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One weaker form of the P # NP problem consists of fixing the degree of the 
polynomial bounds for deterministic and nondeterministic time. The problem obtained 
in that way, to determine whether 

DTIME(O(nd)) = NTIME(O(nd)) 

has been solved in the Boolean setting only for the special case d = 1. In fact, it is 
shown in [13] (see also [l]) that nondeterministic linear time is strictly more powerful 
than deterministic linear time. 

In the context of real Turing machines the question of whether nondeterministic time 
is more powerful than deterministic time for fixed degree polynomial time bounds also 
arises naturally. As a first result one can remark that the quoted result for the Boolean 
situation still holds in the real case since the Knapsack problem can be solved in 
linear nondeterministic time while it is known that it has an L?(n2) lower bound for 
deterministic time (see [2]). 

This paper shows that in this context a stronger result holds; namely, that for each 
d 2 1 the classes NTIME(O(nd)) and co-NTIME(O(nd)) are different and therefore that 
the inclusion DTIME(O(nd)) c NTIME(O(nd)) is strict. 

1. Some facts from linear geometry 

In the following, let k E N, k 22 and K = (0, 1,. . . ,k - 1). 
Extending the notations used in threshold logic (see [12]) we shall say that a set 

T C K” is a threshold subset of K” when there exists a linear function of the form 

h = alxl + ... +a,x, - 1 ai,...a, E R 
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such that for any x E T, h(x) > 0 and for any x E K” - T, h(x) < 0. In this case we 

shall also say the h defines the threshold subset T. 

Note that for a given threshold set T there exist uncountably many choices of 

al,... a,, satisfying the condition above. The following easy proposition characterizes 

the set of hyperplanes that separate a given threshold set. 

Proposition 1. Let 2, = {(XI,. . . ,x,) E !R : Vbl,. . . ,b, E K Cy=, xibi # 1). Two 
points a, b E R” define the same threshold set tf and only if they belong to the same 

connected component of X,,. 

Proof. The points a and b belong to the same connected component of Xn iff 

Vb 1,. . . , b, E K they lie on the same side of the hyperplane given by the equation 

Cr=r xibi = 1. But th is is equivalent to say that the functions 

kLlffi_ 1 and ebiK_1 
i=l i=l 

define the same threshold subset of K”. 0 

A trivial consequence of the preceding proposition is the following corollary. 

Corollary 1. For any threshold subset T of K” the set of points (al,. . . ,a,,) E R s. t. 

the function CL, six - 1 defines T is an open set of X,,. 

Lemma 1. Let H be an afJine subspace of R” of dimension n - 1 containing K”-’ 
and T be a threshold subset of K”-’ in H. Also, let S be a finite set of points in 
R” - H. Then, there exists an (n - 2)-dimensional affine subspace L of H defining T 
such that every (n - 1 )-dimensional afJine subspace of R” passing through L contains 

at most one point of S. 

Proof. Let us consider a fixed injection 

of the affine space of dimension n in its projective closure. For any affine subspace A 
of R” we denote by 2 its closure in P(W). 

Now, for any two different points x, y E S we consider the intersection of the 

projective line defined by x and y with H. This defines a finite set of points F in E?. 

If we denote by *n-r the space of all the (n - 2)-dimensional projective subspaces 

of I? we have that Xn-r is an open subset of *,_I. Moreover, for each point p 
in F, the condition p $ I,1 E $,,_l defines a Zariski open set in $,,_I. Thus, the 

requirement that no point of F belongs to 1 also defines a Zariski open set W in $,,-I 

(see Chapter 1 of [7] for first notions of algebraic geometry). Since Zariski open sets 

are dense, the intersection of W with the subset of Xn_r containing those (n - 2)- 
dimensional affine subspaces of H that define T is nonempty. Any such subspace L in 

this intersection will fulfill our statement. q 
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Remark 1. In the preceding lemma, the set S can be supposed to be countable and the 

result still holds. This is due to the fact that in a complete metric space a countable 

intersection of open dense sets is still dense or, arguing differently, to the fact that the 

resulting set W is the complement of a countably union of sets with measure zero and 

then this complement has measure zero itself. However, since we shall use only the 

level of generality stated in the lemma, we confine the result for infinite countable sets 

to this remark. 

Theorem 1. For any k 22 and any n 2 1 there are at least kn2i4 threshold subsets of 

K”. 

Proof. The statement is clearly true for n = 1 since in this case we have exactly k 

threshold subsets in K. 
Let us then suppose n 22 and let H be the affine subspace of R” defined by the 

equation X, = 0. There is a natural inclusion K”-’ c H and, by induction hypothesis, 

the number of threshold subsets of K”-’ is greater than k(“-‘)‘i4. For each one of these 

threshold subsets, let us consider a (n - 2)-dimensional affine subspace L satisfying the 

statement of Lemma 1. A hyperplane that rotates around the axis L will meet the points 

of K” satisfying X, # 0 one at a time. Therefore, we can find k” - k”-’ hyperplanes 

through L defining different threshold subsets of K”, and consequently, the total number 

of threshold subsets of K” must be greater than 

k(“-‘?/4(k” _ kn--l) = /&“-‘?/4k”-‘(k _ 1) 

> #+%2)/4 

B kn214. 0 

2. Generalized Knapsack problems 

The Knapsack problem over the reals is defined to be the set 

KP= {x E RM : 1x1 = n and %&{l,...,n} with ,~xj = 1) 

where, we recall from [3], [woo is the direct sum of countably many copies of R and 

for any x E [woo, 1x1 denotes the size of x i.e. the largest i E N such that xi # 0. It 

is a set that has been studied under several points of view. Thus, lower bounds for 

deterministic sequential time and parallel time as well as for its topological complexity 

have been given in [2], [ 1 l] and [3] respectively. Also, a polynomial upper bound for 

its nonuniform deterministic complexity has been shown in [lo]. 

We shall call generalized Knapsack problem of order d the following set: 

KF’d = {X E lRM : 1x1 = n and 30<bl,...,b, < 2nd with 2 bjxj = 1). 
j=l 
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Note that the usual Knapsack problem is the generalized Knapsack problem of order 0. 

The following theorem is our main reason to introduce the generalized Knapsack 
problem. 

Theorem 2. For any d B 0 a lower bound of Q(n d+2) holds for the non-deterministic 
time necessary to solve the complement of the set ad. 

Proof. Let M be a nondetenninistic machine solving the complement of md that we 
shall denote by C. Then, for each n E N and each x E R” we have that x E C if and 
only if there exists y E R’(“) such that M accepts (x, y) E R”+‘(“) (t(n) is a bound for 
the running time of M, see [3]). 

In other words, if we denote by C,, the subset of elements in C having size n and 
by S, the subset of elements in lQn+t(n) accepted by M, we have that C,, is the image 
of S, under the projection 

Since n, is continuous we deduce that the number of connected components of S, 
must be greater than that of C,. Now, because of Proposition 1, the latter coincides 
with the number of threshold subsets of K” for k = 2”d and because of Theorem 1, 
this is greater than kn214 and therefore greater than 

According to [2], a lower bound of Q(log#c.c.(S,)) holds then for the running time 
of M where # c.c.(S,,) is the number of connected components of S,, and therefore the 
desired lower bound follows. 0 

Let us recall that by co-NTIME(t(n)) we denote the class of sets whose complements 
can be solved in nondeterministic time t(n). 

Corollary 2. For every d E N, d > 1 the classes NTIME(O(nd)) and co-NTIME(O(nd)) 
are d$erent. 

Proof. Because of the preceding theorem for any d 30 the set md does not be- 
long to co-NTIME(O(nd+‘)) whilst the following algorithm shows that it belongs to 
NTIME(O(ndfl )): 

input(q,...,x,) 
for j E {l,..., n} and i E (0 ,..., nd - 1) do 

guess bi,j E (0, 1) 

od 
compute s I= Ci,j bi,j%‘Xj 
ACCEPT iff s = 1 0 
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Since deterministic time is closed under complements the following result is straight- 

forward. 

Corollary 3. For every d E N, d > 1 we have the strict inclusion 

DTIME(O(&) c NTIME(O(nd)). 

Remark 2. In the context of computations with real numbers two kinds of nondeter- 

minism are possible. On the one hand, the nondeterminism as it was introduced in [3] 

where at any step of the computation an arbitrary real number can be guessed. On the 

other hand, a weaker form of nondeterminism was introduced in [5] where the guesses 

are restricted to belong to the set (0, 1). The relation between the computational power 

of this last “digital” nondeterminism and the “full” one first quoted are more or less 

well understood depending on the kind of real Turing machines allowed. Thus, for 

additive real Turing machines (that do not perform multiplications or divisions) it was 

shown in [9] and in [4] that both nondeterminisms generate the same polynomial hi- 

erarchy the coincidence being level by level. In particular, it follows that the classes 

NPad,+ and DNPdd coincide (we use the letters DNP for denoting Digital Nondeter- 

ministic Polynomial time). On the other hand, for the weak model introduced in [8] 

(where the use of multiplications and divisions is allowed but restricted in number) it 

was shown in [6] that the classes DNPw and NPw are actually different. 

For the standard real Turing machine model, the proof given for Corollary 3 actually 

shows that DTIME(O(nd)) is strictly included in DNTIME(O(nd)) (DNTIME stands 

for Digital Nondeterministic time). It remains open however, whether fixed degree 

separations hold for digital and full nondeterministic time in this context. 

On the other hand, Corollary 3 remains valid in the additive and weak contexts 

where the separation between P and DNP are still open. 
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