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One weaker form of the P # NP problem consists of fixing the degree of the
polynomial bounds for deterministic and nondeterministic time. The problem obtained
in that way, to determine whether

DTIME(O(n%)) = NTIME(O(n%))

has been solved in the Boolean setting only for the special case d = 1. In fact, it is
shown in [13] (see also [1]) that nondeterministic linear time is strictly more powerful
than deterministic linear time.

In the context of real Turing machines the question of whether nondeterministic time
is more powerful than deterministic time for fixed degree polynomial time bounds also
arises naturally. As a first result one can remark that the quoted result for the Boolean
situation still holds in the real case since the Knapsack problem can be solved in
linear nondeterministic time while it is known that it has an Q(n?) lower bound for
deterministic time (see [2]).

This paper shows that in this context a stronger result holds; namely, that for each
d>1 the classes NTIME(O(n%)) and co-NTIME(O(n?)) are different and therefore that
the inclusion DTIME(O(n)) € NTIME(O(n%)) is strict.

1. Some facts from linear geometry

In the following, let k € N, k22 and K = {0,1,...,k — 1}.
Extending the notations used in threshold logic (see [12]) we shall say that a set
T CK" is a threshold subset of K" when there exists a linear function of the form

h=ax;+ --+ax,—1 a...a,€R
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such that for any x € 7, A(x) > 0 and for any x € K" — T, h(x) < 0. In this case we
shall also say the # defines the threshold subset 7.

Note that for a given threshold set 7 there exist uncountably many choices of
ai,...a, satisfying the condition above. The following easy proposition characterizes
the set of hyperplanes that separate a given threshold set.

Proposition 1. Let #, = {(xi,...,x,) € R: Vby,....0, € K Y. x:b; # 1}. Two
points a,b € R" define the same threshold set if and only if they belong to the same
connected component of H .

Proof. The points a and b belong to the same connected component of #, iff
Vby,...,b, € K they lie on the same side of the hyperplane given by the equation
> i x:b; = 1. But this is equivalent to say that the functions

n n
ZaiYi—l and Zb,Y,—’l
i=1 2

i=1

define the same threshold subset of K*. O
A trivial consequence of the preceding proposition is the following corollary.

Corollary 1. For any threshold subset T of K" the set of points (ay,...,a,) € R s.t.
the function ¥, a;Y; — 1 defines T is an open set of H#,.

Lemma 1. Let H be an affine subspace of R" of dimension n — 1 containing K"!
and T be a threshold subset of K"~' in H. Also, let S be a finite set of points in
R* — H. Then, there exists an (n — 2)-dimensional affine subspace L of H defining T
such that every (n— 1)-dimensional affine subspace of R* passing through L contains
at most one point of S.

Proof. Let us consider a fixed injection
R* — P(R")

of the affine space of dimension r in its projective closure. For any affine subspace 4
of R” we denote by 4 its closure in P(R").

Now, for any two different points x,y € S we consider the intersection of the
projective line defined by x and y with A. This defines a finite set of points F in H.

If we denote by #,_; the space of all the (n — 2)-dimensional projective subspaces
of A we have that #,_; is an open subset of ff,,_l. Moreover, for each point p
in F, the condition p € I,/ € H#,_, defines a Zariski open set in #,_;. Thus, the
requirement that no point of F belongs to / also defines a Zariski open set ¥ in #,_,
(see Chapter 1 of [7] for first notions of algebraic geometry). Since Zariski open sets
are dense, the intersection of W with the subset of #,., containing those (rn — 2)-
dimensional affine subspaces of H that define 7 is nonempty. Any such subspace L in
this intersection will fulfill our statement. [J
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Remark 1. In the preceding lemma, the set S can be supposed to be countable and the
result still holds. This is due to the fact that in a complete metric space a countable
intersection of open dense sets is still dense or, arguing differently, to the fact that the
resulting set W is the complement of a countably union of sets with measure zero and
then this complement has measure zero itself. However, since we shall use only the
level of generality stated in the lemma, we confine the result for infinite countable sets
to this remark.

Theorem 1. For any k=2 and any n>1 there are at least k"% threshold subsets of
K"

Proof. The statement is clearly true for n = 1 since in this case we have exactly &
threshold subsets in K.

Let us then suppose n=>2 and let H be the affine subspace of R* defined by the
equation X, = 0. There is a natural inclusion K"~! C H and, by induction hypothesis,
the number of threshold subsets of K*~! is greater than k*~1"/4_ For each one of these
threshold subsets, let us consider a (n —2)-dimensional affine subspace L satisfying the
statement of Lemma 1. A hyperplane that rotates around the axis L will meet the points
of K" satisfying X, # 0 one at a time. Therefore, we can find £ — k"~! hyperplanes
through L defining different threshold subsets of K, and consequently, the total number
of threshold subsets of K” must be greater than

k(n—1)2/4(kn . kn—l) - k(n—1)2/4kn—1(k -1

> k(n2+2n—2)/4
=

A O

2. Generalized Knapsack problems

The Knapsack problem over the reals is defined to be the set

KP={xeR*:|x|=nand 3SC{1,...,n} with > x; =1}
JES
where, we recall from [3], R* is the direct sum of countably many copies of R and
for any x € R, |x| denotes the size of x i.e. the largest i € N such that x; # 0. It
is a set that has been studied under several points of view. Thus, lower bounds for
deterministic sequential time and parallel time as well as for its topological complexity
have been given in [2], [11] and [3] respectively. Also, a polynomial upper bound for
its nonuniform deterministic complexity has been shown in [10].
We shall call generalized Knapsack problem of order d the following set:

n
KP; = {x e R*™: |x| =n and 30<b1,...,bn < 2nd with ij)Cj = 1}
=1
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Note that the usual Knapsack problem is the generalized Knapsack problem of order 0.
The following theorem is our main reason to introduce the generalized Knapsack
problem.

Theorem 2. For any d >0 a lower bound of Q(n®*?) holds for the non-deterministic
time necessary to solve the complement of the set KP,.

Proof. Let M be a nondeterministic machine solving the complement of KP; that we
shall denote by C. Then, for each » € N and each x € R" we have that x € C if and
only if there exists y € R such that M accepts (x, y) € R™™ (¢(n) is a bound for
the running time of M, see [3]).

In other words, if we denote by C, the subset of elements in C having size n and
by S, the subset of elements in R*"" accepted by M, we have that C, is the image
of §, under the projection

T, o R R

Since m, is continuous we deduce that the number of connected components of S,
must be greater than that of C,. Now, because of Proposition 1, the latter coincides
with the number of threshold subsets of K" for k = 2" and because of Theorem 1,
this is greater than k"4 and therefore greater than

(2nd )n2/4 — 2nd+2/4.

According to [2], a lower bound of Q(log#c.c.(S,)) holds then for the running time
of M where # c.c.(S,) is the number of connected components of S, and therefore the
desired lower bound follows. [J

Let us recall that by co-NTIME(#(n)) we denote the class of sets whose complements
can be solved in nondeterministic time #(n).

Corollary 2. For every d €N, d > 1 the classes NTIME(O(n?)) and co-NTIME(O(n?))
are different.

Proof. Because of the preceding theorem for any >0 the set KP; does not be-
long to co-NTIME(O(n?*!)) whilst the following algorithm shows that it belongs to
NTIME(O(n?*!)):

input(xi,...,x,;)

for j € {1,...,n} and i € {0,...,n% — 1} do
guess b;; € {0,1}

od

compute s := 3,  b; ;2';

ACCEPT iff s =1 O
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Since deterministic time is closed under complements the following result is straight-
forward.

Corollary 3. For every d € N, d =1 we have the strict inclusion

DTIME(O(n?)) C NTIME(O(n%)).

Remark 2. In the context of computations with real numbers two kinds of nondeter-
minism are possible. On the one hand, the nondeterminism as it was introduced in [3]
where at any step of the computation an arbitrary real number can be guessed. On the
other hand, a weaker form of nondeterminism was introduced in [5] where the guesses
are restricted to belong to the set {0, 1}. The relation between the computational power
of this last “digital” nondeterminism and the “full” one first quoted are more or less
well understood depending on the kind of real Turing machines allowed. Thus, for
additive real Turing machines (that do not perform multiplications or divisions) it was
shown in [9] and in [4] that both nondeterminisms generate the same polynomial hi-
erarchy the coincidence being level by level. In particular, it follows that the classes
NP4 and DNPy4 coincide (we use the letters DNP for denoting Digital Nondeter-
ministic Polynomial time). On the other hand, for the weak model introduced in [8]
(where the use of multiplications and divisions is allowed but restricted in number) it
was shown in [6] that the classes DNPy and NPy are actually different.

For the standard real Turing machine model, the proof given for Corollary 3 actually
shows that DTIME(O(n?)) is strictly included in DNTIME(O(n%)) (DNTIME stands
for Digital Nondeterministic time). It remains open however, whether fixed degree
separations hold for digital and full nondeterministic time in this context.

On the other hand, Corollary 3 remains valid in the additive and weak contexts
where the separation between P and DNP are still open.
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Addendum. While this note was in print we learned that a result similar to Theorem 1
had already been shown by F. Meyer auf der Heide in “Lower bounds for solving linear
diophantine equations on random access machines”, J. ACM 32(4) (1985) 929-937.



