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Abstract

Cucker, F., M. Shub and S. Smale, Separation of complexity classes in Koiran’s weak model,
Theoretical Computer Science 133 (1994) 3-14.

We continue the study of complexity classes over the weak model introduced by P. Koiran. In
particular we provide several separations of complexity classes, the most remarkable being the strict
inclusion of P in NP. Other separations concern classes defined by weak polynomial time over
parallel or alternating machines as well as over nondeterministic machines whose guesses are
required to be 0 or 1.

1. Introduction

Very recently Pascal Koiran introduced in [10] a model of computation that comes
from a modification of the cost notion of the real Turing machine of [2]. This new
model — that following Koiran will be called weak — drops the unit cost assumption for
the arithmetical operations and only allows a “moderate use of multiplication” [11].
The main result of [10] states that when restricted to Boolean inputs the class of sets
decided by these machines in polynomial time coincides with P/poly. As a conse-
quence, if P=NP in the weak model then the Boolean polynomial hierarchy collapses
at the second level.
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In the present paper we continue the study of the computational power of the weak
model. In particular, several separations between complexity classes for that model
are proved, the most important one being P # NP. In fact, it is shown that NPy, (the
subscript stands for “weak”) strictly contains its subclass NPy, consisting of those
sets that can be decided using binary guesses. Note that since Py « NPy, the above
mentioned separation holds. The problem of whether Py = NPy, remains open and
we provide two kinds of partial answers to it. On the one hand, in Section 3 and
following the line of ideas of [10] we show that the above equality would imply the
collapse of the polynomial hierarchy at its second level, a fact seen as unlikely in
complexity theory. On the other hand, we prove in Section 5 that if we restrict our
attention to machines that branch only on equality tests, we can prove that the
forementioned equality does not hold. This is done by showing that a well-known
problem (the Knapsack problem) belongs to NPy, and cannot be solved in determin-
istic weak polynomial time. Finally, in Section 4, we consider the alternating variation
of the weak model, and we give a doubly exponential lower bound for the parallel time
needed to decide problems solvable in polynomial alternating time.

2. The weak model

In the following we shall denote the direct sum @7 R by R”. Also, we define the size
|x| of an element xeR™ as the largest i such that its i*" coordinate x; is different from
zero. We shall denote by T the subset {0,1} = R and — following the custom in
Complexity theory — by X* the set of all finite strings over X. Note that there is
a natural inclusion Z* g R* and that the membership of a point in R" to Z* can be
algebraically expressed by n equations of the form X (X —1)=0.

Also, we shall consider real Turing machines over R* as they were defined in [2]
but in a normal form that requires that every computational node performs a single
arithmetic operation. This requirement does not modify the running time of the
machine up to a constant factor.

Let M be a real Turing machine whose running time is bounded by (n), and let
oy, ..., be its real constants. For any input size n, the machine M determines an
algebraic computation tree 7y, , with depth t(n). At an arithmetic node v of this tree
a value is assigned to a variable z corresponding to an arithmetical operation on some
previously computed values. This value z can be expressed as f,(xq, ..., Xn, %1y .- %)
where f, is a rational function with rational coefficients and (x4, ..., x,) is the input.
These rational functions are used to define the running time in the weak model. In the
next definition, we shall understand by the height of a rational number p/q its bit

length ie. [ log(|p[+1)+(log(lq})].

Definition 1. The cost of any arithmetic node v is defined to be the maximum of
deg(f,) and the maximum height of the coefficients of f,, while the cost of any other
node is 1. For any xe R of size n the weak running time of M on x is defined to be the
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sum of the costs of the nodes along its computational path in Ty, ,. The (weak) running
time of M is the function associating to every n the maximum over all xeR*® of size
n of the running time of M on x.

The classes Py, and NPy, of weak deterministic and nondeterministic polynomial
time respectively are now defined as in [2]. Also, we define the class NPywyp, of weak
digital nondeterministic polynomial time by requiring the guesses in NPy to be
elements in X*. This kind of nondeterminism describes the complexity of discrete
search as appears for instance in the Travelling Salesman or the Knapsack problems
(see [6]).

In the sequel, unless otherwise stated, all the complexity classes are in the weak
model. The adjective full as opposed to weak will be applied to the notions as they
were introduced in [2].

A first result concerning weak nondeterministic polynomial time is that it coincides
with full nondeterministic polynomial time. Consequently, we derive the NPy-com-
pleteness of the full NP-complete problems of [2]. Let us recall that QS is the set of
systems of quadratic equations having a real solution, and that 4FEAS is the set of
degree 4 polynomials having a real root.

Theorem 2. We have that NPgp= NPy, where NPy is the class of sets decided in full
nondeterministic polynomial time.

Proof. We first observe that the reductions given in [2] to reduce any problem in NPy
to 4FEAS, work in weak polynomial time. This can be seen either checking the
weakness at the proof given in [2] or realizing that the quoted reductions does not use
noninteger constants and seen as a Boolean algorithm (dealing with the input x and
the machine constants as symbols) it is performed in polynomial time and thus,
according to Lemma 3 of [10], that it works in weak polynomial time.

Now, since 4FEAS can be trivially solved in weak nondeterministic polynomial
time, we have an NPy, algorithm for solving all problems in NP, by composing
for any SeNPy the reduction to 4FEAS with the algorithm for solving this last
problem. O

A side consequence of this last proof is the following result.
Theorem 3. The sets QS and 4FEAS are NPyw-complete for reductions in Py.

Let us introduce now a parallel computational model.
Definition 4. An algebraic circuit € over R is a directed acyclic graph where each node
has indegree 0, 1 or 2. Nodes with degree O are either labeled as input or with elements

of R (we shall call the last ones constant nodes). Nodes with indegree 2 are labeled
with the arithmetic operations of R, i.e. +,,—and /. Finally, nodes with indegree 1 are
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of a unique kind and are called sign nodes. There is a set of m > 1 nodes with outdegree
0 called output nodes. In the sequel the nodes of a circuit will be called gates.

To each gate we inductively associate a function of the input variables in the usual
way (note that sign gates return 1 if their input is greater or equal to 0, and
0 otherwise). In particular, we shall refer to the function associated to the output gates
as the function computed by the circuit.

For an arithmetic circuit €, the size s(%) of ¥, is the number of gates in €. The depth
d(®¥) of €, is the length of the longest path from some input gate to some output gate.
The cost of an arithmetic gate is defined as before and the cost of a path in the circuit is
the sum of the costs of their gates. We define the weak running time of a circuit on an
input x to be the maximum of the costs of their paths. The weak running time of the
circuit is defined then as before.

Given an algebraic circuit €, the canonical encoding of € is a sequence of 4-tuples of
the form (g, 0p,g,,9,)eR* where g represents the gate label, op is the operation
performed by the gate, g, and g, are 0 if gate ¢ is an input gate, and g, is O if gate g is
a sign gate (whose input is then given by g;) or a constant gate (the associated constant
being then stored in g;). Also, we shall suppose that the first n gates are the input gates
and the last m the output gates.

Let {%,}ncn be a family of circuits. We shall say that the family is Py-uniform if
there exists a real Turing machine M that generates the ith coordinate of the encoding
of %, with input

n—1

in weak polynomial time in n. We shall say that the family is EX Py-uniform when
there is a real Turing machine M as above but working in time weak exponential in n.
We now define PAR, to be the class of sets S such that there is a Py-uniform family of
circuits {%,} having size exponential in n and weak polynomial running time such
that the circuit %, computes the characteristic function of the set of elements in S with
size n. The class PEXPy, of sets decided in weak exponential parallel time is defined in
an analogous manner.
The next proposition is a weak model version of the main theorem in [4].

Proposition 5. Let f,€R [ X1, ..., X, ] be a family of irreducible polynomials such that
for all n the zero set Z (f,) is a variety of dimension n— 1 and deg( f,)=d(n). Then, any
family of circuits deciding the set S={xeR”|f(x)=0} has a weak running time
greater than d(n).

Proof. Let us assume that there exists a family of circuits %, having running time
bounded by r(n) and deciding S.
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For each n we consider the size N of %, and we call “configuration” any point in RY
and “initial configuration” the point
N-n

r_H .
(x15..05%,,0,...,0)

At each step of the computation we modify some of the coordinates of the current
configuration replacing them by the result of operating (via one of (+, —, *,/)) on two
other coordinates. Those modifications can depend on Boolean conditions of the form

Qi(xy,...,x,)20,

where Q;(X 4, ..., X,) is a rational function (whose coeflicients depend on the output of
previous sign gates, and therefore on the actual input x, ..., x,) and Q;(x,,...,x,) 1s
the content of coordinate i in R".

At the end of the computation the Nth coordinate of the final configuration will be
0 or 1 according to the truth of a large (but finite) system of the form

\/( s 0,:i(X,....X,)<O0A /J\ Q,-,j(Xl,...,X,,)<O>,

i=1 i=s;+1

=

where the degrees of the numerator and denominator of the Q; ; are bounded by r(n).

By expressing the sign of a quotient in terms of the signs of numerator and
denominator we can replace the rational functions by polynomials with the same
bound for the degrees. Also, expressing an inequality like

F(Xy,....X,)=0,
as the disjunction
F(X,...,X,)=0VF(X,...,X,)>0

and then distributing, we can describe S as a union of sets given by systems of
polynomial inequalities of the form

s t
A Fi(X1,...,X,)=0A A Gi(X,,...,X,)>0.
i=1 j=1

Now, since the zero set Z( f,) has dimension n— 1, one of those sets must contain
a subset of dimension n— 1. Since the set described by the G;'s is open, it must be
nonempty, and then it defines an open subset of R". But our zero set has dimension
n—1, and therefore we must have s> 0.

Finally, all the polynomials F;,i=1, ..., s, vanish on that (n — 1)-dimensional subset
of the variety. But, since the variety is irreducible, this implies that every F; must
vanish on the whole variety. Using the fact that the ideal (f,) is the definition ideal of
Z (f,) (see [3, Théoréme 4.5.17) we conclude that all the F; are multiples of f, and thus,
that their degrees are greater than d(n). Since these degrees are a lower bound of the
running time of the circuit ¥, we deduce the proposition’s statement. [
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Theorem 6. (3) Py #PARy, (b) NPy ¢PARy,.

Proof. (a) Let us consider the set S={xeR”{x;"=x, where n=|x|}. Note that for
each n the subset of elements of S having size n is an irreducible variety of dimension
n—1. Thus, S cannot be decided in weak polynomial parallel time because of the
preceding proposition. On the other hand, it clearly belongs to Pg.

(b) Trivial since P € NP, =NPy,. Note that it can also be shown observing that
the following sentence

Hylﬂyz-'-ﬂy,,_lx12=y1 A yfzy;_ AL A y,,zglzxz

is equivalent to x2"=x, and can be checked in weak nondeterministic polynomial
time. [J

Corollary 7. The inclusion NPywp < NPy is strict.

Proof. Trivial since NPy, € PARyy (the parallel machine just tests the exponential
number of possible guesses independently). [

Corollary 8. The problems QS and 4FEAS cannot be solved in weak polynomial time
even allowing parallelism or digital nondeterminism.

Theorem 6 provides a result quite unusual in complexity theory since either in the
Boolean setting or in the full real setting the class NP is included in its corresponding
PAR. We can prove however that in the weak model nondeterministic polynomial
time can be solved in deterministic exponential time.

Lemma 9. If a set S = R™ can be decided in ( full) parallel time t(n) then it can be
decided in weak deterministic time 204,

Proof. The weak machine simply simulates the parallel one. This takes full time
206 and, since the degree and coefficient length of the rational functions associated
to the circuits are bounded 2'™ the result follows. [

Proposition 10. NPy, < EXPy,.

Proof. In Part I of [14] it is shown that 4FEAS can be solved in parallel polynomial
time in the full model. Thus, it can be solved in exponential time in the weak one. [J

Corollary 11. The inclusion PARy < EXPyy is strict.
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The preceding results can be summarized in the following picture:

NPW = NPR

# \
Py —> NPy, / EXPy
\ /
P, ——=—— PARy

where an arrow — means inclusion, an arrow 7 means strict inclusion and a crossed
arrow » means that the inclusion between the corresponding complexity classes does
not hold.

Theorem 2 asserts that the classes NPy and NPy coincide. This is not necessarily
the case for their subclasses NPCy, and NPCy, of complete problems, since in the first
case the reductions considered are in Py and in the second in Pg. In fact, it is trivial
that NPCy = NPCy. The converse, however, seems less trivial to prove according to
the consequences that it has.

Theorem 12. If NPCy=NPCy then Pyp#NPy.

Proof. Let us suppose that Pg=NPy. Then we have that NPy=NPC; and in
particular, that NPwp = NPCy. By hypothesis this entails that NPyp & NPCy, and
thus that NPywp = NPy, contradicting Corollary 7. O

3. Weak machines and Boolean complexity classes

Definition 13. Given a class 4 of subsets of R™, we shall call its Boolean part the class
of subsets of Z* obtained by considering for any SeC its subset of elements belonging
to Z*.

One of the main results in [10] states that the Boolean part of Py is P/poly. This
result was used then to show that if Py =NPy then the polynomial hierarchy of
Meyer and Stockmeyer collapses, a consequence that now becomes meaningless since
we know that Py # NPy,. The main ideas of the paper (and the techniques used there)
remain however very interesting since, as we shall see, they can still be fruitfully used.
We begin by recalling the main technical tool obtained in [10].

Theorem 14. Let S = R* be a semialgebraic set defined by a system

Pi(Xl,""Xk)>0’ izl,...,N,
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with P.e Z[X4,...,Xi], and let D be the maximum degree of the P/s and H the
maximum height of their coefficients. If S#0, there exists a rational point xe@Q*
belonging to S and having height bounded by aHD® with a and b depending only
on k.

Theorem 15. The Boolean part of PARy is PSPACE/poly.

Proof. Let SePARy, and let us consider its subset S of elements in *. We shall see
that S belongs to PSPACE/poly.

Since S belongs to PARy, there is a family of algebraic circuits {%,} having weak
running time bounded by a polynomial g(n). Moreover there is a real Turing machine
M that given (n, i) produces the ith gate of ¥, within a time that we can suppose to be
also bounded by ¢(n). Let the size of %, be bounded by s(n)=2"" and a4, ..., % be the
constants of M.

With the exception of the constant value for the constant gates, all the remaining
values computed by M are positive integers with polynomial height. Without loss of
generality we will suppose that M first produces a base two representation of these
numbers and then - without using the real constants «,..., — computes the
corresponding integers. This property allows us to suppose that the integer value
returned at the end of a computational path only depend on the path itself and not on
the constants oy, ..., %.

On the other hand, the constant gates depend on «, ..., o and their associated
constant y; , can then be expressed as r, ;(ay, ..., o) where r, ; is a rational function
having polynomial degree and coefficient heights since the weak running time of M is
polynomially bounded. Also, let

B, (00, o, 0020,
r,,_i,j(al,...,ak)<0 j=1,...,hn

the rational functions that determine the computation path followed by M on input
(n,i) and let Y, ; be the system of inequations resulting by replacing the a;,, ..., o by
the indeterminates X, ..., X;.

For any n, and for any element ue 2*, the computation done by %, on input u can be
described by a set of equations

- _{fn.u,i(’yn.l’"-vyn.iy.)ZO,
e gn,u,i(’yn,la'~~’yn.i,,)<0’

where the f, . ; and the g, ,; are rational functions having polynomial degree of
coeflicient heights (because of the polynomial weak running time of %,) and the third
subindex runs over the sign gates of €.

Let us replace in =, , each occurrence of a y,; by its correspondent rational
function r,, ;(X; X,) and let {, , be the resulting system of inequations. If we now
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En:< U Y;n,i>u< U Cn,u)'
i<s(n) ueX”

we obtain a system of inequations that has the real solution (o, ..., o).

In order to apply the preceding theorem to ensure the existence of a small rational
solution we use Koiran’s trick to get rid of the equalities (see [10, Section 5.2.]). We
obtain then a new system z, having only strict inequalities and such that if a point
r=(rq,...,re) is a solution of the system the machine M" obtained by replacing «; by r;
produces a circuit € whose outcome for any ueX” is the same as that of 4,.

We can now deduce the existence of a point r=(ry, ..., r,)eQ* satisfying the system
=, such that each component has height polynomial in n. Therefore the computations
done by M" over binary inputs can be carried out by a Turing machine in polynomial
time (see [ 10, Lemma 3]). On the other hand, the circuit ¢}, can be readily transformed
into a Boolean circuit having polynomial depth.

From the classical equivalence between parallel polynomial time and PSPACE in
the Boolean setting, we deduce that S belongs to PSPACE/poly.

On the other hand, and using the same equivalence, one trivially shows that any set
in PSPACE/poly can be accepted by a Pyw-uniform family of circuits in weak parallel
time. [J

define

Theorem 16. (i) The Boolean part of NPy is NP/poly.
(ii) The Boolean part of NPwpnco-NPyyp is (NP co-NP)/poly.

Proof. They are done in a similar manner as the preceding one. [

Some consequences follow from the preceding theorems. In order to state them, let
us recall that we denote by PH the polynomial hierarchy of Meyer and Stockmeyer
and by X7 its kth level for any keN (see [13] and [1, Ch. 18]).

Corollary 17. (i) If Pw=NPyp then the polynomial hierarchy collapses at its second
level.
(ii) If NPwp=PARy then PSPACE=1X?%.

Proof. If Py, = NPy then we have that P/poly = NP/poly, from where we deduce (see
[9] Theorem 6.1) the first statement.

For the second statement we use that if NPy, =PAR,, then, since PARy, is closed
under complements, we must indeed have that (NPwpnco-NPywp)=PARy,. This
entails on the one hand that PSPACE/poly = NP/poly and thus, because of a slightly
modified version of [9, Theorem 4.2] (that can be found in [15, Corollary 4.297) that
PSPACE = 2%. But on the other hand our assumption implies that NP = (NP ~co-
NP)/poly and thus, because of [8] 4.9 that PH=ZX%. From both equalities we
conclude the desired result. O
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4. The power of alternation

A common computational resource in Complexity Theory is alternation. It consti-
tutes a strengthening of nondeterminism in the sense that the machine can now
alternate existential — i.e. nondeterministic — guesses with universal ones. It is then not
surprising that the complete problems for polynomial alternating time generalize the
NP-complete problems in a very precise way. Thus, while in the Boolean setting the
classical NP-complete problem — SAT - can be seen as the decision of the existential
theory of Boolean logic, the most well known complete problem for polynomial
alternating time turns out to be the decision of the unrestricted Boolean logic.
A similar situation holds in the real setting (see [5]).

In this section we shall see that there is a doubly exponential lower bound in the
parallel time needed to solve some problems solvable in polynomial alternating time.

Definition 18. We shall say that a set S is accepted in weak Polynomial Alternating
Time if there exists a polynomial p and a machine M such that for every yeR>, yeS§ iff
Hxl VZI N axp(b.nvzp(“,“ M accepts (y, X13Z1yeens xpm,l), Zp(“,“)
in weak time p(|y|)

and we shall denote this fact by SePATy,.
A variation of an argument already used in [16] and in [7] together with proposi-
tion 5 allows us to prove the following result.

Theorem 19. PAT,, £ PEXPy,.

Proof. Let us consider the set S = {xeR* | x?" = x, where n=|x|}. Because of Proposi-
tion 5 this set is not in PEXPyw. On the other hand, for any neN we consider the
formula @,(t, z) inductively defined as follows

do(t,z)=z=12,
P, (t,z2)=FyVeVwl(t=v Aw=y)Vv=yAw=z)=>®,_,(w,v)].

We expanded, @,(t, z) is a formula whose length is polynomial (in fact linear) in » and
logically equivalent to

z=12%

Thus, S can be accepted in polynomial alternating time by a machine that with input
X1, ..., X, checks the validity of @,(x,,x,). O

Note that the above theorem gives a doubly exponential lower bound on the weak
parallel time needed to decide the elementary theory of the reals.
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5. The unordered case and the Knapsack problem

In [12] it is shown that nondeterministic polynomial time is strictly more powerful
than deterministic polynomial time for real Turing machines that only perform scalar
multiplications and only branch on equalities. In [11] this result is improved by
showing that the Knapsack problem can be solved in nondeterministic polynomial
time but not in deterministic polynomial time by these kind of machines. In this section
we further extend this last result to weak machines with the same kind of branching.

In the rest of this section all the real Turing machines branch according with tests of
the kind x =0. Let us recall from [2] that the real Knapsack problem is defined to be
the set

KP={xeR*|3uy,...,u,eZ s.t. Y u;x;=1 where n=|x|}.

i=1
Theorem 20. The Knapsack problem cannot be solved in weak polynomial time.

Proof. Let M be a machine solving KP in time t(n). For any n we consider the
polynomial

H(Xla'-~an)= l_[ (b1X1++ann_1)

that has degree 2". Clearly, for any (x,,...,x,) we have that (x,...,x,)eKP iff
H(xy,...,x,)=0.

Now, for any n we consider the algebraic computation tree Ty, , and its canonical
path, which is obtained by answering # at all the branching nodes v. Moreover, let us
consider the rational function f,(X,,..., X,, &y,...,%) in the variables X,,..., X,
associated to each one of them and let F be the product of their numerators.

The set of points following the canonical path is a n dimensional subset of R". Thus,
since the set of points in R”" satisfying KP has dimension n—1, we deduce that its
corresponding leaf must be labeled REJECT. Thus, if a point xeR" is in KP then we
have that F(x)=0 i.e. the rational function F vanishes on the zero set of H. But this
implies that the degree of F must be bigger than the degree of H, and from the
weakness of M we deduce that t(n)>=2". O

If we denote by Py and NPy, the classes of weak deterministic and digital
nondeterministic polynomial time for real Turing machines that branch on equalities,
our last result separates Py, from NPy, since KP is certainly in NPgyp,.

Corollary 21. Py, #NPyp.

It is an open problem whether this separation holds for machines with arbitrary
branching.



14 F. Cucker et al.
References

[1] J.L. Balcazar, J. Dias and J. Gabarrd, Structural Complexity I, EATCS Monographs of Theoretical
Computer Science, Vol. 11 (Springer, Berlin, 1988).

[2] L. Blum, M. Shub and S. Smale, On a theory of computation and complexity over the real numbers:
NP-completeness, recursive functions and universal machines, Bull. Amer. Math. Soc. 21 (1) (1989}
1-46.

[3] J. Bochnak, M. Coste and M.-F. Foy, Géométrie algébrique réelle, Ergebnisse der Math., 12 (Springer
Berlin, 1987). . .

[4] F. Cucker,,"PR;éNC/v[g, J. Complexity 8 (1992) 230-238.

[5] F. Cucket, On the complexity of quantifier elimination: the structural approach, The Computer
Journal 36 (1993) 400—408.

[6] F. Cucker and M. Matamala, On digital nondeterminism, preprint, 1993.

[7] J.H. Davenport and J. Heints, Real quantifier elimination is doubly exponential, J. Symbolic Comput.
5(1988) 29-35.

[8] J. Kdmper, Nonuniform proof systems: a new framework to describe nonuniform and probabilistic
classes, Theoret. Comput. Sci. (1991) 85 305-311.

[9] R.M. Karp and R.J. Lipton, Turing machines that take advice, Enseign. Math. 28 191-209 1982, 1988.

[10] P. Koiran, A weak version of the Blum, Shub & Smale model, in: Proc. 34th Found. Comput. Sci. (1993)
486—-495.

[11] P. Koiran, Computing over the reals with addition and order, Theoret. Comput. Sci. 133 {1994) 35-47,
this volume.

[12] K. Meer, A note on a P#NP result for a restricted class of real machines, J. Complexity 8 (1992}
451-453.

[13] A. Meyer and L. Stockmeyer, The equivalence problem for regular expressions with squaring requires
exponential time, in: Proc. 13th Symp. on Switching and Automata Theory (1973) 125-129.

[14] J. Renegar, On the computational complexity and geometry of the first order theory of the reals, parts
I, IT and IIL. J. Symbolic Comput. 13 (1992) 255-352.

[15] U. Schoning, Complexity and Structure, Lecture Notes in Computer Science, Vol. 211 (Springer Berlin,
1988).

[16] L. Stockmeyer and A. Meyer, Word problems requiring exponential time, in: Proc. 5th Symp. on
Theory of Computing (1973) 1-9.



