ A.

Our analysis ofλu, λc, λs is thus reduced to a study ofλu.

1.1. Proof of Proposition II

The proof of Proposition II breaks into three parts. In Lemma 1.5, we show
thatλu(ω) is aC2 function ofω ∈ A. In Lemma 1.6 we show that the partial
derivative∂λu/∂a is 0 ata = 0, and in Lemma 1.7 we show that∂2λu/∂a2

is negative at(0,0).
As remarked above, forω ∈ A andw ∈ T3, there is a unique vector in

Eu
ω(w) of the formvu(w) = (v0,uω(w)). This defines a continuous function

uω : T3→ R.

Lemma 1.3 For ω = (a,b) ∈ A,

λu(ω) = log(m)−
∫

T3
log(1− aψ′(w)uω(w))dµ(w).

Proof of Lemma 1.3:Letϕb(x, y, z) = x+ y+bϕ(x, y). From the definition
of fω, we have:

Tw fω

(
v0

uω(w)

)
=
([

m+ aψ′( fω(w)) [uω(w)+∇ϕb(w) · v0]
]
v0

uω(w)+∇ϕb(w) · v0

)

=
([

m+ aψ′( fω(w))r u
ω(w)uω( fω(w))

]
v0

r u
ω(w)uω( fω(w))

)
.

It follows that

r u
ω(w) = m+ aψ′( fω(w))uω( fω(w))r

u
ω(w),

and sor u
ω(w) = m/(1− aψ′( fω(w))uω( fω(w))). To obtain the formula,

integrate log(r u
ω(w)). ut

We next establish the smoothness ofuω.

Lemma 1.4 There exists a neighborhoodA of (0,0) in R2, such that, for
eachw ∈ T3, the functionω 7→ uω(w) is C2 onA. The first two derivatives
of this function depend uniformly onw.
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Proof of Lemma 1.4:It does not affect the smoothness ofuω if we scale the
functionsϕ andψ by a positive constant. Thus we may assume that

(‖ψ‖0‖v0‖ + ‖ϕ‖0+ 1)2 < m. (4)

Let Wuc be theC∞ foliation tangent toEuc. The leaves ofWuc are
smoothly permuted byfω. Let X be the disjoint union of the leaves ofWuc.
Because the foliation structure ofWuc is preserved by all of thefω, there is
a well-defined,C3 mapF : A0× X→ A0× X given by:

F (ω,w) = (ω, fω(w)).

OnA0× X, put the metric:

d((ω1, w1), (ω2, w2)) = max{dA0(ω1, ω2),dX(w1, w2)},
wheredX is the induced Riemannian metric onX anddA0((a1,b1),(a2,b2))=
max{|a1−a2|, |b1−b2|}. With respect to this metric, there exists a constant
ρ such that

d(F (ω1, w1),F (ω2, w2)) ≥ ρd((ω1, w1), (ω2, w2)),

for all ω1, ω2 ∈ A0 andw1, w2 ∈ X. The constantρ is the inverse of the
Lipschitz norm ofF −1. A straightforward estimate shows that by shrinking
the size of the neighborhoodA0, we may bringρ arbitrarily close to:

(‖ψ‖0‖v0‖ + ‖ϕ‖0 + 1)−1.

Let B be the trivial bundle overA0 × X whose fiberLw = L overw
is the set of all linear mapsL : Eu

ω0
(w)→ Ec

ω0
(w). SinceEu

ω0
andEc

ω0
are

1-dimensional, so isL. We think ofB as the productA0× X× R.
With respect to theC∞ splitting TX = Euc = Eu

ω0
⊕ Ec

ω0
, the map

T fω|Euc can be written:

T fω =
(

Aω Bω
Cω Kω

)
,

where Aω : Eu
ω0
→ Eu

ω0
, Bω : Ec

ω0
→ Eu

ω0
, Cω : Eu

ω0
→ Ec

ω0
, and

Kω : Ec
ω0
→ Ec

ω0
andω0 = (0,0). These maps depend in aC2 fashion onω

and on the basepointw ∈ T3. Whenω = ω0, we haveB = C = 0, K = 1,
andA = m.

Define a bundle mapF] : B → B, coveringF , by:

F](ω,w, L) = (ω, fω(w), (Cω(w)+ Kω(w)L)(Aω(w)+ Bω(w)L)
−1).

ThenF] is C2, contracts fibers ofB at the weakest by a factorσ
.= m−1, and

has strongest base contraction by the factorρ
.= (‖ψ‖0‖v0‖ + ‖ϕ‖ + 1)−1.

These estimates depend uniformly on the size of the neighborhoodA0.
Thus, by inequality (4), there is a neighborhoodA ⊆ A0 of ω0, in which

σρ−2 < 1.
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By the Cr Section Theorem of [HPS] (see also [Sh]), the uniqueF]-
invariant sections : A × X → L is C2. But the graph ofs(ω,w) :
Eu
ω0
(w)→ Es

ω0
(w) is preciselyEu

ω(w). We conclude thatEu
ω(w), and thus

uω(w), is a C2 function of ω ∈ A and ofw ∈ X. SinceWuc is a C∞
foliation, these estimates are uniform overw ∈ T3. ut

Lemma 1.5 λu is C2 onA, and

∂

∂a
λu(a,b) =

∫
T3

ψ′(w)ua,b(w)+ aψ′(w)∂ua,b(w)

∂a

1− aψ′(w)ua,b(w)
dµ(w). (5)

Proof: By Lemma 1.4, the functionω 7→ uω(w) is C2 on A, uniformly
in w. Then by the formula in Lemma 1.3,λu is C2 as well. Differentiating
this formula with respect toa gives (5). ut

Settinga= 0 in (5), we obtain:

∂

∂a
λu(0,b) =

∫
T3
ψ′(w)u0,b(w)dµ(w) (6)

The distributionEu
0,b for the skew productf0,b is invariant under transla-

tions of the form(x, y, z) 7→ (x, y, z+ z0). This implies that the function
u0,b(x, y, z) depends only onx andy. On the other hand,ψ′(x, y, z) = ψ′(z)
depends only onz. The integral in (6) is therefore equal to∫

T
ψ′(z)dz

∫
T3

u0,b(w)dµ(w) = 0,

sinceψ is homotopic to a constant map. We have shown:

Lemma 1.6 For (a,b) ∈ A,

∂

∂a
λu(0,b) = 0

The behavior of the exponents offa,b near (0,0) is thus determined
by the second derivative ofλu with respect toa. An exact computation of
this second derivative is difficult in general. For our purposes, it suffices to
compute this derivative at(0,0).

Lemma 1.7

∂2

∂a2
λu(0,0) = −u2

0

∫ 1

0
ψ′(z)2 dz< 0,

whereu0 = ((1,1) · v0)/(m− 1).
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Proof of Lemma 1.7:Use “ fa” to denote fa,0, “ua” to denoteua,0, and “λ(a)”
for λu(a,0). Differentiating (5), we have

λ′′(a) =
∫

T3

(
ψ′(w)ua(w)+ aψ′(w)∂ua(w)

∂a

1− aψ′(w)ua(w)

)2

+ 2ψ′(w)∂ua(w)

∂a + aψ′(w)∂
2ua(w)

∂a2

(1− aψ′(w)ua(w))
dµ(w),

and settinga= 0, we obtain

λ′′(0) =
∫

T3
(ψ′(w)u0(w))

2+ 2ψ′(w)
∂ua(w)

∂a
|a=0 dµ(w). (7)

The mapA4 = f0,0 is linear. It is easy to see thatu0(w) is the constant
functionu0(w) = u0 = ((1,1) · v0)/(m− 1) 6= 0

Fora ∈ R,w = (x, y, z) ∈ T3, andu ∈ R, let

γ(a, w,u) = c+ u

m+ aψ′(w)(c+ u)
,

wherec = (1,1) · v0. Note thatγ(a, w,ua( f −1
a (w))) = ua(w) and that for

|a| sufficiently small,

ua(w) = lim
n→∞ γ(a, w, γ(a, f −1

a (w), . . . γ(a, f −n
a (w),0) · · · )).

We compute:

∂γ

∂a
(a, w,u) = −ψ′(w)(c+ u)2

(m+ aψ′(w)(c+ u))2
,

and seta= 0 to obtain:

∂γ

∂a
(0, w,u) = −ψ

′(w)(c+ u)2

m2
.

Similarly,

∂γ

∂x
(0, w,u) = ∂γ

∂z
(0, w,u) = ∂γ

∂y
(0, w,u) = 0,

and
∂γ

∂u
(0, w,u) = 1

m
.
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We want to evaluate∂ua(w)

∂a |a=0. Sinceua(w) = γ(a, w,ua( f −1
a (w))), the

chain rule yields:

∂ua(w)

∂a
|a=0 = ∂

∂a
γ(a, w,ua( f −1

a (u)))|a=0

= ∂γ

∂a
(0, w,u0( f −1

0 (w)))

+∂γ
∂u
(0, w,u0( f −1

0 (w))) · ∂ua( f −1
a (w))

∂a
|a=0)

= −ψ
′(w)(c+ u0( f −1

0 (w)))2

m2
+ 1

m

∂ua( f −1
a (w))

∂a
|a=0).

Recall thatu0 is the constant functionu0(w) = u0, andu0 = (c+ u0)/m,
so this expression simplifies to:

∂ua(w)

∂a
|a=0 = −ψ′(w)u2

0+
1

m

∂ua( f −1
a (w))

∂a
|a=0. (8)

Iterating (8) gives

∂ua(w)

∂a
|a=0 = −ψ′(w)u2

0−
ψ′(w−1)u2

0

m
− ψ

′(w−2)u2
0

m2
− · · ·

wherew− j = f − j
a (w). Hence∫

T3
ψ′(w)

∂ua(w)

∂a
|a=0 dµ(w) = −

∑
j≥0

∫
T3

ψ′(w)ψ′(w− j )u2
0

mj
dµ(w).

The j = 0 term of this sum is− ∫ ψ′(w)2u2
0 dµ(w). Pulling out this term,

we have∫
T3
(ψ′(w)u0(w))

2+ 2ψ′(w)
∂ua(w)

∂a
|a=0 dµ(w) =

=−
∫

T3
ψ′(w)2u2

0 dµ(w)− 2
∑
j≥1

∫
T3

ψ′(w)ψ′(w− j )u2
0

mj
dµ(w). (9)

Notice that∫
T3
ψ′(w)ψ′(w− j )u

2
0 dµ(w) =

= u2
0

∫ 1

0

∫ 1

0

∫ 1

0
ψ′(z)ψ′(z− r j x − sj y)dx dy dz,
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wherer j andsj are integers, andr j = 0 if and only if j = 0, in which case
sj = 0 as well. Thus, forj ≥ 1,∫

T3
ψ′(w)ψ′(w− j )u

2
0 dµ(w) =

= u2
0r
−1
j

∫ 1

0

∫ 1

0
ψ′(z)ψ(z− r j x− sj y))|x=1

x=0 dy dz

= 0.

Combining this with equations (7) and (9), we have:

λ′′(0) = −
∫

T3
ψ′(w)2u2

0 dµ(w)− 2
∑
j≥1

∫
T3

ψ′(w)ψ′(w− j )u2
0

mj
dµ(w)

= −u2
0

∫ 1

0
ψ′(z)2 dz,

completing the proof.
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