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HOW MANY EIGENVALUES OF A RANDOM MATRIX ARE REAL?

ALAN EDELMAN, ERIC KOSTLAN, AND MICHAEL SHUB

1. STATEMENT OF RESULTS

Consider a random matrix whose elements are independent random variables
from a standard (mean zero, variance one) normal distribution. Unless other-
wise stated, we omit the distribution and simply use the term “random matrix”
to denote a matrix with independent standard normally distributed elements.
Other distributions are considered in §8.

Here is one of our main results

Asymptotic Number of Real Eigenvalues. If E, denotes the expected num-
ber of real eigenvalues of an rn-by-n random matrix, then

lim £ _ )2
n—oo \/ﬁ - T ’
Asymptotic Series. As n — oo,
2n 3 3 27 499 1 1
E ={\/—(1-— - + + +0<—>>+—.
" n ( 8n  128n*  1024n*  32768n* n’ 2

Corollary 5.2

Let 4 be a 50 x 50 random matrix. Figure 1 on the following page plots
normalized eigenvalues A/v/50 in the complex plane for fifty matrices. Thus
there are 2500 dots in the figure. There are a number of striking features in
the diagram. First, nearly all the normalized eigenvalues appear to fall in the
interior of the unit disk. This is Girko’s as yet unverified circular law [12], which
states that as n gets large, 1//n is uniformly distributed in the unit disk. It
follows that the proportion of eigenvalues on the real line (also strikingly visible
to the eye) must tend to 0 as n — co. Our results show how fast this converges.

A simpler version of this circular law occurs when the random matrix has
elements from a complex normal distribution; i.e. the real and imaginary parts
of each element are independent standard normals. In this case the exact dis-
tribution for the eigenvalue distribution and radius can be found in Ginibre
[11] and is reported by Mehta [24, p. 300] and Hwang [17]. In this case,
the squares of the absolute values of the eigenvalues are independent random
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FIGURE 1. 2500 dots representing normalized eigenval-
ues of fifty random matrices of size n = 50. Clearly
visible are the points on the real axis.

variables with distributions that are x2 with 2,4, ..., 2n degrees of freedom
[20]. The spectral radius is then the maximum of such random variables.

Figure 2 takes a closer look at the real eigenvalues again taking n = 50, but
this time we took over 2200 random matrices, and histogrammed the real nor-
malized eigenvalues. Notice the data suggests that the density is nearly uniform
on [—1, 1]. The plotted curve is the exact density for n = 50. This suggests
the form of the asymptotic density of real eigenvalues that we prove in Corol-
lary 4.5: If A, denotes a real eigenvalue of an n by n random matrix, then as
n— oo, A,/v/n is uniformly distributed on the interval [-1, I].

This result is the limit of the probability density for 4, proven in Theorem
4.3: if A denotes a real eigenvalue of an n by n random matrix, then its
probability density f,(4) is given by

1 (1 [[(n=1,1% AN 2 [yp((n = 1)/2, 22/2)
fn”‘E,,(ﬁ%[ fomn ) F(n/2)2"/2[ T(n - 1)/2) )

A related function that we study closely in §3 is the unnormalized density for
4, . Given a fixed matrix 4 we can define the empirical cumulative distribution
function of its real eigenvalues:

# (4) = {number of real eigenvalues of 4 < x}.

(—00 ,X]
Let

d
pn('x) = Z_.X—EA#(_OO’X](A) ’
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FiGURE 2. Histogram of normalized real eigenvalues for
2222 matrices of size 50.

where E, denotes expectation for random A. Then

f3) = g0,

n

In fact, if A is any Lebesgue measurable set of the real line,

p,(A)dA=E_ #, (A4) = the expected number of real eigenvalues of A.
A€A

Most simply put, p,(4) is a true density; it is the “expected number of eigen-
values per unit length” in an infinitesimal interval near A.

We provide a Mathematica expression for E, on page 251 and list enough
values of E, to suggest a conjecture which turns out to be true. Table 1 on
the next page tabulates E, for n from 1 to 10 and suggests a difference in the
algebraic form of E, for n even or odd.

We see that a 10-by-10 random matrix can be expected to have fewer than
3 real eigenvalues. More striking is the observation that if n is even, E, is
a rational multiple of 2, while if n is odd, E, is one more than a rational
multiple of v/2. We like to think of this as the “extra” real eigenvalue guaran-
teed to exist since # is odd. Also notice that the denominators in the ratios are
always powers of 2. The observations above and many others may be derived
from the exact formulas below.
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Exact Formulas for E, . (Some notation is defined below the box.) If n is

even,
n/2—1

(4k — 1)1t
E, =2 Z @k
while if » is odd,
(n—1)/2
(4k — 3)1
E =1+V2 kz T
1

Alternatively, for both even and odd #,

1. [2 1/2)
+\/~_%)./._2F1(1,—1/2;n; 1/2)

E.=3
_ 1 mafal m1/25m5 1/2)
2t
1

n

B(n,1/2)
(1 .
—(2— vz 3y, ifn s 1.
Perhaps nicer yet, we have the generating function

(1—z+z 2-2z)
(1-2)*(1+ ZE

Theorem 5.1 and corollaries.

In the formulas above we use the Euler beta function, a Jacobi polynomial
evaluated at three, and also the familiar double factorial (also known as the

TaBLE 1. Expected number of real eigenvalues

n E,

1 1 1.00000
2 V2 1.41421
3| 1+3v2 | 170711
41 Hv2 o |1.94454
51 1+ 18v2 |2.14905
6| Hiv2 |233124
7| 1+ 30V2 | 249708
8| B&V2 |2.65027
9|1+ 25v22.79332
10| $88v2 292799
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semifactorial) notation defined by

n"_{lx3x5x-~xn if n is odd,
T 1 2x4x6x---xn if niseven.

By convention, O!! = (-1)!!'=1.
Mathematica users who may wish to compute E, may do so by typing

e[n_]:=(1—-(=1)"n)/2+Sqrt[2] JacobiP[n—2,1—n, 3/2, 3].

As an example, the above Mathematica expression effortlessly computed the
expected number of real eigenvalues of a 100-by-100 random matrix:

E ;o = 75002314698289190681410505950979137956286758500731 773968829\/5/2193 .

In §6, we consider the generalized eigenvalue problem
det(M, — AM,) =0,

where M| and M, are independent and random. One might guess that ques-
tions about generalized eigenvalues would be more difficult than corresponding
questions about eigenvalues, but in fact they are simpler.

If Ef denotes the expected number of real generalized eigenvalues of a pair

of independent n-by-n random matrices, then

56 _ YAT((n+ 1)/2)
n T(n/2)

The asymptotic number of real generalized eigenvalues is

E° T
im = — /%
nlinc}o\/ﬁ 2

An asymptotic series for this expression as n — oo is

G nn 1 1 5 21 1
E =y\/—(1-—+ + - +0(—>>.
" 2 ( 4n - 32n* 1280  2048n* n’

We also compute the probability density for the real generalized eigenval-
ues in Theorem 6.2. If A denotes a real generalized eigenvalue of a pair of
independent random matrices, then its probability density fG (A) is given by

G 1
A= ————;
4 n(1+ %)
that is, A obeys the standard Cauchy distribution. Equivalently, atan(d) is
uniformly distributed on [—-%, 5]. Notice that the density function of a real

generalized eigenvalue does not depend on n. We could also define pf(,l) in
analogy to p,(4), but this will not be of use to us.

2. MOTIVATION, HISTORY, BACKGROUND

Eigenvalues of random matrices arise in many applications areas; perhaps the
most well-known areas are nuclear physics, multivariate statistics, and as test




252 ALAN EDELMAN, ERIC KOSTLAN, AND MICHAEL SHUB

matrices for numerical algorithms. See [10] for references to some of these nu-
merous applications. We strongly suspect that random eigenvalue models have
been considered in any area where eigenvalues have been considered. The sub-
ject is also a favorite for pure mathematicians because it touches on harmonic
analysis, combinatorics, and integral geometry.

The first investigation of the eigenvalues of real nonsymmetric matrices with
normally distributed entries began with Ginibre [11]. He attempted to calculate
the probability distribution of the real eigenvalues under the assumption that
some fixed number k of them are real, but only succeeded in the case when
all of the eigenvalues are real.’ In §3.5 of [13], Girko derives formulas for the
distribution of the eigenvalues under the same assumption that a fixed number
are real. Unfortunately, derivations are tedious and the text, at least in transla-
tion, contains sufficiently many typographical errors as to make the derivations
difficult to check.

Research into the analogous question for polynomials has been much more
successful, as is well documented in [2]. For example, in the 1940s Kac [18,
19], considered an nth degree polynomial whose coeflicients are independent
standard normals. He derived an integral formula for the expected number
of real roots and was able to show that there are, asymptotically as n — oo,
(2/m)log(n) real roots. Kostlan [21] was able to derive an integral formula for
the expected number of real roots of a polynomial with any central normal
distribution using the Poincaré formula of integral geometry. Furthermore,
Kostlan [21], and Shub and Smale [27] were able to apply geometric methods
to show that if the coeflicients have independent central normal distributions
with variances equal to the binomial coefficients, then the expected number
of real roots is exactly the square root of the degree. That these geometric
methods, unlike the purely analytic methods of Kac and others, give results
for (even underdetermined) systems of equations, demonstrates the power of
integral geometry.

Thus from the pure mathematics side, the problem of computing the expected
number of real eigenvalues grew out of an attempt to apply integral geometry
to linear algebra. The ease with which integral geometry gives the expected
number of real generalized eigenvalues (§6) gave added hope that the problem
of the expected number of real eigenvalues could be solved.

From the applied mathematics side, we wished to respond to a question by
Shiu-Hong Lui [23] who has testing homotopy methods to find the eigenvalues
and eigenvectors of a general real matrix using random test matrices. Random
matrices are often used to test algorithms because of the small effort involved
in producing them. As an example, the eigenvalues of random matrices are
computed in the LAPACK test suite [4] though LAPACK makes no effort to
count the number of eigenvalues that are real.

The physics community has also addressed this problem. Experimental evi-
dence is presented in [22, 28] that the expected number of real eigenvalues is

Oo(Vn).

"This is an extremely rare event for n not too small. It occurs with probability g mn=1)/4

[Ed].



REAL EIGENVALUES OF A RANDOM MATRIX 253

3. EIGENVALUE INFLATION

We begin by defining a process that might be called eigenvalue inflation be-
cause it inverts the usual numerical process known as eigenvalue deflation. Let
A, be any real (n — 1)-by-(n — 1) matrix, v be any unit n-vector such that
v,>0,and w = (w,--- w,) be any (n — 1)-dimensional row vector. We can
“inflate” the set of eigenvalues of A, by building the n-by-n matrix

0
(1) A= H) 4 0 H).

w A

n—1

Here H(v) is the linear operator that exchanges v and ¢, = (0 0---0 nr.
For definiteness, let H(v) denote reflection across the angle bisector of v and
e, . In numerical linear algebra, reflections of the sort that exchange an arbitrary
vector v with e are usually called Householder reflections; they are orthogonal
and symmetric (see [14]).

If we make a change of variables from 4 to v, A, w, and 4, the following
lemma tells us how to integrate.

Lemma 3.1. Let A be a Lebesgue measurable subset of the real line, let #,(A)
denote the number of real eigenvalues of A in A, andlet J(A,v, A,, w) denote
the Jacobian of the transformation defined in (1). Further let t denote the
density function (Radon-Nikodym derivative) of any measure that is absolutely
continuous with respect to Lebesgue measure. We then have

/ #,(A)1(4) d A
A

(2)
=/ J(, A, w, A4))t(A(4, w, 4;,v))dS(v)didwdA,,
v,A€EA,w, 4,

where dS(v) is the standard (Haar) measure on the unit sphere, and where
dA,dA,dw, and dA, are standard Lebesgue measures. In particular, the ex-
pected number of real eigenvalues is

/ #(A)T(4)d A
A

E =
(3)
=/ T, 2, w, A)t(A(A, w, 4y, v))dS@)dAdw dA,.
v,A,w,4,
Proof. Tt is easy to see that as 4, varies over all (n—1)-by-(n—1) matrices, w

varies over R"~* ,and v varies over the unit hemisphere in R" , every matrix A4
is covered exactly k times, where k is the number of real eigenvalues of A4 in
A, unless A4 falls on the set (of measure zero) of matrices with an eigenvector v
where v, = 0 or the set (of measure zero) of matrices with multiple eigenvalues.

Lemma 3.2. The Jacobian of the transformation defined in (1) is
J(, i, w, 4,) = |det(4, — AI)|.

Proof. The proof requires calculation of some differentials near fixed 4, v, 4,
and w so that we omit the dependence of H on v, etc. In the following,
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matrices and vectors of differential quantities are in bold face Roman letters so
as to distinguish them from the notation for Lebesgue measure.

Notice that v" dv = 0 sothat H" dv , which is also the last column of H Tan ,
has the form (dy,---dy,_, O)T. The element of surface area in this rotating
coordinate system, dS = dy,dy,---dy,_,, is the natural element of surface
area on the unit sphere. Sée Muirhead [25, p. 63] for a slightly similar treatment
in a more general setting.

Let M denote HAH . Since H* = I , we have HdH = —dHH . There-
fore A= HMH and dA = dHMH + HdMH + HM dH or HdAH = dM +
(HdH)M — M(H dH) . It follows that if we omit the last component of the last
column of HdAH we obtain

dy,
(A, —AI) :
dyn—l
The other elements of H dAH contain differential forms composed of the cor-
responding element of dM and the dy,. Taking exterior products of the dif-

ferential forms of the n’ components using standard techniques, we see that
N\ d4,; =|det(4, — A1)|dS(v) dAdw dA,,
ij

completing the derivation.

This derivation in terms of differentials almost hides the action on the tan-
gent spaces. Consider the tangent space at ¢, and ask how does that map to

the tangent space at A in directions orthogonal to 4. A perturbation theory
argument would derive a relationship from

(A+ awef)(en +ey) = (A+¢ek)(e, +¢ey),

with the assumption that enT w =0 and enT y = 0. A quick calculation shows
that the relationship between the last # — 1 components of w as a function
of those of y is given by Al — A4,. This is more informative than saying the
Jacobian is |det(Al — 4,)|, because it gives a clear interpretation to the matrix
itself.

We now specialize to the case when the matrix 4 has independent

standard normally distributed elements, or, in other words, where 7(A4) =

—n?/2 2
(2m) " Pexp(-3 7 1, ay) -

Theorem 3.1.

T
B AEA,AO 20 =D21(p/2)
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and where dA, dA, and dA, are standard Lebesgue measures. For clarity, we
have placed Gaussian measures in brackets.

Proof. By Lemmas 3.1 and 3.2, it is clear that the variables v and w are
independent of A and A4, and also they are independent of each other. Thus

we can readily integrate out the v and w terms: [ dS(v) = 1Vol(S"_l) =
n"? /T(n/2) (where "~ ! denotes the unit sphere in R” ),and [ exp(— Zw
= (27z)("_l)/ 2 From these equations and the previous two lemmas the theorem
is immediate.

Taking A to be R, we have that

Corollary 3.1.
72

E, = 2(1=1) /21"( /2) A
where the E denotes expectatzon over the variables in the subscripts.
Definition 3.1. Let D, _,(A) = E Aoldet(Ao — Al)|, where the expected value is

taken over all (n — 1)-by-(n — 1) matrices 4, with independent standard nor-
mally distributed elements. Also define

E, |det(d,— 2D,

o Y dr, L) =-p
Py( )—ml)n_l(/l)’ En=/_oopn(/1) . L) = -E;p,,( ).

From the discussion above, all of these quantities are related statistically to
expectations concerning the real eigenvalues of a random matrix:

p,(A) = ii_l)l‘(l) %(expected number of eigenvalues in [A —A/2, A + A/2)].

Therefore,

(@) L i d

represents the expected number of eigenvaluesin A; E, is the expected number
of real eigenvalues (i.e. the expected number of eigenvalues in R); f,(4) is the
derivative of the cumulative distribution function of the real eigenvalues. It is
sometimes called a condensed density function, in contrast to join densities [2].
Since we consider all the real eigenvalues to be identical, f,(4) is nothing more
than the marginal (probability) density function of a single real eigenvalue. In
the next two sections we obtain explicit closed-form expressions for p, (1), E,,

and f, (4).

4. DENSITY COMPUTATION
The computation of the density of a real eigenvalue of an n-by-n random
matrix proceeds by evaluating D, , = E A0(|det(A0 — AI)|) where A, is an
(n — 1)-by-(n — 1) random matrix first in terms of objects known as zonal
polynomials2 and then in terms of more elementary functions.

2Zonal polynomials arise in group representation theory and the study of related hypergeometric
functions [25].
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For simplicity we calculate D, instead of D,_,. Let 4 be an n-by-n ran-
dom matrix. From Theorem 10.3.7 of [25, p. 447], we have that

2"’T((n +1)/2) s 1.n ,12]
(g5 h)

The scalar-valued hypergeometric function of a matrix argument that appears
in the formula above arises in multivariate statistics [25], and should not be
confused with the matrix-valued function obtained by applying a Taylor series to
the matrix. A useful expansion for this hypergeometric function which may be
taken as its definition may be found in the proof of Theorem 4.1. An alternative
definition for a symmetric n-by-n matrix X is that

D, (4) = E (|det(4 — AI)|) =

Fy(a; ¢; X) = constant

x / exp(tr(XY))(det Y)* " 2pet(r — v) " gy,
0<Y<I,

where Re(a), Re(c), Re(c —a) > (n — 1)/2. The integration is over the
symmetric matrices Y for which ¥ and I, — Y are positive definite matrices.
The measure is Lebesgue measure on the upper triangular elements of Y . Last,
the constant is chosen so that | (a;c;0)=1.

We introduce the following abbreviation:

Definition 4.1.
1 n. A
F.(2) = F —5,5,—21,1 :

It is not generally known when hypergeometric functions with a scalar matrix
argument can be written as a finite sum of hypergeometric functions with scalar
arguments. Gupta and Richards [16] have explored when certain hypergeomet-
ric functions of a scalar matrix argument can be written as infinite sums of
simpler expressions. In our case, F,(4) can be written in terms of incomplete
gamma functions.

Theorem 4.1.

elz/zl"(n,lz) on=l s 2\n2 1 22
E) = —x(n) +r<n><7> y<5’7)'

We postpone the proof of this theorem until the end of this section.

Corollary 4.1. The generating function of the F,(A) is given by

s n_ Z  (z-1)i*)2
Y F()z"=1+-——e¢

1-2z
n=0

+ 22267 P P erflzaJ22 2] + erfl(1 — 2)y/A2/2]} .

Proof. Rewrite the formula in Theorem 4.1 using

2 =1 -1 n A 72 nj2—1 —t
l“(n,,1)=/2 t e dt and y<5,7>=/ t e dt.
A 0
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Switching the order of summation and integration, the generating function can
be written as a sum of two integrals. These integrals are easy to evaluate.

In the previous section we established that

e—az/z
p,(A) = WD,,_IM)-
Thus
e—f/z
(5) pul) = ==, (4).

Using the duplication formula [1, 6.1.18] to rewrite I'(n) in the second term
of the formula in Theorem 4.1 and then combining with (4) and (5) proves the
following two corollaries.

Corollary 4.2. The expected number of eigenvalues on the interval [a, b] is equal
to

[ (Gl o i) o

Corollary 4.3. If A, denotes a real eigenvalue of an n-by-n random matrix, then
its marginal probability density f,(A) is given by

JAGE L( ! [r(n - L f)} L [y«n —1)/2, f/2>])
" E,\V2r| T(n-1) I(n/2)2"* | T((n-1)/2) ’
The probability density for the normalized eigenvalue x = 1/\/n is 8,(x) =

vnf (xy/n). We wish to understand the limiting behavior of this function as
n becomes large.

Corollary 4.4. For all real values of x,

1/2, <1,
lim g,(x)={ 2+V2)/8, |x|=1,
0, Ix|>1.

Furthermore, the functions g,(x) converge in the L” norms forall 1 <p < oo.

Proof. First we analyze pointwise convergence. We will show in Corollary 5.2
that

._E, 2
(6) =V

Furthermore [1, 6.5.34],

T(m + o, my) mia,my [ 05y<l

. m+a,my) y(m+a, my) -

N (P R Sy v prarape —{1/2’ y=1
0, y>1,
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and, using Stirling’s (asymptotic to equality) inequality -
(8) TCm+1)>m"e "V2am,
we can easily establish that
WAX)" e 1y@vE), Ixl=1,
g2 I"(n/2)2"/2 B { 0, x| #1.

Combining (6), (7), and (9), we establish the desired pointwise convergence.
Using elementary calculus one can show that forall y >0 and m > 1/2,

9)

2
(10) y2m—lem—my < el—y'
Furthermore, the Gaussian continued fraction for the incomplete gamma func-
tion [15, 8.358] shows that for y >a -1,

ey~
< —
(11) r(a’y)—y—a+l

Using (6), (8), (10), and (11), it is not hard to show that for all sufficiently large
n,

g,(x) <e' M.
Thus by the dominated convergence theorem, the sequence {g,} converges in
the I? norm forall 1 <p < .

Since L convergence of densities implies convergence in distribution, we
have at once another corollary.

Corollary 4.5. If A, denotes a real eigenvalue of an n-by-n random matrix,
then as n — oo, the normalized eigenvalue 1 /\/n converges in distribution to
a random variable uniformly distributed on the interval [-1, 1].

Figure 3 illustrates the convergence to the uniform density.

Proof of Theorem 4.1. Following Muirhead, we begin by considering ordered
partitions x of an integer k:

k=(k,k,,..., k,), wherek + ---+k, =kandk >k,>--->k, >0.

The (confluent) hypergeometric function of a matrix argument is defined as

oo _k
Fa;b;xD) =Y 23 EZ; C.(I)
k=0 K K

where .
]‘[ (a—(i-1)/2),

(a), = a(a +1)---(a+k—-1)=T(a+k)/T'(a)
and the zonal polynomial [25, p. 237] is
H1<J(2k k —i+])
]'[i=1(2ki +n—1)

C () = 2% kI\(n/)2),
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0.45

0.4
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density

0 0.5 1 1.5
normalized eigenvalues

FIGURE 3. Density of normalized eigenvalues for n =
5,10, 20, 50, 100, 200. The bigger n is the closer it
resembles the uniform density on [—1, 1].

Observe that

(12) (-%)K = Inl(—l'/Z)k,-

i=1

However, since (—1), = 0 unless k = 0 or 1, (—% . = 0 unless 1 >k, >
ky>--- >k, > 0. In other words, we are only interested in partitions where
possibly only the first component is not O or 1.

We now focus on F,(A)—F,_,(A). Since C,(1,)/(n/2), isindependentof n,
the only difference between the expansion for F, and F,_, is the summation
over partitions with exactly n nonzero components. To be precise, we may
restrict our attention to partitions of the form

k=(k-n+1,1,1,...,1), k>n.
N—— ——

n—1
We see from (12) that

n!
(-1/2), = (_1/2)"_"“W—‘T’
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and that
C.(1,) szk,ﬂj;z(Z(k -n+1)=2-1+)) 1_[7:3(] -2)!
/2, ~ " @Uk—n+D+n— DI 2(2+n—i)!
=22kk'{(2k—n— 1)/ (2k = 2n)} [T}, 21
2k —n+ DT,
— 2% 2k —n—-1)!
@k —n+ D2k = 2n)lnl(n— 1)1
Therefore,
(13)
B (12 G —n—112% 5
F"(l)_F"‘l(l)_(n—l i IZ 2k—nJ:1)(2k A2

Letting / = kK — n and noting

( 1/2)l+l ____!_
en v

we can rewrite (13) as

1
S

2t AV (=47/2)
F(A)-F,_,(4) = ( )(7) §1(21+n+1)(21+”)

:r%n)<,12_2)[§ nQai i) i 211{124):1)}
w3 G S

(/1 /2)1+(n+l)/2
125 l'[l+ (n+1)/2] ]

22\ (=12 £ 1/2 n £ (n+l ﬁ
( M\ 2 7)) "\2°2)7"\"2 2
~ -1 /1_ n/2 n /1_2 ) on=2 /1_2 =02y f
“Tm\2) \2°2) Tm-1n\2 N2 2
22 n—12n—le—12/2
¥ (3) YO
To calculate F,(A), we sum the preceding formula over ». The first two

terms of the formula telescope and it is only the last term that must be summed.
However

n 2\ k=1 ,k=1_-4%/2 LY N 25 +22/2 2
Z(A) 2" e :e_z/zz(i) e l“(n,i).

T(k) T(k) T(n)

2

k=1 k=1
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Thus we see that

elz/zl"(n,f) on=l 1 a2N2 o 22
rw= e (3) (5 %)

as required.

5. EXPECTED NUMBER OF REAL EIGENVALUES

To calculate the expected number of real eigenvalues, we need only perform
the integration indicated in Corollary 4.2, taking the interval to be [—oo, o0].
The integrals involved may be found in classical references (e.g. [15, 6.455]).
This produces a closed-form expression for E, in terms of the Gaussian hyper-
geometric function:

En =\/g&1r_z%/.g_). l:n— 1 +%2FI(1’ n—-1/2;(n+1)/2; 1/2)] .

We wish to rewrite E, in various forms, each form having its own advantages.
The above form was not included in the first section of this paper, because we
found it unenlightening. In principle, manipulations of Gaussian hypergeomet-
ric functions should be able to prove the equality of any two formulas for E, .
However, it is easier to check formulas for E, by computing their generating
functions and then comparing them to the result in the following theorem.

Theorem 5.1. The generating function of the E, is given by

iE o_zl-z+ 22 =2z2)
; .

— (1-2)*(1+z)
Proof. Using the generating function for F, (Corollary 4.1), we can easily pro-
duce the generating function for the p, and integrate it to produce the gener-
ating function appearing in this theorem.

The following corollary will be convenient for computing the asymptotic char-
acter of E, for large n.

Corollary 5.1. In terms of Gaussian hypergeometric functions,

_1, [2T(n+1/2) 121/ = Lyym2fad
E, =5\ 7 T 20 1/2;n51/2) = 5+V2

Proof. Observe that [15, 9.111]
1
V2,F (1, -1/2;n; 1/2)=(n—1)/ (1-0)"2V2=1dt.
0

Interchanging summation and integration, we can therefore write the generating
function for the postulated E, as a single integral. This integral will evaluate
to an algebraic function. We then compare this with the generating function in
Theorem 5.1.

,—1/2;n;51/2)
B(n, 1/2)

Corollary 5.2. We have the asymptotic series

E-,/@.(l_i_ 3,27 4% +o(i))+
" n 8n 12872  1024n°  32768n* n’

[T
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Proof. The standard series for the hypergeometric function serves as an asymp-
totic formula for large n since n appears in the denominator. An asymptotic
formula for I'(n + 1/2)/T"(n) can be found in [29, 43:6:10].

Corollary 5.3. If n is even,

n/2—1

(4k -1
=2 Z @k
while if n is odd,
(n—1)/2
(4k = 3)n
E =1+V2 Z @i

Proof. Using Corollary 5.1, the Gauss recursion formulas for Gaussian hyper-
geometric functions give

1 _T(n-3/2)  (2n-5)!
ﬁ(En —E, )= Val(n—1)  (Q2n-4!"

Thus it is elementary to establish this corollary by induction.

Corollary 5.4. For n> 1,
1—(-1)" (1-n,3/2)
E, = —5—+V2P,5,""7(3).

Proof. The Jacobi polynomials are Gaussian hypergeometric functions. To be
precise [15, 8.962.1],
ndl(n+1/2)

3v/al(n—1)2
Rewrite the postulated E, using this formula, and then proceed as in Corollary
5.1, or as in Corollary 5.3.

P(l—n,3/2)(Z) - (_1)

> F(2-n,3/2;5/2;(z+1)/2).

6. REAL GENERALIZED EIGENVALUES

A “generalized eigenvalue” of the pair of matrices (M, , M,) (or of the pencil
M, — AM,) , is defined to be a solution A to the equation
det(M, — AM,) =0.
In this section we show how symmetry can be used to obtain the expected
number of real generalized eigenvalues and their density.

Theorem 6.1. If E f denotes the expected number of real generalized eigenvalues
of a pair of independent n by n random matrices, then

50 _ VAL(n+1)/2)
n T(n/2)

Since the asymptotic series of the Euler beta function is known [29, 43:6:10]
we have an immediate corollary.
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Corollary 6.1. We have the asymptotic series

1 1 5 21 1
EG=,/M(1———+ + - +0(—>>
¢ 2 4n " 32n>  128n3  2048n* n’

as n— oo.

Theorem 6.2. If A denotes a real generalized eigenvalue of a pair of independent
random matrices, then its probability density fG (A) is given by

G 1
A)= ——;
/& n(1+A%)
that is, A obeys the standard Cauchy distribution. Equivalently, atan(l) is uni-
Jormly distributed on [-%, §].

Since a standard Cauchy random variable can be defined as the ratio of two
independent standard normals, it seems appropriate to call the random matrix
M =M, lMl a “(standard) Cauchy matrix.” Clearly the eigenvalues of M
are just the generalized eigenvalues of the pair (M,, M,). Thus the expected
number of real eigenvalues of an n-by-n Cauchy matrix is equal to

val((n+1)/2)
T(nj2)

and a real eignvalue of a Cauchy matrix is Cauchy.

We now prove these results. A straightforward calculation using Jacobians
would be possible here, but we prefer to use the more elegant tools of integral
geometry.

Definition 6.1. Let A, denote the set of all n-by-n singular matrices of Frobe-
nius norm one.

Following standard notation, the Frobenius norm of a matrix A is defined as

4l = }:afj . In the language of algebraic geometry, A, is a real algebraic

2 2
subvariety of dimension n* — 2 of the unit sphere S” ! in R" . Now let

2
M, , M,) be a pair of matrices. The intersectionin R” of the plane spanned by
1> My

2
M, and M, and the sphere S" isa great circle. Real generalized eigenvalues
correspond to (pairs of antipodal) intersections of A, with this great circle.
Thus when we consider real generalized eigenvalues of the random pair
(M,, M,), we are considering intersections of A, with random great circles

2
in $”~'. From the choice of probability measure for the pair (M, , M,), it

is not hard to show that the random circles have the standard (Haar) measure.
This is a classical set-up for integral geometry. We wish to know the expected
number of intersections of a fixed variety and a random variety.

Lemma 6.1 (Poincaré). Let V be a variety in S™ of dimension m — 1. The
expected number of intersections of V and a random great circle (with the nor-
malized Haar measure) is equal to twice the volume of V divided by the volume

of S™!.
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This formula and its generalizations appear in integral geometry books such
as [26]. Poincaré’s formula reduces the problem of calculating the expected
number of real generalized eigenvalues to finding the volume of A, .

The set A, was studied by Demmel [3] and Edelman [8] in the context
of studying the probability that a numerical analysis problem is difficult. In
particular, they investigated the probability distribution of Demmel’s scaled

condition number k(M) = |M||||M “1||2. Computing the volume of A
reduces to computing the asymptotics of the probability that k¥, > a as a — oco:

2
Let V,(A,) be the volume of an ¢ neighborhood of A, in smh Clearly,

Vol(A,) = lim(2¢) ' V,(A,).

&—

By the definition of the Demmel condition number x,,,
2
-1
V.(A,) = Problx,, > 1/e]Vol(S" 7).
Edelman [8, Corollary 2.2] has shown that

2I((n + 1)/2)[(n?/2)
T(n/2)T((n* - 1)/2)

linas—lProb[ch > 1/e] =
E—

We conclude that
22" PT((n +1)/2)
T(n/2)T((n* - 1)/2)

Vol(A,) =

Dividing this by the volume of S"z_2 gives the expected number of real gener-
alized eigenvalues.

We now deduce the density function of a real generalized eigenvalue. Con-
sider the pair (M, M,) to be a collection of n® bivariate normals. The gen-
eralized eigenvalue equation may be rewritten

det[cos(6) M, — sin(6)M,] = 0.

Since each of the bivariate normals is invariant under rotation, we can readily
see that (cos(6), sin(@)) is uniformly distributed on the unit circle. Since A =
tan(f) , we have immediately that A is Cauchy.

7. NUMERICAL EXPERIMENTS

Fairly early into our investigation, we had some notion that the expected
number of real eigenvalues must be roughly 0.8,/# from numerical simulations.
We were later pleased to learn that this 0.8 was the number /2/7.

With the investigation completed, we can now provide the numerical exper-
iments alongside the exact theoretical results. The numerical experiments were
performed using the newly released LAPACK eigenvalue algorithms which we
ran on 64 processors of the CM-5 parallel supercomputer. We are pleased to
report that the LAPACK algorithm on the CM-5 computed results consistent
with our theorems:



REAL EIGENVALUES OF A RANDOM MATRIX 265

Expected number of real eigenvalues:
CM-5 Experiments using LAPACK on 64 processors

n | trials | experimental E, | theoretical E, | minutes
80 | 640 7.6 7.603 1
160 | 640 10.7 10.569 7
320 | 640 14.9 14.756 51
640 | 128 20.8 20.673 82
900 | 64 24.5 24.427 107

We used the CM-5 in what is sometimes called “embarrassingly parallel
mode” because each individual matrix never crossed any processor boundaries.
Indeed, a 900-by-900 double precision real matrix is about the largest that can fit
on any one processor. The results of the computations were sent to the CM-5’s
host using the CM-5’s message passing language CMMD.

In order to save some computing time, rather than working with a dense
matrix with normally distributed elements, we defined random upper Hessen-
berg matrices 4 with exactly the same eigenvalue distribution as a matrix with
normally distributed elements. This upper Hessenberg matrix is defined by

normally distributed, i<,

a; is { distributed like x, o i=J-1,

0 otherwise.

To prove that this random matrix does indeed have the same eigenvalue distri-
bution, merely consider the standard reduction to upper Hessenberg form using
Householder matrices as described in books such as [14]. The subdiagonal is
the length of the column below it which is a y distribution, the appropriate
elements are zeroed out creating Hessenberg form, and the remainder of the
matrix remains normally distributed because of the orthogonal invariance.

8. EXTENSIONS TO OTHER DISTRIBUTIONS

Mehta [24, Conjectures 1.2.1 and 1.2.2] conjectures from extensive numerical
experience that the statistical properties of matrices with independent identi-
cally distributed entries behave as if they were normally distributed as n — oo.
Mehta focuses on the symmetric or Hermitian cases, but surely the idea is quite
general.

Through our own numerical experience, we believe that any eigenvalue prop-
erty of most any well-behaved distribution can be modeled by the normal distri-
bution. Below are some numerical experiments performed on matrices whose
entries came from the uniform distribution on [—~1, 1] and also the discrete
distribution {—1, 1}. Notice that both of these measures have mean zero and
finite variance. Though we have not tested this, we suspect that these are the
crucial hypotheses. As indicated in the caption, our CM-5 was upgraded to 128
processors before running these experiments.
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Expected number of real eigenvalues:
CM-5 Experiments using LAPACK on 128 processors
uniform distribution [—1, 1] discrete distribution {-1, 1}

n | trials | experimental E, | minutes | trials | experimental E, | minutes
80 | 3200 7.6 3.5| 3200 7.5 3.3
160 | 3200 10.6 24.5| 3200 10.5 24.1
320 | 3200 14.9 191 | 3200 14.8 188
640 | 896 21.1 412 || 640 20.8 308
900 | 384 24.6 499 | 384 24.7 500
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ABSTRACT. Let 4 be an nxn matrix whose elements are independent random
variables with standard normal distributions. As n — oo, the expected number
of real eigenvalues is asymptotic to \/2n/n . We obtain a closed form expres-
sion for the expected number of real eigenvalues for finite #, and a formula for
the density of a real eigenvalue for finite n . Asymptotically, a real normalized
eigenvalue A//n of such a random matrix is uniformly distributed on the in-
terval [—1, 1]. Analogous, but strikingly different, results are presented for the
real generalized eigenvalues. We report on numerical experiments confirming
these results and suggesting that the assumption of normality is not important
for the asymptotic results.
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