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HOW MANY EIGENVALUES OF A RANDOM MATRIX ARE REAL? 

ALAN EDELMAN, ERIC KOSTLAN, AND MICHAEL SHUB 

Consider a random matrix whose elements are independent random variables 
from a standard (mean zero, variance one) normal distribution. Unless other- 
wise stated, we omit the distribution and simply use the term "random matrix" 
to denote a matrix with independent standard normally distributed elements. 
Other distributions are considered in 58. 

Here is one of our main results 

Asymptotic Number of Real Eigenvalues. If En denotes the expected num- 
ber of real eigenvalues of an n-by-n random matrix, then 

I I n - cc , I IAsymptotic Series. As 

Corollary 5.2 I I 
Let A be a 50 x 50 random matrix. Figure 1 on the following page plots 

normalized eigenvalues A / m  in the complex plane for fifty matrices. Thus 
there are 2500 dots in the figure. There are a number of striking features in 
the diagram. First, nearly all the normalized eigenvalues appear to fall in the 
interior of the unit disk. This is Girko's as yet unverified circular law [12], which 
states that as n gets large, A / f i  is uniformly distributed in the unit disk. It 
follows that the proportion of eigenvalues on the real line (also strikingly visible 
to the eye) must tend to 0 as n + cc . Our results show how fast this converges. 

A simpler version of this circular law occurs when the random matrix has 
elements from a complex normal distribution; i.e. the real and imaginary parts 
of each element are independent standard normals. In this case the exact dis- 
tribution for the eigenvalue distribution and radius can be found in Ginibre 
[ l  11 and is reported by Mehta [24, p. 3001 and Hwang [17]. In this case, 
the squares of the absolute values of the eigenvalues are independent random 
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FIGURE1. 2500 dots representing normalized eigenval- 
ues of fifty random matrices of size n = 50. Clearly 
visible are the points on the real axis. 

variables with distributions that are x 2 with 2 ,  4 ,  . . . , 2n degrees of freedom 
[20]. The spectral radius is then the maximum of such random variables. 

Figure 2 takes a closer look at the real eigenvalues again taking n = 50, but 
this time we took over 2200 random matrices, and histogrammed the real nor- 
malized eigenvalues. Notice the data suggests that the density is nearly uniform 
on [ - I ,  11. The plotted curve is the exact density for n = 50. This suggests 
the form of the asymptotic density of real eigenvalues that we prove in Corol- 
lary 4.5: If An denotes a real eigenvalue of an n by n random matrix, then as 
n -+ cc , An/+ is uniformly distributed on the interval [-1 , 11. 

This result is the limit of the probability density for A, proven in Theorem 
4.3: if An denotes a real eigenvalue of an n by n random matrix, then its 
probability density f,(A) is given by 

A related function that we study closely in 53 is the unnormalized density for 
A, . Given a fixed matrix A we can define the empirical cumulative distribution 
function of its real eigenvalues: 

#(-m,XI ( A )= {number of real eigenvalues of A 5 x) . 
Let 
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normalized eigenvalue 

FIGURE2. Histogram of normalized real eigenvalues for 
2222 matrices of size 50. 

where E, denotes expectation for random A .  Then 

In fact, if A is any Lebesgue measurable set of the real line, 

LApn(;l)d;l = E,#,(A) r the expected number of real eigenvalues of A .  

Most simply put, pn(A) is a true density; it is the "expected number of eigen- 
values per unit length" in an infinitesimal interval near A .  

We provide a Mathematica expression for En on page 251 and list enough 
values of En to suggest a conjecture which turns out to be true. Table 1 on 
the next page tabulates En for n from 1 to 10 and suggests a difference in the 
algebraic form of En for n even or odd. 

We see that a 10-by-10 random matrix can be expected to have fewer than 
3 real eigenvalues. More striking is the observation that if n is even, En is 
a rational multiple of f i ,while if n is odd, En is one more than a rational 
multiple of 4.We like to think of this as the "extra" real eigenvalue guaran- 
teed to exist since n is odd. Also notice that the denominators in the ratios are 
always powers of 2. The observations above and many others may be derived 
from the exact formulas below. 
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1 Exact Formulas for En. (Some notation is defined below the box.) If n is 
I I even, 

1 1 while if n is odd, 

1 1 Alternatively, for both even and odd n , I I 

1 - (-1)" ( 1 - n ,  5 )
-- (3 ) ,  i f n  > 1.

2 + JZpn-,
1 / Perhaps nicer yet, we have the generating function 

Theorem 5.1 and corollaries. 

In the formulas above we use the Euler beta function, a Jacobi polynomial 
evaluated at three, and also the familiar double factorial (also known as the 

TABLE1. Expected number of real eigenvalues 
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semifactorial) notation defined by 

l x 3 x 5 x . . . x n  i f n i s o d d ,
n!! = 

2 x 4 x 6 x . . . x n  i f n i s e v e n .  

By convention, O!! = (-I)!! = 1 . 
Mathematica users who may wish to compute En may do so by typing 

e [n-] := (1 - (- l)^n)/2+ sqrt[21 Jacobi P[n - 2 ,  1 - n ,  312, 31. 

As an example, the above Mathematica expression effortlessly computed the 
expected number of real eigenvalues of a 100-by-1 00 random matrix: 

In 56, we consider the generalized eigenvalue problem 

where Ml and M2 are independent and random. One might guess that ques- 
tions about generalized eigenvalues would be more difficult than corresponding 
questions about eigenvalues, but in fact they are simpler. 

If E: denotes the expected number of real generalized eigenvalues of a pair 
of independent n-by-n random matrices, then 

The asymptotic number of real generalized eigenvalues is 

An asymptotic series for this expression as n -t cc is 

We also compute the probability density for the real generalized eigenval- 
ues in Theorem 6.2. If A denotes a real generalized eigenvalue of a pair of 
independent random matrices, then its probability density f'(A) is given by 

that is, A obeys the standard Cauchy distribution. Equivalently, atan(A) is 
uniformly distributed on [-$ , $1.  Notice that the density function of a real 
generalized eigenvalue does not depend on n . We could also define p f ( A )  in 
analogy to pn(A), but this will not be of use to us. 

Eigenvalues of random matrices arise in many applications areas; perhaps the 
most well-known areas are nuclear physics, multivariate statistics, and as test 
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matrices for numerical algorithms. See [lo] for references to some of these nu- 
merous applications. We strongly suspect that random eigenvalue models have 
been considered in any area where eigenvalues have been considered. The sub- 
ject is also a favorite for pure mathematicians because it touches on harmonic 
analysis, combinatorics, and integral geometry. 

The first investigation of the eigenvalues of real nonsymmetric matrices with 
normally distributed entries began with Ginibre [ l  11. He attempted to calculate 
the probability distribution of the real eigenvalues under the assumption that 
some fixed number k of them are real, but only succeeded in the case when 
all of the eigenvalues are real.' In $3.5 of [13], Girko derives formulas for the 
distribution of the eigenvalues under the same assumption that a fixed number 
are real. Unfortunately, derivations are tedious and the text, at least in transla- 
tion, contains sufficiently many typographical errors as to make the derivations 
difficult to check. 

Research into the analogous question for polynomials has been much more 
successful, as is well documented in [2]. For example, in the 1940s Kac [IS, 
191, considered an nth degree polynomial whose coefficients are independent 
standard normals. He derived an integral formula for the expected number 
of real roots and was able to show that there are, asymptotically as n + cc, 
(2/n)log(n) real roots. Kostlan [21] was able to derive an integral formula for 
the expected number of real roots of a polynomial with any central normal 
distribution using the Poincare formula of integral geometry. Furthermore, 
Kostlan [21], and Shub and Smale [27] were able to apply geometric methods 
to show that if the coefficients have independent central normal distributions 
with variances equal to the binomial coefficients, then the expected number 
of real roots is exactly the square root of the degree. That these geometric 
methods, unlike the purely analytic methods of Kac and others, give results 
for (even underdetermined) systems of equations, demonstrates the power of 
integral geometry. 

Thus from the pure mathematics side, the problem of computing the expected 
number of real eigenvalues grew out of an attempt to apply integral geometry 
to linear algebra. The ease with which integral geometry gives the expected 
number of real generalized eigenvalues ($6) gave added hope that the problem 
of the expected number of real eigenvalues could be solved. 

From the applied mathematics side, we wished to respond to a question by 
Shiu-Hong Lui [23] who has testing homotopy methods to find the eigenvalues 
and eigenvectors of a general real matrix using random test matrices. Random 
matrices are often used to test algorithms because of the small effort involved 
in producing them. As an example, the eigenvalues of random matrices are 
computed in the LAPACK test suite [4] though LAPACK makes no effort to 
count the number of eigenvalues that are real. 

The physics community has also addressed this problem. Experimental evi- 
dence is presented in [22, 281 that the expected number of real eigenvalues is 
O(Jtr). 

his is an extremely rare event for n not too small. It occurs with probability 2-n(n-'"4 
[Ed]. 
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We begin by defining a process that might be called eigenvalue inflation be- 
cause it inverts the usual numerical process known as eigenvalue deflation. Let 
A, be any real (n - 1)-by-(n- 1) matrix, v be any unit n-vector such that 
v, 2 0 ,  and w = (w, .. . w,) be any (n - 1)-dimensional row vector. We can 
"inflate" the set of eigenvalues of A, by building the n-by-n matrix 

Here H(v)  is the linear operator that exchanges v and en = (0 0 .  0 1lT. 
For definiteness, let H(v)  denote reflection across the angle bisector of v and 
en . In numerical linear algebra, reflections of the sort that exchange an arbitrary 
vector v with en are usually called Householder reflections; they are orthogonal 
and symmetric (see [14]). 

If we make a change of variables from A to v , A, w ,and A, , the following 
lemma tells us how to integrate. 

Lemma 3.1. Let A be a Lebesgue measurable subset of the real line, let #,(A) 
denote the number of real eigenvalues of A in A ,  and let J ( A  , v , A, , w) denote 
the Jacobian of the transformation defined in (1). Further let z denote the 
density function (Radon-Nikodym derivative) of any measure that is absolutely 
continuous with respect to Lebesgue measure. We then have 

(2) 
J ( v  ,A, w , A,)z(A(A, w ,  A,, v))  dS(v)  dAdw dA,, 

where dS(v) is the standard (Haar) measure on the unit sphere, and where 
dA , dA , dw , and dAo are standard Lebesgue measures. In particular, the ex- 
pected number of real eigenvalues is 

En= L #,(A)r(A) dA 

(3) 
J ( v  ,A, w , A,)r(A(A, w ,A,, v))  dS(v)  dAdw dA, .1= v , L , w , A o  

Proof. It is easy to see that as A, varies over all (n - 1)-by-(n- 1) matrices, w 
varies over IRn-' ,and v varies over the unit hemisphere in IRn ,every matrix A 
is covered exactly k times, where k is the number of real eigenvalues of A in 
A ,  unless A falls on the set (of measure zero) of matrices with an eigenvector v 
where v, = 0 or the set (of measure zero) of matrices with multiple eigenvalues. 

Lemma 3.2. The Jacobian of the transformation defined in (1) is 

J ( v  ,A, w , A,) = Idet(A, -AI)I. 
Proof. The proof requires calculation of some differentials near fixed A, v , A, , 
and w so that we omit the dependence of H on v , etc. In the following, 
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matrices and vectors of differential quantities are in bold face Roman letters so 
as to distinguish them from the notation for Lebesgue measure. 

Notice that uT d v  = 0 so that H~d v  ,which is also the last column of H~dH , 
has the form (dy, . . . dyn-, O j T .  The element of surface area in this rotating 
coordinate system, d S  = dy, dy, . . .dy,-, , is the natural element of surface 
area on the unit sphere. See Muirhead [25, p. 631 for a slightly similar treatment 
in a more general setting. 

Let M denote H A H .  Since H" I ,  we have HdH = - d H H .  There-
fore A = HMH and dA = dHMH + HdMH + HMdH or HdAH = dM + 
( H  d H ) M  -M ( H  d H )  . It follows that if we omit the last component of the last 
column of H dAH we obtain 

The other elements of H dAH contain differential forms composed of the cor- 
responding element of dM and the dyi . Taking exterior products of the dif- 

ferential forms of the n2 components using standard techniques, we see that 

A dAij = det(Ao- l I )dS(u)  d l  dw dAo , 
ii 


completing the derivation. 

This derivation in terms of differentials almost hides the action on the tan- 
gent spaces. Consider the tangent space at en and ask how does that map to 

the tangent space at Â  in directions 01-thogonal to A^. A perturbation theory 
argument would derive a relationship from 

with the assumption that enTw = 0 and enTy = 0 .  A quick calculation shows 
that the relationship between the last n - 1 components of w as a function 
of those of y is given by lI - A. . This is more informative than saying the 
Jacobian is !det(lI  - A,)! , because it gives a clear interpretation to the matrix 
itself. 

We now specialize to the case when the matrix A has independent 
standard normally distributed elements, or, in other words, where z ( A )  = 

Theorem 3.1. 

TI 112 1
( 2 ~ 1 ) - ' / ~ e x p ( - d l ]  



255 REAL EIGENVALUES OF A RANDOM MATRIX 

and where dA , dA , and dA, are standard Lebesgue measures. For clarity, we 
have placed Gaussian measures in brackets. 
Proof. By Lemmas 3.1 and 3.2, it is clear that the variables v and w are 
independent of A and A, and also they are independent of each other. Thus 
we can readily integrate out the v and w terms: dS(v) = ; ~ o l ( ~ " - l )= 

nnJ2/r (n/2)  (where Sn-' denotes the unit sphere in W"), and Jw exp(- f cwj) 
= (2n)(n-1)/2. From these equations and-the previous two lemmas the theorem 

is immediate. 

Taking A to be R ,we have that 

Corollary 3.1. 
-112 

where the E denotes expectation over the variables in the subscripts. 

Definition 3.1. Let Dn-, (A) = EAoldet(A, - AI) , where the expected value is 
taken over all (n - 1)-by-(n- 1) matrices A, with independent standard nor- 
mally distributed elements. Also define 

-12/2e 

pJA) = 2"12r(n/2) 


From the discussion above, all of these quantities are related statistically to 
expectations concerning the real eigenvalues of a random matrix: 

1
pn(A)= lim -(expected number of eigenvalues in [A -A/2, A + A/2)].

A+O A 
Therefore, 

(4) 

represents the expected number of eigenvalues in A ; En is the expected number 
of real eigenvalues (i.e. the expected number of eigenvalues in W) ; fn(A) is the 
derivative of the cumulative distribution function of the real eigenvalues. It is 
sometimes called a condensed density function, in contrast to join densities [2]. 
Since we consider all the real eigenvalues to be identical, &(A) is nothing more 
than the marginal (probability) density function of a single real eigenvalue. In 
the next two sections we obtain explicit closed-form expressions for pn (A) , En, 
and f n ( 4  . 

The computation of the density of a real eigenvalue of an n-by-n random 
matrix proceeds by evaluating D,-, = EAo( jdet(A, - AI)1) where A, is an 
(n - 1)-by-(n- 1) random matrix first in terms of objects known as zonal 
polynomials2 and then in terms of more elementary functions. 

2 Zonal polynomials arise in group representation theory and the study of related hypergeometric 
functions [ 2 5 ] .  



256 ALAN EDELMAN, ERIC KOSTLAN, AND MICHAEL SHUB 

For simplicity we calculate D, instead of Dn-I . Let A be an n-by-n ran-
dom matrix. From Theorem 10.3.7 of [25, p. 4471, we have that 

The scalar-valued hypergeometric function of a matrix argument that appears 
in the formula above arises in multivariate statistics [25], and should not be 
confused with the matrix-valued function obtained by applying a Taylor series to 
the matrix. A useful expansion for this hypergeometric function which may be 
taken as its definition may be found in the proof of Theorem 4.1. An alternative 
definition for a symmetric n-by-n matrix X is that 

Fl(a ; c ; X) = constant 

where Re(a) , Re(c) , Re(c - a )  > (n - 1) /2 .  The integration is over the 
symmetric matrices Y for which Y and In- Y are positive definite matrices. 
The measure is Lebesgue measure on the upper triangular elements of Y . Last, 
the constant is chosen so that F1\a; c ; 0 )  = 1 . 

We introduce the following abbreviation: 

Definition 4.1. 
1 n i2 

It is not generally known when hypergeometric functions with a scalar matrix 
argument can be written as a finite sum of hypergeometric functions with scalar 
arguments. Gupta and Richards [16] have explored when certain hypergeomet- 
ric functions of a scalar matrix argument can be written as infinite sums of 
simpler expressions. In our case, Fn( i )  can be written in terms of incomplete 
gamma functions. 

Theorem 4.1. 

We postpone the proof of this theorem until the end of this section. 

Corollary 4.1. The generating function of the F,(i) is given by 

Proof. Rewrite the formula in Theorem 4.1 using 

DCi n i2 ~ ~ 1 2  
T ( n ,  i2)= 1' tn-le-l d t  and y (?, T)= So tn /2- le - t  d t .  
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Switching the order of summation and integration, the generating function can 
be written as a sum of two integrals. These integrals are easy to evaluate. 

In the previous section we established that 

Thus 

( 5 )  

Using the duplication formula [I ,  6.1.181 to rewrite T ( n )  in the second term 
of the formula in Theorem 4.1 and then combining with (4) and ( 5 )proves the 
following two corollaries. 

Corollary 4.2. The expected number of eigenvalues on the interval [ a ,  b]  is equal 
to 

Corollary 4.3. If A,, denotes a real eigenvalue of an n-by-n random matrix, then 
its marginal probability density f ,(A) is given by 

The probability density for the normalized eigenvalue x = A / f i  is g,,(x) = 

fifn(x,/E). We wish to understand the limiting behavior of this function as 
n becomes large. 

Corollary 4.4. For all real values of x , 

Furthermore, the functions g,, ( x )  converge in the L' norms for all 1 5 p < m . 
Proof. First we analyze pointwise convergence. We will show in Corollary 5.2 
that 

Furthermore [ l ,  6.5.341: 

1 ,  O I Y  < 1 ,  
(7) 	 lim T ( m + a , m y )  lim 112, Y - 1 ,

m+m T ( m  + a )  m T ( m  + a )  
0, Y > l ,  
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and, using Stirling's (asymptotic to equality) inequality 

(8) T(m + 1) 2 mme-mJ2ftm, 

we can easily establish that 

le-""'1' 

lim 


n-+w r(n/2)2"I2 1x1# 1 .  

Combining (6), ( 7 ) , and (9), we establish the desired pointwise convergence. 
Using elementary calculus one can show that for all y 2 0 and m 2 112, 

Furthermore, the Gaussian continued fraction for the incomplete gamma func- 
tion 115, 8.3581 shows that for y > cu - 1 ,  

Using (6), (a), (lo), and (1 l ) ,  it is not hard to show that for all sufficiently large 
n ,  

gn (x)  5 el-'"' . 
Thus by the dominated convergence theorem, the sequence {g,) converges in 
the LP norm for all 1 5 p < cc . 

Since L' convergence of densities implies convergence in distribution, we 
have at once another corollary. 


Corollary 4.5. If An denotes a real eigenvalue of an n-by-n random matrix, 

then as n -+ m, the normalized eigenvalue i ln / f i  converges in distribution to 

a random variable uniformly distributed on the interval [- 1, 11. 


Figure 3 illustrates the convergence to the uniform density. 

Proof of Theorem 4.1. Following Muirhead, we begin by considering ordered 
partitions K of an integer k : 

~ = ( k ~ , k ~  w h e r e k , + . . . + k n = k a n d k l > k 2 > . . . > k n 2 0., . . . , k , ) ,  

The (confluent) hypergeometric function of a matrix argument is defined as 

where 
n 

('IK = n ( a  - ( i  - 1)/2)kj7 


i= 1 


(a), = a(a  + 1 ) .. . (a + k - 1) = T(a + k)/T(a) 
and the zonal polynomial [25, p. 2371 is 
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normalized eigenvalues 

FIGURE3. Density of normalized eigenvalues for n = 

5 ,  10,  20, 50, 100, 200. The bigger n is the closer it 
resembles the uniform density on [- 1 , 11  . 

Observe that 

However, since ( - l ) k  = 0 unless k = 0 or 1, (-;), = 0 unless 1 > k2 2 
k3 2 . . . > kn > 0 .  In other words, we are only interested in partitions where 
possibly only the first component is not 0 or 1. 

We now focus on Fn( A )-Fn- ( A ) . Since C, ( Z n ) / ( n / 2 ) ,is independent of n , 
the only difference between the expansion for Fn and Fn-, is the summation 
over partitions with exactly n nonzero components. To be precise, we may 
restrict our attention to partitions of the form 

We see from (12)that 



-- 
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and that 

n:=,(2(k - n + 1 )  - 2 - 1 + j )  n;=,(j  - 2)!',(In) - 22kk!  


(n /2IKk ( 2 ( k- n + 1 )  + n - l ) !n:=,(2 + n - i)! 


Therefore, 
(13) 

rn ( - 1 / 2 ) k n + 12 - n - 1 ) ! 2 ' ~1 
F" (2 )- Fn- (2 )= 

( n- 1 ) ! ( - 2 ) ~ - 'x (2k  - -
(-A2/2)" 

k=n n + 1)!(2k 2n)!  

Letting I = k - n and noting 

we can rewrite ( 13) as 

2n-l A2 (n -1 ) /2  ~2 112 n A2 n + l  --
( 7 )  [ ( T )  Y ( Z ' T ) - Y ( T ' T ) ]  

--

To calculate Fn(A), we sum the preceding formula over n . The first two 
terms of the formula telescope and it is only the last term that must be summed. 
However 
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Thus we see that 

as required. 

To calculate the expected number of real eigenvalues, we need only perform 
the integration indicated in Corollary 4.2, taking the interval to be [-m, m] . 
The integrals involved may be found in classical references (e.g. [15, 6.4551). 
This produces a closed-form expression for En in terms of the Gaussian hyper- 
geometric function: 

We wish to rewrite En in various forms, each form having its own advantages. 
The above form was not included in the first section of this paper, because we 
found it unenlightening. In principle, manipulations of Gaussian hypergeomet- 
ric functions should be able to prove the equality of any two formulas for En . 
However, it is easier to check formulas for En by computing their generating 
functions and then comparing them to the result in the following theorem. 

Theorem 5.1. The generating function of the En is given by 

Proof. Using the generating function for Fn (Corollary 4. I),  we can easily pro- 
duce the generating function for the pn and integrate it to produce the gener- 
ating function appearing in this theorem. 

The following corollary will be convenient for computing the asymptotic char- 
acter of En for large n . 
Corollary 5.1. In terms of Gaussian hypergeometric functions, 

Proof. Observe that [15, 9.11 11 

Interchanging summation and integration, we can therefore write the generating 
function for the postulated En as a single integral. This integral will evaluate 
to an algebraic function. We then compare this with the generating function in 
Theorem 5.1. 

Corollary 5.2. We have the asymptotic series 
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Proof. The standard series for the hypergeometric function serves as an asymp- 
totic formula for large n since n appears in the denominator. An asymptotic 
formula for T ( n+ 1/2)/T(n) can be found in [29, 43:6:10]. 

Corollary 5.3. If n is even, 

while if n is odd, 

Proof. Using Corollary 5.1, the Gauss recursion formulas for Gaussian hyper- 
geometric functions give 

Thus it is elementary to establish this corollary by induction. 

Corollary 5.4. For n > 1 , 

Proof. The Jacobi polynomials are Gaussian hypergeometric functions. To be 
precise [15, 8.962.11, 

Rewrite the postulated En using this formula, and then proceed as in Corollary 
5.1, or as in Corollary 5.3. 

A "generalized eigenvalue" of the pair of matrices (MI , M,) (or of the pencil 
MI -AM,), is defined to be a solution A to the equation 

det(Ml -AM,) = 0 .  

In this section we show how symmetry can be used to obtain the expected 
number of real generalized eigenvalues and their density. 

Theorem 6.1. If E: denotes the expected number of real generalized eigenvalues 
of a pair of independent n by n random matrices, then 

Since the asymptotic series of the Euler beta function is known [29, 43:6:lO] 
we have an immediate corollary. 

http:8.962.11
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Corollary 6.1. W e  have the asymptotic series 

Theorem 6.2. If A denotes a real generalized eigenvalue of a pair of independent 
random matrices, then its probability density fc(A) is given by 

that is, A obeys the standard Cauchy distribution. Equivalently, atan(A) is uni- 
formly distributed on [- 5 , $1 . 

Since a standard Cauchy random variable can be defined as the ratio of two 
independent standard normals, it seems appropriate to call the random matrix 
M = M2-'M, a "(standard) Cauchy matrix." Clearly the eigenvalues of M 
are just the generalized eigenvalues of the pair (M, , M2) .  Thus the expected 
number of real eigenvalues of an n-by-n Cauchy matrix is equal to 

and a real eignvalue of a Cauchy matrix is Cauchy. 
We now prove these results. A straightforward calculation using Jacobians 

would be possible here, but we prefer to use the more elegant tools of integral 
geometry. 

Definition 6.1. Let A, denote the set of all n-by-n singular matrices of Frobe- 
nius norm one. 

Following standard notation, the Frobenius norm of a matrix A is defined as 

llAllF a . .. In the language of algebraic geometry, An is a real algebraic dc 
subvariety of dimension n2 - 2 of the unit sphere sn2-'in EXn2. NOW let 

(M, , M2) be a pair of matrices. The intersection in EXn2 of the plane spanned by 

M ,  and M2 and the sphere sn2-'is a great circle. Real generalized eigenvalues 
correspond to (pairs of antipodal) intersections of A, with this great circle. 

Thus when we consider real generalized eigenvalues of the random pair 
(M, , M2), we are considering intersections of A, with random great circles 
in Sn'-l . From the choice of probability measure for the pair (M, , M2), it 
is not hard to show that the random circles have the standard (Haar) measure. 
This is a classical set-up for integral geometry. We wish to know the expected 
number of intersections of a fixed variety and a random variety. 

Lemma 6.1 (Poincare). Let V be a variety in Smof dimension m - 1 . The 
expected number of intersections of V and a random great circle (with the nor- 
malized Haar measure) is equal to twice the volume of V divided by the volume 
of sm-I. 
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This formula and its generalizations appear in integral geometry books such 
as [26]. Poincare's formula reduces the problem of calculating the expected 
number of real generalized eigenvalues to finding the volume of A, . 

The set A, was studied by Demmel [3] and Edelman [8] in the context 
of studying the probability that a numerical analysis problem is difficult. In 
particular, they investigated the probability distribution of Demmel's scaled 
condition number K,(M) = I M I I ~ ~ I.M-' 1 1 2  Computing the volume of A, 
reduces to computing the asymptotics of the probability that K, > cu as cu + cx, : 

Let <(A,) be the volume of an E neighborhood of A, in sn2-'Clearly,. 

By the definition of the Demmel condition number K, , 

Edelman [8, Corollary 2.21 has shown that 

+ 1)/2)r(n2/2)
lim &-I  ~ r o b [ ~ ,> 1 /a] = 

~ ( ( n  
E+O r ( n / 2 ) W 2- 11/21 -

We conclude that 

Dividing this by the volume of s ~ ~ - ~gives the expected number of real gener- 
alized eigenvalues. 

We now deduce the density function of a real generalized eigenvalue. Con- 
sider the pair (MI , M2) to be a collection of n2 bivariate normals. The gen- 
eralized eigenvalue equation may be rewritten 

Since each of the bivariate normals is invariant under rotation, we can readily 
see that (cos(8), sin(8)) is uniformly distributed on the unit circle. Since il= 
tan(8), we have immediately that A is Cauchy. 

Fairly early into our investigation, we had some notion that the expected 
number of real eigenvalues must be roughly 0.8fi  from numerical simulations. 
We were later pleased to learn that this 0.8 was the number m. 

With the investigation completed, we can now provide the numerical exper- 
iments alongside the exact theoretical results. The numerical experiments were 
performed using the newly released LAPACK eigenvalue algorithms which we 
ran on 64 processors of the CM-5 parallel supercomputer. We are pleased to 
report that the LAPACK algorithm on the CM-5 computed results consistent 
with our theorems: 
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Expected number of real eigenvalues: 

CM-5 Experiments using LAPACK on 64 processors 


n trials experimental En theoretical En minutes 
80 640 7.6 7.603 1 
160 640 10.7 10.569 7 
320 640 14.9 14.756 51 
640 128 20.8 20.673 8 2 
900 64 24.5 24.427 107 

We used the CM-5 in what is sometimes called "embarrassingly parallel 
mode" because each individual matrix never crossed any processor boundaries. 
Indeed, a 900-by-900 double precision real matrix is about the largest that can fit 
on any one processor. The results of the computations were sent to the CM-5's 
host using the CM-5's message passing language CMMD. 

In order to save some computing time, rather than working with a dense 
matrix with normally distributed elements, we defined random upper Hessen- 
berg matrices A with exactly the same eigenvalue distribution as a matrix with 
normally distributed elements. This upper Hessenberg matrix is defined by 

normally distributed, i 5 j , 
like x,-, , i = j - 1, 

otherwise. 

To prove that this random matrix does indeed have the same eigenvalue distri- 
bution, merely consider the standard reduction to upper Hessenberg form using 
Householder matrices as described in books such as [14]. The subdiagonal is 
the length of the column below it which is a x distribution, the appropriate 
elements are zeroed out creating Hessenberg form, and the remainder of the 
matrix remains normally distributed because of the orthogonal invariance. 

Mehta [24, Conjectures 1.2.1 and 1.2.21 conjectures from extensive numerical 
experience that the statistical properties of matrices with independent identi- 
cally distributed entries behave as if they were normally distributed as n -+ rn . 
Mehta focuses on the symmetric or Hermitian cases, but surely the idea is quite 
general. 

Through our own numerical experience, we believe that any eigenvalue prop- 
erty of most any well-behaved distribution can be modeled by the normal distri- 
bution. Below are some numerical experiments performed on matrices whose 
entries came from the uniform distribution on [- 1, 11 and also the discrete 
distribution (-1 , 1) . Notice that both of these measures have mean zero and 
finite variance. Though we have not tested this, we suspect that these are the 
crucial hypotheses. As indicated in the caption, our CM-5 was upgraded to 128 
processors before running these experiments. 
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Expected number of real eigenvalues: 

CM-5 Experiments using LAPACK on 128 processors 


uniform distribution [- 1, 11 discrete distribution {- 1, 1) 
n trials experimental En minutes trials experimental En minutes 
80 3200 7.6 3.5 3200 7.5 3.3 
160 3200 10.6 24.5 3200 10.5 24.1 
320 3200 14.9 191 3200 14.8 188 
640 896 21.1 412 640 20.8 308 
900 384 24.6 499 384 24.7 500 

We would like to thank Shiu Hong Lui for piquing our interest in this problem 
as well as Zhimin Yan who encouraged us to carry through a zonal polynomial 
solution to our problem. We further wish to thank the authors and architects of 
LAPACK, Matlab, and the CM-5 supercomputer without which such extensive 
experimentation would not have been possible. 
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ABSTRACT.Let A be an n x n matrix whose elements are independent random 
variables with standard normal distributions. As n + co , the expected number 
of real eigenvalues is asymptotic to m.We obtain a closed form expres- 
sion for the expected number of real eigenvalues for finite n , and a formula for 
the density of a real eigenvalue for finite n . Asymptotically, a real normalized 
eigenvalue A/& of such a random matrix is uniformly distributed on the in- 
terval [- 1, I ]  . Analogous, but strikingly different, results are presented for the 
real generalized eigenvalues. We report on numerical experiments confirming 
these results and suggesting that the assumption of normality is not important 
for the asymptotic results. 
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