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MULTTHOMOGENEOUS NEWTON METHODS

JEAN-PIERRE DEDIEU AND MIKE SHUB

ABSTRACT. We study multihomogeneous analytic functions and a multiho-
mogeneous Newton’s method for finding their zeros. We give a convergence
result for this iteration and we study two examples: the evaluation map and
the generalized eigenvalue problem.

1. INTRODUCTION AND MAIN RESULTS

1.1. Introduction. In a series of papers, Shub [8] and Shub and Smale [9], [10],
[11], [12], [13], studied a projective version of Newton’s method for homogeneous
systems. Their particular focus was the problem of finding zeros of systems of
n homogeneous polynomial equations in 7 + 1 unknowns. In this paper we study
multihomogeneous functions and a multihomogeneous Newton’s method for finding
their zeros.

Here are three examples of multihomogeneous functions. Let Hy be the space of
homogeneous polynomials of degree d defined on C™. Let (d) = (di,...,d) and
Ha) = [T~ Ha,. So elements of H(q) represent polynomial functions f : C* — C™,
where f = (f1,..., fm) and f; is homogeneous of degree d;. The evaluation map

ev:Hgy x C" — C™,

ev(f,z) = f(z), is multihomogeneous. Each coordinate function of ev is linear in
f and homogeneous of degree d; in x.

A second example is given by the generalized eigenvalue problem. Let A, B :
C™ — C" be linear operators. Then

Fap :C*xC"—=C", Fapla B z)=(aB-BA4)(z),

is bilinear, i.e. it is linear in (o, 3) and linear in z. The generalized eigenvalue
problem is to find the zeros of F(4 p).

A third example is given by homogenization. If f : E — F is complex analytic
then

fiEXC*—F, f(z,t)=f(z/t),

is complex analytic and homogeneous of degree 0.
In general let Eq,... ,[Ex be complex or real vector spaces and F = C™ or
R™. Let E = El X ... X Ek and ((d)) = ((dl), . ,(dk)), (dz) = (dli; . adki) for
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t=1,...,m. Then f : E — F is multihomogeneous of degree ((d)) if and only if
the i—th coordinate function satisfies

k
fi(>\1{E1, e ,)\k{Ek) = H )\?""’fi(xl, e ,:Ck)
j=1

for (z1,...,2x) € Eand (A1,..., k) a k—tuple of scalars, i.e., (A\1,... ,Ax) € G =
CF or R* as the case may be.

We assume throughout that f is analytic. The domain of f may be an open
subset of E, but with abuse of notation we continue to write f : E — F.

The multihomogeneous projective Newton iteration we define below is defined
on E but is invariant under the natural identifications which define the product of
the projective spaces P(Eq) X ... X P(Eg). Indeed this is much of our motivation
in defining Newton’s iteration as we do, but it is important to keep in mind that
implementations of the method reside in E itself !

For the rest of this paper we will assume that E, F and G are complex and finite
dimensional vector spaces and that E; has an Hermitian product ( , ),. For the
case where E, F and G are real we would replace the Hermitian product by an inner
product. Also, we denote

B* = By \ {0}) x ...  (Ex \ {0}).
If A= (A1,..., ) € G, we define
xA\:E—-E
by
XAL = (M1, ..oy ARZE)-
Then P(E;) x ... x P(Ex) is the quotient of E* by the action of G* = (C\ {0}) x
... x (C\ {0}) (k times). For x € E*, x = (21, ... ,xx), we let ;- be the Hermitian

complement of x; in E;,
k
— ij‘ CE and V, = (zH)* CE.
i=1
Notice that V. is also the subspace of E spanned by the vectors (0,...,x;,...,0),
i=1,...,k The dimension of Vj is k since € E*. For each i, =" is a natural rep-

i
resentative of the tangent space T, P(E;), and hence x* is a natural representative
of the tangent space

k k
T, (H P(E») = HT’“ (P(Es)).

If 2 = x\y for A € G* and v € y*, then x\v € zt represents the same tangent
vector in T, (J[P(E;)).
We now define an Hermitian structure on E depending on x and hence on z by

B s w).
<'U7’U}>x = Z; Ex’bi: xliz

for x € E*, v and w € E. If A € G*, then x\ maps x* onto (xAz)* and

*) (X A0, XAw) (3, = (v, w),,
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so (, ), defines an Hermitian product on T (P(E1) x ... x P(Ex)). Condition (x)
says that x\ is an isometry from 2 to (xAz)* as well as E to E with their given
Hermitian products.

We are now ready to define the multihomogeneous projective Newton iteration
for f. We denote this map as Ny : [[, P(E;) <.

Definition 1.
Ni(z) = f(z) — (Df ()|,0) f(=).

Here (Df(x)|,1)" is the Moore-Penrose inverse of the restriction of Df(x) to
. We recall that if A : V; — V5 is a linear map between two finite dimensional
complex vector spaces with Hermitian products, then the Moore-Penrose inverse of
A maps V5 to V7 and is the composition of two maps

AtV — 1y, Ab =0,

J?J‘

where II is the Hermitian projection of V5 onto imA and ¢ : imA — Vi is the
right inverse of A whose image in V; is the Hermitian complement of kerA. If A is
surjective then AT = A*(AA*)~!, where A* is the adjoint of A. In this paper we
only take Moore-Penrose inverses of surjective linear maps, unless otherwise noted.

Ny is of course naturally defined on E; we use Ny to denote this map as well.
From the context it should be clear which map we mean and whether we mean
Newton’s iteration, projective Newton’s iteration or multihomogeneous projective
Newton’s iteration.

Proposition 1. Ny is well-defined, i.e., if y = XAz for v € E* and X\ € G*, then
Ny(y) = ANy (x).

For the proof we use a lemma which will be useful later. Let A = (Aq,..., Ag),
where A; = H?Zl /\?” and f has degree ((d)). Then

Lemma 1. 1. f(x\zx) = xAf(z).
2. Df(xAx) x A= xADf(x).
3. DUf(xAx)(XA, ..., x\) = xAD! f(x).
4. (xN) DS (xAD) [ (xnzy )T = (Df ()]0 )T (xA)
Proof of Lemma 1. 1is the definition of multihomogeneity. 2 and 3 then follow from

the chain rule. 4 follows from 2 since (xA\) is an isometry which maps ker D f(z)
to ker D f(xAz) and hence im(D f(z)|,+)" to im(D f(xAx)|(x e+ )T O

Proof of Proposition 1. We have
(DS (XAZ)|(sexa) ) T (xAZ) = (XA (D f ()] 1) T (xA) 7 (xA) f ()
= (xA)(Df (@)[2) 1 f ()
by 4 and 1 of Lemma 1. O

Our analysis of the multihomogeneous Newton method closely follows Smale [T4].
There are three important quantities associated to f and x, which we now define.

Definition 2. 1. v(f,z) = max(1,supy>, H(Df(x”ocL)TDkf(ﬂU)/k!Hi/(k_l)).

3. Oé(f,l?) = ﬁ(fvx)’}/(fa l‘)
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In the definition of y(f,x), || ||+ is the operator norm with respect to ( , ).
We now verify that o(f, z), B(f, ) and v(f, z) are defined on P(E;) x...xP(E).

Proposition 2. For any x € E* and A € G* we have x(f,x) = *(f, xA\zx) with
*€{a, 8,7}

Proof of Proposition 2. By Lemma 1
(XA(Df (@)]22) T f(2) = (DF(XAD)|(sr2) )T (X A2)

as in Proposition 1, and

(Df()]p2) DF f(a) = (xA)THDF(xA2)| (s0r2)2 ) TDFF(xAZ) (XX, X A).

Since X\ is an isometry, we obtain the required result. |
We recall that for ¢ = 1,... ,k the Riemannian distance in P(E;) is given by
(i, yi),|

dr(x;,y;) = arccos
(o) 2R

and in P(Eq) x ... x P(Eg) by

A 1/2
dr(z,y) = <§th%$ny02> ;

where z = (x1,... ,z;) and y = (y1,... ,yx) € E*. Here and throughout we identify
x; € E; \ {0} and « € E* with their equivalence classes in P(E;) and P(E;) x ... x
P(Ey,) respectively.

Our main theorems concerning the convergence of the multihomogeneous Newton
iteration are summarized in the following subsections and proved in §2.

1.2. a-theorem.

Theorem 1. There is a universal constant a,, > 0 with the following property:
for any multihomogeneous system f : E — F and x € E*, if a(f,z) < a, and
Df(x)|,1 (the restriction of Df(x) to xt) is onto, then the multihomogeneous
Newton sequence

wo =, ape1 =z — (Df(en)lp) f(2r)
satisfies

1

2F—1
o~ ol < (5)  B(F2)

for any k > 0. This sequence converges to a zero ( € E* of f, and

dr(Gow) S 0 (%)2“ B(7,a)

with

< r1\21
= = =1.6328....
o Z(2> 6328

i=0
We can take o, = 1/137.
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a-theorems are available in several different contexts. This approach of Newton’s
methods finds its origins in a paper by S. Smale [12] for analytic functions f : E — T
with E and F Banach spaces. Sharpened results are given by Royden [7], Shub-
Smale [9] and Wang [16].

Newton’s method can be generalized to search for zeros of maps f : R” —
R™, n > m, using the Moore-Penrose inverse of the derivative: N J{‘/[P () =z —

Df(z)t f(z). This method appears in the book of Allgower and Georg [1]. An
a-theorem is given in this context by Shub and Smale in [12].

Projective Newton’s method has been proposed by Shub in [8] for homogeneous
systems f : C"*' — C" and is defined by Nf(z) = 2 — Df(z)|;! f(z). An a-
theorem has been given by Malajovich in [6]. In the same paper this author also
studies Moore-Penrose projective Newton’s iteration N}‘/Ipp(x) =z — Df(x) f(x)
for such homogeneous systems.

1.3. y-theorem.

Theorem 2. There are universal constants v, and ¢, > 0 with the following prop-
erties: Let ¢ € B* be a zero of f with Df(C) onto and x € E*. If

then the multihomogeneous Newton sequence converges to a zero (' € E* of f, and

1 2k_q
dR(Clvxk) <o (5) ﬂ(fa (E)
Moreover

dr (¢’ x) < 3llz = Cllc

and

dr(¢', Ny (@) < ey (£, Q)]lx = CII2.

We have not tried to find the largest possible values for a,, or ,. The proof of
Theorem 2 crudely shows that we can take v, = .00005.

Corollary 1. There is a universal constant &, with the following property: Let
¢ € E* be a zero of f with Df(C) onto and x € E*. If

dR(J), C)’Y(fa C) < by

then the multihomogeneous Newton sequence converges to a zero (' € E* of f, and

2k
dr(¢’, Trt1) < (%) dr(¢, ).

This theorem gives the size of the attraction basin around a given zero of the
system f. The affine case is treated by Shub-Smale in [9] and in [I2] for overdeter-
mined systems and Moore-Penrose Newton’s iteration. For homogeneous systems
f: C" — C" see Blum-Cucker-Shub-Smale [2], Chapter 14, Theorem 1. The
~v-theorem is the main ingredient to prove complexity results for path-following
methods. It will be used in the other sections.
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1.4. Newton’s method for the evaluation map. Let H; be the space of
homogeneous polynomials of degree d defined on C", n > 1. Let (d) = (d1, ... ,dm)
and Hq) = [[;~, Ha,. The evaluation map

ev:Hgy x C" — C™,

ev(f,x) = f(x), is bihomogeneous: each coordinate function ev(f;, z) is linear in f;
and homogeneous of degree d; in x.

The Hermitian structure over H g is the product structure: for f = (fi, - fm)
and g = (g1,. .. ,gm) we define

m
<fag> = Z <fi7g’i>
i=1
and
A
(firgi)= Y (oj) i,abia
|Ot‘:di
with fi(2) = 32| 24, @ia2®s 9i(2) = 22 ja2a; biaz®, a = (o1,... ,an), |af = a1 +
...+ a, and ((fy) = 7a1!‘fﬁ!&n!.
Let us denote
V ={(g,9) € Hia) x C" : ev(g,y) = 0}.

For any (f,z) € Hq) close enough to V, multihomogeneous Newton’s method

constructs a sequence Ne(f ) (f,x) which converges quadratically to a unique element
in V denoted by M., (f,x). This defines a function which projects a neighborhood
of V onto V itself. By Theorem 2, the size of this neighborhood is controlled by

)V = ) ) N
v(ev, V) (mf)igvv(evgy)

s

We have obtained the following estimate

D(D - 1)
2

Theorem 3. y(ev,V) < (14 v/m) with D = maxd,.

The properties of M, (f,z) are summarized in the following theorem.
Theorem 4. Let (f,x) € Hgy x C" be such that

264
D(D - 1)1+ /m)’
Let (g,y) € V satisfy dr((f,z); V) = dr((f,x); (9,y)). Then the multihomogeneous
Newton’s sequence N (f,x) converges to Me,(f,x) € V. Moreover

1/2
Hf—ﬂP+|x—MP)/
o2~ Tal?

dr((f,z); V) <

dMMan%UwD§3(

and

dr(Mey(f,0); N (f,2)) < <1>2k <

1/2
If — gl Hw—mP>/
5 + .

gl ]2
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1.5. Path-following. In the following theorem we analyse the complexity of a
path-following method to solve a system of equations approximately. The context
we deal with is the following: for any ¢ € [0,1] let f; : E — F be a multihomogeneous
system depending smoothly on . We also suppose that dim F = dim 2+ for 2 € E*;
that is, after disregarding the homogenizing directions, the number of equations
and the number of unknowns are the same. Let (; be a smooth curve in E* such
that fi(¢:) = 0 and Df¢((t)|c is an isomorphism. We associate to a subdivision
0=typ <t <...<tp,=1asequence z; defined by

o = C:() and Ti+1 = Nf"i+1 (J?z)
When the subdivision size max |t;+1 — t;] is small enough, then

dR(J?i, Cti)’)/(fti ) Ch) < 5u7

so that, by Theorem 2, x; may be taken as the starting point for a multihomoge-
neous Newton sequence N }i ) (x;) converging quadratically towards (;, .

The complexity of this pabth-following method is given by p, the number of points
in the subdivision. Before we state our result we have to introduce more invariants:

Definition 3.

v = Org%v(ftwt%

. i
p= oax IDfe(Ce) e,

and L is the length of the curve t € [0,1] — f;.

o is the condition number of the curve ¢ € [0,1] — (f;,{;). Our main result
asserts that the complexity of this path-following method depends mainly on the
product uvyL.

Theorem 5. There is a partition 0 =ty <t <...<t, =1 with

p= [%’WL—‘
such that, for each i =0...p the sequence defined by
z0=C and w1 =Ny, (i)
satisfies

dR(xia <ti )V(fh ) é'tl) < 5“

Remark. Theorem 5 states the existence of a partition without giving a hint as to
how to construct one. For practical implementations a good strategy may consist
in taking t;11 = t; + AM(t; — t;—1). In the first step take A = 2, i.e., double the
step length. If the corresponding iterate z;y1 is not an approximate zero for f; 1,
change A in A/2 and compute a new ;1.

There is a considerable literature concerning path-following methods. The book
of Allgower and Georg [1] is a good introduction to this subject. We follow here the
lines of Shub and Smale: [9] for the affine case, [12] for the affine underdetermined
case. The case of sparse polynomial systems is studied by Dedieu in [4].
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1.6. Newton’s method for the generalized eigenvalue problem. Let (A, B)
€ M, (C) x M, (C) be a matrix pair. A pair is called singular when the homoge-
neous polynomial P4 g)(a, 3) = det(3A—aB) is identically 0. Otherwise it is said
to be regular. In such a case this polynomial has degree n and its zeros consist in
n lines through the origin. These lines are the eigenvalues of the pair (4, B), and
the nontrivial solutions x € C™ of the equation

(BA—aB)x =0

are the corresponding eigenvectors.
In order to compute approximately the eigenvalues and eigenvectors of this ma-
trix pair we introduce

Fap) :C*xC"—=C", Fpla B z)=(3A-aB)z,

which is a bihomogeneous polynomial with degree 1 in each variable. Multihomo-
geneous Newton’s iterate is thus equal to

NF(AJ;) (Oé, ﬁ,l‘) = (a76a .1?) - DF(A,B) (a76a x)|2a57x)L(ﬁA - OéB)J)

A more precise description of this iterate is given in Section 2.6.

Our objective is here to describe the complexity of a path-following method to
compute approximately an eigenpair (i.e. an eigenvalue, eigenvector pair) associ-
ated with a matrix pair. Let (Ao, Bg) and (A;, B1) be two regular matrix pairs.
We consider two smooth curves

te[0,1] — (1 —1t)(Ao, Bo) + t(A1, B1) = (As, By)
and
t€[0,1] — (a, B, ) € C* x C"
so that
(Bt Ay — ¢ By)xy = 0.

We also suppose that (a, 8;) is a simple eigenvalue for the pair (A, B;). The path-
following method consists in the following:

O=ﬁ0<t1<...<tp:1
is a given subdivision and

(Cl(), bO; ZO) = (060,60, xO);

(@it1,bit1,2i41) = Niyi(ai, by 2zi), i=0,...,p—1
Here N; is the multihomogeneous Newton’s iterate associated with the matrix pair

(A4, By;) . Starting from the eigenpair («g, 8o, zo) of (Ao, Bo), we obtain an ap-
proximate eigenpair (a,, by, zp) for (A1, By). Here, approximate means

a(F(A1,B1)a (apa bp? Zp)) <

so that, by Theorem 1, the sequence Ng (ap,bp, 2p)), k > 1, converges quadratically
to (a1, f1,21).

Our main theorem in this section gives a bound for a sufficient p in terms of the
condition number of the path. This last quantity is defined by
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Definition 4.

=02ty (A, By, o, Be, ),

with
M(Aa B7 «, ﬁ7 l‘) = ||DF(A,B) (Oé, ﬁ7 m)l-(ra7[37x)L ||(a,ﬁ,z)'

w(A, B,a, B, ) is the condition number for the generalized eigenvalue problem
and p the condition number for the path.

Theorem 6. There is a partition 0 =ty <t; <...<t, =1 with

p = [5-max(r,s)],

1/2
r=2u(||[Ao — A1||% + | Bo — Bill7) ',

s = 2 max (| Aoll? + | Boll) /2, (41|12 + [B1]*)/?)
% (Il 40 = Asll} +11Bo = Bul%) "2,
such that (ap, by, zp) is an approzimate eigenpair for (A1, B1).
Here ||A|| is the spectral norm and ||A|| the Frobenius norm.

Remark. Such a path-following method might be combined with a “divide and
conquer” strategy as in Li [5]:

Ann 0 Apn A
Ao = < 0 A22> » A= (A21 A22) ’
and similarly for By and B;. See, also, Li’s discussion of the number of solutions of
(BA—aB)x = 0 considered as a quadratic or a bihomogeneous system of equations.
The bihomogeneous context seems more natural.

The remainder of this paper is organized as follow: in Section 2.1 we give some
results about the angle between two subspaces in a Euclidean or Hermitian space.
These results will be useful later. We present them in a separate section to make
reading easier. In Section 2.7, 2 < i < 6, we give the proofs of the theorems
presented in Section 1.i.

2. PROOFS OF THEOREMS

2.1. Angles between subspaces in a Hermitian space. We denote by E
a complex Hermitian space or a real Euclidean space. To measure the distance
between two vector subspaces V and W in E it is useful to consider the following
quantity:

Definition 5.

v—w
d(V,W) = max min o = wil
veVrwew  ||v||
This number is the maximum of the sine of a given vector v € V with its
orthogonal projection on W. It also has the following characterizations (Ilx denotes
the orthogonal projection on X):
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Proposition 3. 1. d(V,W) = || Uy Iy .
2. d(V,W) = d(Wt, V1),
3. dV,W) =d(Vn (VW)L wn((Vnw)t).

Proof. 1 goes as follows:
d(V,W) = max ||(id — IIw )v|| = max |y rv|| = max |y Oyl = ||y L Oy ).
21 <1 el =t

2 is a consequence of 1 since the norms of an operator and its transpose are equal.
Let us prove the third assertion. For any v € V' we write it as

v=v+veVNW)e (VN VnWw)l).
Then
Myv=w +ws € (VOAW)S (W N (VAW)H)
with w1 = vy and we = Hyyrvaw)e (v2). O

The proof of Proposition 3.1 may be found in Stewart-Sun [15] with other useful
properties of d(V, W). This number measures the distance of V' from W, but is not
stricto sensu a distance because in general d(V, W) and d(W, V') are not equal. For
this reason it is convenient to define

O(V, W) = max(d(V,W),d(W, V)).
J is a (true) distance in the set of vector subspaces in E. We also have

Proposition 4. 1. 0 < d(V, W) < 1.

2. d(V,W) =0 if and only if V. C W.

3. d(V,W) <1 if and only if VN W+ = {0}.

5. If Vi C Va, then d(Vi, W) < d(Vo, W), and if W1 C Wa, then d(V,Ws3) <
d(V,wy).

6. d(V, Wi+ Wg) < mm(d(V, Wl), d(V, Wg))

7. If Vi and Va are orthogonal, then d(Vi @ Vo, W) < d(Vi, W) 4+ d(Va, W) and
d(Vy @ Vo, W) < V2max(d(Vy, W), d(Va, W)).

8. If dimV = dim W, then d(V,W) = d(W, V).

These properties (more precisely, 2, 4 and 8) show that d(V, W) defines a dis-
tance (sticto sensu) on the Grassmannian manifold G, , of p-dimensional vector
subspaces in C". When dimV # dim W then, by 3, §(V,W) = 1, while, when
dimV =dim W, d(V,W) = d(W,V) = 6(V, W). In the sequel we only use d(V, W).

Proof. 1 to 7.1 are staightforward. We now prove 7.2. If v; and vy are orthogonal
then [|vy]| + [lvz|| < v2||vs + v2]|. So, if Vi and V; are orthogonal,
d(Vi & Vo, W) = [Ty« (v1 + v2)[| < [Ty o] + [Ty 2 va |
< d(Vi, W)llo || + d(Va, W)|vz|
< max(d(Vy, W), d(Va, W))([lvr ]l + [lv2]])
< V2max(d(Vi, W),d(Va, W))|lv1 + va].
To prove 8 we first remark that d(V, W) is the largest singular value of Iy, . ITyy =

(id — Iy )y = Iy — HwIly, and similarly d(W, V) is the largest singular value
of Iy — Iy Iy . Let us introduce a unitary transformation @ such that Q% = id



MULTIHOMOGENEOUS NEWTON METHODS 1081

and QV = W. The existence of such an involution will be proved at the end of this
section. We have Iy = QIIy @, so that

Oy Iy =1y — w1y =y — QIly QIly
and similarly
Iy Oy = Q(ITy — QIIy QILy)Q.

Thus Iy, Iy and Iy, 1 Iy have the same singular values and d(V, W) = d(W, V).
O

Appendix to Section 2.1. Let V and W be two vector subspaces in E with
the same dimension n. The proof of Proposition 4.8 requires the existence of an
involution @) in E which sends V onto W. The existence of such an involution
may be well known, but we have not found it in the literature. A proof of the fact
may be derived from the CS decomposition for partitionned unitary matrices, see
Stewart-Sun [I5]. We give here a concise and elegant construction due to A. J.
Hoffman.

We only consider the case E = C**, VN W = {0} and V@ W = C?". The
general case is easily deduced from this one. We also suppose that V is spanned
by the first n vectors of the canonical basis in C?". Let us introduce two 2n x n

matrices:
I, (A
S—(O) and T—(C)

such that the columns of T" span W and T is orthonormal. Notice that S spans V.
Let us write AU = H, the polar decomposition of A: U is unitary and H positive

semidefinite; TU = (H

B*) also spans W. We remark now that B* is nonsingular:

if B*z = 0 then TUx = (H(')x>, so that TUz € V. NW = {0}. This gives x = 0,

since U is unitary and T orthonormal. B is also nonsingular. Let us now consider
the following 2n x 2n matrix:

H B
Q__<B* —B‘UIB)'

We have

H

2 _
H? BB = (H B) <B*

)—UTWU—@,

so that
HBB* = H(I,, — H*) = (I, — H*)H = BB*H.

This yields B~'HB = B*HB™*, and consequently @ is Hermitian. Using the same
argument, we see easily that Q% = I»,,, so that Q is an involution. To complete the

proof we remark that QS = (é{) =TU spans W. O
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2.2. a-theorem. In this section we give a proof of Theorem 1. It is split into
fourteen different lemmas. We first recall some notations and introduce some new
ones. We let z;- be the Hermitian complement of z; in E;,

o ﬁxﬁ CE and V, = (z5)* CE.
i=1
We also introduce
W, = im(Df(x)|,.)" and W} =V, ® (ker Df(x) Nxt),
where the @ is orthogonal. We also use frequently for z,{ € E* and y € E

and the function

V2

Y(u) = 2u? — 4u + 1, Ogugl—T.
This function is decreasing from 1 at u =0to 0 at u =1 — \/5/2 We first start
with a linear algebra lemma.

Lemma 2.a. Let X and Y be Hermitian spaces and A, B : X — Y linear operators
with B onto. If

IBNB - A)| <A<l

then A is onto and
1
1-X\
Proof. Let us denote C' = B — A. We have |BTC|| < A\ < 1, so that idx — BTC is
nonsingular and

|ATB] <

1
idx — BTC)™Y| < ——
I(idx = BIO) | < —
by a classical argument. Because B is onto we have BBT = idy, so that
(B-C)'B(idxy — BIC)=(B-C)/(B-C) =11

with II the orthogonal projection on (ker A)+. Thus
) - ; - 1
1ATB] = [|(B = C)'B|| = |(idx — BC)~""| <[] [|(idx — B'C)™"|| < 1—-
Moreover,
A=B-C=B-BB'C=B(idx — B'C)

is the composition of B onto, and (idx — B'C) nonsingular. Thus A is onto and
we are done. O

Lemma 2.b. Let x € E* and y € E be given such that Df(zx)|,. is onto and
Uy < 1— § Then Df(y)|,o is onto and

(1 — uy)?

€L t X Lz >
I(DfW)]er) Df (@)oo < o)
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Proof. We have

k X
Df(y) = Df() + kT i,
k>2 ’
so that
k
(DF)]2) (DF W) ~ DF@)s) = S kD @) 22y~ api,
k>2

If we take the operator norm of both sides, we get

I(Df(@)]e) (DfW)las = Df @)l < D kr(fow)*Hly — 2|5

E>2
1
= kub ™t = ——— 1,
; (1 —uy)?
and this number is < 1 since u, < 1 — g By Lemma 2.a D f(y)|,. is onto, and
1 1—uy,)?
(D)) DI < -
N
([l
Lemma 3.a. We have f(¢) =0 if and only if Ve Cker Df(¢). In this case
We =ker Df(¢) =V @ (ker DF(() N ¢H)
and
We =im(Df(Q)|¢+)" = imDf(Q)'.
Proof. Since f; : E — C is multihomogeneous with degrees dy;, . .. , dg;, then (Euler
formula)
k
Dfi(x)(x\x) () > dji);,
Jj=1

and this proves the first assertion. Since W = im(Df(¢)|¢c+)" is the orthogonal
complement in ¢+ of ker D f({)|¢+, we have

We=¢H N (¢ Nker DF(C)T = ¢ N (Ve @ker DF(Q)Y),
so that
W = Ve @ (¢ Nker Df(C)).
Since V¢ C ker D f((), this gives
W& =ker Df(¢) and W¢ =ker Df(¢)* =imDf(()'.

Lemma 3.b. If f(¢) =0 and u¢ <1 — i then

d¢(ker Df(y) Ny™, ker DF(Q)N¢T) <
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Proof. We have (*+ = (ker Df(¢) N¢t) & We. Given v € ker Df(y) Ny*, we get

- Q.

Dk
0=Df(y)v=Df(u+) k ,f@

k>2
Now let v = v1 + vg with vy € VVCL and va € W¢. Then Df(¢)tDf(¢)v = ve and

oy = ZkDf ]LD f(C)( _C)kflv,

k>2
so that
v —v = |lv < (—mm—= = 1)]||v
o= wille = ool < (=5 = Dlellc

as in the proof of Lemma 2.b. By Lemma 3.a, the component of v; in V¢ is also
the component of v in V¢, and its norm is bounded by

de(y™, CH)vlle = de(Ve, Vi) llvlle < ucllvlle;

the last inequality is a consequence of Lemma 4.a, and the equality follows from
Proposition 3.2. ([l

Lemma 3.c. If f(() —14u¢ < 1 and D f(C) is onto, then D f(y)|,+

R rEsE
18 onto.
Proof. By Lemma 3.b,
de(ker Df(y) Ny, ker Df(() N¢H) < 1
Thus, by Proposition 4.3
(ker Df(y) Ny) N (ker DF(Q) N ¢H)T = {0},
so that
dimker Df(y) Nyt < dimker Df(¢) N ¢+ < dimker Df(C)
and we are done. O

Lemma 4.a. d;(V,, V) <[z —ylls < uy.

Proof. Let v € V,, be given with v = xAz. With w = XAy we have

it — w2\
i\Ti — Yi)ll3
lo=wlle = { 3=

[l |

2
iz — yi)lls ||z
Z Hx I ZM |2 Iz = ylle = llvllzllz =yl
A2

This gives dy (Vy, Vi) < ||x—y||«, and this last quantity is < u, since y(f,z) > 1. O

Lemma 4.b. If f(¢{) =0 and uc < 1— @, then

dq(keer(yLng) < uch(uc), with ¢(u) = 2¢p(u)
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Proof. By Lemma 3.a, ker Df(¢) & W¢ is under the hypothesis an orthogonal

direct sum decomposition of E. Let v € kerDf(y) and

v = v1 + ve, where

v1 € ker Df(¢) and vo € We. Df(y)v = 0 implies that Df(y)vi = —Df(y)va
and that Df(Q)'Df(y)vy = —Df(¢)'Df(y)ve. Now we estimate the norms of both

sides of the equation:
k
IDFQDf Wl = D0 (DF(O) + T k2L
k>2 ’

< <ﬁ —1)fjoallc.

IDS10) DSyl = 17O (P + 3424
> el ~ (r—uye Dl
Lot ugy (u) = ﬁ ~1; then it follows that
forle > KD
and that

(y = il

(y— )" Hualle

de(ker Df (y). W) < %“4)) — ucd(ue).

—1- u<¢1 (u<

It remains to estimate dC(WCJ-, W,"), which we do in the
above.

Lemma 4.c. If f(¢) =0 then
A (WA W) < Vauc(uc)
Proof. Indeed,

O

next lemma with ¢ as

de(We, W,b) = dc(Vy & (ker Df (y) N yt), W),

which by Proposition 4.7

< V2max(de(Vy, W), de(ker Df (y) Ny, W)

and by Lemma 4.b
< V2max(ue, ucd(uc)) = V2ucd(ue).

Lemma 5. Ifdc(keer(C),WyL) < @ and Df(y)|,+ is onto, then

I(DFW)ly+) D) < 2.
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Proof. If wy € ker Df(y)* then

(D)l ) Df(y)wr = wo,
where wy € W, and there is a v € ker Df(y) such that wy +v = ws. Then
Hyer pf(y)w2 = v, and by Proposition 3 and the hypotheses |v|¢ < £||w2||<, SO

3
w22 = llwi[[E + [[0llE < [lwilE + 3 llwaE
and |Jwa|¢ < 2||w]|¢, which was to be proved. O

Lemma 6. For any xz, y € E* let us define c(x,y) = max; (||zilli/||lvilli) and
c(y, x) = max; (||yilli/||wills). Then

1. J[oly < (&, )lella for any v € E.

2. |Blly < e(z,y)e(y, x)*||B||x for any k-linear operator B : E* — E.

Moreover when u, < 1 we have

3. clz,y) < . and c(y,z) <1+ uy,.
- Ug
Proof. Assertions 1 and 2 are easy. To prove 3, notice that
s 1 1
c(x,y) = max Il < max < ,
i Jyills i1 — i —yilli 1—ug
llwills
since
Nz = yill: <y — 2l < us < 1.
[EA[
Moreover,
il
c(p) =m0 <yl < 1y = ol < 15 s
(21K2

O

Let # € E* be given such that Df(z)|,. is onto. We use affine a-theory (see
Shub-Smale [12], Theorem 1.4) to conclude, if a(f,z) < ag, the existence of a zero
¢ of f such that the Newton iterates

wo =, w41 = xp — (Df(xn)]os) f2n)
are such that D f(zx)|,+ is onto, converge to a zero ¢ of f, and for all kK > 1
2k 1
1
fors =aul < (3) lloa =l
With
< /q 201
= — =1.63284....
=2(5)

Here «p is a universal constant. According to Shub-Smale [9] and [I2] we can take
ap = (13— 3+v/17)/4 = 0.15767 .... We have the following:

Lemma 7. Let x € E* be given such that Df(x)|,+ is onto and of,x) < ag. Let
us denote y = x1 = x — (D f(x)|,0)T f(x). Then

1€ = zlle < olly — llo = 0B(f, ),

1€ =yllz < (o = Dlly = zlla = (0 = B/, ).
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The proof is easy, and is left to the reader. O

Lemma 8. With the same hypotheses as in Lemma 7, there is a universal constant
7 > 0, approzimately equal to 23.78463 ..., such that uc < Tug.

Proof. Since f(¢) = 0 we have V¢ C kerDf((), so that (Df({)|cx)t = Df(()T is

the minimum norm right inverse of D f({). Thus

\(Dﬂoww -
k! ¢

i DO 5T
k! ¢

v(f,¢) = max(1,sup
k>2

(Df(Q)]er)

< max(1,sup
k>2

and by Lemma 6

< max(1, sup (C(QT,C)C(CJ)’“ (Df(C) TDkf H )
E>2

Moreover

. k
2Ol < oL s @), |0t 2

x

Let us denote v = ||z — {||+¥(f,z). We have by Lemma 7 v < oa(f,z) < oag <
1 —+/2/2, and by Lemma 2

x

N2
sl s, < LY
We also have
k k+1
CHETIMIEEIC] Iy (Df(x)|xL)TDT£(x)‘ o= ¢l
’ z >0 o z

. (f.2)4!

,;H k,l, fof e =l =

Since by Lemma 6 ¢(z,() <1/(1 —wv) and ¢(¢,z) < 1+ v, we obtain

()™ (12

7(f,¢) < max(1,sup
k>2

so that, by Lemmas 6 and 7

u¢ = [I€ = yllev (£, €) < ez, OIIC = yllzv(f, )

1;}(0— Dz =yl (T_FZ) V(f, %)

<

with

o—1(1+v\> 1 |
T fr—
1—v \1—-v/ 2(v)'v=o0
since v < oag. From this expression we are able to deduce a numerical value for
T .
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Lemma 9. With the same hypotheses as in Lemma 7, there is a universal constant
0 < a1 < ap such that, if a(f,z) < ay, then

2(1 + O'Oé())

(0] B(f,x)*(f, z).

B(f,y) <
We can take a; = 0.009.

Proof. We start from the following inequality:

B y) = 1@F W) Wy < elz,y) [DFW)]y2) DF@)lo e
X H(Df(y)le)TDf(fC)Hx H(Df(fc)l D)l =1x2x3x4.

(1 ux

We have 1 <
and u, = oz(f7 ) S ap <1-— \/_/2 By Lemmas 5 and 6 we also have

2 < (G2 (DFWy2) FW)lle < 2(1 +v) < 2(1+0ao)

as in the proof of Lemma 8. This is accomplished when d¢ (ker D f(¢), W) < V3/2
and Df(y)|,+ is onto (Lemma 5). The first inequality is satisfied when us <
1 —+/2/2 and ucd(uc) < v3/2 (Lemma 4.b); Df(y)|,. is onto when m -
14+ uc < 1. Since u¢ < Tu, by Lemma 8, these inequalities are satisfied when
Tay < 1—\/5/27 Ta1d(Ta) < \/§/2 and m—l—l—rm < 1. This is accomplished
with a3 = 0.009. Let us now give a bound for 4. We start from

k x
= f)+ 3 D

by Lemma 2 since Df(x)|,+ is onto

k>1
Since y = Ny(x) we have f(x) + Df(z)(y — x) =0, so that
D f( )
= [(Df(@)le) (W)l < ZH Df()]z)f lzlly — [l
k>2
< Tyl
Putting these inequalities togother gives the required result. O

Lemma 10. With the same hypotheses as in Lemma 9,

2 (1) Lty

Proof. Similarly to the proof of Lemma 9,

1
k—1

).

Y

k
(D), LY

v(f;y) = max(1,sup
k>2

To bound this quantity in terms of v(f, x) we start from

k k
(1 + U:c)k (1 - 'U:x)Q ’Y(f, x)k_l .
S ]_—’U,I 2(1+UO{0) w(ua:) (1—Um)k+17
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the last inequality may be proved as in Lemma 8. This gives

1+u.\° 2(1 + oag)
r) < (T ) 2y fa),

and we are done. O

Proof of Theorem 1. We start from xoy = « with D f(x)|,+ onto and o(f,z) < o, =
1/137. By Lemmas 9 and 10 and since a,, < oy, we have a(f,y) < 1 a(f, )2, where

< 1+a01+0a0>2
T — 2
1—ag (o)

We have 71 = 63.03684. . ., so that 2m a(f,z) < 1. We obtain, by induction over k,
1 2k -1
Oé(f,ibk) < (5) a(fax)'

Using Lemma 9 again, we get

ﬁ(fv y) < TQa(fv x)ﬁ(fv J?)

with
1+ o0ag
Y(ao)

By induction over k£ and since 2ma,, < 1, we obtain

=6.00162. ...

T2 =

2k -1
1
v =l <L < (5) A
We now notice that
dr(zhi1,zr) < [[2p1 — Tkl
because xp11 — x € Ty, ILP(E;). The rest of the proof is easy. O

2.3. ~-theorem. In this section we give a proof of Theorem 2. According to
Theorem 1, z will be an approximate zero if D f(x)|,+ is onto and a(f,z) < .
Let us denote w = ||z —(||¢v(f, ). By Lemma 3.c, D f(z)|,+ is onto when ﬁ -

14+ w < 1. This is accomplished when w < 0.24512.... Let us now compute a
bound for a(f,x). We have by Lemma 6

B(f,2) = [(Df @) ) f@)lle < 7= I(DF(@)]2) F ()¢

< I DF@ ) DI DAl ) Fla)le =1 x 2 x 8.

1— 2
By Lemma 2 we get 2 < %, since w < 1 — 1/2/2. Moreover,
w
Dkf
@) =DFO@ -0+ —¢),
k>2
so that 3 < M This gives
1—w
o~ cllc.

8(f.a) < s
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To get a bound for v(f,z) we use an argument similar to Lemma 8, and we obtain

(14 w)?

o) < T w)

([, ).

Thus

(Ltw) \° .
() < (o) 2(Olle =l

This quantity is < «,, when

According to the bound w < 0.24512... and the value a,, = 1/137 we can take
Yo = 0.00005 .. ., but such a value is pessimistic. A better bound might be obtained
by a direct proof of this y-theorem. According to Theorem 1 there is a zero ' of f
such that the Newton sequence z; converges to ¢’ and

1 2k 1
dR(Clvxk) <o (5) ﬂ(fax)
With £ = 1 and by the previous estimation for § we obtain

dR(C/a J))

= 9w

As has been proved before, we have ¥(v,)3(f, z) < ||z — (||c. We also have noticed
that a(f,z) < au, so that, by Theorem 1,

o~ Cllc < 2.86543.... [lz — Cllc < 3lla — Cllc.

¢ <o (1) e

for some root ¢’ of f. This inequality also applies with Ny(x) instead of z and
gives, using Lemma 9,

dr(¢', Ny(2)) < 0B(f,y) < e1f(f,2)*(f, ).

We now use the estimate v(f, z) < cay(f.z) obtained previously to obtain
dr(¢', Nyp(2)) < cuv(f,ON¢ — 2IZ- O

Proof of Corollary 1. Let us first remark that dr(z,y) < || — y||» and say that
2lz —yllz < dr(x,y) if we take representatives such that z —y € z* and if dg(z, y)
is small enough. This property is supposed to be satisfied when

dR(J),y) < dR(xvy)'Y(fv C) <y

If we take representatives of x and ( satisfying ¢ — 2 € ¢+, we obtain

I¢ = 2le7(£.0) < 30 <

so that Theorem 2 gives a Newton’s sequence converging to a zero ¢’ of f with

2k 1
dR(Clvxk) <o (%) ﬂ(fa (E)
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This inequality also applies with Ny (z) instead of z, and gives

2k _1
dr((' 2p1) <o <%) B(f, N¢(x)).

We now use Lemma 9 to bound S(f, Ny(z)) in terms of 3(f,z). Then we use the
estimates of v(f, z) in terms of y(f, () and B(f,x) in terms of ||z — {||¢ obtained in
the proof of Theorem 2 to obtain

1 2k_1 1 2k_1
i) sa(5)  Hatrosa(3) U0k -2
2k_1 2k
<ag(3) le-des(3) dae-0
if 03;—?% S 1. O O

2.4. Newton’s method for the evaluation map. In this section we give the
proofs of Theorems 3 and 4. We first describe Newton’s iterate Ne,(f,z). In a first
lemma we study the derivative of the evaluation map.

Lemma 11. For any (f,x) € H(qy x C" we have
Dev(f,z)(f,#) = f(x) + Df ()
Moreover, Dev(f,z) is always onto. O

The following representation lemma will be useful later. A proof may be found
in Blum-Cucker-Shub-Smale [2], Section 14.1.

Lemma 12. For any f; € Ha, and x € C™ we have

filz) = (fi(2), (z2)"), Iz, 2)"

d;

= [l

and

|fi(z) < |1 fillllz|%. O

Let us denote by f and z* the vector subspaces in H(q) and C™ that are
orthogonal complements of Cf and Cz. In the sequel we suppose that || f| =
|z|| = 1. In such a case, the Hermitian structure || |[|(y,) coincides with the usual
product structure on H4) x C". Newton’s iterate for eval is given by

T

Nev(fvx) = (fvx) - (Dev(f, x)|fL><xL) f((E)
In the following lemma we compute this Moore-Penrose inverse. We first have to
introduce some notations. f(x) is a column vector, Df;(x) is a row vector with
entries g—j;(x), 1 < j < n, and Df(x) is the m x n matrix with rows D f;(z),
1 < i < m. For any matrix A we denote by A* its adjoint. With these notations,
the usual scalar product in C™ is given by (x,y) = y*x, and the value at & of the
derivative D f(x) is also the product D f(x)& of the matrix D f(x) by the column
vector .

Lemma 13. For any p € C™ we have (Dev(f, x)|foxL)T w=(f,&) with

0= e - (07 5
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&= Df(z)"A = (Df(z)"\ )z,

A= (Im + Df(@)Df ()" = f(x)f ()" = Bf(x)f(x)*B) " p,
where I, is the identity matriz and B the diagonal matriz with entries d;, 1 <i <
m.

Proof. We have (f, i) € ker Dev(f, ) if and only if f(x)+Df(z)i = 0 or, according
to Lemma 12,

(fi(2), (z,2)™) + (&, Dfi(x)*) =0, 1<i<m,
or, in terms of the Hq), scalar product,
(F(2),00,...  (z,2)%, ... ,0)) + (& Dfi(z)*) =0, 1<i<m.
Thus ker Dev(f, )+ consists in the (m + 1)—tuples
Oz, @)™, Az, 2)" Df(z)*A), AeC™

In fact (Dev(f, a:)|foxL)T involves the orthogonal complement in f* x 2+ of
ker Dev(f,x)|fr«,+. This subspace is equal to

(kerDev(f,x) N (fJ‘ X xJ‘))L N(ft xazh)
= (ker Dev(f,z)" + (Cf x Cz)) N (f+ x zt).
Any element in this subspace is equal to some
(f.2) = (afi + Mz, 2)", o afm + Am(z,2)™, Bz + Df(z)*))
with (f, f) = 0 and (i, 2) = 0. Consequently
o= - AF@) and f=—(Df(x))a),

since ||f]] = ||z|| = 1. Let us now compute
(Dev(f. )| g xos) 1= (f.).
We have (f, i) as before and f(z) + Df(x)d = p, so that
(Im + Df(z)Df(2)" — f(z)f(x)" = Bf(x)f(z)"B) A = p,
using Euler’s formula for f; i.e Df;(z)x = d;f;(xz). The invertibility of this matrix

is a consequence of the invertibility of the restriction of Dev(f,z)|f1y,1 to the
orthogonal complement in f+ x z* of ker Dev(f, )| 1 xpe - O

Lemma 14. For any x € C" with ||z|| =1, &1,... ,&r € C", we have
D" fil@) (@1, dn)| < di(di = 1) (di = K+ )| fill |l - [J5]]-

The proof of this lemma may be found in Blum-Cucker-Shub-Smale [2], Section
14.1. |

Lemma 15.
D*ev(fi, x)(fi, %1, fr, k)

k
= DFfi(x)(dy,. .. ,dp) —I—ZDk_lfj(x)(j:l,... Vg ER),
j=1

where &; indicates that ; is missing.
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[Drev(fi,x)|| _ (di d;
et < (Wi (%)

The proof of this lemma is an easy consequence of Lemmas 14 and 15. O

Lemma 16.

Lemma 17. When f(z) =0, then

| (Dev(f, )52 o) || = I( + Df(@)Df(2)) Y| < 1.

Proof. When f(z) = 0 we have by Lemma 13

(Dev(f, J))lfLXg:L)T p=(f )

with
fi(z) = Mifz,2)", & =Df(z)*A and = (I +Df()Df(x)") " p.
Thus
I (Dev(f,a)] o) 2 = maax | A + [ DF ()" A,
where the maximum is taken for ||x| = 1. This maximum is also equal to

max X (I + Df (&) Df () )\ = max u* (I + Df () D f(2)*) " 'p
— (I + Df(x)Df(2)) "I

This quantity is always less than or equal to 1, since adding to the identity matrix
a psd matrix increases the eigenvalues. O

Proof of Theorem 3. For any (f,z) € V we have

t DFev(f,x)

I Devtt.)penns) ZDy < Deu( )l ) 1 222D

By Lemma 17 the first term is bounded by 1, and by Lemma 16 we get
1/2

g@((i)wu(k{l») (D) v

We now have to take the (k — 1)—th root of this expression and its maximum for
k > 2. The well known inequality

Dﬁ<D k>2
k —\2) =7

gives the required result. O

Proof of Theorem 4. This theorem is a consequence of Theorem 2, Corollary 1 and
Theorem 3. O
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2.5. Path-following. In this section we give the proof of Theorem 5. We choose

the subdivision ¢;, 0 < i < p, such that all the distances dr((;,,,,(:,) are equal.
Then we have

de(CtH-l ’ Ct,) = Z dR(Cti+1 ) Cb) < L

with L¢ the length of the curve t € [0,1] — (; in the Riemannian distance

1
Lo = / 1 llc,dt

and ét the derivative with respect to t. Since

C’ dCt dft dC:t
CTdf, dt df |,
we obtain L < plL, so that
YL _ 0y
dR(CtHuCti)’Y < T < ?

We have to prove that

dR(xia <ti )V(ftm Cb) < 5“
by Corollary 1. This will be accomplished if

Ou
dr(zi, G, )y < 5

We prove this inequality by induction over i. The case ¢ = 0 is easy, since (y = xp.
We have, by Lemma 6,

dR(xia <ti+1)’y < dR(CtH»l ’ CtL) + dR(Cti ) xl) < Gy
By Corollary 1 this gives
dR(x’iJrlv Cti+1) = dR(Nfi+1 (x’b)’ Cti+1) < dR(x’ia <ti+1)/2 < 5“/2’
and we are done. |
2.6. Newton’s method for the generalized eigenvalue problem. In this
section we first give a precise description of multihomogeneous Newton’s iterate for

the generalized eigenvalue problem (gep); then we compute its condition number
and we prove Theorem 6. We have introduced previously

Fa,p) 2 xC" — cr, F(A7B)(a,5,x) = (BA — aB)z,

whose zeros are the eigenpairs of (A, B). Multihomogeneous Newton’s iterate is
equal to

NF(A,B) (Oé, 67x) = (avﬂv x) - DF(A,B)(avﬂv $)|IQ’B7I)L(5A - OéB){E

This iterate is computed in the next proposition
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Proposition 5. Let (A, B) be a regular matriz pair, (o, 3) € C? and x € C™ both
non-zero. If («, B) is not an eigenvalue of the pair (A, B), then multihomogeneous
Newton’s iterate is given by

NF(A1B)(Oé,ﬁ,J)) = (04 + )\B,ﬁ — XO?,J? — J,‘),

(z, )
(BA — aB)~Y(aA + fB)z,z)’

i=(BA—aB) (8- Aa)A— (a+ AB)B)z.

}\:

Proof. The subspace (a, ﬁ,x)l consists in those couples (d,B, i) € C? x C" satis-
fying (&, x) = 0 and (&, 3) = A\(=f3,a). Thus (o, 3,x)* has dimension n. We also
have

DF 4 p)(a, B, x)(c, B,4) = (BA — aB)z + (BA — aB)i.
To compute Newton’s iterate we have to solve the following system:
(BA— aB)z + (BA — aB)i = (BA — aB)z,
(&, B) = A(—=fB,a) and (i,z) = 0.

Since (v, B) is not an eigenvalue, the matrix (A — aB) is nonsingular. Multiplying
the first equation by (34 —aB)~! and then taking the scalar product with z gives

M(BA —aB) (@A + fB)x,z) = (v,),

and we are done. O

We now compute the condition number for the gep. According to Definition 4,
when («, 8, ) is an eigenpair of (A, B) then

M(A,B,Cl,ﬁ,$) = HDF(A,B) (Oé, ﬁ7m)|]€a7[37x)L ||(a,ﬁ,z)'

In Dedieu [3] a similar computation is given, but the condition number of the
eigenvalue and the condition number for the eigenvector are computed separately.
We prove here that the condition number for the eigenpair is equal to the maximum
of 1 and the condition number for the eigenvector.

Proposition 6. Let (A, B) be a regular matriz pair, (o, 8) € C? and x € C™ both
non-zero with

(BA—aB)x=0 and Az #0.

Suppose that (o, B) is a simple eigenvalue of the pair (A, B), i.e., a simple root of
the polynomial det(BA — aB). Then

-1
#(A, B, a,B,x) = max (1, | (H(an)- (BA = aB)|,s) | (laf? +|52)/?)
with I a,y1 the orthogonal projection over (Ax)*.

Before proving this proposition we make some comments.

1. For an eigenpair (o, 8, z) of (A, B) we always have Az # 0 or Bz # 0, since
the pair (A4, B) is regular. When both are nonzero then(Az)t = (Bx)*, since
BAxr = aBzx.
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2. w(A, B,«,B,x) is invariant under scaling on both the eigenvector and the
eigenvalue. It is, in fact, defined on the variety

V ={(A,B,a,B,z) € M,(C)* x P(C?) x P(C") : (BA — aB)z = 0}.

This is a consequence of Lemma 1 and the definition of u.
3. The condition number is invariant under unitary transformations:

/’L('A7 B7 a? ﬂ? x) = M(V*AUﬂ V*BU7 a? /87 U*x)

for any unitary matrices U and V. We do not prove this fact here; it is a consequence
of the definition of u, of the chain rule and the unitary invariance of the spectral
norm for matrices.

4. The linear operator IT( 4,y (84 — aB)|,. is nonsingular if and only if (a, 3)
is a simple eigenvalue of the pair (A, B). See Dedieu [3], Lemma 4.1, for a proof of
this fact.

Proof of Proposition 6. By the invariance property under scaling we can suppose
that |a|? + |32 = 1 and ||z|| = 1. By the unitary invariance property, using the
Schur decomposition for a matrix pair (see Dedieu [3] or Stewart-Sun [15], Chap. 6,
Theorem 1.9) we may suppose that x = ej, the first basis vector in C", and

a a* 68 b*

DF(A,B)(avﬂv $)(Oé,5,$) = (ﬂA - OéB)(E + (6A - CVB)LE
When (o'z,B) 1 (o, 8) and & L = we can write

We have

(6 8) = A(~B,@) and &= (;) ,

so that

Ch A 1 0 A
DF(A7B)(OC,5,CC)(C¥,5,$) - <(ﬂfi _ aB)y> - (O BA _ OéB) <y> .
The condition number is equal to
[DFa,B)(a, B, $)|(_al,g,x)L l(a8.2)-

Since |a|?+|8|? = 1 and ||z|| = 1, the endomorphism norm involved in this definition
is the usual spectral norm, so that

#(A, B, 5,2) = max (1, (B4 - aB) "))
To conclude we just notice that
BA—aB =T 4, (BA - aB)|,-.
O

We now give an estimate for y(F(4,py, @, 3, 7) when (c, ) is a simple eigenvalue
of the pair (A, B).

Proposition 7. Under the hypothesis above

1 1/2
V(F(A,B)vavﬂvx) S max <1a §M(A,B,O{,ﬁ,1') (HAH2 + HB||2) / ) .
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Proof. We first suppose that |a|? + |32 = 1 and ||z|| = 1, since, by Proposition 2,
v is invariant under scaling. We have

D?F(a, B,x)(d1, B, @1)(da, Bo, #2) = (B2A — G2 B)in + (f1A — é1 B,
so that, when (di,Bi) = ).\i(—B, a),i=1,2,
= (@A + BB)(Aa1 + A1)
Since (o, #) and x are normalized, we have

1D (e B Do = | max @A+ FB) Ao + o)l = 164 + 5B,

because
Aoy + M|l < [halll ]l + [Aallldall < (Aaf + [l82]) 2 (1Al + 1 82]|*)*/* = 1.
This gives

1 _
V(F(A,B)v avﬂv $) = max <]" §||(DF(C¥,[3, x)|(a{ﬁ’x)LD2F(aa 67x)||(a,ﬁ,x)>
1 _
< max (17 E,u(A,B,oz,B, x) ||ed + ﬁB|>

1 2
< (1, g, B, 5,0) (LA 4 181%) ') ).

O

Proof of Theorem 6. We put together Theorem 5, Proposition 6 and Proposition 7

to obtain the required estimate. [l
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