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Our goal in this paper is to classify stably ergodic translations and affine maps on
homogeneous spaces. We will assume that our spaces are of the form G/B where G is
a connected Lie group and B is a closed subgroup which, in addition, is admissible in a
certain technical sense (see below).

For g € G let L, denote left translation by g i.e. Ly(h) = gh for all h € G. Then L,
induces a map on G/B which we call L, as well. Given an automorphism A of G and
g € G wecall LyA: G — G an affine diffeomorphism of G, we also denote this map by
gA. If A(B) = B then we continue to denote the induced map on G/B by LsA or gA
and call it an affine diffeomorphism of G/B. For our discussion of ergodicity, we will
assume that the Haar measure on G induces a finite measure on GG/ B which is invariant
under left translation and that A: G/B — G/B is measure preserving.

A measure preserving diffeomorphism is called ergodic if the only measurable invari-
ant sets have measure zero or one. We say that an affine diffeomorphism aA of G/B is
stably ergodic under perturbations by left translations if there is a neighborhood U of
a in G such that a’A is ergodic for every o’ € U.

Given an affine diffeomorphism aA : G — G, aA induces an automorphism of the Lie
Algebra g of G by ad(g)DA(e) where e is the identity of G. In particular, ad(g)- DA(e)
is a linear map. Let g® and g“ be the generalized eigenspaces of g corresponding to the
contracting and expanding eignevalues of ad(g)- DA(e). Let £ C g be the Lie subalgebra
of g generated by g® and g*. Then it is not hard to see (P-S) that £ is an ideal in g
which is ad(g) - DA(e) invariant. As an ideal £ is tangent to the connected normal
subgroup which we denote by H and call the hyperbolically generated subgroup of G.
It is now easy to state our main theorem.

Main Theorem: If an affine diffeomorphism is stably ergodic under perturbations by
left translations then HB = G where H is the hyperbolically generated subgroup of G.

Remark (1). If HB = G then the affine diffeomorphism is ergodic, this is essentially
Hopf’s proof of the ergodicity of the geodesic flow. See [P-S] where generalizations
are proven in the C? category and a version of the Main Theorem was conjectured and
proven for left translations on SL(n,R). One of the themes of [P-S] is that the same phe-
nomenon which produces chaotic behavior (i.e. some hyperbolicity) may also guarantee
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robust statistics in the guise of stable ergodicity, and in fact may be necessary for it.
The main theorem establishes the necessity for affine diffeomorphism of homogeneoous
spaces.

(2) Our proof relies heavily on [B-M] where all the hard work of the theorem is carried
out. By concentrating on stable ergodicity many of the subtleties of [B-M]| disappear.

(3) That HB = G is the same as the action of H on G/B being ergodic, which in
this setting is the same as the essential accessibility property of [P-S].

(4) We expect that in our main theorem that stable egodicity is actually equivalent
to the condition that HB = G. In the next two propositons we state some special cases
of the theorem in which this is actually the case.

Proposition 1. Let G be a connected nilpotent Lie group and I' a uniform discrete
subgroup of G. Then the affine diffeomorphism Lg - A of G/T is stably ergodic among
left translations of G if and only if HT = G.

Proposition 2. Let G be a connected semi-simple Lie group and I' a lattice in G.

a) If G has no compact factors, then the affine diffeomorphism Lg-A of G/T is stably
ergodic among left translations of G if and only if H = G.

b) If G has compact factors then the affine diffeomorphism Lg - A of G/T is stably
ergodic among left translations of G if and only if HT = G.

Thanks to Cal Moore for useful conversations.

§1.

In this section, we consider three special cases which illustrate the Main Theorem
and which are necessary for our proof of it; left translation on simple Lie groups, and
affine diffeomorphisms on tori and compact semi-simple groups.

First we begin with a simple generalization of the Jacobian-Morozov Theorem.

Proposition 1.1 (Invariant Jacobson-Morozov). Let G be a connected, semi-
simple Lie group, let v be a non-zero unipotent element of G, and let o a semi-simple
automorphism of G that leaves v fixed: o(v) = v. Then there is a nilpotent element y
in the Lie algebra g of G so that if  denotes log v, and h denotes [z, y], then

e x, y, and h generate a 3-dimensional Lie subalgebra of g isomorphic to sls, and
e o centralizes that subalgebra.

To prove the proposition we use a simple lemma from Linear Algebra.
Lemma 1.1 Let V be a finite dimensional real or complex vector space and suppose

i) A,L:V — V are linear maps
i) AL =LA
i) A(r) =
iv) L(y )_a:for()%x yeV
v) A is semi-simple.
Then there is a ' € V such that

Aly)=y" and L(y) ==
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Proof of Lemma Let V = V; & V5 where V; is the +1 eigenspace of A, which is non
trivial by iii), and V3 is the invariant complement. Let y = y; + y2 with respect to this
direct sum decomposition. As AL = LA, L(Vy) C Vi and L(V3) C V5. Since z € Vi,
L(y1) =z and A(y1) = y1-

Now we prove the proposition.

Let us also use o to denote the automorphism of g induced by our original . Because
o fixes v, the lifted o fixes  in g. Since ¢ is an automorphism of g ¢ commutes with
ad(z). Now apply the lemma with ¢ = A and L = ad(z)? to Bourbaki’s argument to
find y" with o(y’) = ¢’ and [z, [z, y']] = 2z. Setting h = —2[x,y'], o(h) = h and we are
done.
Theorem 1.1. Let G be a connected simple Lie group and let g € G. Then either

(1) The hyperbolically generated subgroup H for L4 equals G, or
(2) g may be arbitrarily closely approximated by elements g’ of G such that Ad(g’)
has finite order.

Proof. The proof for SL(n,R) may be found in [P-S]. We shall show that the special
case n = 2, together with the generalized Jacobson-Morozov lemma, implies theorem
1.1. We shall use PSL(2,R) to denote the quotient of SL(n,R) by its center.

Let us assume that H # G. We must show, then, that ¢ may be arbitrarily closely
approximated by elements g’ of G such that Ad(g’) has finite order.

The element g factors into a product s -« in which s is semi-simple, u is unipotent,
and s commutes with u. Because H is a connected normal subgroup of G, and G is
simple, H # G implies H = {e} and hence that the eigenvalues of Ad(s) must be of
unit modulus. Thus the powers of Ad(s) have compact closure, K.

We shall construct sequences u,, and s, in G such that Ad(uy,) and Ad(s,) are all of
finite order, the s,,’s all commute with the u,,’s, s, — s, and u,, — u. Since s, -u, — s-u
and each s,, - u,, has finite order, that will prove the theorem.

By the extended Jacobson-Morozov proposition, u is contained in a connected sub-
group X of G that is isomorphic to a covering group of PSL(2,R) and is centralized
by {9 € G : Ad(g) € K}. Since the theorem is true for SL(2,R), we can approximate
u in X by elements u,, whose images in PSL(n,R) are of finite order. As any finite
dimensional representation of the universal cover of SL(2,R) factors through SL(2,R)
(see [F-H] p. 143), each Ad(u,,) has finite order. It remains to approximate s. Because
K is compact, we can find a sequence s, in G so that Ad(s,) is in K, Ad(s,) converges
to Ad(s), and each Ad(s,) has finite order. The map Ad from G to Aut(g) is open,
so we can choose s, convergent to s itself. Finally, the s,’s commute with the wu,’s,
because K centralizes X.

Corollary 1.1 Let G be a simple Lie group and B a closed subgroup such that G/B
has a finite left invariant volume. Let ¢ € G. Then either

1) the hyperbolically generated group H for L, equals G, or

2) g may be arbitrarily closely approximated by ¢’ such that Ly is not ergodic and
in fact has a C'*° invariant function.

For proof of 2) see [B-M] Thm. 5.5 p. 599.



Remark. A continuous function gives an interval in R with the identity map as a quotient
for L.

Now we consider abelian groups. We represent the Torus 7" as R /Z™. Affine maps
are of the form a + A where a € R” and A € GL(n,Z). The subgroup H of R" is the
direct sum of the contracting and expanding subspaces of A.

Theorem 1.2. Let a + A be an affine automorphism of 7™ = R™ /Z".

1) The following are equivalent

a) A has no roots of unity as eigenvalue
b) a+ A is stably ergodic
¢) HZ" = R" (in fact HSZ™ = R")
2) If A has a root of unity as eigenvalue then there is a perturbation a’ of a and a
positive integer k such that (a’ + A)* has a non-trivial periodic quotient with quotient
space a torus.

Proof. 1) a) That A is ergodic iff A has no root of unity is a standard fact that is easily
proven using Fourier series.

b) and 2) If one is not an eigenvalue of A, then a + A has a fixed point and a + A is
conjugate to A by a translation. So if A is ergodic a + A is ergodic for all a.

oy . . . . I

On the other hand, if 1 is an eigenvalue of A, A is conjugate in GL(n,Z) to ( . g
and if the component of a in the basis corresponding to the I are rationally dependent,
then (a + A) has a non-trivial torus quotient with a periodic map on it.

If A has roots of unity as eigenvalues, but not 1, then a + A is conjugate to A by a

. I .

translation and A* = . for some k. So we have proven 2) and the equivalence

0
B
of 1a) and 1b). As for 1c), its equivalence to 1a) is a simple consequence of the primary
decomposition theorem, which implies that A has a root of unity ¢ as an eigenvalue

iff it is conjugate in GL(n,Q) to a matrix of the form in which (1) all the

U 0
0 B
eigenvalues of U are roots of unity, and (2) ¢ is not an eigenvalue of B. See [Parry].
Now we turn to the compact case. First we need a standard fact about the affine
diffeomorphisms of semi-simple Lie groups.
Let I(G) C Aut(G) be the group of inner automorphisms of G.

Proposition 1.2. If G is a semi-simple Lie group then

1) I(G) is the connected component of the identity in Aut(G). It has finite index in
Aut(G).

2) G x I(G) is the connected component of the identity in G x Aut(G) the group of
affine diffeomorphisms of G. It has finite indezx in G x Aut(G).

Proof. Aut(g) is an algebraic group so it has finitely many connected components and
I(G) is the identity component, see [Varadarajan] Theorem 3.10.8. This proves 1). 2)
follows directly from 1.
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Theorem 1.3. Let aA be an affine automorphism of G/B where G is a compact semi-
simple group and B is a closed proper subgroup. Then a A admits a non-trivial periodic
quotient (on a quotient space of G/B by a torus action) and hence aA is not ergodic.

Proof. Because (aA)* = zA* for some z;, € G, we can choose k such that (a4)* =
x Ad(b) for some b € G. Since B is mapped to itself by A, it follows that b normalizes
B, and hence that the closed subgroup 73 generated by b acts by right translation on
G/B. Let T, be the closed subgroup generated by xxb. Then T, acts on the left on
G/B. Since the left and right actions commute, the product T}, x T} acts on G/B. It is
easy to see that (aA)¥ leaves the orbits of this product invariant.

If the action of the abelian group T, x T} were transitive, G/B would be a solvmani-
fold, and hence (see [B-M]) G solvable, which it is not. The Tj, x T}, action thus defines
the action required by the proposition.

Next we state a corollary which will be useful later.
Corollary 1.2. Let aA,a’A" : G/B — G'/B' be affine automorphisms. Suppose that
there is a surjective homomorphism p : G — G’ such that o’ A’p = pa A and B’ = p(B).
Then aA ergodic and G’ compact semi-simple implies B’ = G'.

Proof. If B # G’ then a’ A’ cannot be ergodic so neither is a A.

§2.

In this section we gather together some of the lemmas and techniques we will need for
a proof of our Main Theorem and make a reduction of the Main Theorem to Proposition
2.4.

In order to proceed to the general case of the main theorem, we first recall the
definition and a few of the properties of admissible subgroup from [B-M].

Definition 2.1. The closed subgroup B C G is admissible if 1) G/ B has a finite volume.
2) There exists a closed solvable subgroup A of G which contains the radical of G, is
normalized by B and such that A - B is closed.

We remark that condition 2) in the definition is automatically satisfied if G is solvable
or semi-simple or if B is discrete, see [B-M].

Proposition 2.1. Let p: G; — G2 be a continuous surjective homomorphism from the
Lie group G1 to Gsy.

1) If By C Gy in an admissible subgroup of G2 then By = p_l(Bz) 15 an admissible
subgroup of Gs.

2) If By C Gy is an admissible subgroup of G then By = p(By) is an admissible
subgroup of Gs.

Proof. 1) By is a closed subgroup of G2 and G3/B> can be identified with G1/B; and
is hence of finite volume. p~! of the radical of R; of G contains the radical Ry of Gs.
So if A; D R; is the solvable group of the definition of admissible, then the radical
Rz of p_l(Al) is a solvable subgroup of G5 containing Ry. Moreover, since p_l(Al) is
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normalized by By = p~1(Bj) so is Ry. Ry is closed and normal in p~1(4;) and maps
onto A;. So Ry - p~1(By) = p~ (A1 By) which is closed.
2) See [B-M].

Our main technique to show that an affine diffeomorphism f is not ergodic is to
produce a non-trivial periodic quotient of a power of f.

Definition 2.2. The affine diffeomorphism f admits a non-trivial periodic quotient if
there is a continuous surjective map p : G/B — X onto a metric space X, a map
g: X — X, apoint g € X, and positive integers k, ¢ such that

g* =1Idx, pf®=gp and p(p~"(x0)) =0.

Proposition 2.2. If the affine diffeomorphisms f admits a non-trivial periodic quotient
then f is not ergodic.

Proof. Suppose xq, k, £ etc. are as above. Let U; be a nested family of open sets for
i € N such that (,cyUs = xo. Then pu(p~"'(U;)) > 0 for all i but pu(p~"'(U;)) tends to
zero. Take ig large enough such that u(p~™'(U;,)) < 75 then U?Sl f7(p~1(U;,)) has
measure < 1 and is an invariant set for f, so f is not ergodic.

In practice our space X is itself a non-trivial homogeneous space or the non-trivial
quotient of a homogeneous space by a compact Lie group. In either case the spaces are
metrizable and p~! of any point has measure zero.

Now we prove a proposition and lemma useful in the reduction of the Main Theorem
to proposition.

Proposition 2.3. Let gA : G — G be an affine diffeomorphism and let H be the
hyperbolically generated subgroup of G. Then A(H) = H.

Proof. The Lie algebra b of H is invariant for the Lie algebra automorphism ad(g) D A(e).
Therefore H is invariant for the Lie group automorphism h — gA(h)g~! but that says
H =gA(H)g~! and as H is normal H = g~ 'Hg = A(H).

Lemma 2.1 Let G; be a closed normal subgroup of GG, let gA be an affine diffeomor-
phism of G such that A(G1) = Gy, and let p be the natural projection G — G/G;. If
H is the hyperbolically generated subgroup of gA in G, and H; is the hyperbolically
generated subgroup of the induced map p(g9)A : G/G1 — G/G1, then Hy = p(H).

Proof. The derivative of p maps the Lie algebra of G onto the Lie algebra G/G; and
Dp(e)ad(g)DAe = ad(p(g))DA(e)Dp(e).

Thus the hyperbolic subspace of ad(p(g))DA(e) is contained in the image of the hyper-
bolic subspace of ad(g)DA(e) and similarly for the algebras generated.

Note: That the lemma implies that if H is trivial, so is Hj.
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Proposition 2.4. Let aA : G/B — G/B be an ergodic affine diffeomorphism with
H = e. Then there is an admissible subgroup B’ D B and arbitrarily small perturbations
a' of a such that o’ A : G/B" — G/B’ admits a non-trivial periodic quotient and hence
a’ A is not ergodic.

Now we show their proposition implies the Main Theorem.

Proof of the Main Theorem. H is a closed normal subgroup of G and HB/H is an
admissible subgroup of G/H. aA acts on G/H/HB/H and we may assume the action is
ergodic. There is no hyperbolic subspace for ad(a) DA, on G/H, so we apply proposition
2.4 to produce a By D HB/H By ¢ G/H and a; € G/H arbitrarily close to aH;
such that a1A : G/By — G/B; admits a periodic quotient. Now pull back a; to
a perturbation a’ of a and let B’ be the inverse image of B;. B’ is admissible and
contains B. The lack of ergodicity follows from proposition 2.2.

§3.

In this section we prove proposition 2.4. We begin by reducing the proof to two

special cases where (G is assumed solvable or GG is assumed semi-simple which cases we
now assume proven. They are proven below.
Proof of Proposition 2.4 As in [B-M], we let R be the radical of G then G/R is semi-
simple and BR/R is admissible in G/R, let p : G — G/R be the natural map. Ad(a)A is
an automorphism of G and hence fixes R and p(a)A defines an affine diffeomorphism of
G/R/BR/R with trivial hyperbolically generated subgroup. As before, using the semi-
simple case of the proposition we may perturb p(a) to a; and lift back to a perturbation
a’ of a; and find aB; D BR/R so that a1A : G/R/B; — G/R/B; and hence a'A :
G/p~'(B1) — G/p~!(B1) have non-trivial periodic quotients.

Now we turn to the case that G/BR might be a point. In that case, there is a normal
close connected subgroup N of G such that N C B, G/N is a solvable group and B/N
is admissible. (Theorem 4.9 of [B-M].)

Now we proceed as above, apply the theorem in the solvable case and lift back to G.

In fact the argument shows that it is sufficient to prove proposition when G is semi-
simple or solvable and B does not contain a connected closed normal subgroup of G.
Also, if we let G be the universal covering group of G and p : G — G the covering
map, then proving proposition 2.4 for G and p~1(B) proves it as well for G, B since any
automorphism of G preserving B lifts to an automorphism of G preserving p~Y(B) and p
is open so perturbations of left translations Lg in G are inverse images of perturbations
of Lp(g).

Now we consider the semi-simple case of Proposition 2.4, and we assume G simply

connected. First we record some facts about the automorphisms of G which preserve B
and affine diffeomorphism of G/B.

Proposition 3.1. Let G be a simply compact semi-simple group with no compact factors
and B an admissible subgroup of G which contains no connected non-trivial normal
subgroup of G. Then the group Aut(G, B) of automorphisms of G which preserve B is
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a discrete subgroup of Aut(G). Moreover, the group of inner automorphisms given by
the normalizer of B, N(B), is of finite index in Aut(G, B).

Proof. That B is discrete follows from the Borel density theorem (see the version in
[Zimmer]). Moreover, any automorphism of G which is the identity on B is the identity
automorpism of G. This proves that the automorphism group Aut(G, B) is discrete.
Now Aut(G) is an algebraic group and the inner automorphisms are the identity compo-
nent of G which has finitely many components since algebraic groups have only finitely
many components, and we are done.

Corollary 3.1. Let GG, B be as above and aA be an affine automorphism of G with
A(B) = B. Let U be a neighborhood of a € G then for any k£ € N the set of affine
automorphism a’A(a’) - - A¥=1(a’) A¥ = (a’ A)* for o’ € U contains a neighborhood of
aA(a)---A*=(a)A* = (aA)* in the group of affine automorphisms of G' which define
maps of G/B.

Proof. The affine automorphisms of G whose automorphism belong to Aut(G, B) are
G x Aut(G, B) and the second factor of this Lie group is discrete. Raising to the kth
power is open in a Lie group and we are done.

We are now ready to prove Proposition 2.4 for some semi-simple Lie groups.

Proposition 3.2. Let aA : G/B — G/B be an ergodic affine automorphism with G
a simply connected semi-simple Lie group with no compact factors, B an admissible
subgroup of G containing no non-trivial normal subgroup of G and H = e. Then there
is an admissible subgroup B' D B and arbitrarily small perturbations a’ of a such that
a'A:G/B"— G/B’ admits a non-trivial periodic quotient hence is not ergodic.

Proof. By proposition 3.1 and corollary 3.1 we assume that there is a k such that
(aA)* = b Ad(c) so that in particular the product decomposition of G = Gy x -+ x Gy,
into simple groups is preserved; write b = (by,... ,bg) and ¢ = (¢1,... ,c). Let B’ be the
normalizer of B, B’ = N(B). Then by the following lemma ¢ € N(B) and b Ad(c) and
Ly left multiplication by be induce the same map on G/N(B). By Theorem 1.1 bc may
be arbitrarily closely approximate by an element b'c with ad(b’c) of finite order in Aut(g)
so by corollary 3.1 there exists a’ arbitrarily close to a such that ad((a’A)*) = ad(b'c)
is of finite order in Aut(G) and hence a’A is not ergodic on G/N(B) and admits a
non-trivial periodic quotient. Now to finish the proof we need only see that G # N(B).
If G were N(B) then G/B would be a finite volume semi-simple Lie group and hence
compact. As we have assumed that G has no compact factors we are done.

Lemma 3.1 If h Ad(a) defines a map on G/B then a € N(B) the normalizer of B,
and h Ad(a) and Ly, induce the same map on G/N(DB).

Proof. Since h Ad(a) induces a map on G/B, given x € G and b € B there exists b’ € B
such that

hazba™! = hara™'b' or aba™' =1V thus a € N(B).



9

To see the second assertion note that for all # € G haz is equivalent to haza=!

mod N(B) since a=! € N(B).
Now we prove Proposition 2.4 for the general semi-simple case.

Proposition 3.3. Let aA: G/B — G/B be an ergodic affine diffeomorphism with G a
simply connected semi-simple Lie group, B an admissible subgroup of G containing no
non-trivial connected normal subgroup of G and H = e. Then there is an admissible
subgroup B’ D B and arbitrarily small perturbations o' of a such that o’ A : G/B" —
G /B’ admits a non-trivial periodic quotient and is not ergodic.

Proof. As in [B-M] G = C' x F with C' the maximal normal compact subgroup and F
a product of non-compact simple groups. The projection of B into F' by dividing by C'
is a discrete group. If F'is not trivial, we apply the previous proposition and use the
same perturbation a’ of a. If F' is trivial, Theorem 1.3 finishes the proof.

Now we turn to the solvable case and finish the proof of the main theorem. The
general solvable case follows from the toral case by the Mostow structure theorem.

Proposition 3.4. Let aA : G/B — G/B be an ergodic affine automorphism with G
a solvable Lie group and B an admissible subgroup which contains no non-trivial, con-
nected, normal subgroup of G. Then if H = e there is an arbitrarily small perturbation
a' of a such that o’ A : G/B — G/B admits a non-trivial periodic quotient on a torus
of positive dimension and hence is not ergodic.

Proof. By the Mostow structure theorem [EMS vol. 20] p. 167 we have the exact

sequence
N/BNN — G/B — G/BN

where N is the Nil radical of G and hence is preserved by A and G/BN is a torus.
Thus, BN is preserved by A and aA has aA : G/BN — G/BN is a quotient. Now
apply Theorem 1.2. If G/BN is trivial so that G is nilpotent then G/B is a nilmanifold
and our hypotheses assume that B is discrete. Once again we may fiber G/B over a
non-trivial torus.

This finishes the proof of the propositions and the Main Theorem.

Finally we turn to the proofs of the two propositions following the Main Theorem.
They are already established in one direction. First proposition 1.

Proof. By [Parry] gA is ergodic on G/T if and only if it is on the maximal torus quotient.
Thus HT = G implies the same on the torus quotient. This implies that the quotient
automorphism on the torus is ergodic and we have seen in section 2 that this last implies
the stable ergodicity on the toral quotient, and hence on G/T.

Now Proposition 2.

Proof. a) H = G is an open condition and by [M] or even [P-S] H = G implies the
ergodicity of gA. b)Write G = C x F' as in Proposition 3.4. The condition HI' = G
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implies by that H contains F' and by corollary 1.2 that FT = G so this is again an open
condition.
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