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MULTIHOMOGENEOUS NEWTON METHODS

JEAN-PIERRE DEDIEU AND MIKE SHUB

Abstract. We study multihomogeneous analytic functions and a multiho-
mogeneous Newton’s method for finding their zeros. We give a convergence
result for this iteration and we study two examples: the evaluation map and
the generalized eigenvalue problem.

1. Introduction and main results

1.1. Introduction. In a series of papers, Shub [8] and Shub and Smale [9], [10],
[11], [12], [13], studied a projective version of Newton’s method for homogeneous
systems. Their particular focus was the problem of finding zeros of systems of
n homogeneous polynomial equations in n + 1 unknowns. In this paper we study
multihomogeneous functions and a multihomogeneous Newton’s method for finding
their zeros.

Here are three examples of multihomogeneous functions. Let Hd be the space of
homogeneous polynomials of degree d defined on Cn. Let (d) = (d1, . . . , dm) and
H(d) =

∏m
i=1Hdi . So elements ofH(d) represent polynomial functions f : Cn → Cm,

where f = (f1, . . . , fm) and fi is homogeneous of degree di. The evaluation map

ev : H(d) × Cn → Cm,

ev(f, x) = f(x), is multihomogeneous. Each coordinate function of ev is linear in
f and homogeneous of degree di in x.

A second example is given by the generalized eigenvalue problem. Let A,B :
Cn → Cn be linear operators. Then

F(A,B) : C2 × Cn → Cn, F(A,B)(α, β, x) = (αB − βA)(x),

is bilinear, i.e. it is linear in (α, β) and linear in x. The generalized eigenvalue
problem is to find the zeros of F(A,B).

A third example is given by homogenization. If f : E → F is complex analytic
then

f̂ : E× C? → F, f̂(x, t) = f(x/t),

is complex analytic and homogeneous of degree 0.
In general let E1, . . . ,Ek be complex or real vector spaces and F = Cm or

Rm. Let E = E1 × . . . × Ek and ((d)) = ((d1), . . . , (dk)), (di) = (d1i, . . . , dki) for
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i = 1, . . . ,m. Then f : E → F is multihomogeneous of degree ((d)) if and only if
the i–th coordinate function satisfies

fi(λ1x1, . . . , λkxk) =
k∏
j=1

λ
dji
j fi(x1, . . . , xk)

for (x1, . . . , xk) ∈ E and (λ1, . . . , λk) a k−tuple of scalars, i.e., (λ1, . . . , λk) ∈ G =
Ck or Rk as the case may be.

We assume throughout that f is analytic. The domain of f may be an open
subset of E, but with abuse of notation we continue to write f : E→ F.

The multihomogeneous projective Newton iteration we define below is defined
on E but is invariant under the natural identifications which define the product of
the projective spaces P(E1) × . . . × P(Ek). Indeed this is much of our motivation
in defining Newton’s iteration as we do, but it is important to keep in mind that
implementations of the method reside in E itself !

For the rest of this paper we will assume that E, F and G are complex and finite
dimensional vector spaces and that Ei has an Hermitian product 〈 , 〉i. For the
case where E, F and G are real we would replace the Hermitian product by an inner
product. Also, we denote

E? = (E1 \ {0})× . . .× (Ek \ {0}).
If λ = (λ1, . . . , λk) ∈ G, we define

×λ : E→ E

by

×λx = (λ1x1, . . . , λkxk).

Then P(E1)× . . . × P(Ek) is the quotient of E? by the action of G? = (C \ {0})×
. . .× (C \ {0}) (k times). For x ∈ E?, x = (x1, . . . , xk), we let x⊥i be the Hermitian
complement of xi in Ei,

x⊥ =
k∏
i=1

x⊥i ⊂ E and Vx = (x⊥)⊥ ⊂ E.

Notice that Vx is also the subspace of E spanned by the vectors (0, . . . , xi, . . . , 0),
i = 1, . . . , k. The dimension of Vx is k since x ∈ E?. For each i, x⊥i is a natural rep-
resentative of the tangent space TxiP(Ei), and hence x⊥ is a natural representative
of the tangent space

Tx

(
k∏
i=1

P(Ei)

)
=

k∏
i=1

Txi (P(Ei)).

If x = ×λy for λ ∈ G? and v ∈ y⊥, then ×λv ∈ x⊥ represents the same tangent
vector in Tx (

∏
P(Ei)).

We now define an Hermitian structure on E depending on x and hence on x⊥ by

〈v, w〉x =
k∑
i=1

〈vi, wi〉i
〈xi, xi〉i

for x ∈ E?, v and w ∈ E. If λ ∈ G?, then ×λ maps x⊥ onto (×λx)⊥ and

〈 × λv,×λw〉(×λx) = 〈v, w〉x,(*)
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so 〈 , 〉x defines an Hermitian product on Tx(P(E1) × . . .× P(Ek)). Condition (∗)
says that ×λ is an isometry from x⊥ to (×λx)⊥ as well as E to E with their given
Hermitian products.

We are now ready to define the multihomogeneous projective Newton iteration
for f . We denote this map as Nf :

∏
i P(Ei)←↩.

Definition 1.

Nf (x) = f(x) − (Df(x)|x⊥)†f(x).

Here (Df(x)|x⊥)† is the Moore-Penrose inverse of the restriction of Df(x) to
x⊥. We recall that if A : V1 → V2 is a linear map between two finite dimensional
complex vector spaces with Hermitian products, then the Moore-Penrose inverse of
A maps V2 to V1 and is the composition of two maps

A† : V2 → V1, A† = iΠ,

where Π is the Hermitian projection of V2 onto imA and i : imA → V1 is the
right inverse of A whose image in V1 is the Hermitian complement of kerA. If A is
surjective then A† = A?(AA?)−1, where A? is the adjoint of A. In this paper we
only take Moore-Penrose inverses of surjective linear maps, unless otherwise noted.
Nf is of course naturally defined on E; we use Nf to denote this map as well.

From the context it should be clear which map we mean and whether we mean
Newton’s iteration, projective Newton’s iteration or multihomogeneous projective
Newton’s iteration.

Proposition 1. Nf is well-defined, i.e., if y = ×λx for x ∈ E? and λ ∈ G?, then
Nf(y) = ×λNf (x).

For the proof we use a lemma which will be useful later. Let Λ = (Λ1, . . . ,Λk),
where Λi =

∏k
j=1 λ

dji
j and f has degree ((d)). Then

Lemma 1. 1. f(×λx) = ×Λf(x).
2. Df(×λx)× λ = ×ΛDf(x).
3. Dlf(×λx)(×λ, . . . ,×λ) = ×ΛDlf(x).
4. (×λ)−1(Df(×λx)|(×λx)⊥)† = (Df(x)|x⊥)†(×Λ)−1.

Proof of Lemma 1. 1 is the definition of multihomogeneity. 2 and 3 then follow from
the chain rule. 4 follows from 2 since (×λ) is an isometry which maps kerDf(x)
to kerDf(×λx) and hence im(Df(x)|x⊥)† to im(Df(×λx)|(×λx)⊥)†.

Proof of Proposition 1. We have

(Df(×λx)|(×λx)⊥)†f(×λx) = (×λ)(Df(x)|x⊥)†(×Λ)−1(×Λ)f(x)

= (×λ)(Df(x)|x⊥)†f(x)

by 4 and 1 of Lemma 1.

Our analysis of the multihomogeneous Newton method closely follows Smale [14].
There are three important quantities associated to f and x, which we now define.

Definition 2. 1. γ(f, x) = max(1, supk≥2

∥∥(Df(x)|x⊥)†Dkf(x)/k!
∥∥1/(k−1)

x
).

2. β(f, x) = ‖(Df(x)|x⊥)†f(x)‖x.
3. α(f, x) = β(f, x)γ(f, x).
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In the definition of γ(f, x), ‖ ‖x is the operator norm with respect to 〈 , 〉x.
We now verify that α(f, x), β(f, x) and γ(f, x) are defined on P(E1)×. . .×P(Ek).

Proposition 2. For any x ∈ E? and λ ∈ G? we have ?(f, x) = ?(f,×λx) with
? ∈ {α, β, γ}.

Proof of Proposition 2. By Lemma 1

(×λ)(Df(x)|x⊥)†f(x) = (Df(×λx)|(×λx)⊥)†f(×λx)

as in Proposition 1, and

(Df(x)|x⊥)†Dkf(x) = (×λ)−1(Df(×λx)|(×λx)⊥)†Dkf(×λx)(×λ, . . . ,×λ).

Since ×λ is an isometry, we obtain the required result.

We recall that for i = 1, . . . , k the Riemannian distance in P(Ei) is given by

dR(xi, yi) = arccos
|〈xi, yi〉i|
‖xi‖i‖yi‖i

,

and in P(E1)× . . .× P(Ek) by

dR(x, y) =

(
k∑
i=1

dR(xi, yi)2

)1/2

,

where x = (x1, . . . , xk) and y = (y1, . . . , yk) ∈ E?. Here and throughout we identify
xi ∈ Ei \ {0} and x ∈ E? with their equivalence classes in P(Ei) and P(E1)× . . .×
P(Ek) respectively.

Our main theorems concerning the convergence of the multihomogeneous Newton
iteration are summarized in the following subsections and proved in §2.

1.2. α-theorem.

Theorem 1. There is a universal constant αu > 0 with the following property:
for any multihomogeneous system f : E → F and x ∈ E?, if α(f, x) ≤ αu and
Df(x)|x⊥ (the restriction of Df(x) to x⊥) is onto, then the multihomogeneous
Newton sequence

x0 = x, xk+1 = xk − (Df(xk)|x⊥k )†f(xk)

satisfies

‖xk+1 − xk‖xk ≤
(

1
2

)2k−1

β(f, x)

for any k ≥ 0. This sequence converges to a zero ζ ∈ E? of f , and

dR(ζ, xk) ≤ σ
(

1
2

)2k−1

β(f, x)

with

σ =
∞∑
i=0

(
1
2

)2i−1

= 1.6328 . . . .

We can take αu = 1/137.
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α-theorems are available in several different contexts. This approach of Newton’s
methods finds its origins in a paper by S. Smale [12] for analytic functions f : E→ F
with E and F Banach spaces. Sharpened results are given by Royden [7], Shub-
Smale [9] and Wang [16].

Newton’s method can be generalized to search for zeros of maps f : Rn →
Rm, n ≥ m, using the Moore-Penrose inverse of the derivative: NMP

f (x) = x −
Df(x)†f(x). This method appears in the book of Allgower and Georg [1]. An
α-theorem is given in this context by Shub and Smale in [12].

Projective Newton’s method has been proposed by Shub in [8] for homogeneous
systems f : Cn+1 → Cn and is defined by NP

f (x) = x − Df(x)|−1
x⊥
f(x). An α-

theorem has been given by Malajovich in [6]. In the same paper this author also
studies Moore-Penrose projective Newton’s iteration NMPP

f (x) = x−Df(x)†f(x)
for such homogeneous systems.

1.3. γ-theorem.

Theorem 2. There are universal constants γu and cu > 0 with the following prop-
erties: Let ζ ∈ E? be a zero of f with Df(ζ) onto and x ∈ E?. If

‖x− ζ‖ζγ(f, ζ) ≤ γu

then the multihomogeneous Newton sequence converges to a zero ζ′ ∈ E? of f , and

dR(ζ′, xk) ≤ σ
(

1
2

)2k−1

β(f, x).

Moreover

dR(ζ′, x) ≤ 3‖x− ζ‖ζ

and

dR(ζ′, Nf (x)) ≤ cuγ(f, ζ)‖x− ζ‖2ζ .

We have not tried to find the largest possible values for αu or γu. The proof of
Theorem 2 crudely shows that we can take γu = .00005.

Corollary 1. There is a universal constant δu with the following property: Let
ζ ∈ E? be a zero of f with Df(ζ) onto and x ∈ E?. If

dR(x, ζ)γ(f, ζ) ≤ δu

then the multihomogeneous Newton sequence converges to a zero ζ′ ∈ E? of f , and

dR(ζ′, xk+1) ≤
(

1
2

)2k

dR(ζ, x).

This theorem gives the size of the attraction basin around a given zero of the
system f . The affine case is treated by Shub-Smale in [9] and in [12] for overdeter-
mined systems and Moore-Penrose Newton’s iteration. For homogeneous systems
f : Cn+1 → Cn see Blum-Cucker-Shub-Smale [2], Chapter 14, Theorem 1. The
γ-theorem is the main ingredient to prove complexity results for path-following
methods. It will be used in the other sections.
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1.4. Newton’s method for the evaluation map. Let Hd be the space of
homogeneous polynomials of degree d defined on Cn, n > 1. Let (d) = (d1, . . . , dm)
and H(d) =

∏m
i=1Hdi . The evaluation map

ev : H(d) × Cn → Cm,

ev(f, x) = f(x), is bihomogeneous: each coordinate function ev(fi, x) is linear in fi
and homogeneous of degree di in x.

The Hermitian structure overH(d) is the product structure: for f = (f1, . . . , fm)
and g = (g1, . . . , gm) we define

〈f, g〉 =
m∑
i=1

〈fi, gi〉

and

〈fi, gi〉 =
∑
|α|=di

(
di
α

)−1

ai,αb̄i,α

with fi(z) =
∑
|α|=di ai,αz

α, gi(z) =
∑
|α|=di bi,αz

α, α = (α1, . . . , αn), |α| = α1 +
. . .+ αn and

(
di
α

)
= di!

α1!...αn! .
Let us denote

V = {(g, y) ∈ H(d) × Cn : ev(g, y) = 0}.

For any (f, x) ∈ H(d) close enough to V , multihomogeneous Newton’s method
constructs a sequence N (k)

ev (f, x) which converges quadratically to a unique element
in V denoted by Mev(f, x). This defines a function which projects a neighborhood
of V onto V itself. By Theorem 2, the size of this neighborhood is controlled by

γ(ev, V ) = max
(g,y)∈V

γ(ev, g, y).

We have obtained the following estimate

Theorem 3. γ(ev, V ) ≤ D(D − 1)
2

(1 +
√
m) with D = max di.

The properties of Mev(f, x) are summarized in the following theorem.

Theorem 4. Let (f, x) ∈ H(d) × Cn be such that

dR((f, x);V ) ≤ 2δu
D(D − 1)(1 +

√
m)

.

Let (g, y) ∈ V satisfy dR((f, x);V ) = dR((f, x); (g, y)). Then the multihomogeneous
Newton’s sequence N (k)

ev (f, x) converges to Mev(f, x) ∈ V . Moreover

dR(Mev(f, x); (f, x)) ≤ 3
(
‖f − g‖2
‖g‖2 +

‖x− y‖2
‖x‖2

)1/2

and

dR(Mev(f, x);N (k)
ev (f, x)) ≤

(
1
2

)2k (‖f − g‖2
‖g‖2 +

‖x− y‖2
‖x‖2

)1/2

.
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1.5. Path-following. In the following theorem we analyse the complexity of a
path-following method to solve a system of equations approximately. The context
we deal with is the following: for any t ∈ [0, 1] let ft : E→ F be a multihomogeneous
system depending smoothly on t. We also suppose that dimF = dimx⊥ for x ∈ E?;
that is, after disregarding the homogenizing directions, the number of equations
and the number of unknowns are the same. Let ζt be a smooth curve in E? such
that ft(ζt) = 0 and Dft(ζt)|ζ⊥t is an isomorphism. We associate to a subdivision
0 = t0 < t1 < . . . < tp = 1 a sequence xi defined by

x0 = ζ0 and xi+1 = Nfti+1
(xi).

When the subdivision size max |ti+1 − ti| is small enough, then

dR(xi, ζti)γ(fti , ζti) ≤ δu,

so that, by Theorem 2, xi may be taken as the starting point for a multihomoge-
neous Newton sequence Nk

fti
(xi) converging quadratically towards ζti .

The complexity of this path-following method is given by p, the number of points
in the subdivision. Before we state our result we have to introduce more invariants:

Definition 3.

γ = max
0≤t≤1

γ(ft, xt),

µ = max
0≤t≤1

‖Dft(ζt)†‖ζt ,

and L is the length of the curve t ∈ [0, 1]→ ft.

µ is the condition number of the curve t ∈ [0, 1] → (ft, ζt). Our main result
asserts that the complexity of this path-following method depends mainly on the
product µγL.

Theorem 5. There is a partition 0 = t0 < t1 < . . . < tp = 1 with

p =
⌈

2
δu
γµL

⌉
such that, for each i = 0 . . . p the sequence defined by

x0 = ζ0 and xi+1 = Nfti+1
(xi)

satisfies

dR(xi, ζti)γ(fti , ζti) ≤ δu.

Remark. Theorem 5 states the existence of a partition without giving a hint as to
how to construct one. For practical implementations a good strategy may consist
in taking ti+1 = ti + λ(ti − ti−1). In the first step take λ = 2, i.e., double the
step length. If the corresponding iterate xi+1 is not an approximate zero for fi+1,
change λ in λ/2 and compute a new xi+1.

There is a considerable literature concerning path-following methods. The book
of Allgower and Georg [1] is a good introduction to this subject. We follow here the
lines of Shub and Smale: [9] for the affine case, [12] for the affine underdetermined
case. The case of sparse polynomial systems is studied by Dedieu in [4].
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1.6. Newton’s method for the generalized eigenvalue problem. Let (A,B)
∈ Mn(C) ×Mn(C) be a matrix pair. A pair is called singular when the homoge-
neous polynomial P(A,B)(α, β) = det(βA−αB) is identically 0. Otherwise it is said
to be regular. In such a case this polynomial has degree n and its zeros consist in
n lines through the origin. These lines are the eigenvalues of the pair (A,B), and
the nontrivial solutions x ∈ Cn of the equation

(βA− αB)x = 0

are the corresponding eigenvectors.
In order to compute approximately the eigenvalues and eigenvectors of this ma-

trix pair we introduce

F(A,B) : C2 × Cn → Cn, F(A,B)(α, β, x) = (βA − αB)x,

which is a bihomogeneous polynomial with degree 1 in each variable. Multihomo-
geneous Newton’s iterate is thus equal to

NF(A,B)(α, β, x) = (α, β, x) −DF(A,B)(α, β, x)|†
(α,β,x)⊥

(βA − αB)x.

A more precise description of this iterate is given in Section 2.6.
Our objective is here to describe the complexity of a path-following method to

compute approximately an eigenpair (i.e. an eigenvalue, eigenvector pair) associ-
ated with a matrix pair. Let (A0, B0) and (A1, B1) be two regular matrix pairs.
We consider two smooth curves

t ∈ [0, 1]→ (1− t)(A0, B0) + t(A1, B1) = (At, Bt)

and

t ∈ [0, 1]→ (αt, βt, xt) ∈ C2 × Cn

so that

(βtAt − αtBt)xt = 0.

We also suppose that (αt, βt) is a simple eigenvalue for the pair (At, Bt). The path-
following method consists in the following:

0 = t0 < t1 < . . . < tp = 1

is a given subdivision and

(a0, b0, z0) = (α0, β0, x0),

(ai+1, bi+1, zi+1) = Ni+1(ai, bi, zi), i = 0, . . . , p− 1.

Here Ni is the multihomogeneous Newton’s iterate associated with the matrix pair
(Ati , Bti) . Starting from the eigenpair (α0, β0, x0) of (A0, B0), we obtain an ap-
proximate eigenpair (ap, bp, zp) for (A1, B1). Here, approximate means

α(F(A1,B1), (ap, bp, zp)) ≤ αu,

so that, by Theorem 1, the sequence Nk
p (ap, bp, zp)), k ≥ 1, converges quadratically

to (α1, β1, x1).
Our main theorem in this section gives a bound for a sufficient p in terms of the

condition number of the path. This last quantity is defined by
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Definition 4.

µ = max
0≤t≤1

µ(At, Bt, αt, βt, xt),

with

µ(A,B, α, β, x) = ‖DF(A,B)(α, β, x)|†
(α,β,x)⊥

‖(α,β,x).

µ(A,B, α, β, x) is the condition number for the generalized eigenvalue problem
and µ the condition number for the path.

Theorem 6. There is a partition 0 = t0 < t1 < . . . < tp = 1 with

p = d 1
δu

max(r, s)e,

r = 2µ
(
‖A0 −A1‖2F + ‖B0 −B1‖2F

)1/2
,

s = µ2 max
(

(‖A0‖2 + ‖B0‖2)1/2, (‖A1‖2 + |B1‖2)1/2
)

×
(
‖A0 −A1‖2F + ‖B0 −B1‖2F

)1/2
,

such that (ap, bp, zp) is an approximate eigenpair for (A1, B1).

Here ‖A‖ is the spectral norm and ‖A‖F the Frobenius norm.

Remark. Such a path-following method might be combined with a “divide and
conquer” strategy as in Li [5]:

A0 =
(
A11 0
0 A22

)
, A1 =

(
A11 A12

A21 A22

)
,

and similarly for B0 and B1. See, also, Li’s discussion of the number of solutions of
(βA−αB)x = 0 considered as a quadratic or a bihomogeneous system of equations.
The bihomogeneous context seems more natural.

The remainder of this paper is organized as follow: in Section 2.1 we give some
results about the angle between two subspaces in a Euclidean or Hermitian space.
These results will be useful later. We present them in a separate section to make
reading easier. In Section 2.i, 2 ≤ i ≤ 6, we give the proofs of the theorems
presented in Section 1.i.

2. Proofs of theorems

2.1. Angles between subspaces in a Hermitian space. We denote by E
a complex Hermitian space or a real Euclidean space. To measure the distance
between two vector subspaces V and W in E it is useful to consider the following
quantity:

Definition 5.

d(V,W ) = max
v∈V ?

min
w∈W

‖v − w‖
‖v‖ .

This number is the maximum of the sine of a given vector v ∈ V with its
orthogonal projection onW . It also has the following characterizations (ΠX denotes
the orthogonal projection on X):
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Proposition 3. 1. d(V,W ) = ‖ΠW⊥ΠV ‖.
2. d(V,W ) = d(W⊥, V ⊥).
3. d(V,W ) = d(V ∩ (V ∩W )⊥,W ∩ (V ∩W )⊥).

Proof. 1 goes as follows:

d(V,W ) = max
v∈V
‖v‖=1

‖(id−ΠW )v‖ = max
v∈V
‖v‖≤1

‖ΠW⊥v‖ = max
‖v‖=1

‖ΠW⊥ΠV v‖ = ‖ΠW⊥ΠV ‖.

2 is a consequence of 1 since the norms of an operator and its transpose are equal.
Let us prove the third assertion. For any v ∈ V we write it as

v = v1 + v2 ∈ (V ∩W )⊕ (V ∩ (V ∩W )⊥).

Then

ΠW v = w1 + w2 ∈ (V ∩W )⊕ (W ∩ (V ∩W )⊥)

with w1 = v1 and w2 = ΠW∩(V ∩W )⊥(v2).

The proof of Proposition 3.1 may be found in Stewart-Sun [15] with other useful
properties of d(V,W ). This number measures the distance of V from W , but is not
stricto sensu a distance because in general d(V,W ) and d(W,V ) are not equal. For
this reason it is convenient to define

δ(V,W ) = max(d(V,W ), d(W,V )).

δ is a (true) distance in the set of vector subspaces in E. We also have

Proposition 4. 1. 0 ≤ d(V,W ) ≤ 1.
2. d(V,W ) = 0 if and only if V ⊂W .
3. d(V,W ) < 1 if and only if V ∩W⊥ = {0}.
4. d(V1, V3) ≤ d(V1, V2) + d(V2, V3).
5. If V1 ⊂ V2, then d(V1,W ) ≤ d(V2,W ), and if W1 ⊂ W2, then d(V,W2) ≤

d(V,W1).
6. d(V,W1 +W2) ≤ min(d(V,W1), d(V,W2)).
7. If V1 and V2 are orthogonal, then d(V1 ⊕ V2,W ) ≤ d(V1,W ) + d(V2,W ) and

d(V1 ⊕ V2,W ) ≤
√

2 max(d(V1,W ), d(V2,W )).
8. If dimV = dimW , then d(V,W ) = d(W,V ).

These properties (more precisely, 2, 4 and 8) show that d(V,W ) defines a dis-
tance (sticto sensu) on the Grassmannian manifold Gn,p of p-dimensional vector
subspaces in Cn. When dimV 6= dimW then, by 3, δ(V,W ) = 1, while, when
dimV = dimW , d(V,W ) = d(W,V ) = δ(V,W ). In the sequel we only use d(V,W ).

Proof. 1 to 7.1 are staightforward. We now prove 7.2. If v1 and v2 are orthogonal
then ‖v1‖+ ‖v2‖ ≤

√
2‖v1 + v2‖. So, if V1 and V2 are orthogonal,

d(V1 ⊕ V2,W ) = ‖ΠW⊥(v1 + v2)‖ ≤ ‖ΠW⊥v1‖+ ‖ΠW⊥v2‖
≤ d(V1,W )‖v1‖+ d(V2,W )‖v2‖
≤ max(d(V1,W ), d(V2,W ))(‖v1‖+ ‖v2‖)
≤
√

2 max(d(V1,W ), d(V2,W ))‖v1 + v2‖.
To prove 8 we first remark that d(V,W ) is the largest singular value of ΠW⊥ΠV =

(id − ΠW )ΠV = ΠV − ΠWΠV , and similarly d(W,V ) is the largest singular value
of ΠW − ΠV ΠW . Let us introduce a unitary transformation Q such that Q2 = id
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and QV = W . The existence of such an involution will be proved at the end of this
section. We have ΠW = QΠVQ, so that

ΠW⊥ΠV = ΠV −ΠWΠV = ΠV −QΠVQΠV

and similarly

ΠV ⊥ΠW = Q(ΠV −QΠVQΠV )Q.

Thus ΠW⊥ΠV and ΠV ⊥ΠW have the same singular values and d(V,W ) = d(W,V ).

Appendix to Section 2.1. Let V and W be two vector subspaces in E with
the same dimension n. The proof of Proposition 4.8 requires the existence of an
involution Q in E which sends V onto W . The existence of such an involution
may be well known, but we have not found it in the literature. A proof of the fact
may be derived from the CS decomposition for partitionned unitary matrices, see
Stewart-Sun [15]. We give here a concise and elegant construction due to A. J.
Hoffman.

We only consider the case E = C2n, V ∩W = {0} and V ⊕W = C2n. The
general case is easily deduced from this one. We also suppose that V is spanned
by the first n vectors of the canonical basis in C2n. Let us introduce two 2n × n
matrices:

S =
(
In
0

)
and T =

(
A
C

)
such that the columns of T span W and T is orthonormal. Notice that S spans V .
Let us write AU = H , the polar decomposition of A: U is unitary and H positive

semidefinite; TU =
(
H
B?

)
also spans W . We remark now that B? is nonsingular:

if B?x = 0 then TUx =
(
Hx
0

)
, so that TUx ∈ V ∩W = {0}. This gives x = 0,

since U is unitary and T orthonormal. B is also nonsingular. Let us now consider
the following 2n× 2n matrix:

Q =
(
H B
B? −B−1HB

)
.

We have

H2 +BB? =
(
H B

)(H
B?

)
= U?T ?TU = In,

so that

HBB? = H(In −H2) = (In −H2)H = BB?H.

This yields B−1HB = B?HB−?, and consequently Q is Hermitian. Using the same
argument, we see easily that Q2 = I2n, so that Q is an involution. To complete the

proof we remark that QS =
(
H
B?

)
= TU spans W .
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2.2. α-theorem. In this section we give a proof of Theorem 1. It is split into
fourteen different lemmas. We first recall some notations and introduce some new
ones. We let x⊥i be the Hermitian complement of xi in Ei,

x⊥ =
k∏
i=1

x⊥i ⊂ E and Vx = (x⊥)⊥ ⊂ E.

We also introduce

Wx = im(Df(x)|x⊥)† and W⊥x = Vx ⊕ (kerDf(x) ∩ x⊥),

where the ⊕ is orthogonal. We also use frequently for x, ζ ∈ E? and y ∈ E
ux = ‖y − x‖xγ(f, x), uζ = ‖y − ζ‖ζγ(f, ζ)

and the function

ψ(u) = 2u2 − 4u+ 1, 0 ≤ u ≤ 1−
√

2
2
.

This function is decreasing from 1 at u = 0 to 0 at u = 1 −
√

2/2. We first start
with a linear algebra lemma.

Lemma 2.a. Let X and Y be Hermitian spaces and A,B : X → Y linear operators
with B onto. If

‖B†(B −A)‖ ≤ λ < 1,

then A is onto and

‖A†B‖ < 1
1− λ.

Proof. Let us denote C = B −A. We have ‖B†C‖ ≤ λ < 1, so that idX − B†C is
nonsingular and

‖(idX −B†C)−1‖ < 1
1− λ

by a classical argument. Because B is onto we have BB† = idY , so that

(B − C)†B(idX −B†C) = (B − C)†(B − C) = Π

with Π the orthogonal projection on (kerA)⊥. Thus

‖A†B‖ = ‖(B − C)†B‖ = ‖Π(idX −B†C)−1‖ ≤ ‖Π‖ ‖(idX −B†C)−1‖ < 1
1− λ.

Moreover,

A = B − C = B −BB†C = B(idX −B†C)

is the composition of B onto, and (idX − B†C) nonsingular. Thus A is onto and
we are done.

Lemma 2.b. Let x ∈ E? and y ∈ E be given such that Df(x)|x⊥ is onto and
ux < 1−

√
2

2 . Then Df(y)|x⊥ is onto and

‖(Df(y)|x⊥)†Df(x)|x⊥‖x ≤
(1 − ux)2

ψ(ux)
.
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Proof. We have

Df(y) = Df(x) +
∑
k≥2

k
Dkf(x)
k!

(y − x)k−1,

so that

(Df(x)|x⊥)†(Df(y)|x⊥ −Df(x)|x⊥) =
∑
k≥2

k(Df(x)|x⊥)†
Dkf(x)
k!

(y − x)k−1|x⊥ .

If we take the operator norm of both sides, we get

‖(Df(x)|x⊥)†(Df(y)|x⊥ −Df(x)|x⊥)‖x ≤
∑
k≥2

kγ(f, x)k−1‖y − x‖k−1
x

=
∑
k≥2

kuk−1
x =

1
(1− ux)2

− 1,

and this number is < 1 since ux < 1−
√

2
2 . By Lemma 2.a Df(y)|x⊥ is onto, and

‖(Df(y)|x⊥)†Df(x)|x⊥‖x ≤
1

1−
(

1
(1−ux)2 − 1

) =
(1− ux)2

ψ(ux)
.

Lemma 3.a. We have f(ζ) = 0 if and only if Vζ ⊆ kerDf(ζ). In this case

W⊥ζ = kerDf(ζ) = Vζ ⊕ (kerDf(ζ) ∩ ζ⊥)

and

Wζ = im(Df(ζ)|ζ⊥)† = imDf(ζ)†.

Proof. Since fi : E→ C is multihomogeneous with degrees d1i, . . . , dki, then (Euler
formula)

Dfi(x)(×λx) = fi(x)
k∑
j=1

djiλj ,

and this proves the first assertion. Since Wζ = im(Df(ζ)|ζ⊥)† is the orthogonal
complement in ζ⊥ of kerDf(ζ)|ζ⊥ , we have

Wζ = ζ⊥ ∩ (ζ⊥ ∩ kerDf(ζ))⊥ = ζ⊥ ∩ (Vζ ⊕ kerDf(ζ)⊥),

so that

W⊥ζ = Vζ ⊕ (ζ⊥ ∩ kerDf(ζ)).

Since Vζ ⊂ kerDf(ζ), this gives

W⊥ζ = kerDf(ζ) and Wζ = kerDf(ζ)⊥ = imDf(ζ)†.

Lemma 3.b. If f(ζ) = 0 and uζ < 1−
√

2
2 , then

dζ(kerDf(y) ∩ y⊥, kerDf(ζ) ∩ ζ⊥) ≤ 1
(1 − uζ)2

− 1 + uζ .



1084 JEAN-PIERRE DEDIEU AND MIKE SHUB

Proof. We have ζ⊥ = (kerDf(ζ) ∩ ζ⊥)⊕Wζ . Given v ∈ kerDf(y) ∩ y⊥, we get

0 = Df(y)v = Df(ζ)v +
∑
k≥2

k
Dkf(ζ)
k!

(y − ζ)k−1v.

Now let v = v1 + v2 with v1 ∈ W⊥ζ and v2 ∈ Wζ . Then Df(ζ)⊥Df(ζ)v = v2 and

−v2 =
∑
k≥2

kDf(ζ)†
Dkf(ζ)
k!

(y − ζ)k−1v,

so that

‖v − v1‖ζ = ‖v2‖ζ ≤ (
1

(1− uζ)2
− 1)‖v‖ζ

as in the proof of Lemma 2.b. By Lemma 3.a, the component of v1 in Vζ is also
the component of v in Vζ , and its norm is bounded by

dζ(y⊥, ζ⊥)‖v‖ζ = dζ(Vζ , Vy)‖v‖ζ ≤ uζ‖v‖ζ;

the last inequality is a consequence of Lemma 4.a, and the equality follows from
Proposition 3.2.

Lemma 3.c. If f(ζ) = 0,
1

(1 − uζ)2
−1+uζ ≤ 1 and Df(ζ) is onto, then Df(y)|y⊥

is onto.

Proof. By Lemma 3.b,

dζ(kerDf(y) ∩ y⊥, kerDf(ζ) ∩ ζ⊥) < 1.

Thus, by Proposition 4.3

(kerDf(y) ∩ y⊥) ∩ (kerDf(ζ) ∩ ζ⊥)⊥ = {0},

so that

dim kerDf(y) ∩ y⊥ ≤ dim kerDf(ζ) ∩ ζ⊥ ≤ dim kerDf(ζ)

and we are done.

Lemma 4.a. dx(Vx, Vy) ≤ ‖x− y‖x ≤ ux.

Proof. Let v ∈ Vx be given with v = ×λx. With w = ×λy we have

‖v − w‖x =

(∑
i

‖λi(xi − yi)‖2i
‖xi‖2i

)1/2

≤
∑
i

‖λi(xi − yi)‖i
‖xi‖i

≤
(∑

i

|λi|2
)1/2

‖x− y‖x = ‖v‖x‖x− y‖x.

This gives dx(Vx, Vy) ≤ ‖x−y‖x, and this last quantity is≤ ux since γ(f, x) ≥ 1.

Lemma 4.b. If f(ζ) = 0 and uζ < 1−
√

2
2 , then

dζ(kerDf(y),W⊥ζ ) ≤ uζφ(uζ), with φ(u) =
2− u
2ψ(u)

.
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Proof. By Lemma 3.a, kerDf(ζ) ⊕ Wζ is under the hypothesis an orthogonal
direct sum decomposition of E. Let v ∈ kerDf(y) and v = v1 + v2, where
v1 ∈ kerDf(ζ) and v2 ∈ Wζ . Df(y)v = 0 implies that Df(y)v1 = −Df(y)v2

and that Df(ζ)†Df(y)v1 = −Df(ζ)†Df(y)v2. Now we estimate the norms of both
sides of the equation:

‖Df(ζ)†Df(y)v1‖ζ = ‖Df(ζ)†(Df(ζ) +
∑
k≥2

k
Dkf(ζ)
k!

(y − ζ)k−1)v1‖ζ

≤ (
1

(1 − uζ)2
− 1)‖v1‖ζ ,

‖Df(ζ)†Df(y)v2‖ζ = ‖Df(ζ)†(Df(ζ) +
∑
k≥2

k
Dkf(ζ)
k!

(y − ζ)k−1)v2‖ζ

≥ ‖v2‖ζ − (
1

(1 − uζ)2
− 1)‖v2‖ζ .

Let uφ1(u) =
1

(1 − u)2
− 1; then it follows that

‖v1‖ζ ≥
1− uζφ1(uζ)
uζφ1(uζ)

‖v2‖ζ

and that

dζ(kerDf(y),W⊥ζ ) ≤ uζφ1(uζ)
1− uζφ1(uζ)

= uζφ(uζ).

It remains to estimate dζ(W⊥ζ ,W
⊥
y ), which we do in the next lemma with φ as

above.

Lemma 4.c. If f(ζ) = 0 then

dζ(W⊥ζ ,W
⊥
y ) ≤

√
2uζφ(uζ).

Proof. Indeed,

dζ(W⊥ζ ,W
⊥
y ) = dζ(Vy ⊕ (kerDf(y) ∩ y⊥),W⊥ζ ),

which by Proposition 4.7

≤
√

2 max(dζ(Vy ,W⊥ζ ), dζ(kerDf(y) ∩ y⊥,W⊥ζ ))

and by Lemma 4.b

≤
√

2 max(uζ , uζφ(uζ)) =
√

2uζφ(uζ).

Lemma 5. If dζ(kerDf(ζ),W⊥y ) ≤
√

3
2 and Df(y)|y⊥ is onto, then

‖(Df(y)|y⊥)†Df(y)‖ζ ≤ 2.
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Proof. If w1 ∈ kerDf(y)⊥ then

(Df(y)|y⊥)†Df(y)w1 = w2,

where w2 ∈ Wy and there is a v ∈ kerDf(y) such that w1 + v = w2. Then
ΠkerDf(y)w2 = v, and by Proposition 3 and the hypotheses ‖v‖ζ ≤

√
3

2 ‖w2‖ζ , so

‖w2‖2ζ = ‖w1‖2ζ + ‖v‖2ζ ≤ ‖w1‖2ζ +
3
4
‖w2‖2ζ

and ‖w2‖ζ ≤ 2‖w1‖ζ , which was to be proved.

Lemma 6. For any x, y ∈ E? let us define c(x, y) = maxi (‖xi‖i/‖yi‖i) and
c(y, x) = maxi (‖yi‖i/‖xi‖i). Then

1. ‖v‖y ≤ c(x, y)‖v‖x for any v ∈ E.
2. ‖B‖y ≤ c(x, y)c(y, x)k‖B‖x for any k-linear operator B : Ek → E.
Moreover when ux < 1 we have

3. c(x, y) ≤ 1
1− ux

and c(y, x) ≤ 1 + ux.

Proof. Assertions 1 and 2 are easy. To prove 3, notice that

c(x, y) = max
i

‖xi‖i
‖yi‖i

≤ max
i

1

1− ‖xi−yi‖i‖xi‖i

≤ 1
1− ux

,

since
‖xi − yi‖i
‖xi‖i

≤ ‖y − x‖x ≤ ux < 1.

Moreover,

c(y, x) = max
i

‖yi‖i
‖xi‖i

≤ ‖y‖x ≤ 1 + ‖y − x‖x ≤ 1 + ux.

Let x ∈ E? be given such that Df(x)|x⊥ is onto. We use affine α-theory (see
Shub-Smale [12], Theorem 1.4) to conclude, if α(f, x) ≤ α0, the existence of a zero
ζ of f such that the Newton iterates

x0 = x, xk+1 = xk − (Df(xk)|x⊥)†f(xk)

are such that Df(xk)|x⊥ is onto, converge to a zero ζ of f , and for all k ≥ 1

‖xk+1 − xk‖x ≤
(

1
2

)2k−1

‖x1 − x0‖x.

With

σ =
∞∑
i=0

(
1
2

)2i−1

= 1.63284 . . . .

Here α0 is a universal constant. According to Shub-Smale [9] and [12] we can take
α0 = (13− 3

√
17)/4 = 0.15767 . . . . We have the following:

Lemma 7. Let x ∈ E? be given such that Df(x)|x⊥ is onto and α(f, x) ≤ α0. Let
us denote y = x1 = x− (Df(x)|x⊥)†f(x). Then

‖ζ − x‖x ≤ σ‖y − x‖x = σβ(f, x),

‖ζ − y‖x ≤ (σ − 1)‖y − x‖x = (σ − 1)β(f, x).
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The proof is easy, and is left to the reader.

Lemma 8. With the same hypotheses as in Lemma 7, there is a universal constant
τ > 0, approximately equal to 23.78463 . . . , such that uζ ≤ τux.

Proof. Since f(ζ) = 0 we have Vζ ⊂ kerDf(ζ), so that (Df(ζ)|ζ⊥ )† = Df(ζ)† is
the minimum norm right inverse of Df(ζ). Thus

γ(f, ζ) = max(1, sup
k≥2

∥∥∥∥(Df(ζ)|ζ⊥)†
Dkf(ζ)
k!

∥∥∥∥
1
k−1

ζ

)

≤ max(1, sup
k≥2

∥∥∥∥(Df(ζ)|x⊥)†
Dkf(ζ)
k!

∥∥∥∥
1

k−1

ζ

)

and by Lemma 6

≤ max(1, sup
k≥2

(
c(x, ζ)c(ζ, x)k

∥∥∥∥(Df(ζ)|x⊥)†
Dkf(ζ)
k!

∥∥∥∥
x

) 1
k−1

).

Moreover∥∥∥∥(Df(ζ)|x⊥)†
Dkf(ζ)
k!

∥∥∥∥
x

≤
∥∥(Df(ζ)|x⊥)†Df(x)

∥∥
x

∥∥∥∥(Df(x)|x⊥)†
Dkf(ζ)
k!

∥∥∥∥
x

.

Let us denote v = ‖x − ζ‖xγ(f, x). We have by Lemma 7 v ≤ σα(f, x) ≤ σα0 <

1−
√

2/2, and by Lemma 2∥∥(Df(ζ)|x⊥)†Df(x)
∥∥
x
≤ (1− v)2

ψ(v)
.

We also have∥∥∥∥(Df(x)|x⊥)†
Dkf(ζ)
k!

∥∥∥∥
x

≤
∑
l≥0

∥∥∥∥(Df(x)|x⊥)†
Dk+lf(x)

k!l!

∥∥∥∥
x

‖x− ζ‖lx

≤
∑
l≥0

‖ (k + l)!
k!l!

γ(f, x)k+l−1‖x− ζ‖lx =
γ(f, x)k−1

(1− v)k+1
.

Since by Lemma 6 c(x, ζ) ≤ 1/(1− v) and c(ζ, x) ≤ 1 + v, we obtain

γ(f, ζ) ≤ max(1, sup
k≥2

(
(1 + v)k

1− v
(1− v)2

ψ(v)
γ(f, x)k−1

(1− v)k+1

) 1
k−1

) ≤
(

1 + v

1− v

)2
γ(f, x)
ψ(v)

so that, by Lemmas 6 and 7

uζ = ‖ζ − y‖ζγ(f, ζ) ≤ c(x, ζ)‖ζ − y‖xγ(f, ζ)

≤ 1
1− v (σ − 1)‖x− y‖x

(
1 + v

1− v

)2
γ(f, x)
ψ(v)

≤ τux

with

τ =
σ − 1
1− v

(
1 + v

1− v

)2 1
ψ(v)

∣∣
v=σα0

since v ≤ σα0. From this expression we are able to deduce a numerical value for
τ .
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Lemma 9. With the same hypotheses as in Lemma 7, there is a universal constant
0 < α1 ≤ α0 such that, if α(f, x) ≤ α1, then

β(f, y) ≤ 2(1 + σα0)
ψ(α0)

β(f, x)2γ(f, x).

We can take α1 = 0.009.

Proof. We start from the following inequality:

β(f, y) = ‖(Df(y)|y⊥)†f(y)‖y ≤ c(x, y) ‖(Df(y)|y⊥)†Df(y)|x⊥‖x
× ‖(Df(y)|x⊥)†Df(x)‖x ‖(Df(x)|x⊥)†f(y)‖x = 1× 2× 3× 4.

We have 1 ≤ 1
1−ux by Lemma 6, 3 ≤ (1−ux)2

ψ(ux) by Lemma 2 since Df(x)|x⊥ is onto
and ux = α(f, x) ≤ α1 < 1−

√
2/2. By Lemmas 5 and 6 we also have

2 ≤ c(ζ, x)‖(Df(y)|y⊥)†f(y)‖ζ ≤ 2(1 + v) ≤ 2(1 + σα0)

as in the proof of Lemma 8. This is accomplished when dζ(kerDf(ζ),W⊥y ) ≤
√

3/2
and Df(y)|y⊥ is onto (Lemma 5). The first inequality is satisfied when uζ <

1 −
√

2/2 and uζφ(uζ) ≤
√

3/2 (Lemma 4.b); Df(y)|y⊥ is onto when 1
(1−uζ)2 −

1 + uζ < 1. Since uζ ≤ τux by Lemma 8, these inequalities are satisfied when
τα1 < 1−

√
2/2, τα1φ(τα1) ≤

√
3/2 and 1

(1−τα1)2−1+τα1 < 1.This is accomplished
with α1 = 0.009. Let us now give a bound for 4. We start from

f(y) = f(x) +
∑
k≥1

Dkf(x)
k!

(y − x)k.

Since y = Nf (x) we have f(x) +Df(x)(y − x) = 0, so that

4 = ‖(Df(x)|x⊥)†f(y)‖x ≤
∑
k≥2

‖(Df(x)|x⊥)†
Dkf(x)
k!

‖x‖y − x‖kx

≤ ux
1− ux

‖y − x‖x.

Putting these inequalities togother gives the required result.

Lemma 10. With the same hypotheses as in Lemma 9,

γ(f, y) ≤ 2
(

1 + α0

1− α0

)2 1 + σα0

ψ(α0)
γ(f, x).

Proof. Similarly to the proof of Lemma 9,

γ(f, y) = max(1, sup
k≥2

∥∥∥∥(Df(y)|y⊥)†
Dkf(y)
k!

∥∥∥∥
1
k−1

y

).

To bound this quantity in terms of γ(f, x) we start from

‖(Df(y)|y⊥)†
Dkf(y)
k!

‖y ≤ c(x, y)c(y, x)k × 2× 3× ‖(Df(x)|x⊥)†
Dkf(y)
k!

‖x

≤ (1 + ux)k

1− ux
2(1 + σα0)

(1− ux)2

ψ(ux)
γ(f, x)k−1

(1− ux)k+1
;
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the last inequality may be proved as in Lemma 8. This gives

γ(f, y) ≤
(

1 + ux
1− ux

)2 2(1 + σα0)
ψ(ux)

γ(f, x),

and we are done.

Proof of Theorem 1. We start from x0 = x with Df(x)|x⊥ onto and α(f, x) ≤ αu =
1/137. By Lemmas 9 and 10 and since αu ≤ α1, we have α(f, y) ≤ τ1α(f, x)2, where

τ1 =
(

2
1 + α0

1− α0

1 + σα0

ψ(α0)

)2

.

We have τ1 = 63.03684 . . . , so that 2τ1α(f, x) ≤ 1. We obtain, by induction over k,

α(f, xk) ≤
(

1
2

)2k−1

α(f, x).

Using Lemma 9 again, we get

β(f, y) ≤ τ2α(f, x)β(f, x)

with

τ2 =
1 + σα0

ψ(α0)
= 6.00162 . . . .

By induction over k and since 2τ2αu ≤ 1, we obtain

‖xk+1 − xk‖xk ≤ β(f, xk) ≤
(

1
2

)2k−1

β(f, x).

We now notice that

dR(xk+1, xk) ≤ ‖xk+1 − xk‖xk ,
because xk+1 − xk ∈ TxkΠiP(Ei). The rest of the proof is easy.

2.3. γ-theorem. In this section we give a proof of Theorem 2. According to
Theorem 1, x will be an approximate zero if Df(x)|x⊥ is onto and α(f, x) ≤ αu.
Let us denote w = ‖x−ζ‖ζγ(f, ζ). By Lemma 3.c, Df(x)|x⊥ is onto when 1

(1−w)2 −
1 + w < 1. This is accomplished when w ≤ 0.24512 . . . . Let us now compute a
bound for α(f, x). We have by Lemma 6

β(f, x) = ‖(Df(x)|x⊥)†f(x)‖x ≤
1

1− w‖(Df(x)|x⊥)†f(x)‖ζ

≤ 1
1− w ‖(Df(x)|x⊥)†Df(ζ)‖ζ‖(Df(ζ)|ζ⊥)†f(x)‖ζ = 1× 2× 3.

By Lemma 2 we get 2 ≤ (1 − w)2

ψ(w)
, since w < 1−

√
2/2. Moreover,

f(x) = Df(ζ)(x − ζ) +
∑
k≥2

Dkf(ζ)
k!

(x− ζ),

so that 3 ≤ ‖x− ζ‖ζ
1− w . This gives

β(f, x) ≤ ‖x− ζ‖ζ
ψ(w)

.
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To get a bound for γ(f, x) we use an argument similar to Lemma 8, and we obtain

γ(f, x) ≤ (1 + w)2

(1 − w)2ψ(w)
γ(f, ζ).

Thus

α(f, x) ≤
(

(1 + w)
(1− w)ψ(w)

)2

γ(f, ζ)‖x− ζ‖ζ .

This quantity is ≤ αu when

γu ≤ αu
(

(1 + w)
(1 − w)ψ(w)

)−2

.

According to the bound w ≤ 0.24512 . . . and the value αu = 1/137 we can take
γu = 0.00005 . . . , but such a value is pessimistic. A better bound might be obtained
by a direct proof of this γ-theorem. According to Theorem 1 there is a zero ζ′ of f
such that the Newton sequence xk converges to ζ′ and

dR(ζ′, xk) ≤ σ
(

1
2

)2k−1

β(f, x).

With k = 1 and by the previous estimation for β we obtain

dR(ζ′, x) ≤ σ

ψ(w)
‖x− ζ‖ζ ≤ 2.86543 . . .‖x− ζ‖ζ ≤ 3‖x− ζ‖ζ .

As has been proved before, we have ψ(γu)β(f, x) ≤ ‖x− ζ‖ζ. We also have noticed
that α(f, x) ≤ αu, so that, by Theorem 1,

dR(ζ′, xk) ≤ σ
(

1
2

)2k−1

β(f, x)

for some root ζ′ of f . This inequality also applies with Nf (x) instead of x and
gives, using Lemma 9,

dR(ζ′, Nf(x)) ≤ σβ(f, y) ≤ c1β(f, x)2γ(f, x).

We now use the estimate γ(f, x) ≤ c2γ(f.x) obtained previously to obtain

dR(ζ′, Nf(x)) ≤ cuγ(f, ζ)‖ζ − x‖2ζ .

Proof of Corollary 1. Let us first remark that dR(x, y) ≤ ‖x − y‖x and say that
5
6‖x−y‖x ≤ dR(x, y) if we take representatives such that x−y ∈ x⊥ and if dR(x, y)
is small enough. This property is supposed to be satisfied when

dR(x, y) ≤ dR(x, y)γ(f, ζ) ≤ δu.

If we take representatives of x and ζ satisfying ζ − x ∈ ζ⊥, we obtain

‖ζ − x‖ζγ(f, ζ) ≤ 6
5
δu ≤ γu,

so that Theorem 2 gives a Newton’s sequence converging to a zero ζ′ of f with

dR(ζ′, xk) ≤ σ
(

1
2

)2k−1

β(f, x).
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This inequality also applies with Nf (x) instead of x, and gives

dR(ζ′, xk+1) ≤ σ
(

1
2

)2k−1

β(f,Nf (x)).

We now use Lemma 9 to bound β(f,Nf (x)) in terms of β(f, x). Then we use the
estimates of γ(f, x) in terms of γ(f, ζ) and β(f, x) in terms of ‖x− ζ‖ζ obtained in
the proof of Theorem 2 to obtain

dR(ζ′, xk+1) ≤ c1
(

1
2

)2k−1

β(f, x)2γ(f, x) ≤ c2
(

1
2

)2k−1

γ(f, ζ)‖x− ζ‖2ζ

≤ c3
6
5
δu

(
1
2

)2k−1

‖x− ζ‖ζ ≤
(

1
2

)2k

dR(x− ζ)

if c3 72
25δu ≤ 1.

2.4. Newton’s method for the evaluation map. In this section we give the
proofs of Theorems 3 and 4. We first describe Newton’s iterate Nev(f, x). In a first
lemma we study the derivative of the evaluation map.

Lemma 11. For any (f, x) ∈ H(d) × Cn we have

Dev(f, x)(ḟ , ẋ) = ḟ(x) +Df(x)ẋ.

Moreover, Dev(f, x) is always onto.

The following representation lemma will be useful later. A proof may be found
in Blum-Cucker-Shub-Smale [2], Section 14.1.

Lemma 12. For any fi ∈ Hdi and x ∈ Cn we have

fi(x) = 〈fi(z), 〈z, x〉di〉, ‖〈z, x〉di‖ = ‖x‖di

and

|fi(x) ≤ ‖fi‖‖x‖di.

Let us denote by f⊥ and x⊥ the vector subspaces in H(d) and Cn that are
orthogonal complements of Cf and Cx. In the sequel we suppose that ‖f‖ =
‖x‖ = 1. In such a case, the Hermitian structure ‖ ‖(f,x) coincides with the usual
product structure on H(d) × Cn. Newton’s iterate for eval is given by

Nev(f, x) = (f, x) −
(
Dev(f, x)|f⊥×x⊥

)†
f(x).

In the following lemma we compute this Moore-Penrose inverse. We first have to
introduce some notations. f(x) is a column vector, Dfi(x) is a row vector with
entries ∂fi

∂zj
(x), 1 ≤ j ≤ n, and Df(x) is the m × n matrix with rows Dfi(x),

1 ≤ i ≤ m. For any matrix A we denote by A? its adjoint. With these notations,
the usual scalar product in Cn is given by 〈x, y〉 = y?x, and the value at ẋ of the
derivative Df(x) is also the product Df(x)ẋ of the matrix Df(x) by the column
vector ẋ.

Lemma 13. For any µ ∈ Cm we have
(
Dev(f, x)|f⊥×x⊥

)†
µ = (ḟ , ẋ) with

ḟj(z) = λj〈z, x〉dj −
(

m∑
i=1

λifi(x)

)
fj(z),
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ẋ = Df(x)?λ− 〈Df(x)?λ, x〉x,

λ = (Im +Df(x)Df(x)? − f(x)f(x)? − Bf(x)f(x)?B)−1 µ,

where Im is the identity matrix and B the diagonal matrix with entries di, 1 ≤ i ≤
m.

Proof. We have (ḟ , ẋ) ∈ kerDev(f, x) if and only if ḟ(x)+Df(x)ẋ = 0 or, according
to Lemma 12,

〈ḟi(z), 〈z, x〉di〉+ 〈ẋ, Dfi(x)?〉 = 0, 1 ≤ i ≤ m,
or, in terms of the H(d), scalar product,

〈ḟ(z), (0, . . . , 〈z, x〉di , . . . , 0)〉+ 〈ẋ, Dfi(x)?〉 = 0, 1 ≤ i ≤ m.
Thus kerDev(f, x)⊥ consists in the (m+ 1)−tuples

(λ1〈z, x〉d1 , . . . , λm〈z, x〉dm , Df(x)?λ), λ ∈ Cm.

In fact
(
Dev(f, x)|f⊥×x⊥

)† involves the orthogonal complement in f⊥ × x⊥ of
kerDev(f, x)|f⊥×x⊥ . This subspace is equal to(

kerDev(f, x) ∩
(
f⊥ × x⊥

))⊥ ∩ (f⊥ × x⊥)

=
(
kerDev(f, x)⊥ + (Cf × Cx)

)
∩ (f⊥ × x⊥).

Any element in this subspace is equal to some

(ḟ , ẋ) = (αf1 + λ1〈z, x〉d1 , . . . , αfm + λm〈z, x〉dm , βx +Df(x)?λ)

with 〈ḟ , f〉 = 0 and 〈ẋ, x〉 = 0. Consequently

α = −
∑
i

λifi(x) and β = −〈Df(x)?λ, x〉,

since ‖f‖ = ‖x‖ = 1. Let us now compute(
Dev(f, x)|f⊥×x⊥

)†
µ = (ḟ , ẋ).

We have (ḟ , ẋ) as before and ḟ(x) +Df(x)ẋ = µ, so that

(Im +Df(x)Df(x)? − f(x)f(x)? − Bf(x)f(x)?B)λ = µ,

using Euler’s formula for fi i.e Dfi(x)x = difi(x). The invertibility of this matrix
is a consequence of the invertibility of the restriction of Dev(f, x)|f⊥×x⊥ to the
orthogonal complement in f⊥ × x⊥ of kerDev(f, x)|f⊥×x⊥ .

Lemma 14. For any x ∈ Cn with ‖x‖ = 1, ẋ1, . . . , ẋk ∈ Cn, we have

|Dkfi(x)(ẋ1, . . . , ẋk)| ≤ di(di − 1) . . . (di − k + 1)‖fi‖‖ẋ1‖ . . . ‖ẋk‖.
The proof of this lemma may be found in Blum-Cucker-Shub-Smale [2], Section

14.1.

Lemma 15.

Dkev(fi, x)(ḟ1, ẋ1, . . . , ḟk, ẋk)

= Dkfi(x)(ẋ1, . . . , ẋk) +
k∑
j=1

Dk−1ḟj(x)(ẋ1, . . . , ẋj , . . . , ẋk),

where ẋj indicates that ẋj is missing.
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Lemma 16.

‖Dkev(fi, x)‖
k!

≤
(
di
k

)
‖fi‖+

(
di

k − 1

)
.

The proof of this lemma is an easy consequence of Lemmas 14 and 15.

Lemma 17. When f(x) = 0, then

‖
(
Dev(f, x)|f⊥×x⊥

)† ‖ = ‖(I +Df(x)Df(x)?)−1‖ ≤ 1.

Proof. When f(x) = 0 we have by Lemma 13(
Dev(f, x)|f⊥×x⊥

)†
µ = (ḟ , ẋ)

with

ḟi(z) = λi〈z, x〉di , ẋ = Df(x)?λ and λ = (I +Df(x)Df(x)?)−1
µ.

Thus

‖
(
Dev(f, x)|f⊥×x⊥

)† ‖2 = max ‖λ‖2 + ‖Df(x)?λ‖2,

where the maximum is taken for ‖µ‖ = 1. This maximum is also equal to

maxλ?(I +Df(x)Df(x)?)λ = maxµ?(I +Df(x)Df(x)?)−1µ

= ‖(I +Df(x)Df(x)?)−1‖.

This quantity is always less than or equal to 1, since adding to the identity matrix
a psd matrix increases the eigenvalues.

Proof of Theorem 3. For any (f, x) ∈ V we have

‖
(
Dev(f, x)|f⊥×x⊥

)† Dkev(f, x)
k!

‖ ≤ ‖
(
Dev(f, x)|f⊥×x⊥

)† ‖ ‖Dkev(f, x)
k!

‖.

By Lemma 17 the first term is bounded by 1, and by Lemma 16 we get

≤
(

m∑
i=1

((
di
k

)
‖fi‖+

(
di

k − 1

))2
)1/2

≤
(
D

k

)
(1 +

√
m).

We now have to take the (k − 1)−th root of this expression and its maximum for
k ≥ 2. The well known inequality(

D

k

) 1
k−1

≤
(
D

2

)
, k ≥ 2,

gives the required result.

Proof of Theorem 4. This theorem is a consequence of Theorem 2, Corollary 1 and
Theorem 3.
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2.5. Path-following. In this section we give the proof of Theorem 5. We choose
the subdivision ti, 0 ≤ i ≤ p, such that all the distances dR(ζti+1 , ζti) are equal.
Then we have

pdR(ζti+1 , ζti) =
∑
i

dR(ζti+1 , ζti) ≤ Lζ

with Lζ the length of the curve t ∈ [0, 1]→ ζt in the Riemannian distance

Lζ =
∫ 1

0

‖ζ̇t‖ζtdt

and ζ̇t the derivative with respect to t. Since

ζ̇t =
dζt
dft

dft
dt

and
∥∥∥∥dζtdft

∥∥∥∥
ζt

≤ µ,

we obtain Lζ ≤ µL, so that

dR(ζti+1 , ζti)γ ≤
γµL

p
≤ δu

2
.

We have to prove that

dR(xi, ζti)γ(fti , ζti) ≤ δu

by Corollary 1. This will be accomplished if

dR(xi, ζti)γ ≤
δu
2
.

We prove this inequality by induction over i. The case i = 0 is easy, since ζ0 = x0.
We have, by Lemma 6,

dR(xi, ζti+1)γ ≤ dR(ζti+1 , ζti) + dR(ζti , xi) ≤ δu.

By Corollary 1 this gives

dR(xi+1, ζti+1) = dR(Nfi+1(xi), ζti+1) ≤ dR(xi, ζti+1)/2 ≤ δu/2,

and we are done.

2.6. Newton’s method for the generalized eigenvalue problem. In this
section we first give a precise description of multihomogeneous Newton’s iterate for
the generalized eigenvalue problem (gep); then we compute its condition number
and we prove Theorem 6. We have introduced previously

F(A,B) : C2 × Cn → Cn, F(A,B)(α, β, x) = (βA − αB)x,

whose zeros are the eigenpairs of (A,B). Multihomogeneous Newton’s iterate is
equal to

NF(A,B)(α, β, x) = (α, β, x) −DF(A,B)(α, β, x)|†
(α,β,x)⊥

(βA − αB)x.

This iterate is computed in the next proposition
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Proposition 5. Let (A,B) be a regular matrix pair, (α, β) ∈ C2 and x ∈ Cn both
non-zero. If (α, β) is not an eigenvalue of the pair (A,B), then multihomogeneous
Newton’s iterate is given by

NF(A,B)(α, β, x) = (α+ λ̇β̄, β − λ̇ᾱ, x− ẋ),

λ̇ =
〈x, x〉

〈(βA − αB)−1(ᾱA+ β̄B)x, x〉
,

ẋ = (βA − αB)−1((β − λ̇ᾱ)A− (α+ λ̇β̄)B)x.

Proof. The subspace (α, β, x)⊥ consists in those couples (α̇, β̇, ẋ) ∈ C2 × Cn satis-
fying 〈ẋ, x〉 = 0 and (α̇, β̇) = λ̇(−β̄, ᾱ). Thus (α, β, x)⊥ has dimension n. We also
have

DF(A,B)(α, β, x)(α̇, β̇, ẋ) = (β̇A− α̇B)x + (βA− αB)ẋ.

To compute Newton’s iterate we have to solve the following system:

(β̇A− α̇B)x+ (βA− αB)ẋ = (βA − αB)x,

(α̇, β̇) = λ̇(−β̄, ᾱ) and 〈ẋ, x〉 = 0.

Since (α, β) is not an eigenvalue, the matrix (βA−αB) is nonsingular. Multiplying
the first equation by (βA−αB)−1 and then taking the scalar product with x gives

λ̇〈(βA− αB)−1(ᾱA+ β̄B)x, x〉 = 〈x, x〉,

and we are done.

We now compute the condition number for the gep. According to Definition 4,
when (α, β, x) is an eigenpair of (A,B) then

µ(A,B, α, β, x) = ‖DF(A,B)(α, β, x)|†
(α,β,x)⊥

‖(α,β,x).

In Dedieu [3] a similar computation is given, but the condition number of the
eigenvalue and the condition number for the eigenvector are computed separately.
We prove here that the condition number for the eigenpair is equal to the maximum
of 1 and the condition number for the eigenvector.

Proposition 6. Let (A,B) be a regular matrix pair, (α, β) ∈ C2 and x ∈ Cn both
non-zero with

(βA− αB)x = 0 and Ax 6= 0.

Suppose that (α, β) is a simple eigenvalue of the pair (A,B), i.e., a simple root of
the polynomial det(βA − αB). Then

µ(A,B, α, β, x) = max
(

1, ‖
(
Π(Ax)⊥(βA− αB)|x⊥

)−1 ‖ (|α|2 + |β|2)1/2
)

with Π(Ax)⊥ the orthogonal projection over (Ax)⊥.

Before proving this proposition we make some comments.
1. For an eigenpair (α, β, x) of (A,B) we always have Ax 6= 0 or Bx 6= 0, since

the pair (A,B) is regular. When both are nonzero then(Ax)⊥ = (Bx)⊥, since
βAx = αBx.
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2. µ(A,B, α, β, x) is invariant under scaling on both the eigenvector and the
eigenvalue. It is, in fact, defined on the variety

V = {(A,B, α, β, x) ∈Mn(C)2 × P(C2)× P(Cn) : (βA − αB)x = 0}.
This is a consequence of Lemma 1 and the definition of µ.

3. The condition number is invariant under unitary transformations:

µ(A,B, α, β, x) = µ(V ?AU, V ?BU,α, β, U?x)

for any unitary matrices U and V . We do not prove this fact here; it is a consequence
of the definition of µ, of the chain rule and the unitary invariance of the spectral
norm for matrices.

4. The linear operator Π(Ax)⊥(βA − αB)|x⊥ is nonsingular if and only if (α, β)
is a simple eigenvalue of the pair (A,B). See Dedieu [3], Lemma 4.1, for a proof of
this fact.

Proof of Proposition 6. By the invariance property under scaling we can suppose
that |α|2 + |β|2 = 1 and ‖x‖ = 1. By the unitary invariance property, using the
Schur decomposition for a matrix pair (see Dedieu [3] or Stewart-Sun [15], Chap. 6,
Theorem 1.9) we may suppose that x = e1, the first basis vector in Cn, and

A =
(
α a?

0 Ã

)
and B =

(
β b?

0 B̃

)
.

We have

DF(A,B)(α, β, x)(α̇, β̇, ẋ) = (β̇A− α̇B)x + (βA− αB)ẋ.

When (α̇, β̇) ⊥ (α, β) and ẋ ⊥ x we can write

(α̇, β̇) = λ̇(−β̄, ᾱ) and ẋ =
(

0
ẏ,

)
,

so that

DF(A,B)(α, β, x)(α̇, β̇, ẋ) =
(

λ̇

(βÃ − αB̃)ẏ

)
=
(

1 0
0 βÃ− αB̃

)(
λ̇
ẏ

)
.

The condition number is equal to

‖DF(A,B)(α, β, x)|−1
(α,β,x)⊥

‖(α,β,x).

Since |α|2+|β|2 = 1 and ‖x‖ = 1, the endomorphism norm involved in this definition
is the usual spectral norm, so that

µ(A,B, α, β, x) = max
(

1, ‖(βÃ− αB̃)−1‖
)
.

To conclude we just notice that

βÃ− αB̃ = Π(Ax)⊥(βA− αB)|x⊥ .

We now give an estimate for γ(F(A,B), α, β, x) when (α, β) is a simple eigenvalue
of the pair (A,B).

Proposition 7. Under the hypothesis above

γ(F(A,B), α, β, x) ≤ max
(

1,
1
2
µ(A,B, α, β, x)

(
‖A‖2 + ‖B‖2

)1/2)
.
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Proof. We first suppose that |α|2 + |β|2 = 1 and ‖x‖ = 1, since, by Proposition 2,
γ is invariant under scaling. We have

D2F (α, β, x)(α̇1, β̇1, ẋ1)(α̇2, β̇2, ẋ2) = (β̇2A− α̇2B)ẋ1 + (β̇1A− α̇1B)ẋ2,

so that, when (α̇i, β̇i) = λ̇i(−β̄, ᾱ), i = 1, 2,

= (ᾱA+ β̄B)(λ̇2ẋ1 + λ̇1ẋ2).

Since (α, β) and x are normalized, we have

‖D2F (α, β, x)‖(α,β,x) = max
|λ̇i|2+‖ẋi‖2=1

‖(ᾱA+ β̄B)(λ̇2ẋ1 + λ̇1ẋ2)‖ = ‖ᾱA+ β̄B‖,

because

‖λ̇2ẋ1 + λ̇1ẋ2‖ ≤ |λ̇2|‖ẋ1‖+ |λ̇1|‖ẋ2‖ ≤ (|λ̇1|2 + ‖ẋ1‖2)1/2(|λ̇2|2 + ‖ẋ2‖2)1/2 = 1.

This gives

γ(F(A,B), α, β, x) = max
(

1,
1
2
‖(DF (α, β, x)|−1

(α,β,x)⊥
D2F (α, β, x)‖(α,β,x)

)
≤ max

(
1,

1
2
µ(A,B, α, β, x) ‖ᾱA+ β̄B‖

)
≤ max

(
1,

1
2
µ(A,B, α, β, x)

(
‖A‖2 + ‖B‖2

)1/2
)
)
.

Proof of Theorem 6. We put together Theorem 5, Proposition 6 and Proposition 7
to obtain the required estimate.
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