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Abstract It has been conjectured that the stably ergodic diffeomorphisms are open
and dense in the space of volume-preserving, partially hyperbolic diffeomorphisms of a
compact manifold. In this paper we deal with two recalcitrant examples; the standard
map cross Anosov and the ergodic automorphisms of the 4-torus. In both cases we show
that they may be approximated by stably ergodic diffeomorphisms which have the stable
accessibility property.

0. Introduction

It was conjectured inBSJ that the stably ergodic diffeomorphisms are open and dense
in the space of volume-preserving, partially hyperbolic diffeomorphisms of a compact
manifold. Recall that a diffeomorphisih: M — M of a compact manifold/ is partially
hyperbolicif the tangent bundI& M splits as a Whitney sum df f -invariant subbundles:

TM =E"® E‘®E®,

and there exist a Riemannian (or Finsler) metricddrand constantéd < 1 andu > 1
such that for every € M,

m(Tp fle«) > w > Ty flecll = m(Tp flee) > A > Ty fles | > 0.

(The co-normm(A) of a linear operatoA between Banach spaces is definedriy) :=
infyy =1 IA()[.) The bundlesE*, E¢ and E° are referred to as thenstable center
and stablebundles of f, respectively. A degenerate example of a partially hyperbolic
diffeomorphism is an Anosov diffeomorphism, for whidf = {0}. We give more
examples below.

If fis Ck and partially hyperbolic, then its stable and unstable bundles are uniquely
integrable and are tangent to foIiatioh\S‘} and W; whose leaves ar€*. A partially
hyperbolic diffeomorphism is said to have thecessibility propertyf, for every pair of
pointsp, g € M, there is a continuous path: [0, 1] — M such that:

§ Partially supported by an NSF grant.
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e y(O)=p,

e yD=gq,

. there exist 0= 19 < 1 < --- < t, = L such thay ([t;, t;+1]) € W;" (y (t;)), where
a;=uors, fori =0,...,n—1.

The pathy is called a(t—legged)WA“-, Wj--path.

The unstable and stable foliations of a volume-preserving Anosov diffeomorphism
have the accessibility property, since they are transverse. More generally, a pair of non-
transverse foliations can have the accessibility property; in this case accessibility is a global
version of the non-integrability of the pair of foliations.

Partial hyperbolicity is an open property in thé! topology on M, and so
any diffeomorphismg of M that is sufficientlyCl-close to the partially hyperbolic
diffeomorphism/ has stable and unstable foliationg; and)V;. We say thatf has
the stable accessibility propert§ every g sufficiently C1-close tof has the accessibility
property. It is an open question whether accessibility implies stable accessibility.

A volume-preservingC? diffeomorphism isstably ergodicif every sufficiently C1-
small, volume-preserving perturbation of it is ergodic. RS} it was shown thaiC?,
volume-preserving, partially hyperbolic diffeomorphisms with the stable accessibility
property and which satisfy certain other technical hypotheses are stably ergodic. In
the direction of proving the stable ergodicity conjecture, it is further conjectured in
[PSZ that the stable accessibility property is open and dense among partially hyperbolic
diffeomorphisms.

In this paper, we consider two examples of partially hyperbolic diffeomorphisms that do
not have the accessibility property. In fact, in these examples, the foliatidhand W*
are non-transverse and jointly integrable. We prove that these examples can be arbitrarily
closely approximated in th€” topology 2< r < oo by diffeomorphisms that are stably
ergodic and that have the stable accessibility property.

0.1. Non-trivial center behavior. Let T" = R"/Z" be then-torus. We will write this
group additively.
Let 1 be a real parameter. Tlstandard mag; of the 2-torus is defined by

ez, w) = (z+ w, w+ (Asin2r(z + w))).

It preserves the symplectic fordy A dw. By KAM theory, for all values of. near zero,
g, has a positive-measure set of invariant circles. For such parameter values, this map is
persistently not ergodic; any sufficiently neai3y? symplectic map will fail to be ergodic.

If we add some transverse hyperbolicity to this example a very different phenomenon
appears. Iff : T — T2 is aC’, symplectic Anosov diffeomorphism, thefi x g;
is not ergodic for smalk; it has a positive measure set of invariant, codimension-1 tori.
However, now,f x g, may be approximated by a stably ergodic diffeomorphism, and
all of these invariant tori disappear. This result should be contrasted with the work of
Cheng and Sunds], Herman (summarized inv[]), and Xia [X], showing the persistence
of codimension-1 invariant tori in non-hyperbolic situations.



Stably ergodic approximation: two examples 877

THEOREMA. Letf : T?" — T2 be aC” symplectic Anosov diffeomorphistnz 2, and
let go : T?" — T2” be a symplectic linear map whose eigenvalues lie on the unit circle
inC.

Then there is a neighborhod@d of g in the space of symplectic” diffeomorphisms
Diff ” (T?™) such that for every € i, the diffeomorphisnf x g : T20m+1) . T2m+n) jg
partially hyperbolic. Furthermore, for every neighborhopaf f x g in Diff {U(TZ(’”JF")),
there exists & € V such that: is stably accessible and stably ergodic.

COROLLARY A. For f anyC®, symplectic Anosov diffeomorphism, the nfap g, can
be C*° approximated arbitrarily well by a symplectic, stably ergodic diffeomorphisin if
is sufficiently close to zero.

Let f andg be symplectic diffeomorphisms of tori. The prodyck g is not ergodic if
g is not ergodic. The proof of Theorem A can be slightly adapted to show that, regardless
of what propertieg has, f can be chosen so thgt x g can be approximated arbitrarily
well by a stably ergodic diffeomorphism.

THEOREM B. Letg : T?" — T2" be aC” symplectic diffeomorphism, > 2. For
anyn > 1, there exists aC” symplectic Anosov diffeomorphisfh : T — T
such thatf x g : T2m+tmM _ T2m+n) can beC” approximated arbitrarily well by
h: T2(m+n) N T2(m+n), where

° h is a stably accessible, stably ergodic symplectic diffeomorphism,

e  hpreserved(0,0)} x T?" and

hl{(0,0)}Xsz =Id x g.

We remark that the word ‘symplectic’ may be replaced by the phrase ‘volume-
preserving'in Theorems A and B.

0.2. An algebraic example.Let G be a connected Lie group and IBtbe a closed
subgroup ofG such thaiG/B is compact. Fog € G denote byL, : G/B — G/B the left
translationLg(aB) = gaB. Let A : G — G be an automorphism such th&at{B) = B,
thenA induces a diffeomorphism : G/B — G/B. An affine diffeomorphisrof G/B is
a map of the form

L;oA:G/B— G/B.

Suppose that the Haar measure®@iprojects to a finite measureon G/ B, invariant
under left translations and under the actiomofThen the affine diffeomorphisih, o A
preserves, and the ergodic properties we discuss below are with respectltet g be the
Lie algebra ofG and letf = L, 0 A : G/B — G/B be an affine diffeomorphism. Then
f induces the Lie algebra automorphisfif) : g — g:

I(f) = adg) o Te(A),
where adg) : g — g is the adjoint action o on g. Theng splits into generalized
eigenspaces fdx f):
g=g"®g @¢’,
where the eigenvalues 4ff) have modulus-1,=1 and<1, ong", g andg®, respectively.
The Lie subalgebrggenerated by” ®g¢° is an ideal ing. The following is proved inPS3.
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ProPOSITIONO.1. The affine diffeomorphisth = L, o A of G/ B is partially hyperbolic
and has the stable accessibility property if and only i b = g, whereb is the Lie
subalgebrab = T, B.

In view of the main theorem inHSZJ (Theorem 1.1 below), this has a corollary as
follows.

CoROLLARY 0.2. The affine diffeomorphisifi= Lg o A of G/B is stably ergodic if (f)
has at least one eigenvalue of modulus different than onehand = g.

This corollary, combined with the results in Brezin and SH88|[ completely classifies
the stably ergodic affine transformations of simple Lie groups. Nonetheless, there are very
basic examples which are not covered by this corollary, and for which stable ergodicity is
not known to hold. Let

0 0 0 -1
10 0 8
A=1o0 1 0 —s
001 8

The matrixA induces a volume-preserving diffeomorphism of the 4-tgfus T4 — T4,
The mapl(f4) = A has eigenvaluegexp+2ra, A*1}, whereq is irrational andh > 1;
since none of these are roots of one, it is easy to seefthatergodic.

For this exampleG = R* B = Z4 and the hyperbolic subalgebtais two
dimensional, as i$ & b, and so Corollary 0.2 does not applyiy does not have the
accessibility property. In this paper, we prove the following.

THEOREM C. f4 can be approximated (in th€> topology) arbitrarily well by a stably
accessible, stably ergodic diffeomorphism.

It is still an open question whethg}, itself is stably ergodic. The same techniques that
prove Theorem C also show the following.

THEOREM D. Any ergodic automorphism of” that induces an isometry on the center
spaceg® can beC® approximated arbitrarily well by a stably accessible, stably ergodic
diffeomorphism.

The techniques of this paper do not, however, extend to all ergodic, partially hyperbolic
affine transformations.

1. Preliminaries
Recently, Pugh and Shub proved the following theorB$].

THEOREM1.1. If f € Diff ,fl(M) is a center bunched, partially hyperbolic, stably
dynamically coherent diffeomorphism that is stably accessible, fHerstably ergodic.

In the proofs of Theorems A and C below, we rely on this result to show stable
ergodicity.
A partially hyperbolic diffeomorphisny is center bunchedf, for every p € M, the
quantity
te = WTp fles I/ m(Tp flEs)
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is sufficiently close to one. The property @'-open, and immediately satisfied when
e = 1. The details can be found iRE2 84].

For the diffeomorphismg x g, in the statement of Theorems A and B, afid in the
statement of Theorem Q.. is either one or can be made arbitrarily close to one, and so
both examples are center bunched.

A partially hyperbolic diffeomorphisny is dynamically coherenif the distributions
E; E; @ E‘; and E} &) E} are integrable, and everywhere tangent to foliatitm?l;,

Wit andVi', called thecenter center-unstablandcenter-stabldoliations, respectively.

If f is dynamically coherent ani’; is a ! foliation, then by PS1, Proposition 2.3],

f is stablydynamically coherent, i.eC1-small perturbations of are also dynamically
coherent. This is the case fgrx g and f4 in Theorems A and C, as we verify in the next
section. The heart of the matter in proving Theorems A and C is to produce perturbations
of f x g and f4 that are stably accessible, and this is the focus of the following sections.

2. Proof of Theorem A

To simplify the notation of the proof, assume twat= » = 1 and thatr = oco. Let
T(T?) = E' & EY be the Anosov splitting foif. Write T4 = Ty x To, whereT; = T2,
and letrw; :‘Tl X Tz — T; be the projection onto thih T2 factor, fori = 1,2. In what
follows, the metrici onT" is

d((xlv LR} xl”l)s ()’l: U} Yn)) = . max do(-xis )71')»
ie{l,...,n}

wheredy is the standard metric on the circle. We use the letterand ‘v’ to refer to
points inT#; *x’, “ y’ and ‘p’ to refer to points inTy; and ‘¢’ and ‘7’ to refer to points in
T». The symbolsz’ and ‘w’ are reserved for th&-coordinates of points i 4.

The mapf x g is partially hyperbolic: the unstable, center and stable manifolds through

the point(x, g) € T1 x T» are, respectively,

Wi, @) ={(,q) 1y e Wi},
;xg(x7 q) ={(x,r):r € To},

and

Wi @) ={(v.q) 1 y e Wi(0)}.

CIearIyW}Xg is aC?! foliation, and so it is stably dynamically coherent. Furthermore,
f x g is center bunched i§ is chosen sufficiently1-close toG. Assume thag is so
chosen. There exists ag > O such thatifs : T4 — T%is a diffeomorphism with
dei(h, f x g) < eo, thenh is partially hyperbolic, center bunched and dynamically
coherent (see the discussion in 81). Fix this
In orderto apply Theorem 1.1 to prove Theorem A, it now suffices to showytkgtcan
be approximated arbitrarilg > well by a symplectic, stably accessible diffeomorphism.
We are starting with a product diffeomorphism, for which the unstable and stable
foliations are jointly integrable. In this situation, amy’;xg, }Xg path lies in a leaf
of the foliation of T# by horizontal, codimension 2 tofi; x {¢}. We shall perturbf x g



880 M. Shub and A. Wilkinson

into the previously inaccessible vertical direction, which will have the effect of lifting the
unstable and stable foliations out of the horizontal direction. This perturbation is most
easily accomplished in the vertical} x 7> tori that lie over neighborhoods of heteroclinic
orbits for f in T1. This argument mimics those found iB][ We begin with some lemmas
describing the vector fields which will produce the vertical lift.

LEMMA 2.1. Forall o, 8 € (0, 1/2), there exist flowg;, = z** andw, = W*” onT4
with the properties:
(1) Z, andW; are C*° and symplectic;
(2) Z/({(0,0)} x T2) = {(0, 0)} x T2, andW;({(0, 0)} x T2) = {(0, 0)} x T>;
(8) if Jlwz| < B, then
Z,(0,0,z2, w2) = (0,0, z2 + 1, w),

and if|z2] < B, then
W; (0,0, z2, w2) = (0,0, z2, w2 +1);

(@) if 22+ w? > 4a?, thenZ;(z1, w1, 22, w2) = Wy (21, w1, 22, w2) = (21, w1, 22, W),
for all ¢.

We prove Lemma 2.1 at the end of this section.

For F afoliation of a Riemannian manifoltd andU a neighborhood of a pointe M,
denote byF(v) the leaf of F containingv and by Fy (v) the connected component of
(in the leaf topology) ofF (v) N U. Forp > 0, letF,(p) = Fp,w)(v).

Since the foliations/V¢ and W} of T1 are uniformly transverse, for evepy > 0
sufficiently small, there existsy > 0 such that forx, y € T1 with d(x,y) < &o, the
setW})po(x) N W}’po(y) contains a single point, which we denote [y y]. Fix such
po < 1/1000 andsp < po. We introduce notation for the orbit of a set undér for
C C Ty, let

o) = /().
jezZ
Forg = (z2, w2) € T2, andp > 0, defineHg(q) andVg(q), the horizontal and vertical
stripsin T of radiusg, by

Hg(q) = {(z5, wh,) € T2 : |lwa — wh| < B},

and

Vp(q) = {(2h, wh,) € Ta : |z2 — 25| < B}

LEMMA 2.2. Let po, p1 € T1 be periodic points forf with d(po, p1) < o, letx; =
[po, p1] andy1 = [p1, pol. Letr; € Tob andgB € (0, 1/2) be given.

LetU c Ti be a neighborhood of ~1(x1) and leth : T# — T# be a symplectic
diffeomorphism such that:
(A) h agrees withf x g onO({po, p1, x1, y1}) % T2;
(B) dc=(h, f x g) < €9, Whereeg is defined above;
(©) UN©OUpo, p1, x1. Y \ {f D)) = 4.
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Then there existtg > 0, C > O0andT > O such that, forlg] < T, if X, = Zf‘o’ﬂ or
X, = W% is a flow given by Lemma 2.1 aid= k,, : T4 — T#is the diffeomorphism
kto(pa CI) = ()C]_, rl) + Xto(p —X1,49 — V]_),

thenk o h is symplectic and partially hyperbolic, and
(1) k& o h coincides with: outside ofU x T5;

(2) dco(h,koh) < Cluol;

(3) foranyg e Ty,

Wiah.po(P0: @) N ({x1} X T2) = (x1,71) + X15(0, ¢ — r1)
(x1,9 + (10,0)) if X; = Z;, andg € Hg(r1)
- {(xl, g+ 0.10) if X, =W, andg € Vs(r);
(4) forall g € Ty,
Wi 0o (P0> @) N (Iy1} x T2) = (y1, ),
Wioh.po(P1- @) N ({x1} x T2) = (x1, q)

and

Wih. po(P1 @) N ({1} X T2) = (1, ).

Proof of Lemma 2.2Pick ag so thatBy,,(x1) € f(U) and fixg > 0. LetX, = Z;"O’ﬁ or
W,"‘o’ﬂ and letk; be defined as in the statement of the lemma. Clearly property (1) holds.
SinceX; is aC* flow andT# is compact, there exists@ > 0 such that property (2) holds
forall rp € R.
Choosel' < min{l1/4, ¢p/C} small enough so thait\/,’:oh)po(po, q) intersectqx1} x T»
in at most one point. We now show that= (x1, r1) + X, (0, ¢ — r1) is in this intersection.
The unstable manifoltVy,, (u) for k o i through the poink is the set of points such
that
lim d((koh)™ (), (koh)™"(v)) =0.
n—o0
One easily calculates that
koh(fHx1), g @) =ko f x g(f 1 (x1), g 7H(9)) = k(x1,9) = v,
and so
koh™ () = (f M x1), & (@)
Hypotheses (B) and (C) imply thas i agrees withf x g on the sefx1, £ ~2(x1), ...} x Ta.
Thus, forn > 1,
koh™ () = (f"(x1), 8 "(q)),
and

nli_)moo d((koh)™(v), (ko k)" ((po, q)))
= n&mmd((f—” (x0), &7 (@), (f " (po), g " (@)
= nleood(f*"(xl), £ (po))
=0,
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sincex; € W”;(po). Thusv € Wy, (po, ¢). This proves property (3). Property (4) is
proved similarly. O

Returning to the proof of Theorem A, g = 1/4 and letN = 25. LetV =
{V1,..., Vn} be a cover ofl> by g/2-balls, with centerg, ..., gn: Vi = Bg/2(qi).
Sincef is a transitive Anosov diffeomorphism, periodic points foare dense iff1. Let
P00, Po1, Po2, P10, - - - » PNO, PN1, pn2 be distinct periodic points of such that:

(1) d(pio, pij) <8ofori e {l1,...N}, j e{l,2};
(2) foreveryi,je{l,...,N}, withi # j,

B2po(pio) N B2py(pjo) = 9.

This second property is easily satisfied, sipge< 1/1000.

We now describe the remainder of the construction. For eactl, ..., N}, we perturb
f x g inside the neighborhooBz,,(pi0) x T2, applying Lemma 2.2 twice. We arrange
that the unstable and stable foliations (for the perturbed system) are stably accessible inside
By, (pio) x V;. We show that this ‘vertical accessibility’ can be achieved via an arbitrarily
small perturbation off x g.

Finally, we show that, if the perturbation ¢gf x g is small enough, then any two sets
By (pio) x Vi andB,,(pjo) x V; can be connected by stable and unstable manifolds. This
‘horizontal accessibility’, combined with vertical accessibility implies stable accessibility
for the perturbed system.

We summarize these arguments in two lemmas.

LEMMA 2.3. (Vertical accessibilityifor everye > 0 sufficiently small, there existg > 0

and a partially hyperbolic symplectic diffeomorphigm T4 — T4 with the following

properties:

(1) deo(h, f x g) <e,

(2) if k' : T4 — T%is a diffeomorphism witd 1 (%, ') < €1, then fori € {1, ..., N}
andu, v € Bpy(pio) x V; there is @i, Wi -pathy : [0, 1] — T* such that

yO) =u and y(@1)=v.

LEMMA 2.4. (Horizontal accessibilityJhere exists, > 0 such that, ifs : T* — T%isa
diffeomorphism witll-1(h, f x g) < €2, thenh is partially hyperbolic, and
(1) foreveryv € T4thereexistsane {1,..., N}and aw;, Wi-pathy, : [0, 1] — T4
such that
r1(0) =v and y1(1) € By,(pio) x Vi;
(2) foreveryi,j € {1,...,N}, if VN V; # ¢, then there exists aV}', W;-path
y2 : [0, 1] — T4 such that

y2(0) € Byy(pio) x V; and y2(1) € Byy(pjo) x V;.

Using these lemmas we complete the proof of Theorem A: given 0, we shall
construct a stably accessible symplectic diffeomorphism T4 — T# such that
de=(h, f x g) < €. Letey be given by Lemma 2.4. Lét be a diffeomorphism given
by Lemma 2.3, chosen so that

dew(h, f x g) < min{e, €2/2, €0/2}.
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Thenh is partially hyperbolic, center bunched, and dynamically coherent.

We now show thak is stably accessible. Let be given by Lemma 2.3; we may assume
thate; < min{e, €2/2, €0/2}. Leth’ be any diffeomorphism witll -1 (7, 1’) < €1 and let
u,v € T4 Thendpi(f x g, h') < e1+dc(f x g, h) < min{ez, eg}. By Lemma 2.4,

there exist, i” € {1, ..., N} such thaw: can be connected to a pointe B,,(pio) x V;
andv tos € Byy(piro) x Vi, alongWy,, Wy -paths.

SinceTs is connected there exists druple (i = i1,...,i; =i’) € {1,..., N}! such
thatV;, N Vi, #¥,forje{l,...,1 —1}. By Lemma2.4,foreach € {1,..., 1 — 1},

there exists aV;,, Wj,-path connecting a point;, € B,,(pi;0) x V;; to a pointr;1 €

Bpo(pi;110) X Vi, Finally, by Lemma 2.3, there adevt,, W5 -paths fronv to s1, from

ry to s, and fromr; to s;, for eachj € {2,..., 1 — 1}. Concatenating these paths gives

aw,,, W,,-path fromu to v. Since any two points andv can be connected by},

W;,-path,h’ is accessible, anklis stably accessible. By Theorem 1kis stably ergodic.
This completes the proof of Theorem A. We now prove Lemmas 2.3 and 2.4. O

Proof of Lemma 2.3We omit a proof of the following proposition. In slightly less general
form a proof appears inKK ] or [BPW]. The construction originally appears, in the
context of skew products, irB].

PROPOSITION2.5. Let M be a compact Riemannian manifold andet M — M be
a partially hyperbolic, dynamically coherent diffeomorphism. Then there exist constants
p1 > 0andpz > Osuchthat: ify : [0, 1] — M is a4-leggedWV;', W;-path satisfying:
(A) v@) e W, (y(0));

(B) diam(y[0, 1]) < p1;

then there exisé-legged\V;', W;-pathsy, : [0, 1] — M satisfying:

(1) yois the constant path (0);

@ n=v

(3) (0 =y(@©) forallt e [O0,1];

(4) »@ eW;(n(0) forallt € [0, 1];

(5) diam([0, 1]) < p2.

The homotopy given in Proposition 2.5 is not unique, but the family of such homotopies
is compact. For such a homotopy, the functier y;(1) defines a curve inV; (y (0)) from
y(0) toy (D).

For f x g, condition (A) is the same ag1(y (0)) = m1(y(1)). The foIiationsW;ﬁXg
and W}Xg are jointly integrable, so ify is a 4—IeggedW;§Xg, W}Xg-path satisfying
w1(y (0)) = mw1(y (1)) = po, theny (0) = y (1), and for any such homotopy,(1) = y(0),
for all . The foliations)V,’ and W; depend continuously on, there existsz > 0
such that, ifd-1(h, f x g) < €3, then for any homotopy; of the type described above,
diam(y0,1;(1)) < 1/100. Fix thises.

Ford(h, f x g) < eg andv € T4, there are families of paths' = y}(v,-) : R — T*
andy® =y (v,)) :R— T4 such thaty®(v, 0) = v andy*(v, t) € Wi (v), fort e Rand
a = u, s. These families can be chosen to depend continuouslyamd on# in the C*
topology. (We remark here that when difa) = 2n > 2, we must instead choose families
of pathsy(', ...,y andyj, ..., y,; spanning/V; (v) andW; (v), respectively.)
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Forv € T4 and(s1,s2) € RZ let wy(v,s1,s2) = yS(y"(v, s1), s2). The map
T1owyrxg(v, -, ) is alocal homeomorphism; a degree argument similar to tha\i,[
§5], shows that there is a2 > 0 and a numbey > 0, such that fot/-1(h, f x g) < €3,
andv € T4,

m1(wn({v} X [=J, J1%)) 2 Bopy(m1(v)). (*)

and

ma(wn({v} x [=J, J1%) € Bij100(72(v)). ()

Step 1: construction gi. We may assume that < maxXep/2, €3/2, €4/2}. Let N = 25
as before. Foi € {1, ..., N}andj € {1, 2}, letx;; = [pio0, pi;] andy;; = [pij, piol. The

set
N

B= U O pno, Pn1s Pn2, Xnl, Xn2, Ynl, Yn2})
n=1
is compact and its set of limit points is preciséiﬂzl O{pno, pn1, pu2}). Fori e
{1,...,N}andj € {1, 2}, choose a neighborhodd; of f*l(x,»j) in T1 such that:
. Ui NB\{f i) =9,
° Uij N Uy =9, if (I, m) # (i, j).
Fori e {1,...,K},andj =1, 2, let

1/4 -
KD (p gy = (xi1, qi) + Z; 1/4(17 —xi1,q—q) ifj=1
o, ’ s H .
iz qi) + Wi (p —xizng —qn) if j=2

Let
11 1 1K 2K
ha,t (P, q) :ké),) Oké,tZ) °"'°k¢§z,t )oké), ’o fxag.

Since the neighborhoods; are disjointand/;; NO({pio, pij, xij, y,-j})\{ffl(x,»j)} -
Uij N B\ {f~1(xij)} = ¥, we may apply Lemma 2.2 independently in each of these
neighborhoods to conclude that there exist constants 0 andr; = 8/(K +2) < 1/100,
for some integeK > 0, such that the malb = &, , is symplectic and has the following
properties:
(1) deo(h, f xg) <€
(2) forief{l,...,N},andforallg € 75,
(xi1,q + (11,0)) if j =1andg € Hp(qi)

Wi 5o (Pi0, @) N ({xi} x T2) = i
h,po (Pi0> 4 j 2 (xiz. g + (0,11)) if j =2andg € Vs(gi);

(3) forief{l,...,N},je{l,2},andforallg € T,

Wzsﬁo(pio’ q)N ({yij} x Tp) = ()’ij: Q),
Wi 0o (Pij» @) N ({xij} x T2) = (xij, q)

and

Wi 0o Pijs @) N {ij} x T2) = (yij. ).



Stably ergodic approximation: two examples 885

Step 2: Stable vertical accessibilitfWe now show that for eachand fora’ sufficiently
nearh, any two points inB,, (pio) x V; can be connected by, W;,-path.

Fix i, and to simplify notation, lebg = pio, p1 = pi1 and p2 = p;2. It follows from
Step 1(3) that for each € Hg(q;), there is a 4-legged;’, W, -path¢ (¢, -) such that:
¢(g,0) = (po. 9),
¢(q,1/4) = (x1,9 + (1, 0)),
¢(g,1/2) = (p1,q + (11, 0),
¢(g,3/4 = (y1,q + (11, 0)),
¢(g, 1) = (po, g + (11, 0)).

These paths can be chosen to depend continuousglyBg(g;). Similarly, if g € Vg(q:),
then there is a continuous family of 4-leggd;, W, -paths{n(q.-) | ¢ € Vs(gi)} such
that:

e 1(q,0) = (po,q),

n(g,1/4) = (x2,q + (0, 11)),

n(g, 1/2) = (p2, g + (0, 11)),

n(g, 3/4) = (y2, q + (0, 11)),

n(g, 1) = (po, g + (0, 11)).

Let {¢(q.-)1q € Hp(gi),t € [0,1]} and {n:(g,-)1q € Vp(qi),t € [0, 1]} be
homotopies through 4-legged;, W, -paths given by Proposition 2.5. These families
of homotopies can be chosen to be continuoug,inand on/ in the C* topology. The
mapse¢; (¢.t) = ¢&(q.1) andg,(q.t) = n(q, 1) are paths in{po} x T2 from (po, q)

to ¢1(g, 1) andni(q, 1), respectively. The diameter of each of these paths is bounded by
1/100, sincedq1(h, f x g) < € < e3. Concatenating: of these path®1, ¢2, ..., ¢n

with ¢; (1) = ¢;+1(0) gives a pathps - - - ¢y, : [0, m] — T4 such that, for every € [0, m],

o P1--Pm(?) € {po} x T2,

. é1-- - du(t) is the endpoint of & 4m-leggedWV;’, W;-path of diametex mpo.

Recall thatk = B/r — 2 is a positive integer. By concatenating the paphéy; +
m(ty,0),1), form =0,..., K —1and¢;(g; + m(t1,0), 1 — 1), form = -1,..., —K,
we extend the map, (¢;,-) to a mape:(¢;,-) : [-K, K] — T4 such that, for all
te[-K, K]

o ¢r(gi,t) € {po} x T2;
° ¢¢(qi, t) is the endpoint of & 4K -leggedV)/, W; -path of diametex K p»;
° foreverym € ZN[—K, K],

¢¢(qi, m) = (po, qi + (mt1, 0));
° for everys € [—K, K],
d(¢¢(qi, $), ¢c(gi, Ls])) < 1/100

Similarly for g € Vg(g:), extendp,(q, ) to ¢,(q. -) : [-K, K] — T#such that, for all
te[—K,K]:
o dy(g.t) € {po} x Tz;
. #n(q, 1) is the endpoint of & 4K -leggedWV;', W, -path of diametex Kpo;
° foreverym €e ZN[—K, K],

¢y(g, m) = (po, g + (0, mt1));
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. for everys € [—K, K],

d(¢y(q.s). ¢c(q. [s])) = 1/100,

Next, consider the map
®:[-K K-> T*
given by
D(s1, 52) = ¢y(w2 0 P (qi, 51), 52).

Notice that® is well defined, sincerz o ¢ (gi, s1) € Vg(g;), for sy € [-K, K]. For all
(s1.52) € [-K, K]*
o  P(s1,52) € {po} x Tz;
° ®(s1, s2) is the endpoint of & 8K -leggedV;’, W, -path of diametek 2K p;
e forevery(mi, mp) € Z°N[—K, K1?,

®(m1, m2) = (po, (mat1, mat1));

o d(D(s1,52), P(Ls1], Ls1])) < 1/50.

For 1’ sufficiently C1-close tok, we similarly construct a ma@;, : [-K, K> — T4
so that everyd,,(s1, s2) is the endpoint of a< 8K-leggedW;’, W, -path of diameter
< 2Kpz and limy _,, ;y = ® uniformly. Chooses € (0, €) such that ifd-1(h, i) < es,
then

711(@p ([—K, K1%)) C Byy(po). ()

The image of ([—K, K1%) under® is very thin: it is contained in a/60-neighborhood
of {po} x dBg(q;). Recall thatV; = Bg/2(g;) andp = 1/4. Another degree argument
shows that there existg; € (0, e5) such that, itd-1(k, ') < €1, then

w2 ([-K, K1%) 2 V;. (%)
Now letW, : [-K, K12 x [-J, J]> = T* be defined by
Wy (51, 52, 53, 54) = o (P (51, 52), (53, 54)).
ThenW,, (s1, s2, 53, 54) is the endpoint of &8K + 2-leggedV;’,, W;,-path from(po, ¢;).
By (x)—(xx) we have that, fod 1 (h, ') < €1,
Wy ([—K, K12 x [=J, J1?) 2 Byy(po) x Vi.

Thus, fordo1(h, h') < €1, every point inB,,(po) x V; can be accessed fropo, g;)
along aWy,, Wy, -path, and so any two points By, (po) x V; can be connected by)&;!,,
W, -path. Setting1 = min; €;1 completes the proof. |

Proof of Lemma 2.4The first assertion in Lemma 2.4 holds for the unperturbed system
f x g;the foIiationsW;ﬁxg andW}Xg project undetr; to the stably accessible foliations
W;ﬁ andW} (stably accessible becaugds a transitive Anosov diffeomorphism). Under
7o, the foIiationsW;ng andW}Xg project to the trivial foliations by points. Given a point
(p,q) € T?, there exists an € {1,..., N} such thaly € V;, and there is aV, W}-
pathy : [0,1] — Ty from p to pjo. This lifts to aW  ,, W, -pathy : [0, 1] — T4
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from (p, ¢) 10 (pio. q) € Bpy(pio) x V;. Clearly property (1) is open undeért-small
perturbations off x g.

The same argument shows that/ifi (i, f x g) is sufficiently small and/; N V; # 2,
then there is aV;, W;-path from some point inB,,(pio) x V; to some point in
Bpo(pjo) x V. 0

Proof of Lemma 2.1We construcW;; the construction of; is similar. Letg,h : R - R
be C* functions g = gg, h = hy) with the following properties:

o  h(x)=0,for|x| > 4a?,

° h(x) =1, for|x| < o2,

. forallx,0< h(x) <1,

and

° gx) = x, for x| < B,

° gx) =0, for28 < |x| <1/2,

. forall x, |g’'(x)| < 1,

. gx+n)=gkx), foralln € Zandx e R.

DefineH : [-1/2,1/2]> x R? - R by
H(z1, w1, 22, w2) = —g(2)h(zf + w?).

ThenH generates &> Hamiltonian vector fieldV on[—1/2, 1/2]2 x R:
~ 0 )
W (z1, w1, 22, w2) = —2w1g(z2)h' (22 + w?) — + 2218(z2)h’ (23 + w?) —
071 w1l

+ ¢/ (z2)h(2E + w%)aiwz.
SinceW is Hamiltonian, it preserves the symplectic foimy A dwy + dz2 A dwo, and
W has the following additional properties.
@ If z% + wf < a?, thenW(Zl, wy, 22, w2) = g'(z2)d/0w>.
In particular, if|z2] < 8, thenW (0, 0, z2, w2) = 3/dw>.
(2) W(z1, w1, 22 + n1, wo + n2) = Wi(z1, w1, z2, w2), for all (z1, wi, z2, w2) €
[—1/2,1/2]?> x R? andmy, m2, € Z.
(3) If 22+ w? > 402 thenW = 0 (in particular,W |y _y,2.1/22 = 0).
Properties (2) and (3) imply tha¥ extends to & vector field onR? satisfying

W(z1 + m1, w1+ mo, 22 + n1, w2 + n2) = W(zg, wi, 22, wo),

for all (z1, w1, z2, w2) € R4 and(m1, mo, n1,n2) € Z4.

ThusW defines a symplectic vector fieldd onT4 by W = p, X, wherep : R* — T4
is the canonical projection. The mapis symplectic, and sé is symplectic. LetW; be
the flow generated by. ThenW, has the desired properties. |

3. Proof of Theorem C
The following is standard; a proof can be foundi.[

LEmMMA 3.1. (Properties of toral automorphismd)et f be any automorphism of”.
Then
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(1) periodic points off are dense iT".

Furthermore, iff is ergodic and partially hyperbolic, then:

(2) every leaf oﬂ/\/;i and ofW} is a dense, Euclidean submanifold bf;

(3) the distributionsE;}, E;‘c &) Ej, E‘; <) E} andE; <) E} are integrable and tangent
to C* foliations W5, Wi, W and W7, respectively;

(4) every leaf ofW;; is a dense, even-dimensional Euclidean submanifol@”of The
eigenvalues on|E} lie on the unit circle inC, but are not roots of one;

(5) the Wf;—holonomy maps betwee}’m’j:’-leaves and thé’\/}—holonomy maps between
W}“-Ieaves are Euclidean isometries.

The proof of Theorem C now proceeds much along the lines of the proof of Theorem A.
Instead of periodic tori, we work with periodid/;-leaves. The density ofY;-leaves
simplifies the argument. We will use the following lemma, which we prove at the end of
this section.

LEMMA 3.2. For any two open set8 and C in R* with B € C, there exists aC*°,
volume-preserving flow; onR* and7 > 0 such that:
(1) if (z1, 22,23, 24) € R*\ C, thenfor allt € R,

Y:((z1, 22, 23, z4)) = (21, 22, 23, 24);

(2) if (z1, 22, 23, z4) € B, thenforall|t| < T,

Y ((z1, 22, 23, 24)) = (21, 22,23, 24 + ).

Let f = fa, and letp be a fixed point forf. Let 8o = 1/8. In this proof, the metric on
T4 is the standard Euclidean metric:

n 1/2
d((x1, -, Xn), (Y1, - -5 Yn)) = (Z(do(x,-, y,->)2> :
i=1

If F is a foliation of T4, andC andW are any subsets @, then let
Fw(C) = Fw ().
zeC

and let
o) = ().

neZ
Forr > 0, letF,(C) = Fp,c)(C), whereN,(C) = J.cc Br(2).
We will work in a neighborhood/y of p defined by

Vo = W},ﬁo( AL)‘l'-ﬂo(W;'-ﬂo(p)))'
By Lemma 3.1, any pair of the three foliationg?, W} and)V; are jointly integrable and
meet at a constant angle. If all of these angles wet2 then the volume ot/g would
be (2B0)? - nB3 = 4npg. Letv be the actual volume dfip, and letpg = (v/(4nB3))Y/2.
Define a neighborhooB) of the origin inR* by
Do = {(z1, 22, 23, 24) : 21| < Po, |22l < Po, 25+ 25 < P§).

Then vol Do) = v, and there is @°°, volume-preserving diffeomorphist : Do — Up
such that:
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FIGUREL ¥~ Y{p. q.r,x, v u, v}.

e v¥(0,0,0,0 = p;

o Wiy, (W21, 22,23, 24)) = Y ({(w1. 22, 23, 24) = [wi] < Bo});

o Wiy (V(z21, 22, 23, 24)) = ¥ ({(z1, w2, 23, 24) : [w2| < Bo});
WS (W (21, 22, 23, 20)) = Y (21, 22, 51, 52) * 55 + 55 < pG));

° restricted to the line segment€0, z2, z3, z4) + (w1,0,0,0) : |wi] < PBo} and
{(z1, 0, z3, z4) + (0, w2, 0, 0) : |w2| < Bo}, ¥ is an isometry;

e restricted to the disk8(z1, z2, 0, 0) + (0, 0, 51, 52) : 52 + 53 < p2}, ¥ is a dilation
abouty (z1, z2, 0, 0) by Bo/ po.

Sincefo < 1/2, for everyx, y € Uy, the sets)/vl’;,Uo(x) N W}fUO(y) ande{‘U0
W},UO(Y) each contain precisely one point; let

[x,yl1= W;,UO(X) N W;fuo(y)a

x)N

and let

[x, y12 = Wi, () N W5 1 ().

Let D1 = {(21/2,22/2, 23/2, 24/2) : (21, 22, 23, 24) € Do} and letUy = y(D1).
Since, by Lemma 3.1, periodic points pfare dense iiT4, there exist distinct periodic
pointsg, r € U1 such thatp ¢ {g, r} and

max{d([p, qli, [p,ql2),d((p,rl1, [p,r]2)} < Bo/100 (%)

Letx = [p,ql1, y = [p,rl1, u = lg, pl1 andv = [r, p]1. Note thatx, y, u, v € U1. For
belq,r x,y,u,v}, leth; be theith coordinate ofy~1(b), so that

YL (b) = (b1, b2, b3, ba).

LEMMA 3.3. There exist real numbegs, p1 > O such that, fow € {x, y}, if
Cp = (Y1) + (21, 22, 73, 24) : |z1] < 2B1, |z2| < 2B1. 25+ 25 < o3},
andV, = ¥ (Cp), then:
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FIGURE 2. The neighborhoodBy, By, Cy andCy.

(1) Cp € D1 (whichimpliesV,, € Uj);
(2 VNV, =6
3) STV NOOWS 4, (psa %,y u, v\ WS (F7H0)) = 0.

Proof of Lemma 3.3Clearly, if 81 andp; are chosen sufficiently small, properties (1) and
(2) will be satisfied.
Forb € {p, x, y, u, v},
Wi, (0) = Wi 5,20,

and forb € {q, r}, it follows from (x) that
Wiv,®) S Wi o2+ p/1000)-
As a consequence of Proposition 3.1, for @y 1/2 and any; € T4,
TV 5(2) = W 5(f(2)).

Thea-limit set of {x, y} andw-limit set of {u«, v} are bothO({p}); thea-limit set of {u, v}
andow-limit set of {x, y} are both contained iﬁ)(Wgo/loo({q, r})). Thus, the set of limit
points of(’)(W;)Ul({p, q,r, x,y,u,v})) is contained in the set:

OOV 4, (p. q. 7).

whereBz = B1/2+ B1/50. Itis therefore possible to choogsgandg; so that property (3)
is also satisfied. m|
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Let p; andpy be given by Lemma 3.3, l&t,, C,, V; andV, be defined as in the lemma,
and forb € {x, y}, let

By = (¥ 1(b) + (21, 22, 23, 24) : |z1] < B, |22| < B1, 23 + 25 < p?}.

By Lemma 3.2, there ar€> , volume-preserving flowX,; andY; on Dg such that, for all
t sufficiently small,

e X, =idoutsideC,;

° if (z1, 22, 23, z4) € By, then

X:((z1, 22, 23, 24)) = (21, 22, 23 + 1, 24);

e Y, =idoutsideC,;
e  if(z1,22.23.24) € By, then

Y ((z1, 22, 23, 24)) = (21, 22,23, 24 + ).

For z| sufficiently small, we define the volume-preservia§® diffeomorphisny; : T4 —
T4 by
g =Woo0Xs))o f
LEMMA 3.4. If |¢] is sufficiently small, theg = g, is partially hyperbolic, and
@ if z% + zi < pf andb € {x, y}, then

- (x1,x2,z3+1t,24) ifb=x
YOV (0, 0, 23, 24) N WE (b)) = !
&t 800 (1, y2, 23,24 +1) ifb=y;

(2) ifz3+25 < p?andb e {u, v}, then
Y VS 1, (W(0, 0, 23, 24)) N WS 1y () = (b1, b2, 23, 24);
(3) if z% + zi < pf andb € {x, u}, then
Y OVS 1, (W (41, g2, 23, 22) NS 1, (B)) = (b1, b2, 23, 24);
4) if z% + 1421 < pf andb e {y, v}, then
YOS 1o (W (1, 72, 23, 28)) N WS 0 () = (b, b2, 23, 2a).

Proof of Lemma 3.4Suppose? + z2 < p2, and letz = ¥ (x1, x2, z3 + 1, za). If |7] is
sufficiently small, thewg,uo(w(o, 0,z3,24) N W;UO (x) contains at most one point. We
show thatz is contained in this intersection. As in the proof of Theorem A, Lemma 2.2,
one verifies that

lim_d(g;"(2), g, (x)) = 0.

The details are left to the reader. This proves property (1), whea x. The other
properties are proved similarly. m|

LEmMMA 3.5. For [¢] sufficiently smallg; has the stable accessibility property.
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Proof of Lemma 3.5Let 82 = min{p180/00, B1}/4. By Lemma 3.1, every leaf of the
unstable foliationV is dense inT4. Thus, there existsy > 0, such that, if: : T4 — T4
is any diffeomorphism satisfyind-1(f, #) < €g, thenh is partially hyperbolic, and, for
everyz € T4, Wi (z) is Bo/4-dense ifT4. Fix thiseo.

It follows from Lemma 3.4, that fojr| sufficiently small, ifz3 + z2 < p2, then there is
a 4-leggedVy , Wy -path¢ ((z3, za), ) such that:
$((z3,24),0) = ¥(0, 0, z3, z4),
¢((z3, z4), 1/4) = ¥ (x1, x2, 23 + 1, 24),
¢((z3,24),1/2) = ¥ (q1, q2, 23 + 1, 24),
¢((z3, z4), 3/4) = Y (u1, u2, 23 + 1, z4),
¢((z3,24), 1) = ¥(0,0, z3 + 1, z4).
These paths can be chosen to depend continuously, eq. Similarly there is a continuous
family of 4-leggedV! , W3, -paths{n((z3. z4). ) | 23 + 25 < p%} such that:
o 1((z3,24),0 = ¥(0,0, z3, z4),

n((z3,z4), 1/4) = ¥ (y1, y2, 23, 24 + 1),

n((z3,24),1/2) = ¥ (r1,r2, 23, 24 + 1),

n((z3, z4), 3/4) = Y (v1, v2, 23,24 + 1),

n((z3,24), 1) = ¥ (0,0, z3, 24 + 1).
As in the proof of Theorem A, Lemma 2.3, it follows that forsufficiently small & 1,
for somerg > 0), there exists; > 0, such that i/-1(g;, h) < ¢, then any two points in
Bg,(p) can be connected by}, W;-path.

Chooser, with |t| < fg, so thatd-1(f, g;) < €o. Picke; as in the previous paragraph,
and suppose thak-1(g;, #) < min{e;, €0/2}. Thendq1(g:, ) < €0/2 + €0/2 < €, and
so for any two points, w € T4,

Wi (2) N Bg,(p) # 0,

and

Wi (w) N Bpy(p) # 0.

Thusz andw can be connected to points, w1 € Bg,(p), respectively, along pieces of
unstable manifold fok. Sinced-1(g:, h) < €, the points1 andw1 can be connected by
awy/, W;-path. Concatenating these paths givé$;a WV, -path fromz to w, and sog; is
stably accessible. |

To finish the proof of Theorem C, let> 0 be given. Sincéc~(g;, f) — 0ast — 0,
there exists a > 0 such that:
o dco(gr f) <€,
. g: is partially hyperbolic and center bunched (these propertie€ &@pen),
° g: is dynamically coherent (sincgis normally hyperbolic, this property &!-open;

see 81),
° g: is stably accessible (by Lemma 3.5).
By Theorem 1.1g, is stably ergodic. |

Proof of Lemma 3.2Pick an open seb with B € D € D C C, and letT be the distance
from B to the boundary oD.
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Let H : R* = R be aC* function satisfying:
e H(z1,22,23,24) = z3if (z1,22,23,24) € D,
o  H(z1,22 23 24) = 201f (z1, 22, 23, z4) € R*\ C.

Let
Y( ) 0H o +8H d JdH 0 0H o
21,22,23,4) = —7—+—F+ —— - —— + — —
1,42, %3, %4 072071 0z10z2 0z40z3 023024

be the Hamiltonian vector field generated Hy and letY; be the flow generated bi .
ThenY; has the desired properties. m|
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