ABSTRACT. In this paper we eliminate some of the most nettle-
some hypotheses of our previous article, “Stably ergodic dynamical
systems and partial hyperbolicity” [22], and expand the domain of
stably ergodic, partially hyperbolic dynamical systems to include
all partially hyperbolic affine diffeomorphisms of compact homo-
geneous spaces which have the accessibility property. Our main
tool is a new concept — julienne quasi-conformality of the stable
and unstable holonomy maps. An important feature of this is that
the holonomy maps preserve all julienne density points.
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1. INTRODUCTION

Let M be a compact differentiable manifold without boundary and
let m be a smooth probability measure on M. We consider the space
Difffn(M ) of C? diffeomorphisms of M which are measure preserving
(we also say volume preserving) with respect to the measure m. If there
is a neighborhood U of f in Diff2 (M) consisting entirely of m-ergodic
diffeomorphisms, then f is stably ergodic .

The persistence of positive measure sets of invariant tori due to Kol-
mogorov, Arnold, Moser, Herman and others (see Herman [14] and
Yoccoz [28]) shows that stable ergodicity cannot in general be an open
and dense property in Diff2, (M).

These invariant tori have no hyperbolic behavior at all. In contrast,
a uniformly hyperbolic diffeomorphism f € Diff? (M) is stably ergodic.
See Anosov’s thesis [2]. In a series of papers, [13, 21, 22, 23, 24], we have
been investigating the mixed situation which is partially hyperbolic.

Recall that f : M — M is partially hyperbolic if it is non-trivially
normally hyperbolic in the following sense. The tangent bundle of M
is a T f-invariant direct sum

TM =FE"® E°® E®,
the stable and unstable bundles £* and E* are non-zero, and T'f con-
tracts and expands them more sharply than it does the center bundle

E¢. That is, there is a Riemann structure on T'M such that T"f ex-
pands E“, T°f contracts E*, and

SngTSfH < infm(7;f)  and SgpIIT,ffll < infm(7;'f),

where T"f,T°f,T*f are the restrictions of T'f to E*, E, E*, and m(T)

refers to the conorm of 7', inf{|Tv| : |[v] = 1}. The center bundle is

permitted to be zero, in which case f is an Anosov diffeomorphism.
The center bolicity of f is the ratio

L e

m(Tf)
We say that f is center bunched if b is close to 1. In a typical case,
b < 1.09 suffices. See Section 4 for details. The examples to which our
stable ergodicity theory applies most readily are perturbations of cases
where b = 1, so we find center bunching a reasonable hypothesis.

Our main themes have been

(1) A little hyperbolicity goes a long way in guaranteeing stably er-

godic behavior.
(2) Some hyperbolicity may be necessary for stable ergodicity.
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With respect to the second see the papers of Brezin and Shub [4]
and Diaz, Pujals, and Ures [10]. With respect to the first, in [22] we
have stated
Conjecture 1. Stably ergodic diffeomorphisms are open and dense
among the partially hyperbolic C? volume preserving diffeomorphisms
of M.

An approach to this conjecture breaks it down into two parts, using
the notion of accessibility.

Given z,y € M and given the splitting TM = E*@® E°® E° for f, we
say that y is us-accessible from x if there is a piecewise differentiable
path joining = to y always tangent either to E* or E®. Clearly, acces-
sibility is an equivalence relation. If there is only one equivalence class
(every y is accessible from every z) we say that the splitting £ & E°
(or the diffeomorphism f) has the accessibility property. If every g
in some neighborhood of f has the accessibility property, f is stably
accessible. If the only measurable sets which are saturated by the
accessibility equivalence relation have measure zero or one, we say that
E"® E?, or f, has the essential accessibility property. Obviously,
stable accessibility implies accessibility implies essential accessibility.
Conjecture 2. Stable accessibility is an open and dense property
among C? partially hyperbolic diffeomorphisms, volume preserving or
not. Openness is obvious.

Conjecture 3. Partially hyperbolic C? volume preserving diffeomor-
phisms with the essential accessibility property are ergodic.

In [22] we proved Conjecture 3 with the addition of quite a few
technical hypotheses. It is the goal of this paper to weaken the most
nettlesome of these technical hypotheses concerning the bunching of
the hyperbolic part of the spectrum, and thus to conclude the stable
ergodicity of a much wider collection of diffeomorphisms: according to
Theorem C, below, all affine diffeomorphisms of compact homogeneous
spaces with the accessibility property are stably ergodic. In essence,
bunching of the unstable, center, and stable spectra is reduced to center
bunching.

Recall that E* and E* are tangent to unique foliations W* and W?*
which have C! leaves, but that since the bundles E* and E® are only
Holder continuous, the foliations may fail to be smooth. If E*@® E°, E°,
and E° @ E* are also tangent to continuous foliations with C! leaves
Wer s We and W and if W€ and W* subfoliate W, while W¢ and W?*
subfoliate W, then we say that f is dynamically coherent.

Theorem A. If f € Diff’,(M) is a center bunched, partially hyper-
bolic, dynamically coherent diffeomorphism with the essential accessi-
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bility property then f is ergodic.
As a consequence we get

Corollary a. Center bunched partially hyperbolic diffeomorphisms which
are stably dynamically coherent and stably accessible are stably ergodic.

Proof. According to [22], small perturbations preserve the properties
of partial hyperbolicity and center bunching. Therefore, every pertur-
bation of f in Diff?, (M) satisfies the hypotheses of Theorem A and is
ergodic. O

We make two remarks. The first concerns the hypothesis in Corol-
lary a that the diffeomorphism be stably dynamically coherent. Per-
haps dynamical coherence is itself stable under perturbations of the
diffeomorphism; we do not know. A general, stable condition that
implies stability of dynamical coherence is plaque expansivity of the
center foliation. For, as we showed in [15], a plaque expansive, nor-
mally hyperbolic foliation is structurally stable as a foliation, and this
implies that dynamical coherence is unaffected by perturbations of the
diffeomorphism. Also, if the center foliation happens to be C*, or if
the diffeomorphism acts isometrically on the center leaves, then plaque
expansivity is automatic.

Second, the hypothesis of partial hyperbolicity in Theorem A can
be weakened somewhat. It is only necessary to assume that one of
the two bundles E*, E*® is non-zero. This happens if the spectrum of
T f splits into just two parts, say an unstable part that represents the
strong expanding behavior of f, and a remaining, indecomposable part
that represents the weak expanding, neutral, and contracting behavior
of f. Thus, T f leaves invariant a splitting M = E" & E°. Since M
is compact, there must be some true contraction to balance the expan-
sion in E*. Some vectors in E°¢ get contracted by T f, but there need
not exist in this pseudo-center subbundle £E¢ a continuous, invariant,
purely contracting subbundle. The proof of Theorem A in this special
case, however, is quite simple. Since E* = 0, a us-path lies wholly in
an unstable leaf. That is, accessibility equivalence classes are single
unstable leaves. Now suppose that f fails to be ergodic. Then there
is an invariant set A of intermediate measure, 0 < m(A) < 1, and by
the usual use of the Birkhoff Ergodic Theorem, it consists, except for a
zero set, of almost whole unstable leaves. According to [20], the unsta-
ble foliation is absolutely continuous, even when E® = 0. Thus, when
we form the unstable saturate of A, Sat“(A), by taking the union of
all unstable leaves that meet A in sets of positive leaf measure, we see
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that A differs from Sat*(A) by a zero set. By construction Sat“(A) is
saturated by the accessibility equivalence relation, and this contradicts
the hypothesis in Theorem A of essential accessibility.

The proof of Theorem A, proceeds by a careful examination of the
measure theoretic regularity properties of the unstable holonomy map
h., which is defined by sliding along the leaves of the unstable foliation.
See Section 4. Also, of course, we have corresponding properties of the
stable holonomy map h,. Two facts are already known about A,.

(a) h, is a bi-Hélder homeomorphism, but is not in general Lipschitz.

(b) h, has a continuous, positive Radon Nikodym derivative with

respect to Lebesgue measure.
These facts were originally proved by Anosov in [2], (b) being his main
technical tool to establish ergodicity. It implies that h, is absolutely
continuous. See Also [20]. To give it a name we say that a homeomor-
phism satisfying (b) is RN-regular. Automatically, the inverse of an
RN-regular homeomorphism is RN-regular.

At issue is how the holonomy map h, affects density points. (Recall
that p is a Lebesgue density point of a set S if the measure theoretic
concentration of S in the ball of radius r at p converges to 1 as r — 0.
See also Section 2.) In low dimensions or when the hyperbolic spectrum
is tightly bunched, we showed in [13, 22] that h, is density point
preserving: h, carries every Lebesgue density point of a measurable
set S to a Lebesgue density point of h(S). It is elementary that an
RN-regular homeomorphism h preserves almost all density points. In
our proof of stable ergodicity, however, “almost all” is not enough. We
need “all”, and as we showed by example in [13], “all” is not implied
by RN-regularity.

It is natural to ask whether h, satisfies some standard, additional
property that implies it is density point preserving. For example,
one easily checks that a bi-Lipschitz homeomorphism preserves density
points. However, according to (a), above, holonomy maps are not in
general bi-Lipschitz. A different criterion is quasi-conformality. In [12]
Gehring and Kelley prove that a bi-quasi-conformal homeomorphism
is density point preserving. It turns out, though, that

bi-RN + bi-quasi-conformal =-  bi-Lipschitz,

so we can not hope that the Gehring-Kelley Theorem applies to holo-
nomy maps in general. (This implication is a nice exercise in pictorial
measure theory.)

At present, we are unable to say whether holonomy preserves Lebesgue
density points in general. Rather, using shapes called juliennes in place
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of round balls (see Section 4), we re-define the density point concept
and prove three things.
(a) Almost every Lebesgue density point is a julienne density point,
and vice versa.
(b) The holonomy maps are quasi-conformal with respect to juli-
ennes.
(¢) The holonomy maps preserve (all) julienne density points.
In fact, (b) implies (c), which is a generalization of the Gehring-Kelley
Theorem. See Section 8. From all this, we draw the conclusion that

Juliennes are the natural shapes to use
when analyzing holonomy maps.

We began studying juliennes in [13] and continued to investigate
their properties in [22]. The difference in our current approach is that
we control the shape of the juliennes dynamically rather than only
through Hoélder estimates on the E* and E* bundles. This is carried
out in Sections 4 and 6.

In some ways it seems a shame to give up the infinitesimal infor-
mation embodied in £* and E* and to rely on more ad hoc geometric
constructions. Anosov (pages 127-129 and 167 of [2]) voices a similar
sentiment regarding the existence and uniqueness of stable and unsta-
ble manifolds: instead of ad hoc dynamical arguments, he imagines
there should be a construction that uses non-differentiable Frobenius
integrability conditions, and avoids iteration.

It can be shown that the holonomy maps have a kind of flag differ-
entiability. Perhaps julienne quasi-conformality can be derived directly
from this infinitesimal property.

Once we have proven the density point preservation properties for
stable and unstable holonomy maps, the proof of Theorem A proceeds
as in [13, 22] along classical lines dating from Hopf [16], Anosov [2], and
others, using us-accessibility and the essential W* and W* saturation
of invariant sets. There are, however, some subtleties to this proof, one
of which we discuss now.

The center foliation, when it exists, integrates the center plane field
E¢. Tt is even less regular than the stable and unstable foliations, which
always exist. As has been shown by A. Katok in an example written up
by J. Milnor [17], the center foliation for a smooth system can have the
following measure theoretically singular property: for some measurable
set S of full measure, each center leaf meets S in at most one point.
This phenomenon has been referred to as “Fubini’s nightmare”, or, by
Milnor, as “Fubini Foiled”. Even though the center leaves are smooth,
and the center plane field is Holder continuous, the center foliation is
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unavoidably pathological.

Theorem A allows us to deduce C? stable ergodicity for many affine
diffeomorphisms of compact homogeneous spaces, as we now explain.
See also Section 10. We make the following

Standing Lie Group Hypotheses.

(a) G is a connected Lie group and B C G is a proper, closed sub-
group.

(b) G/B is compact.

(c) Haar measure projects to a finite measure m on G/B, invariant
under left translation, *B — gxB.

(d) f: G/B — G/B is an affine diffeomorphism. That is, it is
part of a commutative diagram

a f= Ly,0A o
wl lw
G/B / G/B

where A is an automorphism of G, L, is left multiplication by
some fixed element g € G, and, to make the projection well

defined, A(B) = B.

A simple example is G = R™ and B = Z™. Then G/B is the torus
T™. The map L, is an affine translation of R™ to itself, A is an m x m
integer matrix with determinant +1, and f sends the coset [z] to the
coset [g + Ax].

The hypotheses of Theorem A for a general affine diffeomorphism
f are easily checked at the Lie algebra level. The Lie algebra of G is
g = 1.G, where e is the identity element of G. The adjoint action of g
on g is given by the derivative at the identity of g-conjugation,

Ad(g) g — g
X — T,R,1 o T,Ly(X),

where R,-1 is right multiplication by g~ ' Ry1 : h— hg™'. Induced
by f is a Lie algebra automorphism

a(f) = Ad(g) o T.A.

It determines when we can apply Theorem A to f as follows. Split



8 C.C. PUGH AND M. SHUB

g = T.G according to the generalized eigenspaces of a(f),
g =0'90000,

where the eigenvalues of a(f) on g*, g°, g° have modulus > 1, = 1, and
< 1 respectively. As we show in Section 10, these eigenspaces are Lie
subalgebras. See also [22]. The hyperbolic subalgebra of f is the
smallest Lie subalgebra h such that g*Ug® C h C g. It is an ideal

in g. See [22]. Let b be the Lie algebra of B, b C g.

Theorem B. Suppose that f is an affine diffeomorphism of the com-
pact homogeneous space G/B. Then
(a) f is partially hyperbolic if and only if ¢ b.
(b) If f is partially hyperbolic then it is center bunched and dynam-
ically coherent.
(c¢) f has the accessibility property if and only if g = b+ b.

We deduce

Theorem C. The affine diffeomorphism f : G/B — G/B is stably
ergodic among C? m-preserving diffeomorphisms of G/B if (merely)
the hyperbolic Lie subalgebra § is large enough that g = b + b.

Here are some special cases of Theorem C. For their proofs and that
of Theorem C, see Section 10.

Corollary b. Suppose that G is a simple Lie group (its Lie algebra has
no non-trivial ideals), B is a uniform discrete subgroup of G, the ho-
mogeneous space G /B is compact, and g € G is given. Left translation
by g on G/B is stably ergodic among C* volume preserving diffeomor-
phisms if and only if Ad(g) has at least one eigenvalue of modulus
different from 1.

Corollary c. Let B be a uniform discrete subgroup of SL(n,R) and
let M € SL(n,R) be given. Left multiplication by M is stably ergodic
among C? wvolume preserving diffeomorphisms of SL(n,R)/B if and
only if M has at least one eigenvalue of modulus different than 1.

These corollaries provide examples of what we mean by a little hyper-
bolicity going a long way toward guaranteeing stable ergodicity. The
hyperbolic part of M can be low dimensional, the center part high
dimensional, and nevertheless we get stable ergodicity.

See [22] for more equivalent conditions to stable ergodicity for SL(n, R)
and semi-simple Lie groups.

The first case of Corollary ¢ not covered by [22] is given by SL(3,R)
and a matrix M with two eigenvalues of modulus different than one and
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the third equal to one. In this case the hyperbolic bunching conditions
of [22] are violated.

To our knowledge ergodicity in the context of partial hyperbolicity
and accessibility was first considered by Brin and Pesin [6]. Brin in
[5] goes further in this direction. It seems quite likely that the open
and dense set of skew products he considers in [5] which are stably
ergodic among skew products are also stably ergodic in Diff?n, but we
have not verified it. The preprint of Burns and Wilkinson [8] is relevant
here. Further work on skew products is contained in papers by Adler,
Kitchens, and Shub [1], Field and Parry [11], and Parry and Pollicott
[19]. For stable ergodicity of time one maps of geodesic flows see the
the papers of Grayson Pugh and Shub [13], Wilkinson [27], and Burns,
Pugh, and Wilkinson [7].

We thank Dennis Sullivan for several helpful conversations about
density points. It was in his seminar at CUNY that we first be-
came accustomed to such concepts as bounded distortion and quasi-
conformality in relation to density points.

2. DENSITY POINTS

The technical basis for our main theorems is differentiation of inte-
grals. See M. de Guzman’s book, Differentiation of integrals in R,
9] and Chapter 1 of E. Stein’s book, Harmonic Analysis [26]. In this
section we review some of the ideas involved.

Let X be a locally compact metric space and let m be a regular, non-
atomic, locally finite, Borel measure on it. The measure of a measurable
set S C X is the infimum of the measures of open sets that contain
S. Points have zero measure. Compact sets have finite measure. For
example, m could be a smooth measure on a manifold. A family V =
UV,, indexed by p € X, is a Vitali basis if each V, is non-empty,
the sets V' € V,, are measurable with non-zero measure (hence non-
zero diameter), each contains p, and there exist in V,, sets of arbitrarily
small diameter. The simplest good example is the family B of all n-
dimensional balls, of all radii, centered at all points of R".

The concentration, or conditional measure, of a measurable set A
in a measurable set V' of non-zero measure, is the ratio

m(ANV)
m(V)
Fix a Vitali basis V. A point p € X is a V-density point of A if
lim[A : V] =1,

[A:V]=
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the limit being taken as V' € V,, shrinks to p. The basic fact about
density points is the

Lebesgue-Vitali Theorem. With respect to the Vitali basis B of
n-balls, almost every point p of a measurable set A C R" is a density
point of A.

In this paper we need to generalize the Lebesgue-Vitali theorem to
Vitali bases more dynamically natural than B. We must work not with
balls, but with juliennes, small sets that are long and thin. They look
like slivered vegetables. At smaller and smaller scales, our juliennes
become less round, thinner, and more elongated. See Section 4 in this
paper. One of our main results is that despite the juliennes’ strange
shape, almost every point of a Lebesgue measurable set is a julienne
density point. See Theorem 8.4.

The Vitali basis V differentiates the integral of an integrable
function ¢ : X — R if, for almost all points p € X,

o(p) = lim ﬁ | o) da.

The limit is taken as the set V' € V), shrinks to p; i.e., diamV — 0. If V
differentiates the integral of every ¢ in some set ¢ of locally integrable
functions, we say that V is a ®-differentiation basis.

The Lebesgue-Vitali Theorem can be restated as the fact that B is
a y-differentiation basis, where y is the set of characteristic functions
of measurable subsets of R™. For

1
[A: V] = (V) /VXA(x) dx.

In fact more is true. As Lebesgue showed, B is an L}, -differentiation
basis.

If V is a y-differentiation basis, it is called a density basis. A result
of Busemann and Feller shows that being a density basis is equivalent
to being an L2 -differentiation basis. See [9], page 72.

The geometric characterization of density bases in R" is a central
point in much of analysis (see [26]), and has a long history (see [9]).

When balls are replaced by cubes (whose edges need not be parallel
to the coordinate axes), the same result holds: The cubic Vitali basis
is a density basis. But even when cubes are replaced by n-dimensional
rectangles the situation becomes subtle and is not completely under-
stood. There is a trade-off between the eccentricity of the rectangles
and how much their edge directions vary.

First consider the case in which the edge directions do not vary at all.
The Vitali basis R, of n-dimensional rectangles whose edges are axis
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parallel is a density basis, but it is not an L} -differentiation basis.
See [9], pages 74 and 96. To refine R, so that it becomes an L}, -
differentiation basis we impose a restriction on the eccentricity of the
rectangles. A sufficient condition is that for some constant K > 0 and
all rectangles R of diameter < 1,

eccentricity R < (diameter R)’K )

For this type of condition implies the “doubling property” of Stein [26],
page 8, or the “volumetric engulfing property” discussed in Section 3
below.

It is easy to see that the particular choice of coordinate axes is ir-
relevant. If R, is the Vitali basis of rectangles whose edges are always
parallel to some fixed, finite set of directions in R™ then R, is a den-
sity basis, and if the eccentricities of its rectangles are bounded by
a fixed, negative power of their diameter then R, becomes an L}, -
differentiation basis.

On the other hand, when the edge directions of rectangles in a Vi-
tali basis are drawn from an infinite set, the situation is subtler. As
is shown by Nikodym’s “paradoxical set” [18], the Vitali basis R of
all n-dimensional rectangles is not a density basis. Nor does R be-
come a density basis if one imposes a continuity restriction on the edge
directions. See Chapter 5 of de Guzman’s book [9].

The Vitali bases discussed so far are linear. Rectangles are linear
images of the cube. As we stated before, however, the Vitali bases
that arise naturally in non-linear dynamics consist of juliennes — non-
linear rectangloids with varying edge directions. Despite the obstacles
described above, juliennes turn out to be satisfactory Vitali bases due,
it seems, to three factors.

(a) The elongation axes of a julienne are Holder controlled, not merely

continuously controlled.

(b) The eccentricity of a julienne and its diameter are both exponen-
tial functions of a common number n, the number of dynamical
iterations.

(¢) The non-linearity, nesting, and shape-scaling properties of the
julienne are governed by a fixed, smooth dynamical system.

One might hope to get an abstract geometric characterization of
density bases, say for a basis V of rectangles in R?, in these sorts of
terms. If the eccentricity of rectangles in V is no greater than a fixed
negative power — K of the diameter, if the edge directions of rectangles
in V,, are a 6-Holder function of x, and if there is some favorable relation
between K and 6 (say K(1—0) < 1), does it follow that V is a density
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basis?

We conclude this section by discussing a transformation property of
density points.

Let (X, m) and (X', m') be measure spaces of the type we have been
considering (locally compact, etc.) and let V,V' be Vitali bases on
them. Let A : X — X’ be a homeomorphism. If h bijects V to V', and
has a positive, continuous Radon Nikodym derivative it is easy to see
that V-density points biject to V'-density points. We need a slightly
better version of this result. We say that the homeomorphism h is K-
quasi-conformal with respect to V,V’ if for all small V' € V,,, there
are small V', V" € V} ) such that

/ "
UASO
m/ (V') —
Ordinary quasi-conformality in R" is the same as quasi-conformality
with respect to the Vitali basis of round balls and Lebesgue measure.

VichVv)ycv” and

Proposition 2.1. Assume that h and h™' are quasi-conformal with
respect to the Vitali bases V,V'. If h has a continuous, positive Radon
Nikodym derivative then it bijects V-density points to V'-density points.

Proof. Suppose that p € X is not a density point of A C X. Then,
for some € > 0 and some V € V, with arbitrarily small diameter,
[A: V] <1— e By continuity of the Radon Nikodym derivative and
smallness of V', [h(A) : h(V)] <1—¢€/2. Since h(V') occupies at least a
portion 1/K of V" the concentration of h(A) in V" is bounded away
from 1. That is, h(p) is not a density point of h(A).

We have shown that h carries non-density points to non-density
points. The same is true for A=, Hence h and h~! also biject den-
sity points. ]

3. VOLUMETRIC ENGULFING

In this section we prove a version of the Lebesgue-Vitali density point
theorem. We will apply the result to juliennes in Section 8.

As in the previous section, let X be a locally compact, metric mea-
sure space, and let m be a regular, non-atomic, locally finite, Borel
measure on it. Let V be a Vitali basis on X. We also assume that V is
filtered by a rank function

rank : V — N,

compatible with diameter in the sense that rank(V) — oo if and only
if diam(V') — 0. That is, given € > 0, there is an integer N such that
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if rank(V') > N then diam(V') < €, and conversely, given N € N there
is an € > 0 such that if diam(V') < e then rank(V) > N.

Definition. V is volumetrically engulfing if for some constant L,
and for each V € V there is a measurable set V containing V' such that
(a) m(V) < Lm(V).
(b) If V, V' € V have non-empty intersection and rank(V") < rank(V")
then V' C V.
(¢) If m(V) — 0 then rank(V) — oco. That is, given N € N there
exists § > 0 such that m(V') < ¢ implies rank(V') > N.

See Figure 1.
V is closed if every V € V, € V is a closed subset of R".

FIGURE 1. The set V engulfs all V’ € V that meet V.
but are not much larger than V.

Theorem 3.1. IfV is a volumetrically engulfing closed Vitali basis of
X and S is a measurable subset of X then almost every point of S is
a density point of S with respect to V. In other words, V is a density
basts.

Proof. For each § < 1 consider the set
B = Bg = {x € §:lminf[S:V] < g}

The liminf is taken as V € V, shrinks to p. We claim that B has
measure zero. From this the theorem follows, for we can take a sequence
B, = 1 —1/n that tends to 1. Almost every point of S belongs to
S" = S\ UBg,, and every z € S’ is a density point of S.

Let € > 0 be given. It is enough to show that B has measure < e.
Cover B by an open set U such that

m(U) < m(B) + #.
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Define a Vitali covering of B by
W={VeV:VcU diam(V)<1, and[S:V] < g}

Since B C S,
[B:V] < [S:V].

Apply the standard method of proof of the Lebesgue-Vitali Theo-
rem. First choose a V; € W with minimum rank. All V € W have
rank(V) > rank(V;). Then choose a Vo € W with minimum rank
among those members of W that do not meet V;. Continue induc-
tively. This produces a sequence of disjoint sets V,, contained in U.
Their total measure is no more than the measure of U. In each V,,, the
concentration of B is < 3. There may be some points of B which fail
to be covered by the sets V,,. Call this not-covered set

B = B\ JVa.

We claim that B’ has outer measure zero. (We are still in the process of
showing that B has measure < €.) Since the series Y m(V},) converges,
its tail, 3°,,-x m(V},), tends to zero as N — oo. To prove that B’ has
outer measure zero, then, it is enough to show that for each N € N, B’
is contained in U,-y V;,. For since V is volumetrically engulfing, the
series Y,,- x m(V},) is no greater than LY,y m(V,), which tends to 0
as N — oo.

Since Y>m(V,,) converges, its terms tend to zero. According to (c) in
the definition of volumetric engulfing, rank(V},) — oo.

Fix an N and consider a point € B’. Since x ¢ UY_, V,, since
the sets V,, are closed, and since the sets in V, have arbitrarily small
diameter, there is a set V' € W which contains x and is disjoint from
Vi,...,Vn. The set V was available for choice, but was never chosen.
It has finite rank. Therefore the reason it was never chosen is that for
some first V;, i > N, V;NV # (). Since we always choose a set with
minimum rank, and since V' was available to be chosen, we see that
rank(V;) < rank(V). Because V is volumetrically engulfing, the set V;
engulfs V. That is,

B c |V,

n>N

and it follows that B’ has outer measure zero.
Except for the zero set B’, B is covered by the disjoint sets V,,, and
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in each its concentration is at most (3. Thus
m(B) = Zm(VnﬂB) <p Zm(Vn)
< BmU) <8 (m(B) + M)

B
— Bm(B)+e(1- ).
Therefore, (1—/5) m(B) < e(1—0) and m(B) < e. Since € is arbitrary,
it follows that B has measure zero, and as observed at the outset, this

implies that almost every point of S is a density point with respect to
V. O

Corollary 3.2. If V is a volumetrically engulfing closed Vitali basis
of X and S C X is measurable, then for almost every point x € X, the
concentration of S in V' converges to the characteristic function of S
at x as 'V €V, shrinks to x,

lim[S : V] = {1 yres

0 ifxégs.

Proof. Theorem 3.1 applies equally to S and to its complement S¢ =
X\S. Thus, for almost every point z € X,

ifxeS then[S:V]—1 asV €V, shrinks to z.
if v € S¢ then [S°: V] — 1 asV €V, shrinks to z.

Measurability implies that [S : V] 4+ [S¢ : V] = 1, and the corollary
follows. O

It is easy to phrase the volumetrically engulfing concept in terms of
diameter, not rank. Namely, for some L, K,

(a) m(V) < Lm(V).

(b’) If V, V" € V have non-empty intersection and diam(V") < K diam(V)
then V' C V.

(c) If m(V') — 0 then diam(V') — 0.

Thus, our volumetric engulfing condition is the same as assumption
(i,ii)* of [26], page 8. This makes Theorem 3.1 a consequence of the
corollary of [26], page 13. The proof given there involves maximal
functions.

4. JULIENNES

Juliennes are foliation product sets constructed as follows. Let W*, W W€ W< \W*
be dynamically coherent foliations. At p € M we will choose

X CWip)  DCWgilp) Y CWip)
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with carefully estimated small sizes. Then the center unstable juli-
enne, the center stable julienne, and the solid julienne are

JU = W™XuD)

J® = W(DuUY)

J solid __ Wuﬂs<qu U Jcs)’
where the notation W (C) refers to the set of all intersection points

of local a-manifolds and local b-manifolds that pass through C. That
is,

W (C) = {z: for some ¢,d € C,z € We.(c) N WL ()}
Equivalently,
WA(C) = Wi (C) N WE(C).

See Figures 2 and 3. We refer to W™ (C') as the (local) anb-saturate
of C.

FIGURE 2. W(C) fills out C by the local foliations W, W°,

We call J N We.(z) the a-fiber of the julienne through the point
z € J. In particular, if z € D, the unstable fiber of J through z is
denoted as X (z), while the stable fiber of J* is Y (z). If z = p then
X(z) = X is the main unstable fiber of J* while Y (z) =Y is the
main stable fiber of J*. We call the center fiber D the center core
of the julienne.

Proposition 4.1. Juliennes are natural in three ways. They are lo-
cally maximal, they iterate naturally under f, and they behave correctly
under holonomy.
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FI1GURE 3. The solid julienne is the u N s-saturate of J U J.

Proof. Juliennes are of the form
J =W Q)
forab=cuand C =X UD,ab=csand C =DUY, or ab= us and
C = J"U J*. By local maximality we mean that
(1) J = WP(]).

Repeating the operation C' — W °(C) does not enlarge a julienne. To
check local maximality we write

W) = Wiee(J) 0 Wige(J)
= Wiee(Wie(C) N Wiee(C)) N Wigo(Wiee(C) N W (C))
C Wiee(Wiee(C)) N Wige(Wiee(€)) = .

The reverse inclusion, J C Wa%(J), is valid for any set J, which
completes the proof of (1).

By naturality under f iteration we mean that for J = W(C), we
have

(2) F(I) =W (f(O)),
a fact that is clear from invariance of the a- and b-foliations.
Naturality under holonomy applies primarily to the center unstable
and center stable juliennes. We assert that these juliennes are products
in the following sense.
(a) The center holonomy gives a homeomorphism Y (z) — Y (2’) be-

tween any two stable fibers of J. It also gives a homeomorphism
X(z) — X(7') between any two unstable fibers of J.
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(b) The unstable holonomy gives a homeomorphism between any two
center fibers of J, while the stable holonomy gives a homeomor-
phism between any two center fibers of J.

These holonomy facts are a direct consequence of our dynamical co-
herence assumption: the unstable and center foliations sub-foliate the
center unstable foliation, while the center and stable foliations sub-
foliate the center stable foliation. O

Our choice X, D,Y involves several estimates on Holder exponents,
contraction rates, etc. We start by defining

3) w o= min{m(Tf),mTf)}
(4) v = maxf|Tf], |7
(5) v = min{m(T*f),m(T*f )},

The assumption of partial hyperbolicity implies
0 <pu<rv<y< L

The behavior of f in the stable direction is a contraction whose strength
is between p and v, the behavior of f in the unstable direction is an
expansion whose strength is between 1/v and 1/u, and the behavior of
f in the center direction is an isometry up to a factor between ~ and
1/7.

The Fiber Contraction Theorem of [15], pages 30 and 81, and [25],
page 45, converts this expansion/contraction information into regular-
ity statements. For example, to estimate the Holder exponent of E*
we proceed as follows. Let L be the vector bundle over M whose fiber
at p € M is the space of linear maps S : Ef* — EJ,

L,= L(E;“, E;)
The graph transform sends S € L, to (T'f)4S € Ly, where
graph((T'f)4S5) = (T'f)(graph(s5)).

This gives a bundle map

I (Tf)4 I
wl Jw
M / M

in which the fiber is contracted more sharply than v~y~!, while the base
contraction is at worst u. (We use the operator norm on fibers and
the Riemann metric on the base.) The zero section of L is its unique
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invariant section, and it is 8-Holder if the fiber contraction #-dominates
the base contraction in the sense that

(6) vyl < 1.

(In the actual proof of this, to avoid circular reasoning we smoothly ap-
proximate E<, E* by bundles E®*, E%, we replace L by L = L(Ecu, Es),
and we restrict the graph transform to the unit disc bundle of L.)

Since our expansion/contraction hypotheses are symmetric, the same
estimate is valid for the Hdélder exponent of £, and hence for the
center bundle F¢ = E“ N E. In fact the estimate holds also for the
unstable and stable bundles, and, manipulating (6), we see that all five
bundles E", ..., E® are §-Holder if

1 -1
(7) g < g )
log p

From now on, # will denote the Holder exponent of F¢ 0 < 0 < 1.
It is no smaller than the 6 estimated in (7), but by good fortune (for
instance, if f is affine) it might be larger. In terms of this § we will
assume the following center bunching condition

(8) v o< 724—2/0'
Thus, v is so near 1 that even a potentially high power of it re-
mains greater than v. Center bunching means that hyperbolic behavior
strongly dominates center behavior.

Perturbations of the affine diffeomorphisms discussed in Section 1
satisfy the center bunching hypothesis. See Section 10.

It may be of interest to express the center bunching condition in a
way that depends only on pu, v.

Proposition. If y=v", r > 1, then sufficient for the center bunching
condition (8) is that 7y is so close to 1 that

log'y 3—1—27“ — (34—27’)2—8
< .
log v 4

The proof is left to the reader. Interpreting this inequality numer-
ically shows that our current center bunching condition is modest in
comparison to the bunching conditions in [22]. For example, when the
hyperbolic part of the spectrum is quarter pinched
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then a satisfactory v is
v > 91.

In particular the dimensions of the stable and unstable bundles no
longer are part of the estimates.

Next, we sharpen (8). Choose v < v and 0 < # < 6 so that

(9) v < o®tP,
Then set

v
10 = —.
(10) o=

Therefore v < yo and we can choose 7 between them,
(11) v<T<n0.
From (9) and (11) we deduce

148
(12) <E> <7 <2
g g

For

o\ 1P VP VP o
(;) _VW<VW<V<T<VU<;'

See Figure 4 which summarizes the relations among the constants and
exponents.

0 n v v o1
| | . —o oo ol 1
e T y6 o ofy o
(7) I
0 0 1

L .1 |
p

F1GURE 4. Constants denoted with a bar are imposed by
the diffeomorphism; those denoted with a dot are chosen
afterward.
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Now we fix a point p € M and specify sequences

X = fW(f"(p), ™)) C Wi(p)
D, = W¢p,o") C Wi(p)
Yn = fn(Ws(f_n(p)an)) - VVlf)c(p)

According to the general julienne definition we get sequences of juli-
ennes at p

J* = W™(X,UD,)
Je = W(D,UY,)
Jolid = ppuns( geuy ges)
We refer to this n as the rank of the julienne, and to 1/n as its size.

As n — oo the juliennes shrink down to p.
The collections of these juliennes are denoted

Jr={J:neN} Jr={J":neN} J,={J,:neN}h
Letting p range over M gives a solid julienne Vitali basis
J={J I3
peEM
Similarly if ¢ ranges over W (p) or W (p) we get center stable and
center unstable julienne Vitali bases,
Jcs — U Jgs qu —_ U J(clu

qeWes(p) geWet(p)

for the leaves W (p), W (p).

Theorem 4.2. J is volumetrically engulfing with respect to Riemann
measure on M; I and I are volumetrically engulfing with respect to
Riemann measure on W (p) and W< (p).

Corollary 4.3. The julienne Vitali bases are density bases: almost
every point of a measurable set is a julienne density point.

Proof. This a direct application of Theorem 3.1, which states that a
volumetrically engulfing Vitali basis is a density basis. 0

Theorem 4.4. The unstable and stable holonomy maps are julienne
quasi-conformal: the unstable holonomy is quasi-conformal with re-
spect to the Vitali basis J°°, while the stable holonomy is quasi-conformal
with respect to J°.

The proofs of Theorems 4.2 and 4.4 appear in Sections 6, 7, and 8.
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5. JULIENNE SHAPE

In this section we study the shape of center stable juliennes. Every-
thing we say has its counterpart for center unstable juliennes. A center
stable julienne is a foliation product

J& = W(D, UY,)

where D,, is small round disc in W*¢(p) and Y, is a small set in W?*(p).
It is unclear, a priori, what a julienne looks like, beyond the fact that
it is small. For although f~"(Y,) = W*(f~"(p), ") is round, there is
no reason to expect that its f™ image Y, is round or quasi-round. The
same applies to the pre-julienne f~"(J¢). It is the foliation product
of a small set f~"(D,) C W¢(f"(p)) and a round disc f~"(Y,) =
We(f~™(p),7"). The julienne and pre-julienne each have one round
factor and one non-round factor.

A set that can be expressed as

T=J Wa,r)

zeB
for some B C W (p) and some r > 0 is a center stable tube
T =T“(B,r)

with base B and stable radius r. The stable fibers of a tube are by
definition round. The shape of its base can be arbitrary. See Figures 5,

FIGURE 5. A center stable tube with one dimensional
stable fibers and two dimensional base.
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(&

FIGURE 6. A center stable tube with two dimensional
stable fibers and one dimensional base.

Proposition 5.1. The pre-julienne f~"(J5%) is tube-like. It consists
of the center core f~™(D,,), through which pass s-fibers. The s-fibers
are approximately round discs of radius . More precisely, given € > 0,

if n is large, then the pre-julienne is bracketted between tubes with base
f~™(D,,) and stable radii (1 £ €)7™.

The proof of this proposition involves the center bunching and Hélder
assumptions used to choose the julienne shape. The next lemma gen-
eralizes easily to any foliation whose tangent bundle is #-Holder con-
tinuous, where 0 < < 60 < 1.

Lemma 5.2. The center holonomy h : W*(p) — W*(q), h(p) = q, is
approximately isometric at small B-Holder scale in the following
sense. Given € > 0 there is a 6 > 0 such that if

(13) PP <p<r<é

and if g € W¢(p,r), then h carries a round disc D of radius p in W?*(p)
to a nearly round disc h(D) of radius p in W*(q). More precisely, if
D =W?=(p, p) then h(D) is bracketted between round discs

W(g, 1 —e€)p) € (D) < W(q, (1+€)p).

Proof. The point to note here is that p can be quite a bit smaller
than r, but not arbitrarily smaller; it can never be less than 72. Discs
whose radii are too small may be grossly distorted in shape by the
center holonomy map h. See Figure 7, which indicates that the shape
and size of h(D) is under good control at one scale, but still may be
pathological at a smaller scale. We recapitulate the proofs of Lemmas
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WS(q, (1-€)p) Wi(q, (1+€)p)

FIGURE 7. At small §-Holder scale h(D) is approxi-
mately round.

1 and 2 in Section 4 of [22]. In an exponential chart at p, the center
leaf through a point z near p is the graph of a function

¢, Bi(r) — E5.
See Figure 8. The function ¢, (z) is differentiable with respect to z. The

S
EP

W(p, r)
\ Ef(r) ~
\p_/

FiGURE 8. Locally, in exponential charts, leaves are graphs.

norm of its derivative ¢, /0x is the slope of the leaf in the exponential

chart. By assumption d¢,/0x is §-Holder continuous, and at the point

(z,2) = (p,0), 0¢./0x = 0. Thus

90

15,

where (z,x) varies in the r-neighborhood of (p,0). Geometrically, this
means that the center leaves are quite flat, quite horizontal.

| < Kre,
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Consider the horizontal holonomy H. It is translation parallel to the
plane E7. Continuity of E® implies that H has the following property.
Given € > 0 there is a 6 > 0 such that if p < r < § then

H(D) c W*(q,(1+€¢/2)p).

See Figure 9. No underbound for p is needed here.

B =)

Ws(q, (1+€/2)p)

Wi(p) Wi(q)

FIGURE 9. At small scale, the horizontal holonomy is
approximately isometric.

Over a distance r, the center leaf diverges from the horizontal plane
parallel to £ by at most

Krfr = Krit?,

a quantity that is negligible in comparison to p. For when r is small,
(9) and (13) imply that

Pt < 18 < p,
Hence,
WD) c W*(g, (1+€)p).
Applying the same reasoning to h~!, we see that
h= (W*(q, (1 —€)p)) C D,

and it follows that h(D) is bracketted between the round discs
W*(q, (1 £¢€)p) as claimed. O
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Proof of Proposition 5.1. The main stable fiber of the pre-julienne
f—n(l]gs) — Wcﬂs(f—n(Dn) U Ws(f—n(p)’ Tn))

is the round disc W*(f~"(p), "), while the center core is f~"(D,) =
fr(We(p, o™)). Since | Tf| <57,

W (p,a")) C WE(F " (p), 0" /7).

We will apply Lemma 5.2, with r = 6" /4™ and p = 7. We need to
check (13), namely,

o" 148 o"
(—) < T < —,
,Yn ,Yn
and by (12), this is true. Also, when n is large, r = ¢™ /4™ is small.
Lemma 5.2 then completes the proof. O

6. JULIENNES UNDER UNIT HOLONOMY

In this section we study the unstable holonomy h : W< (p) — W (q),
q = h(p), and how it affects center stable juliennes. Everything we say
has its counterpart for center unstable juliennes. We assume through-
out that ¢ lies in the unit unstable manifold of p,

g€ W*(p,1).
Theorem 6.1. There is an integer £ such that for all large n,

(14) (@) Ch(JE(p)) € J370(q).

In words, the h image of a rank n julienne at p is bracketted between
rank n + ¢ juliennes at q.

CcS

Proof. Referring to J%,(p) as the small julienne at p and to J°(q)
as the large julienne at ¢, we claim that the holonomy map h carries
the small julienne into the large one,

(15) WJ35e(p)) € 77 (9)-

The subtlety of the analysis is present exactly here. The shapes of the
juliennes may be awful, but in terms of holonomy they nest. Using h~!
and juggling indices, we will see that (15) implies (14).

The unstable holonomy map h sends center manifolds to center man-
ifolds, and the restriction of h to each individual center manifold is of
class C' or better. See Theorem B of [24]. (On the full center stable
manifold A is of course much less regular than Lipschitz.) By compact-
ness, the supremum, L > 1, of the Lipschitz constants of all the local
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unstable holonomy maps h : W¢(p) — W¢(q) is finite. Choose ¢ such
that
16 f< —.
(16) 7 =6L
The center core disc D, ¢(p) has radius 0", and thus h sends it to a

subset of W¢(q) having radius Lo"*¢, which by the choice of ¢ in (16)
is less than 0™ /2. Thus

(17) MDyie(p)) C 5Dn(q),

where 3D, (q) is the half-sized sub-disc of D, (q). The inclusion (17) is
a step toward (15). We want to show that the holonomy image of one
julienne is contained in another julienne, and (17) shows that at least
this is true of their center cores.

Since the unstable holonomy is defined by the invariant foliation W*,
it commutes with f. Specifically, if we write

b = WE(f(p)) = WS (7))
then
h=hy=f"oh,of "
Thus, (15) is equivalent to

(18) hn o [ (J35(P)) C (T2 (9))-

Think of the holonomy map as taking an object located on one cen-
ter stable manifold, and “pushing it across” to another center stable
manifold. Then (18) has two advantages over (15).

(a) The distance between the domain and target for h,, (the “push
across distance”) is much less than that for h.

(b) The domain and target of h,, in (18) are more round in shape than
those that confront A in (15). For pre-juliennes are less elongated
than juliennes.

To prove (18) it suffices to find a tubes T,,, T such that

() < T
(19) T, < (7))
h.(T,) < 1T,
Set
B, = ["(3Du(q)) B =["(Dala)).

By Proposition 5.1 the pre-julienne f~"(J¢(q)) is tube like. It contains
a tube T with base B/, and stable radius 27™/3. The distance from
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D, (q) to the boundary of D,(q) is 0/2. Under f~" this distance can
decrease by at worst the factor 4. Thus,

(o)
5
See Figure 10. We do not assert that B, lies in the middle of B/, merely

(20) r € B, = d(x,0B)) >

h(Dp.(p))

F1IGURE 10. The center cores of the julienne and pre-
julienne at ¢ and at f~"(q).

that its distance to 0B], decays no faster than a slow exponential. The
shape of the pair B,, C B, can in principle be quite messy.

By Proposition 5.1 the pre-julienne f~"*9(.J¢ ,(p)) is also tube-like.
It is contained in a tube T, 4,

FOTE (D) C Toie = U We(z, 27,

2€f =D (Dyig(p))
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Since | T f]| < v < o, we see from (16) that
F(T2e) € f(Ture) © U W3 =1,
2€f " (Dnye(p))

a tube in We(f~"(p)) with base f~"(D,¢(p)) and stable radius 7" /3.

h,, pushes T,, across from W (f~"(p)) into W(f~"(¢)). The dis-
tance between these two center stable manifolds is at most " since
their original distance apart is at most 1, and ||[T%f~ Y| < v. It is un-
likely that h, sends an s-fiber of 7}, to an s-fiber of W (f~"(q)). For
E" @ E? is probably not Frobenius integrable. Still, we can easily esti-
mate how large h,,(W?#(z,7"/3)) is. Directly, or as a trivial alteration
of the proof of Lemma 5.2,

(21) b (We (2, 7"/3)) C W (hy,(2), 20" +77/3).
(11) implies that for large n,

W+ "3 < "2 L (yo)".
By (20), h,(T},) lies far enough away from 0B], that it is contained in
the local s-saturate of B,

hn(Tn) © Wiee(By).

See Figure 11. Likewise

ho(T,) C W (B,,m/2) C T),

which implies (19), hence (18), and hence (15).
It remains to deduce (14) from (15). Since the latter is valid for all
large n, we can replace n with n — ¢. This gives half of (14),

h(J3*(p)) € J3%0()-
Interchanging p and ¢, and applying (15) to h~! instead of to h, we get

(22) R (Tie(@) € T35 ()
Applying h to both sides of (22), we get the other half of (14). O

7. JULIENNES ENGULF

In this section we verify the geometric part of the volumetric en-
gulfing property. In the next section we work out the measure ratio
estimate.

Theorem 7.1. Center stable juliennes have the following engulfing
property. There is an ¢ € N such that if two center stable juliennes

o0 Jos meet then

cs |/ CcS
JS ) C T,



30 C.C. PUGH AND M. SHUB

fJ*(q))

b —
N\
W(B,,,1"/2)

FIGURE 11. Despite its ragged ends, h,(7T,,) is contained
inT).

Proof. Recall that n is the rank of the julienne J;°. The theorem
asserts that a rank n julienne will engulf a rank n + ¢ julienne, if the
latter meets the rank n + ¢ sub-julienne of the former. Write

Je = W(D,UY,)
e = WDy UYaie)
nd = WD, VY L,).

We refer to these juliennes as the big julienne, the small julienne, and
the neighboring julienne, respectively. According to Proposition 5.1,
the stable fibers of a julienne of rank n are images by f" of approxi-
mately round discs of radius 7. Since | T°f|| < v, these f" images are
contained in stable discs of radius v"7" < v"¢"™, a number that is much
smaller than the radius o™ of the core disc D,,. Thus, the diameter of
a center stable julienne is approximately the diameter of its core disc,
and the diameter of the neighboring julienne that we hope to engulf is
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approximately 0", We choose ¢ so that

1

¢
o < 3
Then the the two intersecting juliennes of rank n+ ¢ have diameter less
than 1/3 of the diameter of the big julienne, and one of them, J%,,
includes the point p. It follows that the neighboring julienne, J£% /, is
so close to the middle of the center core disc D,,, of the big julienne

that it projects into D,, under the stable holonomy map. That is
Juid CWiee(J3)-
See Figure 12. All the s-fibers of the neighboring julienne lie on local

F1GURE 12. The neighboring julienne is contained in the
local stable saturate of D,,.

stable manifolds passing through the core disc D,, of the big julienne.
If we can show that all the c-fibers of the neighboring julienne lie on
local center manifolds passing through the main stable fiber Y,, of the
big julienne, then by the naturality of the julienne definition, Proposi-
tion 4.1, the big julienne engulfs the neighboring julienne.

To understand the center fibers, we apply f~" to the picture. Ac-
cording to Proposition 5.1 the big julienne becomes tube-like. We refer
to the f~" images of the other two juliennes as the small pre-julienne
and the neighboring pre-julienne. Their s-fibers, being the f‘-images
of approximately round discs of radius 7°*¢, are contained in round
s-discs of radius v/7"*. Moreover, the center core of the small pre-
julienne, f~"(D,¢), is contained in the center core f~"(D,) of the



32 C.C. PUGH AND M. SHUB

tube-like pre-julienne, and its stable fibers are contained in discs, cen-
tered at points of f~"(D,,), that have radius < 7"/3. One of these
s-fibers of the small pre-julienne meets an s-fiber of the neighboring
pre-julienne. The latter s-fiber lies in a disc of radius < 7"/3. Two
intersecting discs of these sizes and positions are contained in the s-disc
of radius 7". See Figure 13.

FiGURE 13. If a small, centered sub-disc of a big disc
meets a second small disc, the big disc engulfs it.

Hence, at least one, special s-fiber of the neighboring pre-julienne
is contained in an s-fiber of the big, tube-like pre-julienne. By the
construction of juliennes as foliation products, all points on an s-fiber
of a julienne lie on local center manifolds that pass through the main
stable fiber of the julienne. See Proposition 4.1. Therefore, all points
of the special s-fiber of the neighboring pre-julienne lie both on local
center manifolds that pass through the main stable fiber of the big
pre-julienne, and on local center manifolds that pass through the main
stable fiber of the neighboring pre-julienne. Local center manifolds are
unique. Therefore, all the c-fibers of the neighboring pre-julienne lie on
local center manifolds passing through the main stable fiber f~"(Y},)
of the big pre-julienne. Re-applying f", we conclude that the same
is true of the juliennes themselves: all the c-fibers of the neighboring
julienne lie on local center manifolds passing through the main stable
fiber Y,, of the big julienne. This implies that the big julienne engulfs
the neighboring julienne. O

Theorem 7.2. Solid juliennes have the same engulfing property: there
exists an integer L such that a rank n julienne will engulf a rank n+ L



STABLE ERGODICITY AND JULIENNE QUASI-CONFORMALITY 33

julienne, if the latter meets the rank n + L sub-julienne of the former.

Lemma 7.3. If J,J' are solid juliennes and the local unstable and
local stable saturates of J contain the main center stable and center
unstable slices of J',

Wie(J) D J* and Wi (J) D J,
then J D J'.

Proof. The proof is like that of Proposition 4.1. Take a point 2z’ €
J'. Tt is the intersection point for a pair of local unstable and stable
manifolds,

2= Wi (') N Wi (y)
where ' € J® ¢ € J°'. But by assumption, =’ lies on a local stable
manifold through the main center unstable slice J of J, and 3/ lies
on a local unstable manifold through the main center stable slice J
of J, say
o€ Wie(z) v € Wige(y)

for some x € J y € J°. Since local stable and unstable manifolds
are unique, we see that 2z’ € J. O

Proof of Theorem 7.2. We use Theorems 6.1 and 7.1 repeatedly.
The L = 3¢ we produce seems far from optimal.

Suppose that J,,(p), J,(p") are two rank n solid juliennes that meet
at a point z. By the julienne construction, z lies on a local unstable
manifold through the main center stable slice J¢* of J,,, and also on a
local unstable manifold through the main center stable slice J:* of J),.
Local unstable manifolds are unique, so the local unstable manifold
through z, passes through both J¢ and J¢*'. Dually, the local stable
manifold through z passes through the main center unstable slices of

both J,, and J), say
z = Wi()nJt 2 = Wi(z)nJg”
y = Wez)NJpt y = Wi(z) N J
See Figure 14.

We apply Theorem 7.1 to the rank n center stable julienne J¢*(y/)
at y'. Decreasing its rank by ¢ causes it to engulf J¢(p'),

(23) wey) 2 ).

Then we apply Theorem 6.1 to the center stable julienne J¢ ,(y) at y.
Decreasing its rank by ¢ causes its unstable holonomy image to engulf
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FIGURE 14. Locating the points p,p’, etc. Read verti-
cals as center stable and horizontals as unstable.

we(y'),
(24) W (Jlae(y)) D Jloy).

Finally, decreasing the rank of the center stable julienne J¢° ,,(p) by a
further ¢ causes it to engulf J¢°,,(y),

(25) nae(P) D Jpla(y).

Combining (23), (24), and (25), we see that the unstable holonomy
image of J<° 4,(p) engulfs J2*(p'). In terms of saturates this means

Wiee(Jnlae(p)) D J3° ().
Dually we see that
Wiee(Jitse(p)) > ().
Then, according to Lemma 7.3, J D J'. O

We conclude this section with an extension of Proposition 5.1. A set
that can be expressed as

T = U We(z,r)

zeB

for some B C W (p) and some r > 0 is a solid tube
T=T solid(B’ T’)

with base B and stable radius r.
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Theorem 7.4. A solid pre-julienne f~"(J,(p)) can be bracketted be-
tween solid tubes

T, C ["(Ju(p) C T,

such that T, has base f~"(J,) and stable radius r, = (ut)‘'7", while
T! has base f~"(J*,) and stable radius r!, = (ur)~t7".

Proof. Theorem 7.2 implies that J,(p) engulfs juliennes J,,;¢(x) which
touch it; for example this true when x € J;%,. The main stable fiber of
fFO(Jes,,(2)) is the round, stable disc W#(f~("t9(x), 7). The f*
image of this disc contains a round, stable sub-disc of radius r,,. Letting
x range over J:,(p), we see that f~"(J,(p)) contains the tube T,. The
proof that f~"(J,(p)) is contained in the tube 7} is similar. O

8. JULIENNE MEASURE

Fix a Riemann structure on T'M that is adapted to the partially
hyperbolic diffeomorphism f. It induces Riemann structures tangent
to the leaves of the foliations W*, W<, W¢, W< W?. These induced
Riemann structures give rise to Riemann measures m, m"*, ..., m® on
M and on the leaves of the foliations W*, ... K W?>.

We need to estimate the volume of discs and tubes with respect
to these measures. To do so, we first modify the exponential charts
exp, : T,M(p) — M as follows. (Everything will be done locally —
i.e., in a modest sized neighborhood of the zero section, say of radius
p.) The exponential pre-image of the local center unstable manifold
Wige(p) is a graph,

exp, ' (Wige(p)) = graph(¢y"),

where ¢ : ES*(p) — E5(p) is a function of at least class C''* Holder,
Write x € Eg“( ),y € Es(p) and define

) (. y) = (2, + ¢ (2)).

et is a diffeomorphism of T,M(p) to another neighborhood of the
origin of T, M. At the origin of EJ*, ¢;* and its derivative D¢f* vanish.
The derivative is taken with respect to x € Eg*. Thus, at the origin of
T,M, DO = I, the identity map.

The union of all the maps ®;* as p varies in M, is a homeomorphism
o from T'M (p) to another neighborhood of the zero section. It and its
fiber derivative D®7" are Holder continuous on T'M. The composition
exp o® is a partially adapted exponential map. It sends each E;*(p)
to Wise(p)-
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Repeating this type of modification for the other invariant manifolds
leads to a homeomorphism H from T'M (p) to another neighborhood of
the zero section covering the identity map on M such that the restric-
tion of H to T,M(p) is a C1+ Holder diffeomorphism which carries the
discs E(p), E;*(p), E5(p), E;*(p), E5(p) to the exponential pre-images
of the corresponding local invariant manifolds. The composition

e = expoH

is the adapted exponential map. Its restriction to T,M(p) is a
¢ Holder 16cal diffeomorphism e, from T, M (p) to M sending the discs
EY(p),..., Es(p) to the corresponding invariant manifolds. Like the
unadapted exponential, the tangent to e, at the origin is the identity,

(26) To(e,) = 1.

Using e, we lift all objects in M to T),M, writing a bar over the lifted
object. For example, S C M lifts to S = e;l(S) C T,M. Likewise, the
measure m on M lifts to a measure m = e;(m) in T, M, the m-measure
of S being m(S). The measure m is not translation invariant with
respect to the linear structure of T,M.

The adapted Riemann structure on T'M gives each tangent space
an inner product, and the inner product induces a second, natural,
translation invariant measure, the Riemann measure m, on T,M. Due
to (26), one can view m,, as the linear part of m at the origin of T'M,,.

The other measures m", ..., m* lift to measures m*, ..., m* on the
subspaces Ey, ..., E5. On these linear subspaces, and on all affine
subspaces of T, M parallel to them, we also have the Riemann measures
my,...,my, induced by the inner product. Again, one can view the
latter measures as the linear parts of the former measures.

Lemma 8.1. The volume of a small tube is approrimately the volume
of its base times the volume of its fiber.

m(T)
me(B) m>(W*(p,r))

More precisely, for any €y > 0 there is a 0 > 0 such that of T is a solid
tube with base B C W (p,d) and stable radius r < § then

m(T)
me(B) m*(W*(p, 7))

Corresponding assertions are true for center unstable tubes and center
stable tubes.

~ 1.

(27)

— 1] < ¢.
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Proof. According to (26), when 7" is small,

m(T) o mB) )
(28) m(T) =1 me(B) ms(W*(p,r))

It is therefore fair in the proof of (27) to replace the tube, its base, its
fiber, and the various measures by corresponding objects in T, M.

Since e, is adapted to the invariant foliations of f, the base B of T
lies in E7*. Due to (26), given € > 0, it actually lies in ES*((1 + €)0)
when 7' is small.

The main stable fiber of T is e, ' (W*(p,r)). Since e, is adapted to
the invariant foliations of f, it lies in E3. By (26), when T is small it
is bracketted between round stable discs

EN(1—¢/2)r) C e, (W3(p,r)) C ES((1+¢€/2)r).

Let m) : T,M — Ej be the projection with kernel EJ*. Since, when
T is small, the stable fibers of T" uniformly C' approximate the main
stable fiber, their 7, -projections into E; are bracketted between discs
with slightly relaxed radii, say Y3 = E5((1 £ ¢€)r). In particular,

Y. C W¥(p,r) C Y.
It also follows that T is bracketted between T,
T_cTcCT,,

where
Ty ={zeW*(«,2r): 2 € B and 7)(z) € Y. }.

See Figure 15. The set T} is sliced perfectly by the affine subspaces
EY xy, y € Yi. In fact the intersections of 7% with these affine

subspaces are the holonomy images of the base, f_Ly(B). The stable
foliation is absolutely continuous, and so is its lift to 7,AM/. The Radon

Nikodym derivative of its transverse holonomy, RN (h,), is continuous.
When y = 0, hy is the identity and the Radon Nikodym derivative is

1. By continuity, when y is small, RN (h,) ~ 1. Thus, by Fubini’s
Theorem

(29)
my (1) _ 1 W .
mf;U(B) m;(Yi) m;(Yi) /yEYi mgu(B) d p 17

if T' is small. Since Y, are round discs,

ms(Yy) (1 +e>5 1

(30) ms(Y_) 1—e¢
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=i

FiGure 15. Why Fubini’s Theorem applies to 7. but
not directly to T'.

Since T bracket T and Yy bracket W#(p,r),

my(Ty)

)
s(We(p,r)) — me(B) mg(Y_)’

p

my(T-) my(
mg(B) ms(Yy) — me(B) m

Hence, (28), (29), (30) imply (27). O

Next we give an estimate to control volume of a small set along an
orbit of our C? diffeomorphism f : M — M. We assume that E is a
f-Holder continuous, integrable, T f-invariant k-dimensional subbundle
of TM, 6 > 0. We denote by U a small k-dimensional disc tangent to
E with p € U, and by mg the Riemann measure on such a disc. The
restriction of T'f to E is T¥f. We have in mind the example that
U is a small center disc, a small center stable disc, or a small solid
neighborhood. Then E = E¢, E° T'M respectively.

Theorem 8.2. The restriction of a high iterate of f to a small enough
disc tangent to E is approximately measure theoretically con-
formal in the following sense. Fix a constant k < 1. If the disc U 1is
so small that fori=0,...,n,

diam fiU < K",
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then

mg(f'U)
At TEf] ()
Proof. mpg(f'U) is the integral of the absolute determinant of T ft
over U. Thus,

(31) ~ 1

mu(fiU) 1 ﬁ% m
[det TE fi| mp(U) mp(U) Jecv 524 detTﬁpf "

which, since F is 6-Holder and f is C?, is the average value on U of a
product TI(1 + (¢;())?) where

le;(7)] < Cdiam f'U < Ok™.
Because nk™ — 0 as n — oo, the product approximates 1. O

We have chosen the juliennes so that they remain exponentially small
under n iterates of f. According to Theorem 8.2, then, the effect of
1% 1i| < n, on the fibers of the juliennes is approximately measure
theoretically conformal. Under f° the fiber measures get multiplied
approximately by the appropriate determinant. See (31).

Theorem 8.3. Fix an integer { > 1. Center stable juliennes at p
whose rank differs by at most ¢ have uniformly comparable measure.
More precisely, there are constants, 0 < ¢ < C' < 1 such that if n is
large then the center stable juliennes at p, J5° and J5°, satisfy,

mCS( ﬁie)
—_— C.
mCS(JfLS) N

Proof. We first assume ¢ = 1. Since the center cores D,, D, 1 of
Je, Je, are round discs of known radii 0", 0™, there are constants
0 < ¢ <) <1 such that

m (D n+1) S Cl'
m<(Dy,)

Let B, = f7"(D,) and B,11 = f"(Dy41). Clearly, B,y1 C B, and
they are exponentially small. According to Theorem 8.2, since the ratio
of the center stable measures of D,,, D, is uniformly controlled, so is
the ratio between the center stable measures of their iterates B,,, B, 1.
In fact, nearly the same control constants can be used.

Now consider the stable fibers Y, (z),Y,11(z) of the pre-julienne
F7(J), f(J5%) at @ € B,. By Proposition 5.1, the former is ap-
proximately equal to a round disc,

Yo(z) = Wo(z, ™).

G >
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The latter is bracketted between round discs,
W (z, ur™ ) C Yopi(x) € Wo(z, vr™th).
Thus, for some constants 0 < ¢co < Cy < 1, we have

ms(Yn-i-l (37))
w(a(r) =

Co >

Applying Lemma 8.1 at the point f~"(p) with B = B,, gives a com-
parison

mc‘;(finn( 5351)) < Cs.
mes(f7(J5F))
Iterating by f™ and applying Theorem 8.2 again, we see that the center
stable juliennes J;*, J:% | enjoy the same comparability of measure,

3 >

m(J55 )
— e < O
mes(Jes) b

Cy >

which completes the proof when ¢ = 1. For general ¢ the choices
c=ci,C = C4 give
c < w < C.
= we(y)
O

Theorem 8.4. The Vitali bases J,J, and J°° are volumetrically en-
gulfing, and hence are density bases.

Proof. The assertion for J means that if S C M is measurable with
respect to the Riemann measure m on M then almost every point of
S is a density point with respect to J. In Theorem 7.2 we showed that
a solid julienne J, is engulfed by J/_, if J,, meets J;. In Theorem 8.3
we showed that there is a uniform bound on the volume ratio between
engulfer and engufee. Thus, Theorem 3.1 applies and J is a density
basis.

The assertion for J means that if S C W (p) is measurable with
respect to Riemann leaf measure m® then almost every point of S is
a density point with respect to J®. The proof is similar. O

Theorem 8.5. The stable and unstable holonomy maps are julienne
quasi-conformal, and hence any unstable holonomy map preserves all
J density points, while a stable holonomy map preserves all I density
POINts.
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Proof. According to Theorems 6.1 and 8.2, if ¢ € W*(p, 1) then the

unstable holonomy map h : WE.(p) — W (q) satisfies

(@) C AT (p) C Jp2i(g),

and the measure ratio between J¢,(¢) and J¢* ,(¢) is bounded away

from zero. That is, h is julienne quasi-conformal. According to Propo-
sition 2.1, h preserves all J* density points. The dual statements hold
for a stable holonomy map. O

Next, we relate density points of a set to density points of the stable
projection of that set onto a local center unstable manifold.

Theorem 8.6. Assume that A is measurable and s-saturated. The
point p is a density point of A with respect to the solid julienne basis
J if and only if p is a density point of AN W< (p) with respect to the
center unstable julienne density basis J°.

Proof. Suppose that p is a density point of A with respect to J. Then
(A Ju(p)] — 1

as n — o0o. According to Theorem 8.2, f~"(A) is also highly concen-
trated in the pre-julienne f~"(J,(p)),

7 (A) - T (n(p))] — 1.
By Theorem 7.4 there is a tube T,, C f~"(J,(p)) whose volume ratio
in the pre-julienne is bounded away from zero. Hence
[f™(A): T, — 1.

The base of the tube is f~"(Jg%,) and its stable radius is r,. Since
A is s-saturated, so is f~"(A). Thus f~"(A) consists of whole stable
manifolds, and its intersection with the tube 7,, consists of whole stable

discs of equal radius r,,. We apply Lemma 8.1 to two tubes: the tube
T, and the tube T,, N f~"(A). This gives

m(T, N f7"(A))
me(f=r(Jgte) 0 f7(A)) me(We(f = (p), 7n))
while the volume of T,, itself satisfies
m(T},) N
me(fr () me(We(f = (p) )
Hence, the concentration of f~"(A) in the base f~"(J%,) must tend

to 1. Applying f™ to this configuration and using Theorem 8.2 again,

we see that the concentration of A in the center unstable julienne J5Y,

also tends to 1. Since ¢ is fixed, this shows that p is a density point of
AN W (p) with respect to J.

~ 1
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The converse is proved similarly, using the large tube 77 from The-
orem 7.4. [

We combine Theorems 8.5 and 8.6 as follows.

Theorem 8.7. If A C M is measurable and essentially u-saturated
then its set of J density points consists of whole unstable manifolds.

Proof. A set is essentially u-saturated if it differs from a u-saturated
set by a zero set. Alteration by a zero set has no effect on the set of
(solid) density points, so it is fair to assume that A is u-saturated. Let
p be a J density point and let ¢ be a point in W¥(p). We claim that ¢
is a J density point of A.

Assume at first that ¢ lies in the local unstable manifold of p. By
Theorem 8.6, p is a density point of ANW(p) with respect to J°. By
Theorem 8.5 and the fact that A is u-saturated, ¢ is a J*° density point
of ANW®(q). By Theorem 8.6, ¢ is a J density point of A. Thus, the
set P of J density points consists of whole local unstable manifolds.
Because (global) unstable manifolds are connected and consist locally
of local unstable manifolds, the set P of density points actually consists
of whole unstable manifolds. OJ

9. PrRoOOF OF THEOREM A

The proof of Theorem A follows the same pattern as in [2, 13, 22]. We
suppose that f is not ergodic and, using the Birkhoff Ergodic Theorem,
we find a set Ay such that Ag is f-invariant, has intermediate measure,
and is essentially saturated by stable and unstable manifolds. Let A
be the set of J density points of Ay and let B be the set of J density
points of M\ Ay. According to Theorem 8.4, almost every point of Ay
is a J density point, so A has positive measure. Likewise the set B
has positive measure. The set P of all us-paths originating at points
of A is, by definition, us-saturated and it contains A, so it forms a us-
saturated set of positive measure. Essential accessibility implies that
P has full measure, and therefore it meets B. The upshot is that there
are points p € A, ¢ € B and a us-path from p to ¢. Since p is a J
density point of Ay, Theorem 8.7 implies that the entire first leg of the
path consists of J density points of Ag. The same applies to the second
leg, and so forth. We conclude that ¢ is also a J density point of Ag
and this is incompatible with it also being a J density point of M\ Ay.
O
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10. AFFINE DIFFEOMORPHISMS

In this section we prove Theorems B, C, and Corollaries b, ¢ from
Section 1. For readers unfamiliar with Lie groups, we include some
standard material, see also [22] where some of this is worked out for the
case of left translation. We use the standard notation from differential
topology that T, M is the tangent space to M at x and that T, f is the
tangent to a map f at x.

Recall what we assumed in Section 1.

(a) G is a connected Lie group and B C G is a proper, closed sub-

group.

(b) G/B is compact.

(c) Haar measure projects to a finite measure m on G/B, invariant

under left translation, B — gxB

(d) f: G/B — G/B is an affine diffeomorphism. That is, it is

part of a commutative diagram

a f:LgoA o
wl lw
G/B / G/B

where A is an automorphism of G, L, is left multiplication by
some fixed element g € G, and, to make the projection well

defined, A(B) =
Further, f induces a Lie algebra automorphism defined by
a(f) = Ad(g) o T.A = TyR,1 0 T.L, o T, A.

Given a linear subspace E of the Lie algebra g = T.G, we extend it
to a right invariant subbundle R(E) C T'G whose fiber at z € G is

E, = T.R,(E).

Right invariance of R(E) means that for all 2,y € G, T, R, carries E,
to Ey.

Proposition 10.1. a(f)-invariance of E is equivalent to T f-invariance

of R(E).

Proof. Observe first that

(32) T.f = T.Ry 0 a(f).
For f(z) = gA(x) = L, o A(z) implies that

T.Ryo0a(f) =T.RyoTyR,10T,L,0T.A=T.,LgoT,A,
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which is T, f.

From (32) and right invariance of R(E) we infer that E is a(f)-
invariant if and only if 7, f sends E = E, to E,. Tt remains to show that
this T f-invariance of R(E) from e to f(e) = g implies T f-invariance
at the general point y € G.

Commutativity of the diagram

G —f—> G
Ryl lRA(w
f

G ——

is simple to check: if z € G then
Ragy) o f(z) = gA(2)Aly) = gA(zy) = f(zy) = [(Ry(x)).

Taking the tangent maps of the diagram at x = e gives

T.f

.G —— T,G
TeRyl ngRA(y)
T,f
TyG L Tf(y)G

Hence B B
Tyf =TyRagyoTef o (TeRy)_l'

Since R(FE) is T'R-invariant, it is also (T'R) "'-invariant, and T f-invariance
of R(E) from e to f(e) propagates to T f-invariance everywhere.  [J

Because B acts on the right, the bundle R(E) projects naturally to

a quotient bundle, Tw(R(FE)) = R(E) C T(G/B), where E = Tr(E),
R(E) — I ()

| Jr-

rRE) — I pp).

The fiber of R(E) at B € G/B is T,m(E,), which is isomorphic to
E./(T.(xB)N E,). Here, we think of zB both as a subset of G and as
a point in G/B.

Corollary 10.2. a(f)-invariance of E implies T f-invariance of R(E).

Proof. From commutativity of the diagrams this is clear. O
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Proposition 10.3. Let g, be the sum of the generalized eigenspaces

of a(f) whose eigenvalues have modulus < p where 0 < p < 1. Then
9, 15 a Lie subalgebra of g, not merely a linear subspace of T.G.

Proof. The assertion is valid not only for a(f), but for any Lie algebra
automorphism a : g — g of a complex, finite dimensional Lie algebra,
and is a consequence of the following general fact: the factors S and M
in the Jordan Decomposition a = SM, are automatically Lie algebra
automorphisms of g, not merely linear transformations 7.G — T.G.
As usual S is semi-simple and M = I + N with N nilpotent. See
Chapter 1.4 of Borel’s book about linear algebraic groups [3] where
this is discussed. Note that the automorphism group of g is a linear
algebraic group.

Suppose first that a itself is semi-simple, a = S. Then there is a com-
plete eigenbasis {vy, ..., v,} corresponding to eigenvalues {Aq, ..., A, }.
Since a is a Lie algebra automorphism,

Slvi, vs] = [Svs, Svs] = Nidj[vi, vy],

and [v;, v;] is seen to be either the zero vector or an S-eigenvector with
eigenvalue A\;A;. In particular, g, is closed under Lie bracket since
IAils [N < p < 1implies that [\ )] < p? < p.

Next assume that a = SM with S semi-simple, M = I+ N, and N #
0 nilpotent. Since M.S = SM, the S-eigenvalues are identical with the
a-eigenvalues and the S-eigenspaces are identical with the generalized
a-eigenspaces. The Lie bracket operation is defined independently from
a, S, M, so the conclusions for S hold also for a.

The Lie algebra automorphism a(f) in the statement of the proposi-
tion is real, not complex, but since eigenvalues, generalized eigenspaces,
and brackets act naturally under complexification, the complex case
implies the real one. O

As in Section 1 we split g and a(f) according to the generalized
eigenspaces of with eigenvalues of modulus > 1,= 1, and < 1 respec-
tively,

a(f) = a'(f) @a(f) ®a’(f)
g = ¢ @ ¢ o ¢
By Proposition 10.3 these are Lie subalgebras of g. We extend them

to right invariant bundles E”,Ef, E* over G. According to Propo-
sition 10.1, these bundles are T f-invariant. By Corollary 10.2 their
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projections to G/B, E", E¢, and E*® are T f-invariant,

EUEBE‘C@ES T—f> Eu@EC@E’S

- |rs

T
EY® E°D E? —f> EY® E°D E°.

A priori, some of these bundles may be zero.

Proposition 10.4. There is a Riemann structure on T(G/B) adapted
to T'f with respect to which T f expands E* sharply, T f is nearly iso-
metric on B¢, and Tf contracts E* sharply.

Proof. Choose p, 0 < p < 1, such that the moduli of the eigenvalues
of (a%(f))~! and a*(f) lie in the interval (0,p). For any e > 0 there
is an inner product on T,G which is adapted to a(f) in the sense
that the norms of (a“(f))~' and a®(f) are < p, while the norms of
(a¢(f))~" and a°(f) are < 1+ €. Right translate this inner product to
a right invariant Riemann structure on T'G. Right translations become
isometries. By (32) and the proof of Proposition 10.1, T, f is isometric
to T, f for all z € G. Hence, the Riemann structure is adapted to T'f.
Vectors in E* are expanded more sharply than the factor 1/p, vectors
in £ are contracted more sharply than the factor p, and vectors in E°
are affected isometrically, up to factors 1 — e and 1 + e.

Since B acts on the right, and since the T f-adapted Riemann struc-
ture is right invariant, it projects by T'm : TG — T(G/B) to a Rie-
mann structure on 7'(G/B). Under quotients, norms become no larger.
Hence, ||T°f|| < [IT*f]| < p. Similarly, [T f|| < |[|T*f]|, and if the

bundles are non-zero so the inverses exist, |T%f7 || < ||T"f~!|| and
| T f=Y| < [T f~1||. Hence, T"f expands by at least the factor 1/p,
T° f contracts by at most the factor p, and since ¢ = E““ N K Tf
is an isometry up to a factor between 1 — ¢ and 1 + e. O

Recall that b is the hyperbolic Lie subalgebra of f and b is the Lie
algebra of B. Both are subalgebras of g.

Corollary 10.5. The affine diffeomorphism f is partially hyperbolic
if and only if h ¢ b.

Proof. We prove the equivalence of the opposites. If h C b then
T(G/B) = E€and f is completely central; it is not partially hyperbolic.
On the other hand, if f is not partially hyperbolic then at least one of
E*, E® is zero, say

T(G/B) = E°® E°.
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Since f preserves the projected Haar measure, the determinant of 7'f
is £1 everywhere, which implies that E° = 0 also. Thus E", E* C b,
and h C b. Ol

Proposition 10.6. The right invariant bundles E*, B¢, E¢, £, E*
and their projections to T'(G/B) are tangent to smooth dynamically
coherent foliations; i.e., f and f are dynamically coherent.

Proof. Since g“, g, g% g“, g° are Lie subalgebras of g they are tan-
gent to unique connected, locally closed subgroups, G*, G, G¢, G**, G*
respectively. The orbits G"x of the left G“-action are integral manifolds
of the right invariant subbundle £*. For if we consider the general point
hx € G"z then the right multiplication diffecomorphism R, : G — G
sends G" onto G™x, sends e to hx, and hence

Thx(Gux) = (Teth)<T6Gu) = (Teth)(gu> - (Teth>(E:) = Eﬁx

by right invariance of E*. The corresponding facts are true for the
other subgroups. Also, these subgroups act on GG/B and their orbits
integrate the projected bundles there. O

Recall that the smallest Lie subalgebra of g containing g* and g°, b,
is an ideal. It is therefore the tangent space at e of a unique connected,
locally closed, normal, Lie subgroup H of G.

Proposition 10.7. An element y € G/B is us-accessible from x €
G/B if and only is there is an h € H such that y = hx.

Proof. Suppose that y is accessible from x. From the proof of Propo-
sition 10.6 it follows that there are elements ui,...,u; € G* and
S1,...,Sk € G* such that

Y = USpUEL—-1Sk—1-.-UIS1T.

Since H contains G" and G°®, the product uy...s; lies in H. The
converse can be proved similarly since § is generated by g* and g°*. [

Proof of Theorem B. Recall that for an affine diffeomorphism f,
Theorem B asserts

(a) Partial hyperbolicity is equivalent to h ¢ b.

(b) Center bunching and dynamical coherence are automatic.

(c) Accessibility in G/B is equivalent to g = b + b.

Corollary 10.5 gives (a); Proposition 10.4 gives center bunching;
Proposition 10.6 gives dynamical coherence.

It remains to prove (c). Consider the connected Lie subgroup H of
G that is tangent at e to the hyperbolic Lie subalgebra . According
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to Proposition 10.7, accessibility in G/B is equivalent to
HB =G,
which, since G is connected, is true if and only if h + b = g. O

Proof of Theorem C. Recall that Theorem C asserts the stable er-
godicity of the affine diffeomorphism f if g = § + b. According to
Theorem B, f satisfies all the hypotheses of Theorem A (which implies
it is stably ergodic) except one: stable us-accessibility. However, we
know that the unstable and stable foliations are smooth (since they are
orbits of subgroups), and, by Theorem B, they have the (a priori not
stable) wus-accessibility property. But, as we showed in [22], smooth
accessibility implies stable accessibility, and Theorem A applies: f is
stably ergodic. O

Proof of Corollary b. Recall that Corollary b gives a necessary
and sufficient condition for stable ergodicity of a special type of affine
diffeomorphism f. The assumptions are:
(a) G is simple.
(b) B is a uniform discrete subgroup of G.
(c) f = L, is left translation by some fixed ¢ € G. (In the previous
notation, this means that A is the identity automorphism.)
Under these hypotheses it is asserted that
f is stably ergodic if and only if Ad(g) has at least one eigenvalue
with modulus # 1
By Proposition 5.3 of [22], b is an ideal in g. If Ad(g) has an eigen-
value with modulus # 1, b is non-trivial. Simplicity of G' implies that
h = g. Theorems B and C show that L, is stably ergodic among C?
m-preserving diffeomorphisms of G/B. For the converse, we know from
[4], that stable ergodicity of L,, even among left translations, implies
that h = g. Hence b is non-trivial and Ad(g) has an eigenvalue with
modulus # 1. O

Proof of Corollary c. Recall that Corollary ¢ concerns the special
linear group SL(n,R). One assumes that

(a) B is a uniform discrete subgroup of G = SL(n,R).

(b) f : G/B — G/B is left multiplication by some fixed matrix

MedG.

The assertion is that f is stably ergodic among C? volume preserving
diffeomorphisms of G/B if and only if M has at least one eigenvalue
with modulus # 1.

To deduce Corollary ¢ from Corollary b we note that SL(n,R) is
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simple, and as in Proposition 5.6 of [22], Ad(M) has an eigenvalue
with modulus # 1 if and only if M does. O

11. AN ACCESSIBILITY EXAMPLE

Let f be a partially hyperbolic diffeomorphism of M with splitting
E" @ E°@® E°. It has the accessibility property if every pair of points
p,q € M can be joined by a us-path. If this remains true for all per-
turbations of f then f (or the pair E*, E®) has the stable accessibility

property.
Question 1. Does accessibility imply stable accessibility?

When E“, E* are of class C! the answer is “yes”, a fact we made
use of in the proof of Theorem C in Section 10. In general, however,
E", E? have only the following regularity: they are Holder and uniquely
integrable. (Unique integrability of a plane field £ means that E is
tangent to a foliation and any curve everywhere tangent to E lies in a
leaf of the foliation. See [24] for more discussion of this.)

In this section we give an example indicating that the answer to
Question 1 may be “no”. Although not definitive, it shows the limits
of too naive an approach.

Let E*, E° C T'M be fixed subbundles. We say that a point ¢ € M
is strongly accessible from p € M if the following non-zero degree
condition holds. There are continuous, uniquely integrable vector fields
X' ..., X? such that

(a) The vector fields with odd index are subordinate to E“, and the

ones with even index are subordinate to E®.

(b) A concatenation of the flows ¢’ = ¢!(z) generated by the vec-

tor fields X' joins p to g. That is, for some time vector t* =

(t1, - ),
O(t") = i o o 0pe(p) =g
(c) For some neighborhood N of t* in R?* the map ® : N — M,
O t— (),

is topologically essential. That is, there exists a disc D C N of
the same dimension as M, and

Degree(®|sp, q) # 0.
In particular, ¢ ¢ ®(0D).
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It is an easy application of topological degree theory to show that
strong accessibility implies stable accessibility. The converse is

Question 2. Does stable accessibility imply strong accessibility?

Proposition 11.1. Local 4-legged accessibility does not imply local 4-
legged stable accessibility.

Proof. Specifically, there is a pair of uniquely integrable vector fields
X,Y on a 4-manifold M such that for some p € M, and some non-
empty open set U C M, every q € U is accessible from p by a 4-legged
XY-path,

D(t1, 12, t3,t4) = ), © i 0 ), © pp (P) = ¢.

where t = (t,1,,13,t4) ranges in some open 7" C R%, but there exist
small, uniquely integrable perturbations X,Y of X,Y for which EIVD(T )
is merely a 3-dimensional subset of U.

The construction of X,Y is local. It takes place in one coordinate
chart, say with coordinates z,y, z,w. The point p is the origin, p =
(0,0,0,0), and the vector field Y is everywhere constant,

y=2.
Ay
The time set 7' is a neighborhood of t* = (1,1, 1,1). On the unit cube,
X is also constant,

0
X=—.
ox
Thus, the first two legs of the XY -path with time vector ¢* are the unit
segments along the z-axis and parallel to the y-axis,

0,1 x0x0x0  and  1x[0,1]x0x0.

Let # : R — R, be a smooth function with support in [4/3,5/3],
and integral 1,

/Rﬁ(x)dx = 1.

Let o0 : R® — R, be a smooth function with compact support such
that o(y, z,w) = 1 whenever |y — 1| < 1, |z| < 1, and |w| < 1.

Let v : R — [—1,1]? be a Peano curve with compact support [0, 2].
That is, v is continuous, onto, and ~(y) = 0 for y ¢ [0,2]. Necessarily
v is not differentiable. Write v in components as

Y(y) = (((y), w(y)).
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We then define

where

a=B()oly, nw)(y)  and b= Blx)oly,zw)wly).

Although X is not smooth with respect to y, its 9/0y component
is zero. Thus, X is uniquely integrable and the X-flow curves lie in
planes y = const. Specifically, if t = (¢, t2, t3,t4) and

1 1
(33) |t1—1|<— |t2—1|<1 |t3—1|<—7
3 3
then
(34) q)(t) = (tl —f-tg,tg +t4,C(t2),(xJ(t2)).
Consider the time set T" defined by times t satisfying (33) and
Suppose that ¢ = (z,y, z,w) satisfies
1
(35) |x—2|<§ ly—2| <1 |z| <1 lw| < 1.
Since v is a Peano curve, there exists ty € [0, 2] such that
V(t2) = (z,w).
We then set
t, = 1
t3 = -1
t4 = Y- t27
which makes t = (¢, t9,t3,t4) € T. Therefore ®(¢) is given by (34) and
O(t) =q.

That is, each ¢ in the set U defined by (35) is the ® image of some
t € T, or to put it in terms of accessibility, each ¢ € U is accessible
from p.

Now let X,Y be smooth approximations to X, Y of a special type:
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and 7 = (5 ,) is a smooth approximation to 7. The expression (34)
becomes

D(t) = (t1 +ts, 2 + ta, ((t2), B(t2)).
The @ image of T" is bracketted as
[4/3,8/3] x [1,3] x3(R) < &(T) < R*x7F(R),
and hence has dimension 3. O

Besides the fact that perturbations destroy accessibility in the pre-
ceding example, one can see that although all points of U are accessible
from p, no point is strongly accessible by 4-legged paths. Increasing
the number of legs in the path, well beyond the dimension of M, may
be the way to answer Questions 1 and 2 affirmatively.

REFERENCES

[1] Adler, R., B. Kitchens and M. Shub, (1996) “Stably ergodic skew products”,
Discrete and Continuous Dynamical Systems, 2, 349-350.

[2] Anosov, D.V., (1967) “Geodesic Flows on Closed Riemann Manifolds with
Negative Curvature”, Proc. Stek. Inst. Math # 90.

[3] Borel, A, (1991), Linear Algebraic Groups, Second Edition, Springer Verlag,
N.Y.

[4] Brezin, J. and M. Shub, (1995) “Stable ergodicity in homogeneous spaces”, to
appear Bull. Brazilian Math. Soc.

[5] Brin, M.I., (1975) “Topological transitivity of one class of dynamic systems and
flows of frames on manifolds of negative curvature”, English version, Functional
Analysis and Applications, 9, 9-19.

[6] Brin, M.I. and Ya Pesin, (1974) “Partially hyperbolic dynamical systems”,
Math. USSR Izv. 8, 177-218.

[7] Burns, K., C. Pugh and A. Wilkinson, (1997) “Stable ergodicity and Anosov
flows”, preprint.

[8] Burns, K. and A. Wilkinson, (1997) “Stable ergodicity and skew products”,
preprint.

[9] de Guzmén, M., (1975) “Differentiation of Integrals in R™”, Springer-Lecture
Notes in Math #481.

[10] Diaz, L.J., E. Pujals, R. Ures, (1997) “Normal hyperbolicity and persistence
of transitivity”, to appear.

[11] Field, M. and W. Parry, (1997) “Stable ergodicity of skew extensions by com-
pact Lie groups”, preprint.

[12] Gehring, F., and J. Kelley (1974), “Quasi-conformal Mappings and Lebesgue
Density” in Discontinuous Groups and Riemann Surfaces, Annals of Math.
Studies, #79, 171-179, Princeton University Press, Princeton, N.J.

[13] Grayson, M., C. Pugh and M. Shub, (1994) “Stably ergodic diffeomorphisms”,
Ann. of Math. 40, 295-329.

[14] Herman, M.R., “Théoréme des tores translatés et quelques applications & la
stabilité topologique des systemes dynamiques conservatifs”.



[15]

[16]

[17]
[18]
[19]

[20]

STABLE ERGODICITY AND JULIENNE QUASI-CONFORMALITY 53

Hirsch, M., C. Pugh and M. Shub, (1977) “Invariant Manifolds”, Springer -
Lecture Notes in Math #583.

Hopf, E., (1939) “Statistik der geodatischen Linien in Mannigfaltigkeiten neg-
ativer Krummung”, Berichten der Mathematisch-Physichen Klasse der Sastis-
chen Akademie der Wissenschaften, Leipzig, 11, 261-304.

Milnor, J, (1997) “Fubini foiled: Katok’s paradoxical Example in Measure
Theory”, Math Intelligencer, vol 19, no. 2, 30-32.

Nikodym, O. (1927) “Sur la mesure des ensembles plans dont tous les points
sont rectilineairement accesibles”, Fund. Math. 10, 116-168.

Parry, W. and M. Pollicott (1997) “Stability of mixing for toral extensions of
hyperbolic systems”, preprint.

Pugh, C. and M. Shub, (1972) “Ergodicity of Anosov actions”, Inventiones
Math. 15, 1-23.

Pugh, C. and M. Shub, (1996) “Stable ergodicity and stable accessibility”,
submitted to Proceedings Hangzhou dynamics conference.

Pugh, C. and M. Shub, (1997) “Stably ergodic dynamical systems and partial
hyperbolicity”, Journal of Complexity 13 125-179.

Pugh, C. and M. Shub, (1997a) “Stable ergodicity and partial hyperbolicity” in
International Conference on Dynamical Systems: Montevideo 1995, a tribute
to Ricardo Mane, Pitman Research Notes in Math #362 (F. Ledrappier, et al
eds.) 182-187.

Pugh, C., M. Shub and A. Wilkinson, (1997) “Holder Foliations”, Duke Math.
J. 86, 517-546.

M. Shub, (1986) Global Stability of Dynamical Systems, Springer-Verlag, NY.
Stein, E., (1993) Harmonic Analysis, Princeton University Press, Princeton,
N.J.

Wilkinson, A., (1995) “Stable ergodicity of the time one map of a geodesic
flow”, Ph.D thesis, Univ. of Calif. Berkeley.

Yoccoz, J-C., (1992) “Travaux de Herman sur les Tores Invariants”, in Semi-
naire Bourbaki, 1991-92, Astérisque, # 206, 311-345

MATHEMATICS DEPARTMENT, UNIVERSITY OF CALIFORNIA, BERKELEY CAL-
IFORNIA, 94720
E-mail address: pugh@math.berkeley.edu

IBM, TuoMAS J. WATSON RESEARCH CENTER, YORKTOWN HEIGHTS NEW
YORK, 10598
E-mail address: shub@watson.ibm.com



