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Abstract 

Cucker, F., M. Shub and S. Smale, Separation of complexity classes in Koiran’s weak model, 

Theoretical Computer Science 133 (1994) 3-14. 

We continue the study of complexity classes over the weak model introduced by P. Koiran. In 

particular we provide several separations of complexity classes, the most remarkable being the strict 

inclusion of P in NP. Other separations concern classes defined by weak polynomial time over 
parallel or alternating machines as well as over nondeterministic machines whose guesses are 

required to be 0 or 1. 

1. Introduction 

Very recently Pascal Koiran introduced in [lo] a model of computation that comes 

from a modification of the cost notion of the real Turing machine of [2]. This new 

model ~ that following Koiran will be called weak - drops the unit cost assumption for 

the arithmetical operations and only allows a “moderate use of multiplication” [l 11. 

The main result of [lo] states that when restricted to Boolean inputs the class of sets 

decided by these machines in polynomial time coincides with P/poly. As a conse- 

quence, if P = NP in the weak model then the Boolean polynomial hierarchy collapses 

at the second level. 
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In the present paper we continue the study of the computational power of the weak 

model. In particular, several separations between complexity classes for that model 

are proved, the most important one being PZNP. In fact, it is shown that NPw (the 

subscript stands for “weak”) strictly contains its subclass NPwn consisting of those 

sets that can be decided using binary guesses. Note that since Pw c NPwn the above 

mentioned separation holds. The problem of whether Pw=NPwn remains open and 

we provide two kinds of partial answers to it. On the one hand, in Section 3 and 

following the line of ideas of [IO] we show that the above equality would imply the 

collapse of the polynomial hierarchy at its second level, a fact seen as unlikely in 

complexity theory. On the other hand, we prove in Section 5 that if we restrict our 

attention to machines that branch only on equality tests, we can prove that the 

forementioned equality does not hold. This is done by showing that a well-known 

problem (the Knapsack problem) belongs to NP wn and cannot be solved in determin- 

istic weak polynomial time. Finally, in Section 4, we consider the alternating variation 

of the weak model, and we give a doubly exponential lower bound for the parallel time 

needed to decide problems solvable in polynomial alternating time. 

2. The weak model 

In the following we shall denote the direct sum 0 ;” R by R”. Also, we define the size 

1x1 of an element XER” as the largest i such that its ith coordinate xi is different from 

zero. We shall denote by Z the subset (0, 11 c R and - following the custom in 

Complexity theory - by C* the set of all finite strings over C. Note that there is 

a natural inclusion C* 4 R” and that the membership of a point in R” to C* can be 

algebraically expressed by n equations of the form X(X - 1) = 0. 

Also, we shall consider real Turing machines over R” as they were defined in [2] 

but in a normal form that requires that every computational node performs a single 

arithmetic operation. This requirement does not modify the running time of the 

machine up to a constant factor. 

Let M be a real Turing machine whose running time is bounded by t(n), and let 

@l, ... 3 CQ be its real constants. For any input size ~1, the machine M determines an 

algebraic computation tree T,,. with depth t(n). At an arithmetic node v of this tree 

a value is assigned to a variable z corresponding to an arithmetical operation on some 

previously computed values. This value z can be expressed asf;.(x,, . . ,x,, x1,. , Q) 

where fY is a rational function with rational coefficients and (xi, . . . ,x,) is the input. 

These rational functions are used to define the running time in the weak model. In the 

next definition, we shall understand by the height of a rational number p/q its bit 

length i.e. Llog(IpI+l)+(log(lql)~. 

Definition 1. The cost of any arithmetic node v is defined to be the maximum of 

deg(f,) and the maximum height of the coefficients of&, while the cost of any other 

node is 1. For any XE[W~ of size n the weak running time c~f M on x is defined to be the 
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sum of the costs of the nodes along its computational path in TIM,“. The (weak) running 

time of A4 is the function associating to every n the maximum over all xslWrn of size 

n of the running time of M on x. 

The classes Pw and NP, of weak deterministic and nondeterministic polynomial 

time respectively are now defined as in [2]. Also, we define the class NPwD of weak 

digital nondeterministic polynomial time by requiring the guesses in NPw to be 

elements in C*. This kind of nondeterminism describes the complexity of discrete 

search as appears for instance in the Travelling Salesman or the Knapsack problems 

(see C61). 
In the sequel, unless otherwise stated, all the complexity classes are in the weak 

model. The adjective full as opposed to weak will be applied to the notions as they 

were introduced in [2]. 

A first result concerning weak nondeterministic polynomial time is that it coincides 

with full nondeterministic polynomial time. Consequently, we derive the NPw-com- 

pleteness of the full NP-complete problems of [2]. Let us recall that QS is the set of 

systems of quadratic equations having a real solution, and that 4FEAS is the set of 

degree 4 polynomials having a real root. 

Theorem 2. We have that NP, = NPw where NP, is the class of sets decided in full 

nondeterministic polynomial time. 

Proof. We first observe that the reductions given in [2] to reduce any problem in NPR 

to 4FEAS, work in weak polynomial time. This can be seen either checking the 

weakness at the proof given in [2] or realizing that the quoted reductions does not use 

noninteger constants and seen as a Boolean algorithm (dealing with the input x and 

the machine constants as symbols) it is performed in polynomial time and thus, 

according to Lemma 3 of [lo], that it works in weak polynomial time. 

Now, since 4FEAS can be trivially solved in weak nondeterministic polynomial 

time, we have an NPw algorithm for solving all problems in NP, by composing 

for any SENP, the reduction to 4FEAS with the algorithm for solving this last 

problem. 0 

A side consequence of this last proof is the following result. 

Theorem 3. The sets QS and 4FEAS are NPw-complete for reductions in Pw. 

Let us introduce now a parallel computational model. 

Definition 4. An algebraic circuit V over I?% is a directed acyclic graph where each node 

has indegree 0,l or 2. Nodes with degree 0 are either labeled as input or with elements 

of R (we shall call the last ones constant nodes). Nodes with indegree 2 are labeled 

with the arithmetic operations of R, i.e. +, ., - and /. Finally, nodes with indegree 1 are 
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of a unique kind and are called sign nodes. There is a set of m 3 1 nodes with outdegree 

0 called output nodes. In the sequel the nodes of a circuit will be called gates. 

To each gate we inductively associate a function of the input variables in the usual 

way (note that sign gates return 1 if their input is greater or equal to 0, and 

0 otherwise). In particular, we shall refer to the function associated to the output gates 

as the function computed by the circuit. 

For an arithmetic circuit %‘, the size s(g) of %‘, is the number of gates in w. The depth 

d(%‘) of %7, is the length of the longest path from some input gate to some output gate. 

The cost of an arithmetic gate is defined as before and the cost of a path in the circuit is 

the sum of the costs of their gates. We define the weak running time of a circuit on an 

input .x to be the maximum of the costs of their paths. The weak running time of the 

circuit is defined then as before. 

Given an algebraic circuit %Y:, the canonical encoding of V is a sequence of 4-tuples of 

the form (g, op,g[,g,)~[W~ where g represents the gate label, op is the operation 

performed by the gate, g1 and gr are 0 if gate g is an input gate, and g* is 0 if gate g is 

a sign gate (whose input is then given by gI) or a constant gate (the associated constant 

being then stored in gl). Also, we shall suppose that the first n gates are the input gates 

and the last m the output gates. 

Let 1%” jnsh be a family of circuits. We shall say that the family is Pw-uniform if 

there exists a real Turing machine M that generates the ith coordinate of the encoding 

of %Y,, with input 

n- 1 

(i.G 

in weak polynomial time in n. We shall say that the family is EXP,-uniform when 

there is a real Turing machine M as above but working in time weak exponential in n. 

We now define PARw to be the class of sets S such that there is a Pw-uniform family of 

circuits (V,,} having size exponential in n and weak polynomial running time such 

that the circuit %‘,, computes the characteristic function of the set of elements in S with 

size n. The class PEXPw of sets decided in weak exponential parallel time is defined in 

an analogous manner. 

The next proposition is a weak model version of the main theorem in [4]. 

Proposition 5. Let fnE R [X 1, . . . , X,] be a family of irreducible polynomials such that 

for all n the zero set 2 ( fn) is a variety of dimension n - 1 and deg ( fn) > d(n). Then, any 

family of circuits deciding the set S= {xER” IfirI(x)=O} has a weak running time 

greater than d(n). 

Proof. Let us assume that there exists a family of circuits %?,, having running time 

bounded by r(n) and deciding S. 
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For each n we consider the size N of V,, and we call “configuration” any point in RN 

and “initial configuration” the point 

N-n 

A. 

h,...>X,,O,...,O) 

At each step of the computation we modify some of the coordinates of the current 

configuration replacing them by the result of operating (via one of (+, -, *,/)) on two 

other coordinates. Those modifications can depend on Boolean conditions of the form 

where Qi(X1, . . . ,X,) is a rational function (whose coefficients depend on the output of 

previous sign gates, and therefore on the actual input x1, . . . ,x,) and Qi(x,, . . . ,x,) is 

the content of coordinate i in RN. 

At the end of the computation the Nth coordinate of the final configuration will be 

0 or 1 according to the truth of a large (but finite) system of the form 

j’$ ci& Qj.i(Xl, ... 7 X,)bO A A Qi,j(Xl,...,X,)<O 
i=s,+l 

where the degrees of the numerator and denominator of the Qi,j are bounded by r(n). 

By expressing the sign of a quotient in terms of the signs of numerator and 

denominator we can replace the rational functions by polynomials with the same 

bound for the degrees. Also, expressing an inequality like 

F(X1, ... ,X,)20, 

as the disjunction 

F(Xr, . . . ,X,)=0 v F(Xr, . . . ,X,)>O 

and then distributing, we can describe S as a union of sets given by systems of 

polynomial inequalities of the form 

i& Fi(Xr,... ,X,)=0 A i Gj(Xr, . . ..X.)>O. 
j=l 

Now, since the zero set %(fn) has dimension n- 1, one of those sets must contain 

a subset of dimension n- 1. Since the set described by the Gj’s is open, it must be 

nonempty, and then it defines an open subset of R”. But our zero set has dimension 

n- 1, and therefore we must have s>O. 

Finally, all the polynomials Fi, i = 1, . . . , s, vanish on that (n- 1)-dimensional subset 

of the variety. But, since the variety is irreducible, this implies that every Fi must 

vanish on the whole variety. Using the fact that the ideal (fn) is the definition ideal of 

Z’(f,) (see [3, Theoreme 4.5.11) we conclude that all the Fi are multiples offn and thus, 

that their degrees are greater than d(n). Since these degrees are a lower bound of the 

running time of the circuit %‘?” we deduce the proposition’s statement. 0 
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Theorem 6. (a) PR +PARw, (b) NPw +PARw. 

Proof. (a) Let us consider the set S={XE[W”IX~“==~ where n=lxl}. Note that for 

each n the subset of elements of S having size n is an irreducible variety of dimension 

n - 1. Thus, S cannot be decided in weak polynomial parallel time because of the 

preceding proposition. On the other hand, it clearly belongs to PR. 

(b) Trivial since PR G NP, =NPw. Note that it can also be shown observing that 

the following sentence 

3y,3y2...3y,_,x:=y, Ay:=yz A... A y;_i=x* 

is equivalent to xt”= x2 and can be checked in weak nondeterministic polynomial 

time. 0 

Corollary 7. The inclusion NPwD c NPw is strict. 

Proof. Trivial since NP wn G PARw (the parallel machine just tests the exponential 

number of possible guesses independently). 0 

Corollary 8. The problems QS and 4FEAS cannot be solved in weak polynomial time 

even allowing parallelism or digital nondeterminism. 

Theorem 6 provides a result quite unusual in complexity theory since either in the 

Boolean setting or in the full real setting the class NP is included in its corresponding 

PAR. We can prove however that in the weak model nondeterministic polynomial 

time can be solved in deterministic exponential time. 

Lemma 9. If a set S c R” can be decided in (full) parallel time t(n) then it can be 

decided in weak deterministic time 20@(“)‘. 

Proof. The weak machine simply simulates the parallel one. This takes full time 

2o(‘(“)) and, since the degree and coefficient length of the rational functions associated 

to the circuits are bounded 2’(“’ the result follows. Cl 

Proposition 10. NP, G EXPw. 

Proof. In Part I of [14] it is shown that 4FEAS can be solved in parallel polynomial 

time in the full model. Thus, it can be solved in exponential time in the weak one. 0 

Corollary 11. The inclusion PARw c EXPw is strict. 
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The preceding results can be summarized in the following picture: 

where an arrow --f means inclusion, an arrow 5 means strict inclusion and a crossed 

arrow X+ means that the inclusion between the corresponding complexity classes does 

not hold. 

Theorem 2 asserts that the classes NP, and NP, coincide. This is not necessarily 

the case for their subclasses NPCw and NPCR of complete problems, since in the first 

case the reductions considered are in Pw and in the second in PR. In fact, it is trivial 

that NPCw s NPCR. The converse, however, seems less trivial to prove according to 

the consequences that it has. 

Theorem 12. If NPCw = NPCR then P, # NP,. 

Proof. Let us suppose that P, =NPR. Then we 

particular, that NPw, c NPCR. By hypothesis this 

thus that NPw,= NPw, contradicting Corollary 7. 

3. Weak machines and Boolean complexity classes 

have that NPR=NPCR and in 

entails that NP wD 5 NPCw and 

cl 

Definition 13. Given a class %? of subsets of R”, we shall call its Boolean part the class 

of subsets of C* obtained by considering for any SEC its subset of elements belonging 

to c*. 

One of the main results in [lo] states that the Boolean part of Pw is P/poly. This 

result was used then to show that if Pw =NPw then the polynomial hierarchy of 

Meyer and Stockmeyer collapses, a consequence that now becomes meaningless since 

we know that Pw # NPw. The main ideas of the paper (and the techniques used there) 

remain however very interesting since, as we shall see, they can still be fruitfully used. 

We begin by recalling the main technical tool obtained in [lo]. 

Theorem 14. Let S c Rk be a semialgebraic set dejined by a system 

pi(xl ,..., xk)>o, i=l,..., N, 
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with Pin Z[Xl, . . . ,X,1, and let D be the maximum degree of’ the Pi’s and H the 

maximum height of their coqfficients. [j’ S#@, there exists a rational point XEQ~ 

belonging to S and hauing height bounded by aHD” with a and b depending only 

on k. 

Theorem 15. The Boolean part qf PARw is PSPACElpoly. 

Proof. Let SEPAR, and let us consider its subset s of elements in C*. We shall see 

that s” belongs to PSPACE/poly. 

Since S belongs to PARw, there is a family of algebraic circuits {%,,} having weak 

running time bounded by a polynomial q(n). Moreover there is a real Turing machine 

M that given (n, i) produces the ith gate of c4’, within a time that we can suppose to be 

also bounded by q(n). Let the size of %“n be bounded by s(n) = 2”’ and or, , ctk be the 

constants of M. 

With the exception of the constant value for the constant gates, all the remaining 

values computed by M are positive integers with polynomial height. Without loss of 

generality we will suppose that M first produces a base two representation of these 

numbers and then - without using the real constants C(~, ,CQ - computes the 

corresponding integers. This property allows us to suppose that the integer value 

returned at the end of a computational path only depend on the path itself and not on 

the constants a,, . . , xk. 

On the other hand, the constant gates depend on c(r, . . . , ak and their associated 

constant ?/i,n can then be expressed as rn,i(ul, . , elk) where r,,i is a rational function 

having polynomial degree and coefficient heights since the weak running time of M is 

polynomially bounded. Also, let 

hn,i.j(ul, ...,ak)3°, 

P,,i,j(c(l, . . ..c~k)<O j=l, . . . . h, 

the rational functions that determine the computation path followed by M on input 

(n, i) and let Y,,i be the system of inequations resulting by replacing the c(r, . , cxk by 

the indeterminates X 1, . . , Xk. 

For any n, and for any element UEZ*, the computation done by %?,, on input u can be 

described by a set of equations 

zn.” = 

i 

fn.u,i(?ln.l,...r?ln.i,)3O, 

Sn,u,i(Y n,l,...,Yn.i,,)<O, 

where the fn,u.i and the gn.u,i are rational functions having polynomial degree of 

coefficient heights (because of the polynomial weak running time of GZ,,) and the third 

subindex runs over the sign gates of Z,,. 

Let us replace in s,,u each occurrence of a yn, i by its correspondent rational 

function r,,i(X1., , X,) and let i,,, be the resulting system of inequations. If we now 
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define 

we obtain a system of inequations that has the real solution (ai, . . , Q). 

In order to apply the preceding theorem to ensure the existence of a small rational 

solution we use Koiran’s trick to get rid of the equalities (see [lo, Section 5.2.1). We 

obtain then a new system s,, having only strict inequalities and such that if a point 

V’(Vi, . . . , rk) is a solution of the system the machine M’ obtained by replacing cli by Ti 

produces a circuit %‘?L whose outcome for any UEC” is the same as that of V?,,. 

We can now deduce the existence of a point r =(rI, . . . , rk@Qk satisfying the system 

7 such that each component has height polynomial in n. Therefore the computations 

iine by M’ over binary inputs can be carried out by a Turing machine in polynomial 

time (see [ 10, Lemma 33). On the other hand, the circuit %‘L can be readily transformed 

into a Boolean circuit having polynomial depth. 

From the classical equivalence between parallel polynomial time and PSPACE in 

the Boolean setting, we deduce that s” belongs to PSPACE/poly. 

On the other hand, and using the same equivalence, one trivially shows that any set 

in PSPACE/poly can be accepted by a Pw-uniform family of circuits in weak parallel 

time. 0 

Theorem 16. (i) The Boolean part of NPwD is NP/poly. 

(ii) The Boolean part of NPwu n co-NPwn is (NP n co-NP)/poly. 

Proof. They are done in a similar manner as the preceding one. 0 

Some consequences follow from the preceding theorems. In order to state them, let 

us recall that we denote by PH the polynomial hierarchy of Meyer and Stockmeyer 

and by C,P its kth level for any keN (see [I33 and [l, Ch. 181). 

Corollary 17. (i) Zf P,=NPwD then the polynomial hierarchy collapses at its second 

level. 

(ii) If NP,n= PARw then PSPACE = 1;. 

Proof. If Pw = NPwr, then we have that Plpoly = NPlpoly, from where we deduce (see 

[9] Theorem 6.1) the first statement. 

For the second statement we use that if NPwn = PARw then, since PARw is closed 

under complements, we must indeed have that (NP,,nco-NP,,)= PARw. This 

entails on the one hand that PSPACE/poly s NP/poly and thus, because of a slightly 

modified version of [9, Theorem 4.21 (that can be found in [15, Corollary 4.291) that 

PSPACE =Z:. But on the other hand our assumption implies that NP E (NPnco- 

NP)/poly and thus, because of [S] 4.9 that PH =Cc. From both equalities we 

conclude the desired result. 0 
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4. The power of alternation 

A common computational resource in Complexity Theory is alternation. It consti- 

tutes a strengthening of nondeterminism in the sense that the machine can now 

alternate existential - i.e. nondeterministic - guesses with universal ones. It is then not 

surprising that the complete problems for polynomial alternating time generalize the 

NP-complete problems in a very precise way. Thus, while in the Boolean setting the 

classical NP-complete problem ~ SAT - can be seen as the decision of the existential 

theory of Boolean logic, the most well known complete problem for polynomial 

alternating time turns out to be the decision of the unrestricted Boolean logic. 

A similar situation holds in the real setting (see [S]). 

In this section we shall see that there is a doubly exponential lower bound in the 

parallel time needed to solve some problems solvable in polynomial alternating time. 

Definition 18. We shall say that a set S is accepted in weak Polynomial Alternating 

Time if there exists a polynomial p and a machine M such that for every y~[w”, YES iff 

~x~VZ~...~X~(I~I)~Z~(I?‘I,M accepts b’,xl,zl, . ,x~(~,~), z~(~,~,) 

in weak time p(lyl) 

and we shall denote this fact by SEPAT,. 

A variation of an argument already used in [16] and in [7] together with proposi- 

tion 5 allows us to prove the following result. 

Theorem 19. PAT, $PEXPw. 

Proof. Let us consider the set S = 1x1~ IF!” /x f’” = x2 where n = 1 x I} Because of Proposi- 

tion 5 this set is not in PEXPw. On the other hand, for any nEN we consider the 

formula @,(t, z) inductively defined as follows 

@o(t,z)-z=t*, 

~,(t,z)~3~‘vuvw[(t=oAw=y)V(u=yAw=z)~~,_,(w,v)]. 

We expanded, @,(t, z) is a formula whose length is polynomial (in fact linear) in n and 

logically equivalent to 

Z=t2”, 

Thus, S can be accepted in polynomial alternating time by a machine that with input 

x1, . . . ,x, checks the validity of @,,(xl,x2). 0 

Note that the above theorem gives a doubly exponential lower bound on the weak 

parallel time needed to decide the elementary theory of the reals. 
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5. The unordered case and the Knapsack problem 

In [12] it is shown that nondeterministic polynomial time is strictly more powerful 

than deterministic polynomial time for real Turing machines that only perform scalar 

multiplications and only branch on equalities. In [11] this result is improved by 

showing that the Knapsack problem can be solved in nondeterministic polynomial 

time but not in deterministic polynomial time by these kind of machines. In this section 

we further extend this last result to weak machines with the same kind of branching. 

In the rest of this section all the real Turing machines branch according with tests of 

the kind x =O. Let us recall from [Z] that the real Knapsack problem is defined to be 

the set 

KP= {x~W 1 3ul, . ,u,EC s.t. i uixi=l where n=lxj}. 
i=l 

Theorem 20. The Knapsack problem cannot be solved in weak polynomial time. 

Proof. Let M be a machine solving KP in time t(n). For any n we consider 

polynomial 

H(X 1 ,...I X,)= n (b,X1+...+b,X,-1) 
(h,,...,h,)tZ” 

the 

that has degree 2”. Clearly, for any (x1, . . ,x,) we have that (xl, . . . ,x,)EKP iff 

H(x,, . . . ,x,,)=O. 

Now, for any n we consider the algebraic computation tree T,,, and its canonical 

path, which is obtained by answering # at all the branching nodes v. Moreover, let us 

consider the rational function &(X1, . . . ,X,, c(r, . ,c(~) in the variables X1, . . . ,X, 

associated to each one of them and let F be the product of their numerators. 

The set of points following the canonical path is a n dimensional subset of [w”. Thus, 

since the set of points in [w” satisfying KP has dimension n- 1, we deduce that its 

corresponding leaf must be labeled REJECT. Thus, if a point XEW is in KP then we 

have that F(x) = 0 i.e. the rational function F vanishes on the zero set of H. But this 

implies that the degree of F must be bigger than the degree of H, and from the 

weakness of M we deduce that t(n)’ 3 2”. q 

If we denote by PW and NP& the classes of weak deterministic and digital 

nondeterministic polynomial time for real Turing machines that branch on equalities, 

our last result separates Ply from NP&, since KP is certainly in NP&,. 

Corollary 21. PW # NP&,. 

It is an open problem whether this separation holds for machines with arbitrary 

branching. 
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