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Our goal in this paper is to classify stably ergodic translations and aÆne maps on
homogeneous spaces. We will assume that our spaces are of the form G=B where G is
a connected Lie group and B is a closed subgroup which, in addition, is admissible in a
certain technical sense (see below).

For g 2 G let Lg denote left translation by g i.e. Lg(h) = gh for all h 2 G. Then Lg

induces a map on G=B which we call Lg as well. Given an automorphism A of G and
g 2 G we call LgA : G! G an aÆne di�eomorphism of G, we also denote this map by
gA. If A(B) = B then we continue to denote the induced map on G=B by LgA or gA
and call it an aÆne di�eomorphism of G=B. For our discussion of ergodicity, we will
assume that the Haar measure on G induces a �nite measure on G=B which is invariant
under left translation and that A : G=B ! G=B is measure preserving.

A measure preserving di�eomorphism is called ergodic if the only measurable invari-
ant sets have measure zero or one. We say that an aÆne di�eomorphism aA of G=B is
stably ergodic under perturbations by left translations if there is a neighborhood U of
a in G such that a0A is ergodic for every a0 2 U .

Given an aÆne di�eomorphism aA : G! G, aA induces an automorphism of the Lie
Algebra g of G by ad(g)DA(e) where e is the identity of G. In particular, ad(g) �DA(e)
is a linear map. Let gs and gu be the generalized eigenspaces of g corresponding to the
contracting and expanding eignevalues of ad(g)�DA(e). Let L � g be the Lie subalgebra
of g generated by gs and gu. Then it is not hard to see (P-S) that L is an ideal in g

which is ad(g) � DA(e) invariant. As an ideal L is tangent to the connected normal
subgroup which we denote by H and call the hyperbolically generated subgroup of G.
It is now easy to state our main theorem.
Main Theorem: If an aÆne di�eomorphism is stably ergodic under perturbations by
left translations then HB = G where H is the hyperbolically generated subgroup of G.

Remark (1). If HB = G then the aÆne di�eomorphism is ergodic, this is essentially
Hopf's proof of the ergodicity of the geodesic 
ow. See [P-S] where generalizations
are proven in the C2 category and a version of the Main Theorem was conjectured and
proven for left translations on SL(n;R). One of the themes of [P-S] is that the same phe-
nomenon which produces chaotic behavior (i.e. some hyperbolicity) may also guarantee
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robust statistics in the guise of stable ergodicity, and in fact may be necessary for it.
The main theorem establishes the necessity for aÆne di�eomorphism of homogeneoous
spaces.

(2) Our proof relies heavily on [B-M] where all the hard work of the theorem is carried
out. By concentrating on stable ergodicity many of the subtleties of [B-M] disappear.

(3) That HB = G is the same as the action of H on G=B being ergodic, which in
this setting is the same as the essential accessibility property of [P-S].

(4) We expect that in our main theorem that stable egodicity is actually equivalent
to the condition that HB = G. In the next two propositons we state some special cases
of the theorem in which this is actually the case.

Proposition 1. Let G be a connected nilpotent Lie group and � a uniform discrete
subgroup of G. Then the aÆne di�eomorphism Lg � A of G=� is stably ergodic among
left translations of G if and only if H� = G.

Proposition 2. Let G be a connected semi-simple Lie group and � a lattice in G.
a) If G has no compact factors, then the aÆne di�eomorphism Lg �A of G=� is stably

ergodic among left translations of G if and only if H = G.
b) If G has compact factors then the aÆne di�eomorphism Lg � A of G=� is stably

ergodic among left translations of G if and only if H� = G.

Thanks to Cal Moore for useful conversations.

x1.

In this section, we consider three special cases which illustrate the Main Theorem
and which are necessary for our proof of it; left translation on simple Lie groups, and
aÆne di�eomorphisms on tori and compact semi-simple groups.

First we begin with a simple generalization of the Jacobian-Morozov Theorem.
Proposition 1.1 (Invariant Jacobson-Morozov). Let G be a connected, semi-

simple Lie group, let � be a non-zero unipotent element of G, and let � a semi-simple
automorphism of G that leaves � �xed: �(�) = �. Then there is a nilpotent element y
in the Lie algebra g of G so that if x denotes log �, and h denotes [x; y], then

� x, y, and h generate a 3-dimensional Lie subalgebra of g isomorphic to sl2, and
� � centralizes that subalgebra.

To prove the proposition we use a simple lemma from Linear Algebra.
Lemma 1.1 Let V be a �nite dimensional real or complex vector space and suppose

i) A;L : V ! V are linear maps
ii) AL = LA
iii) A(x) = x
iv) L(y) = x for 0 6= x; y 2 V
v) A is semi-simple.

Then there is a y0 2 V such that

A(y0) = y0 and L(y0) = x:
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Proof of Lemma Let V = V1 � V2 where V1 is the +1 eigenspace of A, which is non
trivial by iii), and V2 is the invariant complement. Let y = y1 + y2 with respect to this
direct sum decomposition. As AL = LA;L(V1) � V1 and L(V2) � V2. Since x 2 V1,
L(y1) = x and A(y1) = y1.

Now we prove the proposition.
Let us also use � to denote the automorphism of g induced by our original �. Because

� �xes �, the lifted � �xes x in g. Since � is an automorphism of g � commutes with
ad(x). Now apply the lemma with � = A and L = ad(x)2 to Bourbaki's argument to
�nd y0 with �(y0) = y0 and [x; [x; y0]] = 2x. Setting h = �2[x; y0]; �(h) = h and we are
done.
Theorem 1.1. Let G be a connected simple Lie group and let g 2 G. Then either

(1) The hyperbolically generated subgroup H for Lg equals G, or
(2) g may be arbitrarily closely approximated by elements g0 of G such that Ad(g0)

has �nite order.

Proof. The proof for SL(n;R) may be found in [P-S]. We shall show that the special
case n = 2, together with the generalized Jacobson-Morozov lemma, implies theorem
1.1. We shall use PSL(2;R) to denote the quotient of SL(n;R) by its center.

Let us assume that H 6= G. We must show, then, that g may be arbitrarily closely
approximated by elements g0 of G such that Ad(g0) has �nite order.

The element g factors into a product s � u in which s is semi-simple, u is unipotent,
and s commutes with u. Because H is a connected normal subgroup of G, and G is
simple, H 6= G implies H = feg and hence that the eigenvalues of Ad(s) must be of
unit modulus. Thus the powers of Ad(s) have compact closure, K.

We shall construct sequences un and sn in G such that Ad(un) and Ad(sn) are all of
�nite order, the sn's all commute with the un's, sn ! s, and un ! u. Since sn �un ! s�u
and each sn � un has �nite order, that will prove the theorem.

By the extended Jacobson-Morozov proposition, u is contained in a connected sub-
group X of G that is isomorphic to a covering group of PSL(2;R) and is centralized
by fg 2 G : Ad(g) 2 Kg. Since the theorem is true for SL(2;R), we can approximate
u in X by elements un whose images in PSL(n;R) are of �nite order. As any �nite
dimensional representation of the universal cover of SL(2;R) factors through SL(2;R)
(see [F-H] p. 143), each Ad(un) has �nite order. It remains to approximate s. Because
K is compact, we can �nd a sequence sn in G so that Ad(sn) is in K, Ad(sn) converges
to Ad(s), and each Ad(sn) has �nite order. The map Ad from G to Aut(g) is open,
so we can choose sn convergent to s itself. Finally, the sn's commute with the un's,
because K centralizes X.

Corollary 1.1 Let G be a simple Lie group and B a closed subgroup such that G=B
has a �nite left invariant volume. Let g 2 G. Then either

1) the hyperbolically generated group H for Lg equals G, or
2) g may be arbitrarily closely approximated by g0 such that Lg0 is not ergodic and

in fact has a C1 invariant function.
For proof of 2) see [B-M] Thm. 5.5 p. 599.
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Remark. A continuous function gives an interval in R with the identity map as a quotient
for Lg0 .

Now we consider abelian groups. We represent the Torus Tn as Rn=Zn. AÆne maps
are of the form a + A where a 2 Rn and A 2 GL(n;Z). The subgroup H of Rn is the
direct sum of the contracting and expanding subspaces of A.
Theorem 1.2. Let a+ A be an aÆne automorphism of Tn = Rn=Zn.

1) The following are equivalent

a) A has no roots of unity as eigenvalue
b) a+A is stably ergodic
c) HZn = Rn (in fact HsZn = Rn)

2) If A has a root of unity as eigenvalue then there is a perturbation a0 of a and a
positive integer k such that (a0 + A)k has a non-trivial periodic quotient with quotient
space a torus.

Proof. 1) a) That A is ergodic i� A has no root of unity is a standard fact that is easily
proven using Fourier series.

b) and 2) If one is not an eigenvalue of A, then a+A has a �xed point and a+A is
conjugate to A by a translation. So if A is ergodic a+ A is ergodic for all a.

On the other hand, if 1 is an eigenvalue of A, A is conjugate in GL(n;Z) to

�
I 0
� B

�

and if the component of a in the basis corresponding to the I are rationally dependent
then (a+ A) has a non-trivial torus quotient with a periodic map on it.

If A has roots of unity as eigenvalues, but not 1, then a+ A is conjugate to A by a

translation and Ak =

�
I 0
� B

�
for some k. So we have proven 2) and the equivalence

of 1a) and 1b). As for 1c), its equivalence to 1a) is a simple consequence of the primary
decomposition theorem, which implies that A has a root of unity � as an eigenvalue

i� it is conjugate in GL(n;Q) to a matrix of the form

�
U 0
0 B

�
in which (1) all the

eigenvalues of U are roots of unity, and (2) � is not an eigenvalue of B. See [Parry].

Now we turn to the compact case. First we need a standard fact about the aÆne
di�eomorphisms of semi-simple Lie groups.

Let I(G) � Aut(G) be the group of inner automorphisms of G.

Proposition 1.2. If G is a semi-simple Lie group then
1) I(G) is the connected component of the identity in Aut(G). It has �nite index in

Aut(G).
2) G � I(G) is the connected component of the identity in G� Aut(G) the group of

aÆne di�eomorphisms of G. It has �nite index in G� Aut(G).

Proof. Aut(g) is an algebraic group so it has �nitely many connected components and
I(G) is the identity component, see [Varadarajan] Theorem 3.10.8. This proves 1). 2)
follows directly from 1.
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Theorem 1.3. Let aA be an aÆne automorphism of G=B where G is a compact semi-
simple group and B is a closed proper subgroup. Then aA admits a non-trivial periodic
quotient (on a quotient space of G=B by a torus action) and hence aA is not ergodic.

Proof. Because (aA)k = xkA
k for some xk 2 G, we can choose k such that (aA)k =

xkAd(b) for some b 2 G. Since B is mapped to itself by A, it follows that b normalizes
B, and hence that the closed subgroup Tb generated by b acts by right translation on
G=B. Let Tx be the closed subgroup generated by xkb. Then Tx acts on the left on
G=B. Since the left and right actions commute, the product Tx�Tb acts on G=B. It is
easy to see that (aA)k leaves the orbits of this product invariant.

If the action of the abelian group Tx�Tb were transitive, G=B would be a solvmani-
fold, and hence (see [B-M]) G solvable, which it is not. The Tx � Tb action thus de�nes
the action required by the proposition.

Next we state a corollary which will be useful later.
Corollary 1.2. Let aA; a0A0 : G=B ! G0=B0 be aÆne automorphisms. Suppose that

there is a surjective homomorphism � : G! G0 such that a0A0� = �aA and B0 = �(B).
Then aA ergodic and G0 compact semi-simple implies B0 = G0.

Proof. If B0 6= G0 then a0A0 cannot be ergodic so neither is aA.

x2.

In this section we gather together some of the lemmas and techniques we will need for
a proof of our Main Theorem and make a reduction of the Main Theorem to Proposition
2.4.

In order to proceed to the general case of the main theorem, we �rst recall the
de�nition and a few of the properties of admissible subgroup from [B-M].

De�nition 2.1. The closed subgroup B � G is admissible if 1)G=B has a �nite volume.
2) There exists a closed solvable subgroup A of G which contains the radical of G, is

normalized by B and such that A �B is closed.

We remark that condition 2) in the de�nition is automatically satis�ed if G is solvable
or semi-simple or if B is discrete, see [B-M].

Proposition 2.1. Let � : G1 ! G2 be a continuous surjective homomorphism from the
Lie group G1 to G2.

1) If B2 � G2 in an admissible subgroup of G2 then B1 = ��1(B2) is an admissible
subgroup of G2.

2) If B1 � G1 is an admissible subgroup of G1 then B2 = �(B1) is an admissible
subgroup of G2.

Proof. 1) B2 is a closed subgroup of G2 and G2=B2 can be identi�ed with G1=B1 and
is hence of �nite volume. ��1 of the radical of R1 of G1 contains the radical R2 of G2.
So if A1 � R1 is the solvable group of the de�nition of admissible, then the radical
R̂2 of �

�1(A1) is a solvable subgroup of G2 containing R2. Moreover, since ��1(A1) is



6

normalized by B2 = ��1(B1) so is R̂2. R̂2 is closed and normal in ��1(A1) and maps

onto A1. So R̂2 � �
�1(B1) = ��1(A1B1) which is closed.

2) See [B-M].

Our main technique to show that an aÆne di�eomorphism f is not ergodic is to
produce a non-trivial periodic quotient of a power of f .

De�nition 2.2. The aÆne di�eomorphism f admits a non-trivial periodic quotient if
there is a continuous surjective map � : G=B ! X onto a metric space X, a map
g : X ! X, a point x0 2 X, and positive integers k; ` such that

gk = IdX ; �f ` = g� and �(��1(x0)) = 0:

Proposition 2.2. If the aÆne di�eomorphisms f admits a non-trivial periodic quotient
then f is not ergodic.

Proof. Suppose x0; k; ` etc. are as above. Let Ui be a nested family of open sets for
i 2 N such that

T
i2N Ui = x0. Then �(��1(Ui)) > 0 for all i but �(��1(Ui)) tends to

zero. Take i0 large enough such that �(��1(Ui0)) <
1

k`
then

Sk`�1

j=0 f j(��1(Ui0)) has
measure < 1 and is an invariant set for f , so f is not ergodic.

In practice our space X is itself a non-trivial homogeneous space or the non-trivial
quotient of a homogeneous space by a compact Lie group. In either case the spaces are
metrizable and ��1 of any point has measure zero.

Now we prove a proposition and lemma useful in the reduction of the Main Theorem
to proposition.

Proposition 2.3. Let gA : G ! G be an aÆne di�eomorphism and let H be the
hyperbolically generated subgroup of G. Then A(H) = H.

Proof. The Lie algebra h ofH is invariant for the Lie algebra automorphism ad(g)DA(e).
Therefore H is invariant for the Lie group automorphism h! gA(h)g�1 but that says
H = gA(H)g�1 and as H is normal H = g�1Hg = A(H).

Lemma 2.1 Let G1 be a closed normal subgroup of G, let gA be an aÆne di�eomor-
phism of G such that A(G1) = G1, and let � be the natural projection G ! G=G1. If
H is the hyperbolically generated subgroup of gA in G, and H1 is the hyperbolically
generated subgroup of the induced map �(g)A : G=G1 ! G=G1, then H1 = �(H).

Proof. The derivative of � maps the Lie algebra of G onto the Lie algebra G=G1 and

D�(e)ad(g)DAe = ad(�(g))DA(e)D�(e):

Thus the hyperbolic subspace of ad(�(g))DA(e) is contained in the image of the hyper-
bolic subspace of ad(g)DA(e) and similarly for the algebras generated.

Note: That the lemma implies that if H is trivial, so is H1.
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Proposition 2.4. Let aA : G=B ! G=B be an ergodic aÆne di�eomorphism with
H = e. Then there is an admissible subgroup B0 � B and arbitrarily small perturbations
a0 of a such that a0A : G=B0 ! G=B0 admits a non-trivial periodic quotient and hence
a0A is not ergodic.

Now we show their proposition implies the Main Theorem.

Proof of the Main Theorem. �H is a closed normal subgroup of G and HB= �H is an
admissible subgroup of G= �H. aA acts on G= �H=HB= �H and we may assume the action is
ergodic. There is no hyperbolic subspace for ad(a)DAe on G= �H, so we apply proposition
2.4 to produce a B1 � HB= �H B1 � G= �H and a1 2 G= �H arbitrarily close to a �H1

such that a1A : G=B1 ! G=B1 admits a periodic quotient. Now pull back a1 to
a perturbation a0 of a and let B0 be the inverse image of B1. B0 is admissible and
contains B. The lack of ergodicity follows from proposition 2.2.

x3.

In this section we prove proposition 2.4. We begin by reducing the proof to two
special cases where G is assumed solvable or G is assumed semi-simple which cases we
now assume proven. They are proven below.
Proof of Proposition 2.4 As in [B-M], we let R be the radical of G then G=R is semi-
simple and BR=R is admissible in G=R, let � : G! G=R be the natural map. Ad(a)A is
an automorphism of G and hence �xes R and �(a)A de�nes an aÆne di�eomorphism of
G=R=BR=R with trivial hyperbolically generated subgroup. As before, using the semi-
simple case of the proposition we may perturb �(a) to a1 and lift back to a perturbation
a0 of a1 and �nd aB1 � BR=R so that a1A : G=R=B1 ! G=R=B1 and hence a0A :
G=��1(B1)! G=��1(B1) have non-trivial periodic quotients.

Now we turn to the case that G=BR might be a point. In that case, there is a normal
close connected subgroup N of G such that N � B, G=N is a solvable group and B=N
is admissible. (Theorem 4.9 of [B-M].)

Now we proceed as above, apply the theorem in the solvable case and lift back to G.
In fact the argument shows that it is suÆcient to prove proposition when G is semi-

simple or solvable and B does not contain a connected closed normal subgroup of G.
Also, if we let Ĝ be the universal covering group of G and � : Ĝ ! G the covering
map, then proving proposition 2.4 for Ĝ and ��1(B) proves it as well for G;B since any

automorphism of G preserving B lifts to an automorphism of Ĝ preserving ��1(B) and �

is open so perturbations of left translations Lg in Ĝ are inverse images of perturbations
of L�(g).

Now we consider the semi-simple case of Proposition 2.4, and we assume G simply
connected. First we record some facts about the automorphisms of G which preserve B
and aÆne di�eomorphism of G=B.

Proposition 3.1. Let G be a simply compact semi-simple group with no compact factors
and B an admissible subgroup of G which contains no connected non-trivial normal
subgroup of G. Then the group Aut(G;B) of automorphisms of G which preserve B is
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a discrete subgroup of Aut(G). Moreover, the group of inner automorphisms given by
the normalizer of B, N(B), is of �nite index in Aut(G;B).

Proof. That B is discrete follows from the Borel density theorem (see the version in
[Zimmer]). Moreover, any automorphism of G which is the identity on B is the identity
automorpism of G. This proves that the automorphism group Aut(G;B) is discrete.
Now Aut(G) is an algebraic group and the inner automorphisms are the identity compo-
nent of G which has �nitely many components since algebraic groups have only �nitely
many components, and we are done.

Corollary 3.1. Let G;B be as above and aA be an aÆne automorphism of G with
A(B) = B. Let U be a neighborhood of a 2 G then for any k 2 N the set of aÆne
automorphism a0A(a0) � � �Ak�1(a0)Ak = (a0A)k for a0 2 U contains a neighborhood of
aA(a) � � �Ak�1(a)Ak = (aA)k in the group of aÆne automorphisms of G which de�ne
maps of G=B.

Proof. The aÆne automorphisms of G whose automorphism belong to Aut(G;B) are
G � Aut(G;B) and the second factor of this Lie group is discrete. Raising to the kth
power is open in a Lie group and we are done.

We are now ready to prove Proposition 2.4 for some semi-simple Lie groups.

Proposition 3.2. Let aA : G=B ! G=B be an ergodic aÆne automorphism with G
a simply connected semi-simple Lie group with no compact factors, B an admissible
subgroup of G containing no non-trivial normal subgroup of G and H = e. Then there
is an admissible subgroup B0 � B and arbitrarily small perturbations a0 of a such that
a0A : G=B0 ! G=B0 admits a non-trivial periodic quotient hence is not ergodic.

Proof. By proposition 3.1 and corollary 3.1 we assume that there is a k such that
(aA)k = b Ad(c) so that in particular the product decomposition of G = G1 � � � � �Gk

into simple groups is preserved; write b = (b1; : : : ; bk) and c = (c1; : : : ; ck). Let B
0 be the

normalizer of B, B0 = N(B). Then by the following lemma c 2 N(B) and b Ad(c) and
Lbc left multiplication by bc induce the same map on G=N(B). By Theorem 1.1 bc may
be arbitrarily closely approximate by an element b0c with ad(b0c) of �nite order in Aut(g)
so by corollary 3.1 there exists a0 arbitrarily close to a such that ad((a0A)k) = ad(b0c)
is of �nite order in Aut(G) and hence a0A is not ergodic on G=N(B) and admits a
non-trivial periodic quotient. Now to �nish the proof we need only see that G 6= N(B).
If G were N(B) then G=B would be a �nite volume semi-simple Lie group and hence
compact. As we have assumed that G has no compact factors we are done.

Lemma 3.1 If h Ad(a) de�nes a map on G=B then a 2 N(B) the normalizer of B,
and h Ad(a) and Lha induce the same map on G=N(B).

Proof. Since h Ad(a) induces a map on G=B, given x 2 G and b 2 B there exists b0 2 B
such that

haxba�1 = haxa�1b0 or aba�1 = b0 thus a 2 N(B):
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To see the second assertion note that for all x 2 G hax is equivalent to haxa�1

mod N(B) since a�1 2 N(B).
Now we prove Proposition 2.4 for the general semi-simple case.

Proposition 3.3. Let aA : G=B ! G=B be an ergodic aÆne di�eomorphism with G a
simply connected semi-simple Lie group, B an admissible subgroup of G containing no
non-trivial connected normal subgroup of G and H = e. Then there is an admissible
subgroup B0 � B and arbitrarily small perturbations a0 of a such that a0A : G=B0 !
G=B0 admits a non-trivial periodic quotient and is not ergodic.

Proof. As in [B-M] G = C � F with C the maximal normal compact subgroup and F
a product of non-compact simple groups. The projection of B into F by dividing by C
is a discrete group. If F is not trivial, we apply the previous proposition and use the
same perturbation a0 of a. If F is trivial, Theorem 1.3 �nishes the proof.

Now we turn to the solvable case and �nish the proof of the main theorem. The
general solvable case follows from the toral case by the Mostow structure theorem.

Proposition 3.4. Let aA : G=B ! G=B be an ergodic aÆne automorphism with G
a solvable Lie group and B an admissible subgroup which contains no non-trivial, con-
nected, normal subgroup of G. Then if H = e there is an arbitrarily small perturbation
a0 of a such that a0A : G=B ! G=B admits a non-trivial periodic quotient on a torus
of positive dimension and hence is not ergodic.

Proof. By the Mostow structure theorem [EMS vol. 20] p. 167 we have the exact
sequence

N=B \N ! G=B ! G=BN

where N is the Nil radical of G and hence is preserved by A and G=BN is a torus.
Thus, BN is preserved by A and aA has aA : G=BN ! G=BN is a quotient. Now
apply Theorem 1.2. If G=BN is trivial so that G is nilpotent then G=B is a nilmanifold
and our hypotheses assume that B is discrete. Once again we may �ber G=B over a
non-trivial torus.

This �nishes the proof of the propositions and the Main Theorem.

Finally we turn to the proofs of the two propositions following the Main Theorem.
They are already established in one direction. First proposition 1.

Proof. By [Parry] gA is ergodic on G=� if and only if it is on the maximal torus quotient.
Thus H� = G implies the same on the torus quotient. This implies that the quotient
automorphism on the torus is ergodic and we have seen in section 2 that this last implies
the stable ergodicity on the toral quotient, and hence on G=�.

Now Proposition 2.

Proof. a) H = G is an open condition and by [M] or even [P-S] H = G implies the
ergodicity of gA. b)Write G = C � F as in Proposition 3.4. The condition H� = G
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implies by that H contains F and by corollary 1.2 that F� = G so this is again an open
condition.
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