

CORRECTION TO "HÖLDER FOLIATIONS"

CHARLES PUGH, MICHAEL SHUB, AND AMIE WILKINSON

A. Török has pointed out to us the need for a better proof of [1, Theorem B]. Accordingly, the first two full paragraphs on [1, p. 539] should be replaced with the following argument.

We are trying to show that the subfoliation of the center unstable leaves by the strong unstable leaves is of class C^1 . Let W denote the disjoint union of the center unstable leaves:

$$W = \bigsqcup W^{cu}(p).$$

It is a nonseparable manifold of class C^1 . Partial hyperbolicity implies that its tangent bundle $TW = E^{cu}$ is continuous. The restriction of TM to W is a C^1 bundle $T_W M$ that contains the C^0 subbundle TW . Since f is a diffeomorphism of class C^2 , the tangent map

$$Tf : T_W M \longrightarrow T_W M$$

is a C^1 bundle isomorphism. As in the proof of Theorem A (see [1, pp. 527–538]), approximate E^u, E^{cs} by smooth bundles $\tilde{E}^u, \tilde{E}^{cs}$, and express Tf with respect to the splitting $TM = \tilde{E}^u \oplus \tilde{E}^{cs}$ as

$$\begin{pmatrix} A & B \\ C & K \end{pmatrix}.$$

Let $\tilde{\mathcal{P}}(1)$ be the bundle over W whose fiber at p is the set of linear maps $P : \tilde{E}_p^u \rightarrow \tilde{E}_p^{cs}$ such that $\|P\| \leq 1$. The linear graph transform sends P to

$$\Gamma_{Tf}(P) = (C + KP) \circ (A + BP)^{-1}.$$

It is a bundle map that covers the identity on W , contracts fibers by approximately $\|K\| \|A^{-1}\| \doteq \|T^c f\| / m(T^u f)$, and contracts the base, at worst, by approximately $m(A) \doteq m(T^c f)$. The unique invariant section $p \mapsto P_p$ of $\tilde{\mathcal{P}}(1)$ of Γ_{Tf} has graph $P_p = E_p^u$. Center bunching implies that

$$(\text{fiber contraction})(\text{base contraction})^{-1} \doteq \frac{\|T^c f\|}{m(T^u f)} (m(T^c f))^{-1} < 1.$$

Received 16 August 1999.

2000 *Mathematics Subject Classification*. Primary 37D30.

So fiber contraction dominates base contraction, and the invariant section is of class C^1 . That is, E^u is a C^1 bundle over the C^1 manifold W . Since E^u is tangent to the foliation \mathcal{W}^u , it is integrable.

Frobenius's theorem states that the foliation tangent to a C^k integrable subbundle of TW is of class C^k , in the sense that there is a C^k atlas of foliation charts covering the manifold W . Strictly speaking, the proof requires that the underlying manifold be of class C^{k+1} , so we need to recheck the result in the case of the C^1 manifold W .

Locally, $W^{cu}(p)$ is the graph of a C^1 function $g : E_p^{cu} \rightarrow E_p^s$. The linear projection $\pi : E_p^{cu} \times E_p^s \rightarrow E_p^{cu}$ restricts to a C^1 diffeomorphism $\pi_p : W^{cu}(p) \rightarrow E_p^{cu}$,

$$\pi_p : (x, g(x)) \mapsto x.$$

The tangent to π gives a C^1 bundle surjection

$$T\pi : T_{W^{cu}(p)} M \longrightarrow T(E_p^{cu}).$$

The restriction of $T\pi$ to $E^u|_{W^{cu}(p)}$ agrees with $T\pi_p$, which implies that

$$T\pi_p : E^u|_{W^{cu}(p)} \longrightarrow T\pi_p(E^u|_{W^{cu}(p)})$$

is a C^1 bundle isomorphism. The latter bundle is C^1 and is integrated by the foliation $\pi_p(\mathcal{W}^u)$. Since $E^{cu}(p)$ is smooth (being a plane), we can apply Frobenius's theorem to conclude that the foliation $\pi_p(\mathcal{W}^u)$ is C^1 . Therefore, the foliation $\mathcal{W}^u|_{W^{cu}(p)}$ is also of class C^1 .

REFERENCES

[1] C. PUGH, M. SHUB, AND A. WILKINSON, *Hölder foliations*, Duke Math. J. 86 (1997), 517–546.

PUGH: DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA AT BERKELEY, BERKELEY, CALIFORNIA 94720-3840, USA

SHUB: IBM, T. J. WATSON RESEARCH CENTER, YORKTOWN HEIGHTS, NEW YORK 10598, USA; mshub@us.ibm.com

WILKINSON: DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY, 2033 SHERIDAN ROAD, EVANSTON, ILLINOIS 60208-2730, USA; wilkinson@math.nwu.edu