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CORRECTION TO “HOLDER FOLIATIONS”

CHARLES PUGH, MICHAEL SHUB, anp AMIE WILKINSON

A. Tordk has pointed out to us the need for a better proof of [1, Theorem B].
Accordingly, the first two full paragraphs on [1, p. 539] should be replaced with the
following argument.

We are trying to show that the subfoliation of the center unstable leaves by the
strong unstable leaves is of class C'. Let W denote the disjoint union of the center
unstable leaves:

w=| | w"(,Q).

Itis a nonseparable manifold of class C'. Partial hyperbolicity implies that its tangent
bundle TW = E* is continuous. The restriction of TM to W is a C! bundle TwM
that contains the C% subbundle 7W. Since f is a diffeomorphism of class C2, the
tangent map

Tf:TwM — TyM

isa C'! bundle isomorphism. As in the proof of Theorem A (see [1, pp. 527-538)),
approximate E*, E“* by smooth bundles E¥, E<, and express 7 f with respect to the
splitting TM = E*Q E as

A B

C KJ°

Let (1) be the bundle over W whose fiber at p is the set of linear maps P - E: > EF
such that || P|| < 1. The linear graph transform sends P to

F7s(P)=(C+KP)o(A+BP)™".

It is a bundle map that covers the identity on W, contracts fibers by approximately
UKWIA™ = |7 flI/m(T* f), and contracts the base, at worst, by approximately
m(A) = m(T° f). The unique invariant section p > Pp of P(1) of I'r; has graph
Pp = E}. Center bunching implies that

irs1

m(T"f) (m(ch))— <L

(fiber contraction) (base contraction) ™' =
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So fiber contraction dominates base contraction, and the invariant section is of class
C'. That is, E* is a C' bundle over the C! manifold W. Since E* is tangent to the
foliation W™, it is integrable.

Frobenius’s theorem states that the foliation tangent to a C* integrable subbundle
of TW is of class C¥, in the sense that there is a C* atlas of foliation charts covering
the manifold W. Strictly speaking, the proof requires that the underlying manifold be
of class C**!, so we need to recheck the result in the case of the C! manifold W.

Locally, W(p) is the graph of a C' function g : ES* — E;,. The linear projection
e E;" X E;, — E;,“ restricts toa C'! diffeomorphism 7, : W¥(p) — E;‘,“,

7p:(x,8(x)) > x.
The tangent to 7 gives a C! bundle surjection -
Tx : Tyeu(m)M —> T(ER).
The restriction of T to E*|y«s(p) agrees with T, which implies that
Trp: E¥|lwe(p) — Trp(E*|wes(p))

is 2 C' bundle isomorphism. The latter bundle is C' and is integrated by the foliation
7p(W¥). Since E““(p) is smooth (being a plane), we can apply Frobenius's theorem
to conclude that the foliation 7, (W*) is C ! Therefore, the foliation W* lwesp) is
also of class C!.
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