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Abstract. It has been conjectured that the stably ergodic diffeomorphisms are open
and dense in the space of volume-preserving, partially hyperbolic diffeomorphisms of a
compact manifold. In this paper we deal with two recalcitrant examples; the standard
map cross Anosov and the ergodic automorphisms of the 4-torus. In both cases we show
that they may be approximated by stably ergodic diffeomorphisms which have the stable
accessibility property.

0. Introduction
It was conjectured in [PS2] that the stably ergodic diffeomorphisms are open and dense
in the space of volume-preserving, partially hyperbolic diffeomorphisms of a compact
manifold. Recall that a diffeomorphismf : M → M of a compact manifoldM is partially
hyperbolicif the tangent bundleTM splits as a Whitney sum ofTf -invariant subbundles:

TM = Eu ⊕ Ec ⊕ Es,

and there exist a Riemannian (or Finsler) metric onM and constantsλ < 1 andµ > 1
such that for everyp ∈ M,

m(Tpf |Eu) > µ > ‖Tpf |Ec‖ ≥ m(Tpf |Ec ) > λ > ‖Tpf |Es‖ > 0.

(The co-normm(A) of a linear operatorA between Banach spaces is defined bym(A) :=
inf‖v‖=1 ‖A(v)‖.) The bundlesEu, Ec andEs are referred to as theunstable, center
and stablebundles off , respectively. A degenerate example of a partially hyperbolic
diffeomorphism is an Anosov diffeomorphism, for whichEc = {0}. We give more
examples below.

If f is Ck and partially hyperbolic, then its stable and unstable bundles are uniquely
integrable and are tangent to foliationsWu

f andWs
f , whose leaves areCk. A partially

hyperbolic diffeomorphism is said to have theaccessibility propertyif, for every pair of
pointsp, q ∈ M, there is a continuous pathγ : [0,1] → M such that:

§ Partially supported by an NSF grant.
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• γ (0) = p,
• γ (1) = q,
• there exist 0= t0 < t1 < · · · < tn = 1 such thatγ ([ti , ti+1]) ⊆ W

ai
f (γ (ti)), where

ai = u or s, for i = 0, . . . , n− 1.

The pathγ is called a (n-legged)Wu
f ,Ws

f -path.

The unstable and stable foliations of a volume-preserving Anosov diffeomorphism
have the accessibility property, since they are transverse. More generally, a pair of non-
transverse foliations can have the accessibility property; in this case accessibility is a global
version of the non-integrability of the pair of foliations.

Partial hyperbolicity is an open property in theC1 topology on M, and so
any diffeomorphismg of M that is sufficientlyC1-close to the partially hyperbolic
diffeomorphismf has stable and unstable foliationsWu

g andWs
g. We say thatf has

thestable accessibility propertyif every g sufficientlyC1-close tof has the accessibility
property. It is an open question whether accessibility implies stable accessibility.

A volume-preservingC2 diffeomorphism isstably ergodicif every sufficientlyC1-
small, volume-preserving perturbation of it is ergodic. In [PS2] it was shown thatC2,
volume-preserving, partially hyperbolic diffeomorphisms with the stable accessibility
property and which satisfy certain other technical hypotheses are stably ergodic. In
the direction of proving the stable ergodicity conjecture, it is further conjectured in
[PS2] that the stable accessibility property is open and dense among partially hyperbolic
diffeomorphisms.

In this paper, we consider two examples of partially hyperbolic diffeomorphisms that do
not have the accessibility property. In fact, in these examples, the foliationsWu andWs

are non-transverse and jointly integrable. We prove that these examples can be arbitrarily
closely approximated in theCr topology 2≤ r ≤ ∞ by diffeomorphisms that are stably
ergodic and that have the stable accessibility property.

0.1. Non-trivial center behavior. Let Tn = Rn/Zn be then-torus. We will write this
group additively.

Let λ be a real parameter. Thestandard mapgλ of the 2-torus is defined by

gλ(z,w) = (z+w,w + (λ sin(2π(z+w))).

It preserves the symplectic formdz ∧ dw. By KAM theory, for all values ofλ near zero,
gλ has a positive-measure set of invariant circles. For such parameter values, this map is
persistently not ergodic; any sufficiently nearbyC∞ symplectic map will fail to be ergodic.

If we add some transverse hyperbolicity to this example a very different phenomenon
appears. Iff : T2n → T2n is aCr , symplectic Anosov diffeomorphism, thenf × gλ

is not ergodic for smallλ; it has a positive measure set of invariant, codimension-1 tori.
However, now,f × gλ may be approximated by a stably ergodic diffeomorphism, and
all of these invariant tori disappear. This result should be contrasted with the work of
Cheng and Sun [CS], Herman (summarized in [Y]), and Xia [X], showing the persistence
of codimension-1 invariant tori in non-hyperbolic situations.
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THEOREM A. Letf : T2n → T2n be aCr symplectic Anosov diffeomorphism,r ≥ 2, and
let g0 : T2m → T2m be a symplectic linear map whose eigenvalues lie on the unit circle
in C.

Then there is a neighborhoodU of g0 in the space of symplecticCr diffeomorphisms
Diff rω(T

2m) such that for everyg ∈ U , the diffeomorphismf × g : T2(m+n) → T2(m+n) is
partially hyperbolic. Furthermore, for every neighborhoodV of f × g in Diff rω(T

2(m+n)),
there exists ah ∈ V such thath is stably accessible and stably ergodic.

COROLLARY A. For f anyC∞, symplectic Anosov diffeomorphism, the mapf × gλ can
beC∞ approximated arbitrarily well by a symplectic, stably ergodic diffeomorphism ifλ

is sufficiently close to zero.

Let f andg be symplectic diffeomorphisms of tori. The productf × g is not ergodic if
g is not ergodic. The proof of Theorem A can be slightly adapted to show that, regardless
of what propertiesg has,f can be chosen so thatf × g can be approximated arbitrarily
well by a stably ergodic diffeomorphism.

THEOREM B. Let g : T2m → T2m be aCr symplectic diffeomorphism,r ≥ 2. For
any n ≥ 1, there exists aCr symplectic Anosov diffeomorphismf : T2n → T2n

such thatf × g : T2(m+n) → T2(m+n) can beCr approximated arbitrarily well by
h : T2(m+n) → T2(m+n), where
• h is a stably accessible, stably ergodic symplectic diffeomorphism,
• h preserves{(0,0)} × T2m and

h|{(0,0)}×T2m = Id × g.

We remark that the word ‘symplectic’ may be replaced by the phrase ‘volume-
preserving’ in Theorems A and B.

0.2. An algebraic example. Let G be a connected Lie group and letB be a closed
subgroup ofG such thatG/B is compact. Forg ∈ G denote byLg : G/B → G/B the left
translationLg(aB) = gaB. LetA : G → G be an automorphism such thatA(B) = B;
thenA induces a diffeomorphismA : G/B → G/B. An affine diffeomorphismof G/B is
a map of the form

Lg ◦ A : G/B → G/B.

Suppose that the Haar measure onG projects to a finite measureν onG/B, invariant
under left translations and under the action ofA. Then the affine diffeomorphismLg ◦ A
preservesν, and the ergodic properties we discuss below are with respect toν. Letg be the
Lie algebra ofG and letf = Lg ◦ A : G/B → G/B be an affine diffeomorphism. Then
f induces the Lie algebra automorphisml(f ) : g → g:

l(f ) = ad(g) ◦ Te(A),
where ad(g) : g → g is the adjoint action ofg on g. Theng splits into generalized
eigenspaces forl(f ):

g = gu ⊕ gc ⊕ gs,

where the eigenvalues ofl(f ) have modulus>1,=1 and<1, ongu, gc andgs , respectively.
The Lie subalgebrah generated bygu⊕gs is an ideal ing. The following is proved in [PS2].
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PROPOSITION0.1. The affine diffeomorphismf = Lg ◦A ofG/B is partially hyperbolic
and has the stable accessibility property if and only ifh ⊕ b = g, whereb is the Lie
subalgebrab = TeB.

In view of the main theorem in [PS2] (Theorem 1.1 below), this has a corollary as
follows.

COROLLARY 0.2. The affine diffeomorphismf = Lg ◦A ofG/B is stably ergodic ifl(f )
has at least one eigenvalue of modulus different than one, andh ⊕ b = g.

This corollary, combined with the results in Brezin and Shub [BS], completely classifies
the stably ergodic affine transformations of simple Lie groups. Nonetheless, there are very
basic examples which are not covered by this corollary, and for which stable ergodicity is
not known to hold. Let

A =


0 0 0 −1
1 0 0 8
0 1 0 −6
0 0 1 8

 .

The matrixA induces a volume-preserving diffeomorphism of the 4-torusfA : T4 → T4.
The mapl(fA) = A has eigenvalues{exp±2πα, λ±1}, whereα is irrational andλ > 1;
since none of these are roots of one, it is easy to see thatfA is ergodic.

For this example,G = R4, B = Z4, and the hyperbolic subalgebrah is two
dimensional, as ish ⊕ b, and so Corollary 0.2 does not apply:fA does not have the
accessibility property. In this paper, we prove the following.

THEOREM C. fA can be approximated (in theC∞ topology) arbitrarily well by a stably
accessible, stably ergodic diffeomorphism.

It is still an open question whetherfA itself is stably ergodic. The same techniques that
prove Theorem C also show the following.

THEOREM D. Any ergodic automorphism ofTn that induces an isometry on the center
spacegc can beC∞ approximated arbitrarily well by a stably accessible, stably ergodic
diffeomorphism.

The techniques of this paper do not, however, extend to all ergodic, partially hyperbolic
affine transformations.

1. Preliminaries
Recently, Pugh and Shub proved the following theorem [PS2].

THEOREM 1.1. If f ∈ Diff 2
m(M) is a center bunched, partially hyperbolic, stably

dynamically coherent diffeomorphism that is stably accessible, thenf is stably ergodic.

In the proofs of Theorems A and C below, we rely on this result to show stable
ergodicity.

A partially hyperbolic diffeomorphismf is center bunchedif, for everyp ∈ M, the
quantity

µc = ‖Tpf |Ecf ‖/m(Tpf |Ecf )
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is sufficiently close to one. The property isC1-open, and immediately satisfied when
µc = 1. The details can be found in [PS2, §4].

For the diffeomorphismsf × g, in the statement of Theorems A and B, andfA, in the
statement of Theorem C,µc is either one or can be made arbitrarily close to one, and so
both examples are center bunched.

A partially hyperbolic diffeomorphismf is dynamically coherentif the distributions
Ecf , Ecf ⊕ Euf andEcf ⊕ Esf are integrable, and everywhere tangent to foliationsWc

f ,
Wcu
f andWcs

f , called thecenter, center-unstableandcenter-stablefoliations, respectively.

If f is dynamically coherent andWc
f is aC1 foliation, then by [PS1, Proposition 2.3],

f is stablydynamically coherent, i.e.C1-small perturbations off are also dynamically
coherent. This is the case forf × g andfA in Theorems A and C, as we verify in the next
section. The heart of the matter in proving Theorems A and C is to produce perturbations
of f × g andfA that are stably accessible, and this is the focus of the following sections.

2. Proof of Theorem A
To simplify the notation of the proof, assume thatm = n = 1 and thatr = ∞. Let
T (T2) = Euf ⊕ Esf be the Anosov splitting forf . Write T4 = T1 × T2, whereTi = T2,

and letπi : T1 × T2 → Ti be the projection onto theith T2 factor, fori = 1,2. In what
follows, the metricd onTn is

d((x1, . . . , xn), (y1, . . . , yn)) = max
i∈{1,...,n}

d0(xi, yi),

whered0 is the standard metric on the circle. We use the letters ‘u’ and ‘v’ to refer to
points inT4; ‘x’, ‘ y’ and ‘p’ to refer to points inT1; and ‘q ’ and ‘r ’ to refer to points in
T2. The symbols ‘z’ and ‘w’ are reserved for theT1-coordinates of points inT4.

The mapf ×g is partially hyperbolic: the unstable, center and stable manifolds through
the point(x, q) ∈ T1 × T2 are, respectively,

W
u
f×g(x, q) = {(y, q) : y ∈ Wu

f (x)},
W

c
f×g(x, q) = {(x, r) : r ∈ T2},

and

W
s
f×g(x, q) = {(y, q) : y ∈ Ws

f (x)}.
ClearlyWc

f×g is aC1 foliation, and so it is stably dynamically coherent. Furthermore,

f × g is center bunched ifg is chosen sufficientlyC1-close toG. Assume thatg is so
chosen. There exists anε0 > 0 such that ifh : T4 → T4 is a diffeomorphism with
dC1(h, f × g) < ε0, thenh is partially hyperbolic, center bunched and dynamically
coherent (see the discussion in §1). Fix thisε0.

In order to apply Theorem 1.1 to prove Theorem A, it now suffices to show thatf×g can
be approximated arbitrarilyC∞ well by a symplectic, stably accessible diffeomorphism.

We are starting with a product diffeomorphism, for which the unstable and stable
foliations are jointly integrable. In this situation, anyWu

f×g , Ws
f×g path lies in a leaf

of the foliation ofT4 by horizontal, codimension 2 toriT1 × {q}. We shall perturbf × g



880 M. Shub and A. Wilkinson

into the previously inaccessible vertical direction, which will have the effect of lifting the
unstable and stable foliations out of the horizontal direction. This perturbation is most
easily accomplished in the vertical{x}×T2 tori that lie over neighborhoods of heteroclinic
orbits forf in T1. This argument mimics those found in [B]. We begin with some lemmas
describing the vector fields which will produce the vertical lift.

LEMMA 2.1. For all α, β ∈ (0,1/2), there exist flowsZt = Z
α,β
t andWt = W

α,β
t on T4

with the properties:
(1) Zt andWt areC∞ and symplectic;
(2) Zt({(0,0)} × T2) = {(0,0)} × T2, andWt({(0,0)} × T2) = {(0,0)} × T2;
(3) if |w2| < β, then

Zt(0,0, z2, w2) = (0,0, z2 + t, w2),

and if |z2| < β, then

Wt(0,0, z2, w2) = (0,0, z2, w2 + t);
(4) if z2

1 + w2
1 > 4α2, thenZt(z1, w1, z2, w2) = Wt(z1, w1, z2, w2) = (z1, w1, z2, w2),

for all t .

We prove Lemma 2.1 at the end of this section.
ForF a foliation of a Riemannian manifoldM andU a neighborhood of a pointv ∈ M,

denote byF(v) the leaf ofF containingv and byFU(v) the connected component ofv
(in the leaf topology) ofF(v) ∩ U . Forρ > 0, letFρ(p) = FBρ(v)(v).

Since the foliationsWu
f andWs

f of T1 are uniformly transverse, for everyρ0 > 0
sufficiently small, there existsδ0 > 0 such that forx, y ∈ T1 with d(x, y) ≤ δ0, the
setWu

f,ρ0
(x) ∩ Ws

f,ρ0
(y) contains a single point, which we denote by[x, y]. Fix such

ρ0 ≤ 1/1000 andδ0 ≤ ρ0. We introduce notation for the orbit of a set underf : for
C ⊆ T1, let

O(C) =
⋃
j∈Z

f j (C).

For q = (z2, w2) ∈ T2, andβ > 0, defineHβ(q) andVβ(q), the horizontal and vertical
strips in T2 of radiusβ, by

Hβ(q) = {(z′2, w′
2, ) ∈ T2 : |w2 −w′

2| < β},

and

Vβ(q) = {(z′2, w′
2, ) ∈ T2 : |z2 − z′2| < β}.

LEMMA 2.2. Let p0, p1 ∈ T1 be periodic points forf with d(p0, p1) ≤ δ0, let x1 =
[p0, p1] andy1 = [p1, p0]. Letr1 ∈ T2 andβ ∈ (0,1/2) be given.

Let U ⊂ T1 be a neighborhood off−1(x1) and leth : T4 → T4 be a symplectic
diffeomorphism such that:
(A) h agrees withf × g onO({p0, p1, x1, y1})× T2;
(B) dC∞(h, f × g) < ε0, whereε0 is defined above;
(C) U ∩ (O({p0, p1, x1, y1}) \ {f−1(x1)}) = ∅.
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Then there existα0 > 0, C > 0 andT > 0 such that, for|t0| ≤ T , if Xt = Z
α0,β
t or

Xt = W
α0,β
t is a flow given by Lemma 2.1 andk = kt0 : T4 → T4 is the diffeomorphism

kt0(p, q) = (x1, r1)+Xt0(p − x1, q − r1),

thenk ◦ h is symplectic and partially hyperbolic, and
(1) k ◦ h coincides withh outside ofU × T2;
(2) dC∞(h, k ◦ h) ≤ C|t0|;
(3) for anyq ∈ T2,

W
u
k◦h,ρ0

(p0, q) ∩ ({x1} × T2) = (x1, r1)+Xt0(0, q − r1)

=
{
(x1, q + (t0,0)) if Xt = Zt andq ∈ Hβ(r1)
(x1, q + (0, t0)) if Xt = Wt andq ∈ Vβ(r1);

(4) for all q ∈ T2,

W
s
k◦h,ρ0

(p0, q) ∩ ({y1} × T2) = (y1, q),

W
s
k◦h,ρ0

(p1, q) ∩ ({x1} × T2) = (x1, q)

and

W
u
k◦h,ρ0

(p1, q) ∩ ({y1} × T2) = (y1, q).

Proof of Lemma 2.2.Pickα0 so thatB2α0(x1) ⊆ f (U) and fixβ > 0. LetXt = Z
α0,β
t or

W
α0,β
t and letkt be defined as in the statement of the lemma. Clearly property (1) holds.

SinceXt is aC∞ flow andT4 is compact, there exists aC > 0 such that property (2) holds
for all t0 ∈ R.

ChooseT < min{1/4, ε0/C} small enough so thatWu
k◦h,ρ0

(p0, q) intersects{x1} × T2

in at most one point. We now show thatv = (x1, r1)+Xt0(0, q− r1) is in this intersection.
The unstable manifoldWu

k◦h(u) for k ◦ h through the pointu is the set of pointsv such
that

lim
n→∞ d((k ◦ h)−n(u), (k ◦ h)−n(v)) = 0.

One easily calculates that

k ◦ h(f−1(x1), g
−1(q)) = k ◦ f × g(f−1(x1), g

−1(q)) = k(x1, q) = v,

and so
k ◦ h−1(v) = (f−1(x1), g

−1(q)).

Hypotheses (B) and (C) imply thatk◦h agrees withf×g on the set{x1, f
−2(x1), . . . }×T2.

Thus, forn ≥ 1,
k ◦ h−n(v) = (f−n(x1), g

−n(q)),
and

lim
n→∞ d((k ◦ h)−n(v), (k ◦ h)−n((p0, q)))

= lim
n→∞ d((f−n(x1), g

−n(q)), (f−n(p0), g
−n(q)))

= lim
n→∞ d(f−n(x1), f

−n(p0))

= 0,
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sincex1 ∈ W
u
f (p0). Thusv ∈ W

u
k◦h(p0, q). This proves property (3). Property (4) is

proved similarly. 2

Returning to the proof of Theorem A, letβ = 1/4 and letN = 25. Let V =
{V1, . . . , VN } be a cover ofT2 by β/2-balls, with centersq1, . . . , qN : Vi = Bβ/2(qi).
Sincef is a transitive Anosov diffeomorphism, periodic points forf are dense inT1. Let
p00, p01, p02, p10, . . . , pN0, pN1, pN2 be distinct periodic points off such that:
(1) d(pi0, pij ) < δ0 for i ∈ {1, . . .N}, j ∈ {1,2};
(2) for everyi, j ∈ {1, . . . , N}, with i 6= j ,

B2ρ0(pi0) ∩ B2ρ0(pj0) = ∅.
This second property is easily satisfied, sinceρ0 < 1/1000.

We now describe the remainder of the construction. For eachi ∈ {1, . . . , N}, we perturb
f × g inside the neighborhoodB2ρ0(pi0) × T2, applying Lemma 2.2 twice. We arrange
that the unstable and stable foliations (for the perturbed system) are stably accessible inside
Bρ0(pi0)× Vi . We show that this ‘vertical accessibility’ can be achieved via an arbitrarily
small perturbation off × g.

Finally, we show that, if the perturbation off × g is small enough, then any two sets
Bρ0(pi0)×Vi andBρ0(pj0)×Vj can be connected by stable and unstable manifolds. This
‘horizontal accessibility’, combined with vertical accessibility implies stable accessibility
for the perturbed system.

We summarize these arguments in two lemmas.

LEMMA 2.3. (Vertical accessibility)For everyε > 0 sufficiently small, there existsε1 > 0
and a partially hyperbolic symplectic diffeomorphismh : T4 → T4 with the following
properties:
(1) dC∞(h, f × g) < ε,
(2) if h′ : T4 → T4 is a diffeomorphism withdC1(h, h′) < ε1, then fori ∈ {1, . . . , N}

andu, v ∈ Bρ0(pi0)× Vi there is aWu
h′ ,Ws

h′-pathγ : [0,1] → T4 such that

γ (0) = u and γ (1) = v.

LEMMA 2.4. (Horizontal accessibility)There existsε2 > 0 such that, ifh : T4 → T4 is a
diffeomorphism withdC1(h, f × g) < ε2, thenh is partially hyperbolic, and
(1) for everyv ∈ T4 there exists ani ∈ {1, . . . , N} and aWu

h ,Ws
h-pathγ1 : [0,1] → T4

such that
γ1(0) = v and γ1(1) ∈ Bρ0(pi0)× Vi;

(2) for every i, j ∈ {1, . . . , N}, if Vi ∩ Vj 6= ∅, then there exists aWu
h , Ws

h-path
γ2 : [0,1] → T4 such that

γ2(0) ∈ Bρ0(pi0)× Vi and γ2(1) ∈ Bρ0(pj0)× Vj .

Using these lemmas we complete the proof of Theorem A: givenε > 0, we shall
construct a stably accessible symplectic diffeomorphismh : T4 → T4 such that
dC∞(h, f × g) < ε. Let ε2 be given by Lemma 2.4. Leth be a diffeomorphism given
by Lemma 2.3, chosen so that

dC∞(h, f × g) < min{ε, ε2/2, ε0/2}.
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Thenh is partially hyperbolic, center bunched, and dynamically coherent.
We now show thath is stably accessible. Letε1 be given by Lemma 2.3; we may assume

thatε1 < min{ε, ε2/2, ε0/2}. Let h′ be any diffeomorphism withdC1(h, h′) < ε1 and let
u, v ∈ T4. ThendC1(f × g, h′) < ε1 + dC1(f × g, h) < min{ε2, ε0}. By Lemma 2.4,
there existi, i ′ ∈ {1, . . . , N} such thatu can be connected to a pointr ∈ Bρ0(pi0) × Vi

andv to s ∈ Bρ0(pi′0)× Vi′ , alongWu
h′ ,Ws

h′ -paths.
SinceT2 is connected there exists anI -tuple(i = i1, . . . , iI = i ′) ∈ {1, . . . , N}I such

thatVij ∩ Vij+1 6= ∅, for j ∈ {1, . . . , I − 1}. By Lemma 2.4, for eachj ∈ {1, . . . , I − 1},
there exists aWu

h′ , Ws
h′ -path connecting a pointsj ∈ Bρ0(pij 0) × Vij to a pointrj+1 ∈

Bρ0(pij+10) × Vij+1. Finally, by Lemma 2.3, there areWu
h′ ,Ws

h′ -paths fromr to s1, from
rN to s, and fromrj to sj , for eachj ∈ {2, . . . , I − 1}. Concatenating these paths gives
aWu

h′ , Ws
h′ -path fromu to v. Since any two pointsu andv can be connected by aWu

h′ ,
Ws
h′ -path,h′ is accessible, andh is stably accessible. By Theorem 1.1,h is stably ergodic.
This completes the proof of Theorem A. We now prove Lemmas 2.3 and 2.4. 2

Proof of Lemma 2.3.We omit a proof of the following proposition. In slightly less general
form a proof appears in [KK ] or [BPW]. The construction originally appears, in the
context of skew products, in [B].

PROPOSITION2.5. LetM be a compact Riemannian manifold and leth : M → M be
a partially hyperbolic, dynamically coherent diffeomorphism. Then there exist constants
ρ1 > 0 andρ2 > 0 such that: ifγ : [0,1] → M is a4-leggedWu

h ,Ws
h-path satisfying:

(A) γ (1) ∈ Wc
h(γ (0));

(B) diam(γ [0,1]) ≤ ρ1;
then there exist4-leggedWu

h ,Ws
h-pathsγt : [0,1] → M satisfying:

(1) γ0 is the constant pathγ (0);
(2) γ1 = γ ;
(3) γt (0) = γ (0) for all t ∈ [0,1];
(4) γt (1) ∈ Wc

h(γt (0)) for all t ∈ [0,1];
(5) diam(γt [0,1]) ≤ ρ2.

The homotopy given in Proposition 2.5 is not unique, but the family of such homotopies
is compact. For such a homotopy, the functiont 7→ γt (1) defines a curve inWc

h(γ (0)) from
γ (0) to γ (1).

For f × g, condition (A) is the same asπ1(γ (0)) = π1(γ (1)). The foliationsWu
f×g

andWs
f×g are jointly integrable, so ifγ is a 4-leggedWu

f×g , Ws
f×g-path satisfying

π1(γ (0)) = π1(γ (1)) = p0, thenγ (0) = γ (1), and for any such homotopy,γt (1) = γ (0),
for all t . The foliationsWu

h andWs
h depend continuously onh, there existsε3 > 0

such that, ifdC1(h, f × g) < ε3, then for any homotopyγt of the type described above,
diam(γ[0,1](1)) < 1/100. Fix thisε3.

Ford(h, f × g) < ε0 andv ∈ T4, there are families of pathsγ u = γ uh (v, ·) : R → T4

andγ s = γ sh (v, ·) : R → T4 such thatγ a(v,0) = v andγ a(v, t) ∈ Wa
h (v), for t ∈ R and

a = u, s. These families can be chosen to depend continuously onv and onh in theC1

topology. (We remark here that when dim(T1) = 2n > 2, we must instead choose families
of pathsγ u1 , . . . , γ

u
n andγ s1 , . . . , γ

s
n spanningWu

h(v) andWs
h(v), respectively.)
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For v ∈ T4, and (s1, s2) ∈ R2, let ωh(v, s1, s2) = γ s(γ u(v, s1), s2). The map
π1 ◦ ωf×g(v, · , ·) is a local homeomorphism; a degree argument similar to that in [BW,
§5], shows that there is anε4 > 0 and a numberJ > 0, such that fordC1(h, f × g) < ε3,
andv ∈ T4,

π1(ωh({v} × [−J, J ]2)) ⊇ B2ρ0(π1(v)). (∗)

and

π2(ωh({v} × [−J, J ]2)) ⊆ B1/100(π2(v)). (∗∗)

Step 1: construction ofh. We may assume thatε < max{ε0/2, ε3/2, ε4/2}. LetN = 25
as before. Fori ∈ {1, . . . , N} andj ∈ {1,2}, let xij = [pi0, pij ] andyij = [pij , pi0]. The
set

B =
N⋃
n=1

O({pn0, pn1, pn2, xn1, xn2, yn1, yn2})

is compact and its set of limit points is precisely
⋃N
n=1O({pn0, pn1, pn2}). For i ∈

{1, . . . , N} andj ∈ {1,2}, choose a neighborhoodUij of f−1(xij ) in T1 such that:
• Uij ∩ B \ {f−1(xij )} = ∅;
• Uij ∩Ulm = ∅, if (l,m) 6= (i, j).

For i ∈ {1, . . . ,K}, andj = 1,2, let

k
(ij)
α,t (p, q) =

{
(xi1, qi)+ Z

α,1/4
t (p − xi1, q − qi) if j = 1

(xi2, qi)+W
α,1/4
t (p − xi2, q − qi) if j = 2.

Let
hα,t (p, q) = k

(11)
α,t ◦ k(12)

α,t ◦ · · · ◦ k(1K)α,t ◦ k(2K)α,t ◦ f × g.

Since the neighborhoodsUij are disjoint andUij ∩O({pi0, pij , xij , yij })\{f−1(xij )} ⊆
Uij ∩ B \ {f−1(xij )} = ∅, we may apply Lemma 2.2 independently in each of these
neighborhoods to conclude that there exist constantsα1 > 0 andt1 = β/(K+2) < 1/100,
for some integerK > 0, such that the maph = hα1,t1 is symplectic and has the following
properties:
(1) dC∞(h, f × g) < ε;
(2) for i ∈ {1, . . . , N}, and for allq ∈ T2,

W
u
h,ρ0

(pi0, q) ∩ ({xij } × T2) =
{
(xi1, q + (t1,0)) if j = 1 andq ∈ Hβ(qi)
(xi2, q + (0, t1)) if j = 2 andq ∈ Vβ(qi);

(3) for i ∈ {1, . . . , N}, j ∈ {1,2}, and for allq ∈ T2,

W
s
h,ρ0

(pi0, q) ∩ ({yij } × T2) = (yij , q),

W
s
h,ρ0

(pij , q) ∩ ({xij } × T2) = (xij , q)

and

W
u
h,ρ0

(pij , q) ∩ ({yij } × T2) = (yij , q).
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Step 2: Stable vertical accessibility.We now show that for eachi and forh′ sufficiently
nearh, any two points inBρ0(pi0)× Vi can be connected by aWu

h′ ,Ws
h′ -path.

Fix i, and to simplify notation, letp0 = pi0, p1 = pi1 andp2 = pi2. It follows from
Step 1(3) that for eachq ∈ Hβ(qi), there is a 4-leggedWu

h ,Ws
h-pathζ(q, ·) such that:

• ζ(q,0) = (p0, q),
• ζ(q,1/4) = (x1, q + (t1,0)),
• ζ(q,1/2) = (p1, q + (t1,0)),
• ζ(q,3/4) = (y1, q + (t1,0)),
• ζ(q,1) = (p0, q + (t1,0)).
These paths can be chosen to depend continuously onq ∈ Bβ(qi). Similarly, if q ∈ Vβ(qi),
then there is a continuous family of 4-leggedWu

h , Ws
h-paths{η(q, ·) | q ∈ Vβ(qi)} such

that:
• η(q,0) = (p0, q),
• η(q,1/4) = (x2, q + (0, t1)),
• η(q,1/2) = (p2, q + (0, t1)),
• η(q,3/4) = (y2, q + (0, t1)),
• η(q,1) = (p0, q + (0, t1)).

Let {ζt(q, ·) | q ∈ Hβ(qi), t ∈ [0,1]} and {ηt (q, ·) | q ∈ Vβ(qi), t ∈ [0,1]} be
homotopies through 4-leggedWu

h , Ws
h-paths given by Proposition 2.5. These families

of homotopies can be chosen to be continuous inq, t and onh in theC1 topology. The
mapsφζ (q, t) = ζt (q,1) andφη(q, t) = ηt (q,1) are paths in{p0} × T2 from (p0, q)

to ζ1(q,1) andη1(q,1), respectively. The diameter of each of these paths is bounded by
1/100, sincedC1(h, f × g) < ε < ε3. Concatenatingm of these pathsφ1, φ2, . . . , φm

with φi(1) = φi+1(0) gives a pathφ1 · · ·φm : [0,m] → T4 such that, for everyt ∈ [0,m],
• φ1 · · ·φm(t) ∈ {p0} × T2,
• φ1 · · ·φm(t) is the endpoint of a≤ 4m-leggedWu

h ,Ws
h-path of diameter≤ mρ2.

Recall thatK = β/t1 − 2 is a positive integer. By concatenating the pathsφζ (qi +
m(t1,0), t), for m = 0, . . . ,K − 1 andφζ (qi + m(t1,0),1 − t), for m = −1, . . . ,−K,
we extend the mapφζ (qi, ·) to a mapφζ (qi, ·) : [−K,K] → T4 such that, for all
t ∈ [−K,K]:
• φζ (qi, t) ∈ {p0} × T2;
• φζ (qi, t) is the endpoint of a≤ 4K-leggedWu

h ,Ws
h-path of diameter≤ Kρ2;

• for everym ∈ Z ∩ [−K,K],
φζ (qi,m) = (p0, qi + (mt1,0));

• for everys ∈ [−K,K],
d(φζ (qi, s), φζ (qi, bsc)) ≤ 1/100.

Similarly for q ∈ Vβ(qi), extendφη(q, ·) to φη(q, ·) : [−K,K] → T4 such that, for all
t ∈ [−K,K]:
• φη(q, t) ∈ {p0} × T2;
• φη(q, t) is the endpoint of a≤ 4K-leggedWu

h ,Ws
h-path of diameter≤ Kρ2;

• for everym ∈ Z ∩ [−K,K],
φη(q,m) = (p0, q + (0,mt1));
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• for everys ∈ [−K,K],
d(φη(q, s), φζ (q, bsc)) ≤ 1/100.

Next, consider the map
8 : [−K,K]2 → T4

given by
8(s1, s2) = φη(π2 ◦ φζ (qi, s1), s2).

Notice that8 is well defined, sinceπ2 ◦ φζ (qi, s1) ∈ Vβ(qi), for s1 ∈ [−K,K]. For all
(s1, s2) ∈ [−K,K]2:
• 8(s1, s2) ∈ {p0} × T2;
• 8(s1, s2) is the endpoint of a≤ 8K-leggedWu

h ,Ws
h-path of diameter≤ 2Kρ2;

• for every(m1,m2) ∈ Z2 ∩ [−K,K]2,

8(m1,m2) = (p0, (m1t1,m2t1));
• d(8(s1, s2),8(bs1c, bs1c)) ≤ 1/50.

For h′ sufficientlyC1-close toh, we similarly construct a map8h′ : [−K,K]2 → T4

so that every8h′(s1, s2) is the endpoint of a≤ 8K-leggedWu
h′ , Ws

h′ -path of diameter
≤ 2Kρ2 and limh′→h 8h′ = 8 uniformly. Chooseε5 ∈ (0, ε) such that ifdC1(h, h′) < ε5,
then

π1(8h′([−K,K]2)) ⊆ Bρ0(p0). (∗∗∗)

The image of∂([−K,K]2) under8 is very thin: it is contained in a 1/50-neighborhood
of {p0} × ∂Bβ(qi). Recall thatVi = Bβ/2(qi) andβ = 1/4. Another degree argument
shows that there existsεi1 ∈ (0, ε5) such that, ifdC1(h, h′) < εi1, then

π2(8h′([−K,K]2)) ⊇ Vi. (∗∗∗∗)

Now let9h′ : [−K,K]2 × [−J, J ]2 → T4 be defined by

9h′(s1, s2, s3, s4) = ωh′ (8h′(s1, s2), (s3, s4)).

Then9h′(s1, s2, s3, s4) is the endpoint of a≤8K + 2-leggedWu
h′ ,Ws

h′ -path from(p0, qi).
By (∗)–(∗∗∗∗) we have that, fordC1(h, h′) < εi1,

9h′([−K,K]2 × [−J, J ]2) ⊇ Bρ0(p0)× Vi.

Thus, fordC1(h, h′) < εi1, every point inBρ0(p0) × Vi can be accessed from(p0, qi)

along aWu
h′ ,Wu

h′ -path, and so any two points inBρ0(p0)× Vi can be connected by aWu
h′ ,

W
u
h′ -path. Settingε1 = mini εi1 completes the proof. 2

Proof of Lemma 2.4.The first assertion in Lemma 2.4 holds for the unperturbed system
f × g; the foliationsWu

f×g andWs
f×g project underπ1 to the stably accessible foliations

Wu
f andWs

f (stably accessible becausef is a transitive Anosov diffeomorphism). Under
π2, the foliationsWu

f×g andWs
f×g project to the trivial foliations by points. Given a point

(p, q) ∈ T4, there exists ani ∈ {1, . . . , N} such thatq ∈ Vi , and there is aWu
f , Ws

f -

pathγ : [0,1] → T1 from p to pi0. This lifts to aWu
f×g , Ws

f×g-pathγ̃ : [0,1] → T4
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from (p, q) to (pi0, q) ∈ Bρ0(pi0) × Vi . Clearly property (1) is open underC1-small
perturbations off × g.

The same argument shows that ifdC1(h, f × g) is sufficiently small andVi ∩ Vj 6= ∅,
then there is aWu

h , Ws
h-path from some point inBρ0(pi0) × Vi to some point in

Bρ0(pj0)× Vj . 2

Proof of Lemma 2.1.We constructWt ; the construction ofZt is similar. Letg, h : R → R
beC∞ functions (g = gβ , h = hα) with the following properties:
• h(x) = 0, for |x| > 4α2,
• h(x) = 1, for |x| < α2,
• for all x, 0 ≤ h(x) ≤ 1,
and
• g(x) = x, for |x| < β,
• g(x) = 0, for 2β < |x| ≤ 1/2,
• for all x, |g′(x)| < 1,
• g(x + n) = g(x), for all n ∈ Z andx ∈ R.

DefineH : [−1/2,1/2]2 × R2 → R by

H(z1, w1, z2, w2) = −g(z2)h(z
2
1 +w2

1).

ThenH generates aC∞ Hamiltonian vector field̃W on [−1/2,1/2]2 × R2:

W̃(z1, w1, z2, w2) = −2w1g(z2)h
′(z2

1 +w2
1)
∂

∂z1
+ 2z1g(z2)h

′(z2
1 +w2

1)
∂

∂w1

+ g′(z2)h(z
2
1 +w2

1)
∂

∂w2
.

SinceW̃ is Hamiltonian, it preserves the symplectic formdz1 ∧ dw1 + dz2 ∧ dw2, and
W̃ has the following additional properties.
(1) If z2

1 +w2
1 < α2, thenW̃ (z1, w1, z2, w2) = g′(z2)∂/∂w2.

In particular, if|z2| < β, thenW̃ (0,0, z2, w2) = ∂/∂w2.
(2) W̃ (z1, w1, z2 + n1, w2 + n2) = W̃ (z1, w1, z2, w2), for all (z1, w1, z2, w2) ∈

[−1/2,1/2]2 × R2 andm1,m2,∈ Z.
(3) If z2

1 +w2
1 > 4α2, thenW̃ = 0 (in particular,W̃ |∂[−1/2,1/2]2 = 0).

Properties (2) and (3) imply that̃W extends to aC∞ vector field onR4 satisfying

W̃ (z1 +m1, w1 +m2, z2 + n1, w2 + n2) = W̃(z1, w1, z2, w2),

for all (z1, w1, z2, w2) ∈ R4 and(m1,m2, n1, n2) ∈ Z4.
ThusW̃ defines a symplectic vector fieldW on T4 byW = p∗X̃, wherep : R4 → T4

is the canonical projection. The mapp is symplectic, and soW is symplectic. LetWt be
the flow generated byW . ThenWt has the desired properties. 2

3. Proof of Theorem C
The following is standard; a proof can be found in [P].

LEMMA 3.1. (Properties of toral automorphisms).Let f be any automorphism ofTn.
Then



888 M. Shub and A. Wilkinson

(1) periodic points off are dense inTn.
Furthermore, iff is ergodic and partially hyperbolic, then:
(2) every leaf ofWu

f and ofWs
f is a dense, Euclidean submanifold ofTn;

(3) the distributionsEcf , Euf ⊕Esf ,Euf ⊕Ecf , andEcf ⊕Esf are integrable and tangent
toC∞ foliationsWc

f ,Wus
f ,Wcu

f andWcs
f , respectively;

(4) every leaf ofWc
f is a dense, even-dimensional Euclidean submanifold ofTn. The

eigenvalues ofTf |Ecf lie on the unit circle inC, but are not roots of one;

(5) theWu
f -holonomy maps betweenWcs

f -leaves and theWs
f -holonomy maps between

W
cu
f -leaves are Euclidean isometries.

The proof of Theorem C now proceeds much along the lines of the proof of Theorem A.
Instead of periodic tori, we work with periodicWc

f -leaves. The density ofWu
f -leaves

simplifies the argument. We will use the following lemma, which we prove at the end of
this section.

LEMMA 3.2. For any two open setsB andC in R4 with B ⊆ C, there exists aC∞,
volume-preserving flowYt onR4 andT > 0 such that:
(1) if (z1, z2, z3, z4) ∈ R4 \ C, then for allt ∈ R,

Yt ((z1, z2, z3, z4)) = (z1, z2, z3, z4);
(2) if (z1, z2, z3, z4) ∈ B, then for all|t| ≤ T ,

Yt ((z1, z2, z3, z4)) = (z1, z2, z3, z4 + t).

Let f = fA, and letp be a fixed point forf . Letβ0 = 1/8. In this proof, the metric on
T4 is the standard Euclidean metric:

d((x1, . . . , xn), (y1, . . . , yn)) =
( n∑
i=1

(d0(xi, yi))
2
)1/2

.

If F is a foliation ofT4, andC andW are any subsets ofT4, then let

FW(C) =
⋃
z∈C

FW(z),

and let
O(C) =

⋃
n∈Z

f n(C).

For r > 0, letFr (C) = FNr(C)(C), whereNr(C) = ⋃
z∈C Br(z).

We will work in a neighborhoodU0 of p defined by

U0 = W
s
f,β0

(Wu
f,β0

(Wc
f,β0

(p))).

By Lemma 3.1, any pair of the three foliationsWu
f ,Wc

f andWs
f are jointly integrable and

meet at a constant angle. If all of these angles wereπ/2, then the volume ofU0 would
be(2β0)

2 · πβ2
0 = 4πβ4

0. Let ν be the actual volume ofU0, and letρ0 = (ν/(4πβ2
0))

1/2.
Define a neighborhoodD0 of the origin inR4 by

D0 = {(z1, z2, z3, z4) : |z1| < β0, |z2| < β0, z
2
3 + z2

4 < ρ2
0}.

Then vol(D0) = ν, and there is aC∞, volume-preserving diffeomorphismψ : D0 → U0

such that:
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R2

0

ψ−1(r)

ψ−1(v)

ψ−1(y)

ψ−1(x)
ψ−1(q)

R2

ψ−1(u)

FIGURE 1.ψ−1{p, q, r, x, y, u, v}.

• ψ(0,0,0,0) = p;
• W

u
f,U0

(ψ(z1, z2, z3, z4)) = ψ({(w1, z2, z3, z4) : |w1| < β0});
• W

s
f,U0

(ψ(z1, z2, z3, z4)) = ψ({(z1, w2, z3, z4) : |w2| < β0});
• W

c
f,U0

(ψ(z1, z2, z3, z4)) = ψ({(z1, z2, s1, s2) : s2
1 + s2

2 < ρ
2
0});

• restricted to the line segments{(0, z2, z3, z4) + (w1,0,0,0) : |w1| < β0} and
{(z1,0, z3, z4)+ (0, w2,0,0) : |w2| < β0}, ψ is an isometry;

• restricted to the disks{(z1, z2,0,0) + (0,0, s1, s2) : s2
1 + s2

2 < ρ2
0}, ψ is a dilation

aboutψ(z1, z2,0,0) by β0/ρ0.
Sinceβ0 < 1/2, for everyx, y ∈ U0, the setsWu

f,U0
(x) ∩Wcs

f,U0
(y) andWcu

f,U0
(x) ∩

Ws
f,U0

(y) each contain precisely one point; let

[x, y]1 = W
u
f,U0

(x) ∩Wcs
f,U0

(y),

and let

[x, y]2 = W
cu
f,U0

(x) ∩Ws
f,U0

(y).

LetD1 = {(z1/2, z2/2, z3/2, z4/2) : (z1, z2, z3, z4) ∈ D0} and letU1 = ψ(D1).
Since, by Lemma 3.1, periodic points off are dense inT4, there exist distinct periodic

pointsq, r ∈ U1 such that,p /∈ {q, r} and

max{d([p, q]1, [p, q]2), d([p, r]1, [p, r]2)} < β0/100. (∗)

Let x = [p, q]1, y = [p, r]1, u = [q, p]1 andv = [r, p]1. Note thatx, y, u, v ∈ U1. For
b ∈ {q, r, x, y, u, v}, let bi be theith coordinate ofψ−1(b), so that

ψ−1(b) = (b1, b2, b3, b4).

LEMMA 3.3. There exist real numbersβ1, ρ1 > 0 such that, forb ∈ {x, y}, if

Cb = {ψ−1(b)+ (z1, z2, z3, z4) : |z1| < 2β1, |z2| < 2β1, z
2
3 + z2

4 < 4ρ2
1},

andVb = ψ(Cb), then:
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R2

Cy

By

Bx

CxD1

D0

R2

ψ −1 (y)

ψ −1 (x)

FIGURE 2. The neighborhoodsBx , By , Cx andCy .

(1) Cb ⊆ D1 (which impliesVb ⊆ U1);
(2) Vx ∩ Vy = ∅;
(3) f−1(Vb) ∩ (O(Wc

f,U1
({p, q, r, x, y, u, v})) \Wc

f,U1
(f−1(b))) = ∅.

Proof of Lemma 3.3.Clearly, ifβ1 andρ1 are chosen sufficiently small, properties (1) and
(2) will be satisfied.

Forb ∈ {p, x, y, u, v},
W

c
f,U1

(b) = W
c
f,β0/2

(b),

and forb ∈ {q, r}, it follows from (∗) that

W
c
f,U1

(b) ⊆ W
c
f,β0/2+β0/100(b).

As a consequence of Proposition 3.1, for anyβ < 1/2 and anyz ∈ T4,

f (Wc
f,β(z)) = W

c
f,β(f (z)).

Theα-limit set of {x, y} andω-limit set of {u, v} are bothO({p}); theα-limit set of {u, v}
andω-limit set of {x, y} are both contained inO(Wc

β0/100({q, r})). Thus, the set of limit
points ofO(Wc

f,U1
({p, q, r, x, y, u, v})) is contained in the set:

O(Wc
f,β2

({p, q, r})),
whereβ2 = β1/2+ β1/50. It is therefore possible to chooseρ1 andβ1 so that property (3)
is also satisfied. 2
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Letρ1 andβ1 be given by Lemma 3.3, letCx ,Cy , Vx andVy be defined as in the lemma,
and forb ∈ {x, y}, let

Bb = {ψ−1(b)+ (z1, z2, z3, z4) : |z1| < β1, |z2| < β1, z
2
3 + z2

4 < ρ
2
1}.

By Lemma 3.2, there areC∞ , volume-preserving flowsXt andYt onD0 such that, for all
t sufficiently small,
• Xt = id outsideCx ;
• if (z1, z2, z3, z4) ∈ Bx , then

Xt((z1, z2, z3, z4)) = (z1, z2, z3 + t, z4);
• Yt = id outsideCy ;
• if (z1, z2, z3, z4) ∈ By , then

Yt ((z1, z2, z3, z4)) = (z1, z2, z3, z4 + t).

For|t| sufficiently small, we define the volume-preserving,C∞ diffeomorphismgt : T4 →
T4 by

gt = (ψ ◦ (Yt ◦Xt)) ◦ f.
LEMMA 3.4. If |t| is sufficiently small, theng = gt is partially hyperbolic, and
(1) if z2

3 + z2
4 < ρ

2
1 andb ∈ {x, y}, then

ψ−1(Wu
g,U0

(ψ(0,0, z3, z4)) ∩Wc
g,U0

(b)) =
{
(x1, x2, z3 + t, z4) if b = x

(y1, y2, z3, z4 + t) if b = y;

(2) if z2
3 + z2

4 < ρ
2
1 andb ∈ {u, v}, then

ψ−1(Ws
g,U0

(ψ(0,0, z3, z4)) ∩Wc
g,U0

(b)) = (b1, b2, z3, z4);
(3) if z2

3 + z2
4 < ρ

2
1 andb ∈ {x, u}, then

ψ−1(Ws
g,U0

(ψ(q1, q2, z3, z4)) ∩Wc
g,U0

(b)) = (b1, b2, z3, z4);
(4) if z2

3 + z2
4 < ρ

2
1 andb ∈ {y, v}, then

ψ−1(Ws
g,U0

(ψ(r1, r2, z3, z4)) ∩Wc
g,U0

(b)) = (b1, b2, z3, z4).

Proof of Lemma 3.4.Supposez2
3 + z2

4 < ρ2
1, and letz = ψ(x1, x2, z3 + t, z4). If |t| is

sufficiently small, thenWu
g,U0

(ψ(0,0, z3, z4))∩Wc
g,U0

(x) contains at most one point. We
show thatz is contained in this intersection. As in the proof of Theorem A, Lemma 2.2,
one verifies that

lim
n→∞ d(g−n

t (z), g−n
t (x)) = 0.

The details are left to the reader. This proves property (1), whenb = x. The other
properties are proved similarly. 2

LEMMA 3.5. For |t| sufficiently small,gt has the stable accessibility property.



892 M. Shub and A. Wilkinson

Proof of Lemma 3.5.Let β2 = min{ρ1β0/ρ0, β1}/4. By Lemma 3.1, every leaf of the
unstable foliationWu

f is dense inT4. Thus, there existsε0 > 0, such that, ifh : T4 → T4

is any diffeomorphism satisfyingdC1(f, h) < ε0, thenh is partially hyperbolic, and, for
everyz ∈ T4,Wu

h (z) is β2/4-dense inT4. Fix thisε0.
It follows from Lemma 3.4, that for|t| sufficiently small, ifz2

3 + z2
4 < ρ2

1, then there is
a 4-leggedWu

gt
,Ws

gt
-pathζ((z3, z4), ·) such that:

• ζ((z3, z4),0) = ψ(0,0, z3, z4),
• ζ((z3, z4),1/4) = ψ(x1, x2, z3 + t, z4),
• ζ((z3, z4),1/2) = ψ(q1, q2, z3 + t, z4),
• ζ((z3, z4),3/4) = ψ(u1, u2, z3 + t, z4),
• ζ((z3, z4),1) = ψ(0,0, z3 + t, z4).
These paths can be chosen to depend continuously onz3, z4. Similarly there is a continuous
family of 4-leggedWu

gt
,Ws

gt
-paths{η((z3, z4), ·) | z2

3 + z2
4 < ρ2

1} such that:
• η((z3, z4),0) = ψ(0,0, z3, z4),
• η((z3, z4),1/4) = ψ(y1, y2, z3, z4 + t),
• η((z3, z4),1/2) = ψ(r1, r2, z3, z4 + t),
• η((z3, z4),3/4) = ψ(v1, v2, z3, z4 + t),
• η((z3, z4),1) = ψ(0,0, z3, z4 + t).

As in the proof of Theorem A, Lemma 2.3, it follows that for|t| sufficiently small (< t0,
for somet0 > 0), there existsεt > 0, such that ifdC1(gt , h) < εt , then any two points in
Bβ2(p) can be connected by aWu

h ,Ws
h-path.

Chooset , with |t| < t0, so thatdC1(f, gt ) < ε0. Pick εt as in the previous paragraph,
and suppose thatdC1(gt , h) < min{εt , ε0/2}. ThendC1(gt , f ) < ε0/2 + ε0/2 < ε0, and
so for any two pointsz,w ∈ T4,

W
u
h (z) ∩ Bβ2(p) 6= ∅,

and

W
u
h (w) ∩ Bβ2(p) 6= ∅.

Thusz andw can be connected to pointsz1, w1 ∈ Bβ2(p), respectively, along pieces of
unstable manifold forh. SincedC1(gt , h) < εt , the pointsz1 andw1 can be connected by
aWu

h ,Ws
h-path. Concatenating these paths gives aW

u
h ,Ws

h-path fromz tow, and sogt is
stably accessible. 2

To finish the proof of Theorem C, letε > 0 be given. SincedC∞(gt , f ) → 0 ast → 0,
there exists at > 0 such that:
• dC∞(gt , f ) < ε,
• gt is partially hyperbolic and center bunched (these properties areC1-open),
• gt is dynamically coherent (sincef is normally hyperbolic, this property isC1-open;

see §1),
• gt is stably accessible (by Lemma 3.5).
By Theorem 1.1,gt is stably ergodic. 2

Proof of Lemma 3.2.Pick an open setD with B ⊆ D ⊆ D ⊆ C, and letT be the distance
fromB to the boundary ofD.
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LetH : R4 → R be aC∞ function satisfying:
• H(z1, z2, z3, z4) = z3 if (z1, z2, z3, z4) ∈ D,
• H(z1, z2, z3, z4) = 20 if (z1, z2, z3, z4) ∈ R4 \ C.

Let

Y (z1, z2, z3, z4) = −∂H
∂z2

∂

∂z1
+ ∂H

∂z1

∂

∂z2
− ∂H

∂z4

∂

∂z3
+ ∂H

∂z3

∂

∂z4

be the Hamiltonian vector field generated byH , and letYt be the flow generated byH .
ThenYt has the desired properties. 2
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