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Annals of Mathematics, 140 (1994), 295-329

Stably ergodic diffeomorphisms

By MATTHEW GRAYSON, CHARLES PUGH, and MICHAEL SHUB

Introduction

Ergodicity (time averages equal space averages) is the most basic, global,
gross, statistical feature of conservative dynamical systems. Yet it was not
until twenty-five years ago that D.V. Anosov [1] established the existence of
open sets of ergodic systems on a wide range of compact manifolds. These
systems, now called “Anosov”, are globally uniformly hyperbolic. For diffeo-
morphisms this means that the derivative is the direct sum of a uniform expan-
sion and a uniform contraction. Anosov systems are structurally stable—they
are homeomorphically conjugate to their perturbations. All dynamical fea-
tures of Anosov systems and their perturbations are the same at all scales.
If, however, there are center directions (directions invariant under the diffeo-
morphism but neutral with respect to expansion and contraction) then the
situation is rather different. Indeed, the work of Kolmogorov-Arnol’d-Moser
(KAM) on invariant tori implies that ergodicity is often impossible.

Here we show that the KAM center theory may sometimes be irrelevant
to ergodicity, even in the non-hyperbolic case—we construct examples of er-
godic diffeomorphisms which are not hyperbolic, not structurally stable, but
which remain ergodic after volume-preserving perturbations. They are stably
ergodic but not structurally stable. Center directions exist but the fine scale
structure of the dynamics in the center direction plays no role in the analysis.
Instead, ergodicity results from the behavior of the strong unstable and stable
directions.

The basic geometric Anosov system is the geodesic flow ¢ on M3, the
unit tangent bundle of a compact surface with constant negative Gaussian
curvature. The flow ¢ is ergodic with respect to the natural Liouville measure
on M3, and so are the geodesic flows for perturbations of the Riemann struc-
ture. (This two-dimensional differential geometry result predates the work of
Anosov and is due to Hedlund (1934) and Hopf (1939).) Our example is simply
the time-one map

o1 M3 — M3

As does any smooth flow, T'p; sends the vector field ¢ to itself. Thus,
span ¢ is an invariant center direction, and ¢; is non-hyperbolic. Although
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the flow ¢ is structurally stable as a flow, its time-one map is not structurally
stable as a diffeomorphism. To see this, observe that ¢; leaves invariant all the
orbits of the flow, and some of these orbits are periodic—they are diffeomorphic
copies of the circle. The restriction of ¢ to a periodic orbit is a circle rotation,
perturbations of which can dramatically alter the number and type of periodic
points of ¢;. This precludes structural stability.

THEOREM 1. The time-one map of the geodesic flow on the unit tan-
gent bundle of a surface of constant negative curvature is stably ergodic—it is
ergodic and so are all C? small volume-preserving perturbations of it.

Let us say a few words about how we became interested in stably ergodic
dynamics. Our work on the existence of open sets of non-Anosov topologically
transitive diffeomorphisms on the 4-torus, announced in Shub ([12], [13]) and
published in Hirsch, Pugh, and Shub [6], and the appearance in English of
Anosov-Sinai [2] led us to wonder about the corresponding phenomenon for
ergodicity. It was well known that a linear automorphism of the torus is er-
godic if and only if none of its eigenvalues are roots of unity. William Parry [9]
proved that toral automorphisms (or automorphisms of nil-manifolds) are er-
godic if and only if their strong stable manifolds are dense. We asked whether
nonlinear, non-measure-preserving perturbations of such non-hyperbolic er-
godic automorphisms of the torus remain topologically transitive and ergodic.
Theorem 1 answers the ergodicity question in the ¢; context. The correspond-
ing topological transitivity question for non-measure-preserving perturbations
of ¢1 remains open.

Here is an example. Consider the 4 x 4 matrix

0 00 —1
1 0 0 8
A= 01 0 —6
0 01 8

Peter Walters [15] proved that the eigenvalues of A are not roots of unity
although two of them lie on the unit circle. It follows that the diffeomorphism
A: T* — T* is ergodic, topologically transitive, but not Anosov. Even for
this example the following question is open:

Is every small volume-preserving perturbation of A ergodic
and/or topologically transitive?

The idea of the proof Theorem 1 is as follows. The diffeomorphism ¢,
is normally hyperbolic respecting the foliation of M3 by the p-orbits, and its
unstable and stable manifolds foliate M3. These are the horocycle foliations
H, H®. Let f: M3 — M3 be a volume-preserving perturbation of ;. Stable
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manifold theory shows that f leaves invariant foliations WY, W* similar (but
perhaps not homeomorphic) to the horocycle foliations. It also leaves invari-
ant a center foliation W€ which is homeomorphic to the orbit foliation H® of
¢. According to Pugh and Shub [10], the foliations W", W* are absolutely
continuous and their Radon-Nikodym derivatives are uniformly bounded on
reasonable transversals. See Lemma 2.2.

To analyze ergodicity of f we adapt the ideas from Hopf ([7]; see also Pugh
and Shub [10, p. 20]), and consider the forward, backward, and bi-directional
Birkhoff averages of functions g: M3 — R along f-orbits,

. X =
Byg(z) = N1 > 9(/M@), B_yg(z) = NT1 > a(f"(x)),

n=0 n=0
N

Byno(e) = s O 9" (@).

n=—N

If g is any £! function, these Birkhoff averages converge almost everywhere
to limit functions B, g,B_g, and Bg as N — oco. These three functions are
invariant under f and are equal almost everywhere. In fact the map

B: g— Bg

is a continuous linear projection from £! onto the closed linear subspace Inv f
of f-invariant functions. See Mané [8, pp. 89-100].

Suppose that f is not ergodic. Then Inv f includes essentially noncon-
stant functions—functions which are nonconstant on every set of full measure.
The set C of continuous functions is dense in £! and a continuous transforma-
tion carries dense subsets of the domain to dense subsets of the range. Thus,
B(C) is dense in Inv f, and for some continuous function g, G = Bg is essen-
tially nonconstant. However, except for a zero set, G is constant along stable
leaves and along unstable leaves. For if y,3’ belong to a common stable leaf
then the distance between f"(y) and f™(y’) is tiny when n is large. Continuity
of g implies that g(f"(y)) — g(f™(v')) is small. The forward Birkhoff average
Bng(y) is insensitive to the first few terms in the sum, so Byg(y) exists if and
only if B, g(y') exists, and when they do exist they are equal. Since we know
that By g(y) exists almost everywhere, it follows from the absolute continuity
of W* that for almost all We-leaves, W*(y), B¢ exists everywhere on WS(y)
and is constant along the leaf. The same is valid for unstable leaves respecting
backward Birkhoff averages. Since B;g(y) = B_g(y) = G almost everywhere,
we deduce that our essentially nonconstant function G is essentially constant
along stable and unstable leaves.
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For any value v € R, divide M3, modulo a zero set, as M® = AU B
where A = {p € M3: G(p) < v} and B = {p € M3: G(p) > v}. Since G
is £!, A and B are measurable, and since G is essentially nonconstant there
exists a choice of v so that A and B both have positive measure. Since G is
essentially constant along unstable and stable leaves, A and B consist (modulo
zero sets) of essentially complete unstable and stable leaves. That is, A and
B are essentially W"S-saturated. (In contrast, a set is completely W"s-
saturated if it consists of complete (whole) unstable leaves and complete stable
leaves.) If A is essentially W™S-saturated one can replace it by its unstable
saturate Sat" A = the union of the unstable leaves it meets essentially. This
does not affect its measure; however Sat" A may fail to be essentially Ws-
saturated. In other words essential W"S-saturation of A and B cannot be
strengthened to complete W"S-saturation.

The horocycle foliations have the property that any two points in M3 are
connected by a path of unit horocycle arcs, and the number of arcs in the path
is uniformly bounded. This is due to the fact that the bracket of the unstable
and stable horocycle directions is the geodesic direction,

[HuaHS] = _Sb'

Although the unstable and stable directions for f may not be of class C', and
so their bracket makes no sense, and although the foliations W*, W* need not
be homeomorphic to the horocycle foliations, they do share the property that
any two points of M3 can be joined by a path of N unit unstable and stable
arcs where N is fixed. We call such a path a W"S-path. See Figure 1 and
Lemma 1.1 below.

\msﬁ“‘b\e

sﬁab\e

S

FIGURE 1. A W"S® path.

Let a be a density point of A and b be a density of B. They are joined
by a W"S-path I, and we claim that this leads to a contradiction. Here are
two similar, false proofs of this fact. Both rely on the correct intuition that
sliding along I' forces too much of A to exist near b. See Figure 2.




STABLY ERGODIC DIFFEOMORPHISMS 299

FIGURE 2. A slides to B along a W"* path.

Assume that the center foliation W€ is absolutely continuous. Since A
and B have positive measure they meet many center leaves in sets of positive
leaf measure. Thus, we may assume that a is a density point of A N W¢(a)
and b is a density point of B N W¢(b). The natural thing to do is to start
at a and slide along the foliations W", W?® in the neighborhood of I', using
W along the unstable arcs and W* along the stable ones. Sliding along
the unstable foliation sends center manifolds to center manifolds because the
unstable manifolds foliate the center unstable manifolds. The same is true for
the stable manifolds. See Figure 3.

FIGURE 3. The concatenated holonomy map 0: W¢(a) — W¢(b).

Thus, the concatenated holonomy map along T', 8: W¢(a) — W¢(b), is
absolutely continuous with bounded Radon-Nikodym derivative. It carries
ANWe<a) onto AN W¢E(b) since A is essentially W™S-saturated. The map 6
is a C! diffeomorphism (see Lemma 2.3) and therefore does not affect density
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points, so we see that b is a density point of both A N W*€(b) and B N W*(b).
Since A and B are disjoint this is impossible.

The first defect in this proof is the assumption that W¢ is absolutely
continuous. Although the orbit foliation of ¢ is absolutely continuous, being
smooth, there is no reason to expect that the same is true for its perturbation.
Eventually we hope to find a dynamic example of this pathology. The second
defect is that essential W"S-saturation of A does not imply that 6 carries
ANW<a) to ANW<(b). Complete saturation is necessary to deduce this.

Here is a second false proof. Instead of using the unstable and stable
foliations to define holonomy maps on transverse center manifolds, one can
use them to slide a three-dimensional neighborhood U of a along I'. See
Figure 2. (Points of U slide along unstable arcs neighboring the first leg of
I, then along stable arcs neighboring the second leg of T', etc.) This gives a
homeomorphism 6: U — V with 6(a) = b and V a neighborhood of b. By
absolute continuity of W*, W?, § and §~! are absolutely continuous. Since A
is essentially W"*-saturated, 6(ANU) = ANV except for a zero set. Since
f(a) = b, b is a density point of both A and B, a contradiction.

The defect of this proof is the tacit assumption that 6 carries density
points to density points. Although a Lipeomorphism between open sets of Eu-
clidean space has this property,* the existence of a bounded Radon-Nikodym
derivative does not imply Lipschitzness in dimensions > 1. Indeed, it is a sad
fact that absolutely continuous homeomorphisms can destroy density points,
as is shown in the following picture, Figure 4, of a smooth area-preserving

FIGURE 4. A smooth area-preserving homeomorphism which destroys a density point.

homeomorphism of the 2-disc which destroys the density of A at the cusp. Also,
although it is clear that an absolutely continuous homeomorphism preserves
almost all density points, this is not good enough for our purposes.

*Z. Buczolich [4] proved this is also true for non-open subsets of Euclidean space.
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To get around the problem of density point destruction we resort to a
finer description of the way A looks at the density point a. Density points of
A have more regularity than density points of general measurable sets. The
set A is not merely highly concentrated in small regular neighborhoods U of a
(in terms of measure) but it is also spread through U thoroughly in terms of
thin substrips, called “juliennes”. See Section 3. It turns out that sliding along
WU, W?* preserves this stronger type of density, and we do get a contradiction
after all.

Brin and Pesin [3] also studied ergodic properties of partially hyperbolic
systems and focused on the transitivity of the strong stable and unstable lam-
inations. This transitivity is central to our analysis. Their techniques prove
and generalize the ergodicity of the time-t map of the geodesic flow on surfaces
of negative curvature and non-hyperbolic toral automorphisms with dense sta-
ble manifolds, but do not extend to perturbations. The false proofs we have
given above have their correct counterparts in Brin and Pesin. We thank Tolya
Katok for pointing out their work to us.

1. Transitivity

Recall that ¢ is the geodesic flow on the unit tangent bundle M of a
compact surface with constant negative curvature. The manifold M is three-
dimensional and ¢ is hyperbolic respecting the splitting TM = H*® H¢ G HS.
The center direction H® is the span of the vector field ¢. Tangent to H" and
H?® are the horocycle foliations H" and H®; tangent to the H® is the orbit
foliation. All three foliations are @-invariant and smooth, in fact, analytic.
Similarly, if f C2-approximates ¢; then f leaves invariant a unique splitting
TM = E" ® E° @ E® which approximates the horocycle splitting. Tangent to
E", E°, and E® are unique f-invariant foliations W", W¢, and W5. A path
consisting of arcs alternately in W"-leaves and in W5-leaves is a W"* path.

1.1 LEMMA. Any two points in M are connected by a W™* path consisting
of at most N arcs, each of length at most /2, where N depends only on the
manifolds M.

We give two proofs, the first geometric and the second topological.

Proof #1. We start with the horocycle foliations H" and H®. Since the
unit tangent bundle of the hyperbolic plane T;(H?) covers our manifold, we
will work there and cover a fundamental domain.

Given a unit vector v in T7(H?), there are two points at infinity, v* and
v~, corresponding to the forward and backward limit points of the geodesic
through v. The stable (unstable) leaf through v corresponds to the unit vectors
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normal to the horocycle through v centered about vt (v™). Thus an H"*-path
in M3 lifts to (the unit normal vectors to) a path of sequentially tangent
horocycle arcs in H?.

To cover a large open set in T7(H?), we must be able to translate and
rotate an arbitrary vector. We rotate via horocyclic triangles: Three distinct
points at infinity in the hyperbolic plane define an ideal triangle. Centered
on those ideal points are three pairwise tangent horocycles. By arranging the
three ideal points in the upper half-plane model to lie at —1, 1, and co, we can
calculate the side length of the horocyclic triangle which results in the center.
See Figures 5a, 5b. The metric on the line Im(z) = 2 is ds = dz/2. Therefore,

T

00
horocycles b ideal
triangle
4 Im(z) =2
1 < T
\ ' horocycles
ideal S,
triangle E o Im(z) = 0
1 -1 0 1

(a) (b)

FIGURE 5. (a) Poincaré disk model. (b) Upper half-plane model

this equilateral horocyclic triangle has unit length sides. Following the sides of
this triangle realizes a rotation by 180°. See Figure 6. Shortening the sides of

a1qeIsun

FIGURE 6. Following the sides of horocyclic triangles yields rotation.

the triangle, while retaining two of the tangencies, yields all smaller rotations.
To achieve translation, we use a pair of horocycle arcs. Two of unit length
produce a translation by over 1.9. See Figure 7. By now, the astute reader
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—stable - \M’
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<—(.962423650... —>|

FIGURE 7. Following these horocyclic arcs yields translation.

should be annoyed by our lack of a metric on M. There is some ambiguity
in choosing a metric, even if we require invariance under the action of the
isometries of H?. The most natural metric assigns length 27 to the unit circle
in the tangent plane at a point, and is the standard hyperbolic metric for
parallel translations. Since horocycles have constant geodesic curvature = 1,
the translational and rotational parts are equal, and the length of an H%“S-
path in M is precisely v/2 times the hyperbolic length of its corresponding
horocyclic path.

With the moves described above, it is possible to cover a ball of diameter
R in T1(H?) with a three-parameter family of H"S-paths, each made up of <
1.1R + 12 arcs of length < /2. The 12 comes from triangles at the beginning
and end to aim and to change directions, each triangle being allowed two
circuits to avoid trouble with the —7 = 7 identification; we cover (—2,27),
and thus we cover the full [—7, 7] in an open fashion. See Figure 8. The

Vo
U1

FIGURE 8. Horocyclic path from vy to v;.

three parameters are the lengths, [; and ls, of the edges of the two horocyclic
triangles opposite the endpoint vectors and the length I3 of each arc in the
translational part. These are analogous to 6, z, and r in Euclidean cylindrical
coordinates. The length of the first triangle base determines the angle of
translation, the last triangle edge determines the point in the target fiber, and
the translational length is, after a multiplicative correction between .9 and 1,
the radial distance to the base point of the target fiber. With the open subset of
the parameters .1 < I3, 12,13 < .9, the image of a fixed vector is an open subset
of M, and the derivative map is surjective (the exact Jacobian is a nice exercise
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in plane hyperbolic geometry). Geometrically, we cover every fiber whose base
point lies in an annulus with inner radius .2R and outer radius 1.6R. (The 1.6
is less than 2(.92).) If R is the diameter of a fundamental domain, then the
preimage of this annulus contains at least one complete closed fundamental
domain. An open map from the interior of one compact set, covering another
compact set, which is a local homeomorphism on the preimage of the interior
of the target is still onto after a continuous perturbation. Q.E.D.

The second proof of Lemma 1.1 is somewhat more general. It has two
steps. Given smooth vector fields X,Y on a manifold M, an X,Y path of
length < NN consists of < N concatenated trajectory arcs of the X- and Y-
flows, each having time length < 1.

PROPOSITION 1.2. If XY ,Z are smooth, pointwise linearly independent
vector fields on a compact 3-manifold M, [X)Y] = Z, and Z has a dense
orbit, then there is an N such that any pair of points in M can be joined by
an X,Y path of length < N.

Proof. Let ¢,9, and n be the X, Y, and Z flows. Fix p € M and
consider the map

D: (r,8,t) — @ 0P o ne(p)

where 7, s,t are small. Since X,Y, Z do not vanish at p, ® is a diffeomorphism
from a neighborhood of (0,0,0) in (—1,1)3 C R3 to a neighborhood U of p
in M. By compactness of M, these neighborhoods U have inner radius p,
uniformly bounded away from zero, say p, > p > 0 for all p € M. Let U,
denote the open neighborhood of radius p at p, and let v be a dense orbit of
Z. There is a constant L such that any two of these neighborhoods U, and
Uq are joined by an arc of v having time length < L. Otherwise, there is a
sequence of pairs pp,q, such that the shortest time for + to transit from U,
to Uy, is > n. By compactness, we may assume p, — p and g, — . Since 7
is dense there is an arc g C v from U to Uy. Since Uy, Up, Ug,, and Ug all
have the same radius p, 7o also joins Up, to Ug,, contrary to the assumption
that the shortest transit time is > n.

Since [X,Y] = Z there is a constant ¢ > 0 such that if ¢ = n(p) and
[t] < ¢, where 7 is the Z-flow, then there is an X,Y path of length 4 from p
to q. This is the usual picture of the Lie bracket [X,Y] = Z, and becomes
especially clear if drawn in a flowbox for X.

Now, given any pair p,q € M, thereisan X,Y path from p to q defined as
follows. Some p; € U, is joined tosome q; € Uy by a Z-path of time length <
L and this path can be replaced by an X,Y path of length approximately
4L/c. Also there is an X,Y,Z path from p to p1 of length 3, for p; € U,.
The Z-arc of this path can again be replaced by an X,Y path of length < Ny
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where N7 = 4/c. The same is true at q. Concatenation gives an X,Y path of
length N =4+ (8 +4L)/c from p to q. Q.E.D.

COROLLARY 1.3. There is an H™® path of length < N joining any pair
of points in M = Ty(H?).

Proof. The geodesic flow is ergodic, therefore topologically transitive,
and therefore has a dense orbit. The formula [H", H%| = —H® = —¢ completes
the proof. Q.E.D.

PROPOSITION 1.4. Suppose that X,Y are smooth vector fields on a com-
pact m-manifold M and every pair of points p,q € M can be joined by an
X.,Y path of length < N. If X' )Y’ are uniquely integrable vector fields which
CO-approzimate XY well enough, then every pair of points in M can be joined
by an X')Y' path of length < 2N.

Proof Let ¢ and 9 be the X- and Y-flows. Let IV be the unit cube in
RV, where I = (—1,1). Fix some p € M and consider the map I': IV — M
defined by

[: (t1,...,tN) = @t 0y, 0+ 01y (P).

(We tacitly assume that N is even.) The map I' is smooth and onto. By Sard’s
Theorem, most of its values are regular. Choose one, say r. Since I' is onto,
I~1(r) # 0. Choose t = (t1,...,ty) € I"!(r). Regularity implies that there is
a small m-disc D at t which T" carries diffeomorphically onto a neighborhood
U of r.

Let q be an arbitrary point of M. There exists s = (si,...,sy) € IY such
that ®(r) = q where ® is the composition

Q= g, 05, 0... 0, .

The diffeomorphism @ carries the neighborhood U onto a neighborhood V; of
q. This neighborhood V; contains a compact sub-neighborhood Wy of q, and
taking the appropriate orientation of the disc D, for all w € Wy we have

index(® o T |6D’w) =1.

By equicontinuity and unique integrability, the perturbed vector fields X’ and
Y’ generate flows ¢’ and ¢’ which C° approximate ¢ and v uniformly on
compact time intervals. Thus, for all w € Wy,

index(®' o I" | 5, w) =1,

where ® = @[ o9, o--- o), and IV = ¢} o, o---9/y(p). Consequently,
@' oT"(D) D W,
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By compactness, we cover M with finitely many such neighborhoods Wj,.
If X', Y’ approximate X,Y well enough then we conclude that

®ol"(IN) D M.
That is, each pair p,q € M is joined by an X', Y’ path of length < 2N. Q.E.D.

COROLLARY 1.5. With reference to Lemma 1.1, if f approximates o1
well enough in the C' sense, then any two points in M = Ty(H?) are connected
by a W"S-path consisting of at most N arcs, each of length at most 1, where
N depends only on the manifold M.

Proof. By Corollary 1.3 there is an H™® path of length < Np joining
any two points in M. When f approximates ¢; in the C! sense, then the
line fields EY, E® approximate H", H in the C? sense and they are uniquely
integrable. Since H", H® are orientable, so are E", E®, and they support vector
fields. By Proposition 1.4 any p,q € M are joined by a W™° path of length
2Nj. Q.E.D.

Remark. Generalizing 1.2, 1.4 to more than two vector fields presents
no problem. The hypothesis that X’ Y’ are uniquely integrable may be su-
perfluous.

2. Uniformities

In this section we sharpen and refine several estimates involving pertur-
bations of ;.

2.1 LEMMA. The hyperbolic splitting for a perturbation of 1 is uniformly
Hoélder in the sense described below.

Proof. Fixany6, 0 <6 < 1. If N is a sufficiently small C2-neighborhood
of ¢1 and f € N then we claim that the hyperbolic splitting E*®E°@E*® for f
is 0-Holder and that the #-Holder constant is uniformly bounded. §-Holderness
of the splitting is standard (see Pugh and Shub, [10, p. 5], for example); the
only issue is uniformity. The plane-field E®* is found as the unique F-invariant
section of a bundle of linear maps

L £ L

1T

M LM

The fiber of L at p € M is L, = {P € L(H®,H®): ||P|| < 1} and F}, sends
Ly, to Ly, according to the natural T f-action,

F,: P— (C+KP)o(A+BP)™!
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where
T A B A: H* - H* B: H®— H®™
P/ = (C K) C: H*->H®  K: H*— H®
respecting TM = H® @ H®. As the neighborhood N shrinks to ¢; in the
C'-sense, T, f converges uniformly to

A0 0
Tp(p1 = 01 0
0 0 A1

Thus, the fiber constant k = sup, Lip F}, tends uniformly to A~L while the
base constant p = Lip f~! tends uniformly to A. This gives the fiber domi-
nance condition kuf < 1. Besides, since N is a C%-neighborhood, the C?-size
of f € N is uniformly bounded. This implies that the Cl-size of F is uni-
formly bounded, and therefore that the #-Holder constant H of F' is uniformly
bounded. According to the Holder Section Theorem in Shub [14, p. 46], the
#-Holder constant of the uniquely F-invariant section is estimated as at most

W

H 1—ku?’
which is uniformly bounded. Q.E.D.

Next, we consider the holonomy along the unstable f-invariant lamination
WU of a C2%-small perturbation f of ¢;. Let D, D' be C! 2-discs in M which
are uniformly transverse to the unstable horocycle foliation H" in the sense
that the angle between H" and the tangent planes to D, D’ is always at least
45 degrees. Since f approximates 1, D and D’ are transverse to W" also.

A W'-holonomy map is a continuous function 7" defined on an open
subset U C D which satisfies 7"(p) € W"(p)N D’ for all p € U. See Figure 9.

FIGURE 9.

We shrink D so that U = D. The fundamental fact about 7" is that it is a
homeomorphism to its image and although 7" may fail to be differentiable, it
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is absolutely continuous: It sends sets of Lebesgue area zero in D to sets of
Lebesgue area zero in D’. Any absolutely continuous function has a Radon-
Nikodym derivative, a “generalized Jacobian”, which is locally integrable. The
Radon-Nikodym derivative Jac7® of 7" is not only locally integrable but ac-
tually continuous and positive. See Pugh and Shub [10, p. 8].

2.2 LEMMA. If f € N and N is a C%-neighborhood of oy which shrinks
to 1 then ™ converges uniformly to the H"-holonomy map h" in the Radon-
Nikodym sense described below. If D C W¢® then Jacm" converges uniformly
to 1.

Proof. Consider p € D, n%(p) = q € W%(p) N D', and assume that
the arc length in W'(p) from p to q is at most 1. With D, D’ as above, we
claim that 7" = A" and Jac7" = Jach" as N shrinks to ;. The fact that
7 = h" amounts to the locally uniform convergence of W*" to H", and this is
a consequence of its construction via the graph transform method in Hirsch,
Pugh, and Shub [6]. See also Lemma 2.4 below.

Anosov’s formula for Jac7" as explained in Pugh and Shub [10, p. 8], is

. detT, (f_nl D)
U= lim ——2 =L
T ™ = N A T ()
By the chain rule, this limit is the infinite product
> det Tpk(f_llf—kD) B < det Tpk(f_llf-kD) det T? -1 det T(‘l’]ff‘1

Palin det qu(f_l If—le) B ILIO det T];():if_l det 11,:(1:;']0—1 det qu(f_l If—ch/) ’

where f~*p = p; and f*q = qz. We claim that the product converges
uniformly exponentially. That is, its factors differ from 1 by at most C3* where
C, B are uniform constants and 3 < 1. Uniformity refers to all f,p,q, D, D’
as hypothesized. Since E® is a uniformly exponential attractor under T'f~*
as k — oo, the angle between the tangent plane Tp, f ~kD and the plane ES is
at most Clﬁf for uniform constants Cip, 8; with 8; < 1. Since M is compact
and T f is continuous, the outer factors

det Tp, (f Y| f-¢p) d det TS f~1
detTofT M detTo(f Y p+p)

differ from 1 by at most (3'2,65c . The same is true of the middle factor. For by

Lemma 2.1, the planes E5’, E¢® differ by at most Hd(p, ax)?, d being the dis-

tance in M. Since f is uniformly C?, the determinants det T3 ~1 det I -1
differ by at most ng(pk,qk)a where Cj3 is a uniform constant. The determi-
nants themselves are bounded away from 0 and oo since M is compact. Thus,
their ratio differs from 1 by at most Cyd(ps,qx)? where Cy is another uniform
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constant. Since q € W"(p) and the arc length from p to q in W'(p) is uni-
formly bounded, d(pk,qxr) < Cs(A —€)~* where ¢ — 0 as the neighborhood
N shrinks to ¢1, and Cjs is a uniform constant. Thus,

-1
det TS

0\ —k
det T 1 <Cs((A—¢)°) .

-1

Because each of the three factors in the infinite product converges uniformly
exponentially to 1, the infinite product converges uniformly to a uniformly
bounded limit.

Since the infinite product expression for Jac 7" is dominated by a fixed
absolutely convergent product, [J(1 4+ CB¥), and since for each fixed k,

det T, (f ' g-+p) _ detT,_, ) (9-1lp_,D)
det qu(f—llf—kD/) det Tso—k(q)(SO—le_kD’)’

the Lebesgue dominated convergence theorem implies that the limit of the
products is the product of the limits as N shrinks to ;. That is,

Jac 7" = Jach".

If DC Wgs and D' C Wgs then Jac7® =3 1 since Jach® = 1 on center stable
transversals. Q.E.D.

This last is easily seen in the SL(2,R) model for the geodesic flow. Here

the flow is g — [%t eQt]g. The center stable manifold through g is given by
t
[¢ eQt]g and the h"-holonomy from g to [(1] ]g is B%(t,v) = (s,w) when

there exists an z such that

| e e (T

The matrix of partial derivatives at t =0=wv is
Os s
5 u]-o 1]
0 o - ’
79% 7’% 0 1

which has determinant 1. The frames in which the matrix calculation is done
are orthonormal, so the Jacobian of A" is 1.

Remark. Here is a second way to prove Lemma 2.2. Returning to the
proof of Anosov’s Jacobian formula in Pugh and Shub [10, pp. 5-11], note that
all constructions of pre-foliations and pre-foliation Jacobians depend continu-
ously on f € N. The natural action of T'f on these Jacobians is also continuous
with respect to f, and this action can be viewed as a contraction mapping on
the space of trial Jacobian functions. The fixed point of a family of uniform
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contractions which depend continuously on a parameter also depends contin-
uously on that parameter. In this case the fixed point is the actual Jacobian
of the W"-holonomy and the parameter is the diffeomorphism f.

The unstable horocycle foliation H" is subordinate to the center unstable
horocycle foliation H®, so the H"-holonomy map h" preserves the H"-leaves.
It sends the p-trajectory Hy to the p-trajectory Hg when q € Hy, and its
restriction to Hy is an isometry,

u., C C
h": H; — Hg.
The next result states that the same is nearly true after perturbation.

2.3 LEMMA. The W"-holonomy map ©" preserves the center foliation
We. If q € WY(p) then 7" sends W<(p) to W<(q), is C', and is uniformly
nearly isometric.

Proof. The W"-foliation is subordinate to the W -foliation, so the W"-
holonomy map 7" automatically carries W*¢(p) to W¢(q). We will show that
the line field EY, restricted to each W¢-leaf, is C!. It follows that the W"-
foliation and its holonomy maps along W" are C!. In the proof of Lemma 2.2,
we exhibited F* as an invariant section of a bundle of linear maps. Similarly,
to construct E" directly one considers the new bundle map

L -2 L

1L
MM

where the fiber of L at pe W is L, = {P € L(H",H®): ||P|| < 1}, F is the
natural map L, — Ly, sending P to F(P) = (C + KP)o(A+ BP)™!, and

T A B A: H* - H* B: H® - H"
pf_(c K) C: H* - H® K: H® — H®

respecting TM = H"@® H®. Thus, F' is a fiber contraction with fiber constant
k = A~! and base constant g = Lip f~! == X. (So far, this tells us nothing
new because the fiber constant only dominates the base constant at #-Holder
scales, § < 1.) However, we can replace the base manifold M with a manifold
where the base constant tends to 1. Namely, let W be the non-separable C2
manifold consisting of the disjoint union of all the W¢'-leaves. Since W™
is f-invariant, f is a diffeomorphism of W to itself and F' becomes a fiber
contraction




STABLY ERGODIC DIFFEOMORPHISMS 311

Now the fiber constant k dominates the base constant p = Lip(f IW)‘I since
i = 1 as N shrinks to ;. The C" Section Theorem of Hirsch, Pugh and
Shub [6] implies that the unique F-invariant section of L, namely E", is Cl.
The Cl-uniformity of the invariant section follows from the facts that the WWeu-
leaves are uniformly C2, the map f is uniformly C2, the splitting H" & H® is
fixed and C!, and the fiber constant uniformly dominates the base constant.
Since E" is uniformly C! on W, the W"-holonomy maps on W are also locally
uniformly C'. As A shrinks to ¢;, the W< leaves tend locally C2-uniformly
to the H%leaves and the line field E", considered on W, tends locally C!-
uniformly to H*. Thus, the holonomy maps 7" restricted to the center leaves
tend locally C!-uniformly to the horocycle isometry Hj — Hg. Q.E.D.

2.4 LEMMA. Given 6, 0 < 0 < 1, the unit W"-holonomy maps for any f
in a small C%-neighborhood of 1 are uniformly 0-Hélder.

Remark. By the proof of Lemma 2.3, the line field E" is Hélder, but
in general the integral curves of a Holder line field need not form a Holder
foliation. By a unit holonomy map we indicate the assumption that the W"-
arcs along which we slide have length at most 1.

Proof. Let p, q, D, D’ be points and transversal discs as in Lemma, 2.2.
We know that the Jacobian of the holonomy map D — D’ is uniformly
bounded and we also know by Lemma 2.3 that the holonomy map restricted
to the center leaves is Cl. Thus, if the holonomy map were differentiable, its
derivative would be a 2 x 2 matrix (8 3) respecting the splitting E° & E®,
while the entry a and the determinant would be bounded and bounded away
from 0. Thus d would be bounded and bounded away from 0. However, this
would still give us no control over the shear entry b.

To prove that the W"-holonomy map is uniformly #-Holder, we exhibit the
unit unstable manifolds W"(p) as graphs of maps which are Holder functions
of p. To simplify the estimates, we introduce uniform coordinate systems

adapted to . Given p € M, we define w,: R3 — M as follows.

(1) wp sends the z-axis to H"(p), the unstable horocycle at p. The parame-
trization is an orientation-preserving isometry.

(2) wp sends the (z,y)-plane to H*(H"(p)) = Uyecpup, H*(q), and for each
fixed z, the parametrization (z,y,0) — wp(z,y,0) is an orientation-preserving
isometry from the y-line z x R x {0} onto H5(wp(z,0,0)).

(3) wp(x’ yat) = ‘pl(wp(maya 0))

See Figure 10.

Since the horocycle foliations for the geodesic flow ¢ are smooth, each wy,
is C®. In fact w: M x R® » M x M defined by (p,w) — (p,wp(w)) is C®
too. The wy-coordinate system is a special type of flowbox for ¢. Thus, wy, is
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Hee /

(0,0,0) H

FIGURE 10. The horocycle foliations at p.

uniquely specified: (1), (2) specify it on the (z,y)-plane through p = (0,0,0)
and (3) specifies elsewhere. Besides, the center unstable horocycles are the
(x, 2)-planes and the center stable horocycles are the (y, z)-planes. However,
since [H", H?] # 0, the (z,y)-planes have no dynamical significance.

On R?® we choose the maximum coordinate norm ||(z,y,2)|| =
max(|z|, |y|, |2]) and the corresponding metric.

Let the time-one map ¢; be called ¢ and represent ¢ in w-coordinates at
p and ¢p as

¢p =wq;p1 O¢pr.

More precisely, restrict wy, to a large cube Q(R) in R3 such that Wep © @ ©
wp(Q(R)) makes sense. In these coordinates ¢ is linear,

dp(z,y,2) = (Az, A1y, 2)

and A > 1. Next, consider a C2-approximation f to ¢. Its representation in
the w-coordinates is
o =wf_p1 o fouwp.
Since w is C*, f, uniformly C2-approximates ¢, when f C2-approximates (.
Consider the space G of maps g: [—R, R] — R? such that g(0) =0 and
Lipg < 1. The natural action of ¢, on G is given by the graph transform,
-1

A 0 1
The graph of ¢p4g is the ¢p-image of the graph of g. The graph transform is

a contraction respecting the special metric
lgz — g'z|

d(g,g’) = sup ’
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The sup is taken over z € [—R,R]. In fact, since we use the maximum
coordinate norm in R3,
lg(A"'z) — g’ (A 1a)|

/ A_l O
d(Gp#9, Pppg) < H( 0 1) |z|

lg(A""z) — g/ (A1) [\ Mg
A~ 1z] |z

< Xld(g,d).

=1-sup

Now f, Cl-approximates ¢p and it too defines a graph transform fpu: G — G.
The formula for f,4 is

forg(z) =m0 fr0Go (mfpG) }(z)

where G: x +— (z,gs), while 7 and 73 are the projections of R3 onto the z-
axis and the (y, z)-plane. Thus, G is the function whose image is the graph of
g. Since f, Cl-approximates ¢y, fp# is a contraction of G with nearly the same
contraction constant A\~! as has ¢p4. Since M is compact these contractions
are uniform over M and we get a fiber contraction

MxG-EsMxg

T T F:(p,g)~ (b fong)

M LM
We claim that the Holder Section Theorem implies that the unique F-invariant
section of this bundle is §-Holder. The unique invariant section is of course
the unstable manifold at p. To apply the theorem we must check that F is a
0-Holder map of the bundle M x G and that the fiber constant appropriately
dominates the base constant. In fact we prove that F is Lipschitz. We first
establish

(4) |fp(w) = fpr(w)| < Clwld(p, P')
for a uniform constant C. We know that f,(0) = 0 for all p € M and that
w > fy(w) is C2. Thus, ﬂér(%w) is C! and vanishes identically when w = 0. By
the mean value theorem in local coordinates when d(p,p’) is small,

Fo(w) = f(w) = /O 1 (%{;

which implies that |fy(w) — fy(w)| < Clw||p — p’|. Interpreted in the metric
of M this gives (4).

Now we deduce that F' is Lipschitz. We know that F' contracts the fiber
p X G into the fiber fp x G, and also that it is Lipschitz on the base, being
just f there, so we must merely estimate the shear term. We claim that

| forg(z) — forug(z)| < Cd(p,p’)

) dt(p - pl)7
q=tp’+(1-t)p
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for a uniform constant C. For brevity, write h(z) = m; o f, o Gz, and h'(z) =
71 0 fy 0 Gz. Thus h, h' are overflowing, expanding Lipeomorphisms:

Liph™ <1,
Liph'~! < 1. Then foug(x) = T30 f 0 Goh™!(z), and so by (4):
[forg(2) = frpg(@)| < |mas 0 fy0Goh™ (z) =m0 fy 0 Goh™!(2)]
+|ms 0 fy 0 Goh™H(z) ~ My 0 fy 0 Go b (z)|
< C|G o h™'(z)d(p,p')
+ Lip(mas o fy) Lip G|~} (z) — '} (z)]
< Clh™!(z)ld(p, p')
+1-htoh ohz)—htohoh' z)
< Clald(p, p') + Liph™'[h o K""H(z) — ho W' (z))|
< Clzld(p, p') + |W'(2') — h(z")|
where =’ = h'~(z). By (4),
[ (z') — h(z)| = |m1 0 fp 0 Gz’ — 7y 0 fy 0 Ga'| < C|G2|d(p, P')
< Clz'ld(p, p) < Clzld(p, P').
Thus, |fosg(z) — fy#g(z)| < 2C|z|d(p, p’), which completes the proof that F
is Lipschitz, since

| fo#9(z) — fypg(z)] <20Cd

2 (p, D).

d(fp#g, fp’#g) = sup

The Holder Section Theorem therefore applies and we deduce that M x G
has a unique F-invariant section o: M — M x G, which is 8-Hoélder provided
that ku? < 1, k being the fiber constant of F' and p = Lip f~! being the base
constant. If f € N and N shrinks to ¢;, k tends to A~! and p tends to .
Thus, when A is small, ku? < 1 and so o is #-Hélder. Besides, the §-Holder
constant of ¢ is at most Hu’/(1 — kyu®) where H = Lip F. It is uniformly
bounded.

Since the graph of o(p) is the unit unstable manifold at p, the W"-foliation
is uniformly 6-Hélder. Q.E.D.

3. Juliennes

We are going to study some geometric objects which could be described as
“small, narrow, nonlinear prisms”, or “juliennes” since they resemble slivered
vegetables. First we introduce coordinates adapted to a perturbation f of
¢1. Let f be such a perturbation and denote its invariant splitting as T,M* =
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E;oE @ ES. These line fields are a-Holder functions of p € M 3 and a is nearly
equal to 1. The center unstable and center stable bundles are E* = E" @ E°
and E® = E* @ E°. Tangent to the bundles E", E®, B, E, E° are unique f-
invariant laminations WY, W5 W WS We. All of them have smooth leaves
but they need not be smooth foliations (hence the word “lamination”). Of the
five laminations, only W", W* are absolutely continuous in general.

On a neighborhood U of any point p € M3 we introduce a smooth
(z,y, z)-coordinate system such that

-0 " 0 . I\ .
p _\(07 0? 0)7 Spa‘n (—6_1:)p - Ep? Spa‘n (5&)1) - Ep, Span ('é";)p — Ep,

the vectors (a%)p, (a%)p, (%)p have unit length, and the orientations agree.
For example we can use the exponential chart at p adapted to the splitting.
Strictly speaking, we should write the coordinates of a point in U as (z,y, 2)p,f
to indicate that the coordinates depend on p and f. We denote by Z, the
set of points in U with zero z-coordinate and by 7 the projection U — Z,,
m(z,y,2) = (z,y). The rectilinear square in Z, with center py and width 2w
is
S = S(p,po,w) = [x0 — w,x0 + W] X [yo — w,yo + W],

while the rectilinear box with center py = (%o, yo,0), width 2w, and height 2h
is
R(p, po,w,h) =S x [—h,h].

See Figure 11.

FIGURE 11. The square S and box R.

Since the laminations W, W are transverse to Z;, and to each other
they give transverse laminations

L'=W'NZ, and LS=W*NZ,
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of Z,. The leaves L", L® of these laminations give a second coordinate grid on
Zp. It is Holder, not smooth. Let L%(pg) denote the arc of Lj (po) between
the lines x = xg+w on Z, where py = (X, yo,0) and w > 0 is small. Similarly,
let LS, (po) denote the arc of Lj (po) between the lines y = yo £ w on Zj,.
These two arcs through py have length approximately equal to 2w and form
the axes of a nonlinear square

Y= E p7p07 ULloc loc( )

where q ranges over LY (pg) and r ranges over L (po). See Figure 12. The

£ y-axis

Yo +

Yo

Yo — W

P| X — W Xo Xo + W  z-axis

FIGURE 12. The base ¥ of the julienne J in the plane Zp.

square is centered at pp and has width approximately equal to 2w. Trans-
versality of the laminations implies that each of the intersections referred to
in the definition is a single point. Consistent with this notation, we set Wy (t)
equal to the arc of W (t) between the planes z = +h. Then

J = J(p,po, w,h) = | J W (t)
tex
is the julienne with center pg, width 2w, and height 2h. See Figures 13, 14.
The vertical boundary of J is the set 9°J = o5 WE(t).
Under reasonable conditions we will show that boxes and juliennes ap-
proximate each other well. To make this precise it will be useful to dilate
coordinates and write

cR = R(p,po,cw,ch) and c¢J = J(p,po,cw,ch)

where c is a real constant. We will assume that po, p1, p2 are nearby points of
M and that pg lies on the horizontal plane in the (z,y, 2) coordinate systems
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z-axis

FiGURE 13. The julienne J consists of center manifold arcs between z = —h and z = +h.

FIGURE 14. A julienne at three magnifications.
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at both p; and py. That is, pg € Zp, N Z;,. Then

JI = J(PI,POaW, h)a Rl = R(Pl, Po, W, h)a
J2 = J(Pz,Po,W,h), R2 = R(pZaPOaW9 h)

are the appropriate sets to compare.

3.1 JULIENNE NESTING LEMMA. Let ¢ € (0,1) be fized. If f — 1 in the
C? sense and w = h%2 — 0, while d(po,p1)/h and d(po,p2)/h stay bounded,
then
cRiCcJy C C‘1R1 and c¢cJi C Ry C C_lJl.

Remarks. If no relation between w and h is imposed then nesting fails.
For example, if h3/2 > w then the juliennes are very thin neighborhoods of the
center manifold (an arc) through po while the box is a very thin neighborhood
of a vertical straight line segment. Generically these two arcs in 3-space meet
only at pg, so thin neighborhoods of them hardly intersect at all, much less
nest. See Figure 15a. On the other hand, if h <« w then Ji, Jy are virtually
equal to the small nonlinear squares ¥i,Ys in Zj ,Z,,. Generically, these
squares meet in a curve, so thin neighborhoods of them will not nest. See
Figure 15b. As a special case, if p; = pg2, then the lemma asserts that a

R J

(a) (b)

FIGURE 15. (a) h is too big, h%2 3> w. (b) h is too small, h <« w.

julienne nests between two dilated boxes and a box nests between two dilated
juliennes. Since c can be chosen nearly equal to 1, this provides the possibility
of interchanging juliennes with boxes. By the way, the exponent 3/2 could be
replaced by any fixed power between 1 and 2.
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Proof. Let p = p; or pa. The boundary of ¥ = ¥(p,pg,w) consists
of four arcs: two L"-arcs through the endpoints of LS (pg) and two L-arcs
through the endpoints of LY (pg). The tangents to these arcs approximate E;
and E7 uniformly as w — 0 and f — ;. From this information alone, it
follows that

cScrccls.

See Figure 16. Similarly, the tangent vectors to the center manifolds Wy (t)

FIGURE 16. Nested squares in Z,

comprising J differ from EJ by at most Ch®. For E° is a-Holder and the
distance of any point of J to p is no more than h + d(p,pg) = 2h. It follows
that Wg(t) differs from the vertical segment t x [—h,h] by at most Ch®*!.
As f — ¢1, @ — 1. When a > 1/2, h®*! is on a smaller order than w = h%/2.
That is, the linear projection m(Wg(t)) has diameter < w so the projection
of the vertical boundary of J fits between ¢S and ¢1S. This implies that

cRcJcc!R and c¢JCRCcl,

which takes care of the case p; = ps.

Next, suppose that p; # p2 and consider the box R as it appears to an
observer in the coordinate systems at p;. It is not rectilinear. The change of
variables between the (z,y, z)p, coordinate system and the (z,y, 2)p, coordin-
ate system uniformly approaches the identity map in the C! sense as w — 0
and f — ¢1. For d(p1,p2) < d(p1, po)+d(po, p2) which is dominated by h, and
h — 0. Thus, at scale w, So — S;. Similarly, at scale h, the planes z = +h in
the po-coordinate system converge to the planes z = +h in the p;-coordinate
system. The trajectories of ¢ comprising Ry are intrinsically defined; they are
independent of which coordinate system is used. It follows that

cRy C Ry C ¢ 'R;.
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To get the corresponding assertion with Ry replaced by Jo, we let e = 4/,
which is merely another constant in (0,1). We apply what we have just proved
to the boxes eRy and e 'Ry. Asw — 0 and f — (1, we can bracket the former
between eeR—1 and e~leR;, while we can bracket the latter between ee ' R;
and e le"!R;. Since they themselves bracket J,, concatenation gives

cR = 62R1 CeRyC Jy C 6_1R2 - 6_2R1 = C“IRl.
The same manipulation with e = /¢ proves that cJ; C Ry C ¢c”!'J;. Q.E.D.

To understand the degree to which a set A saturates a julienne J we
would like a nonlinear Fubini estimate that relates the measure of A in J to
its measure in the W%-slices of J. This is not quite straightforward due to the
lack of absolute continuity of W®. The density of one measurable set X in
another measurable set Y is the conditional measure of X NY in Y, namely

m(XNY)
X:Y)=—F—
m( ) (Y
where m is the measure and we assume 0 < m(Y’) < oo. Given measurable sets
Xi,...,Xn, the minimum of m(X;: X;) over 1 <, j < n is their mutual

density. By taking c near 1, the Julienne Nesting Lemma lets us assume that
the mutual density of R;, Ro, Ji, Jo is near 1.

For it is clear that m(cR: ¢c™'R) = c® =1 when ¢ = 1.
The plane x = £ meets the box R = R(p,po,w,h) in a center stable
slice

¢ ={(z,y,2) e R: z=¢}.

The center stable midslice of R is Rg;, which we also denote as R*. See
Figure 17. (As usual, pp has coordinates (xg,yo,0).) The foliation of R by
these slices is smooth and Fubini’s Theorem applies to it. As a further abuse
of notation, we use the same letter “m” to indicate M-volume, slice area, and

density respecting either of these measures.

3.2 LEMMA. Let 0 <d <1 and .1 < p < .9 be given constants. If f
C2-approzimates 1 well enough and w = h%?2 is small enough then for any
essentially W"-saturated set A,

(5) m(A: R) > p= m(A": R®)>dp
(6) m(A": R®)>p=m(A: R) > dp,
where R = R(p,p,w,h) and A" is the W"-saturate of A. See Figure 18.

Proof. First note that since A is essentially W"-saturated, A" differs
from A by a zero set, so m(A: R) = m(A": R) in (5), (6). The letter “d”
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T-axis

R* Rg
FIGURE 17. Center stable slices of R, extended beyond R.
stands for “deteriorates”: the density of A in R deteriorates to density dp in
the slice. Choose constants c,r € (0,1) such that
r(1-10(1 = c%) > d.

This is possible since for ¢ =r = 1, we have 1 > d. Let A" denote the set of
arcs W (q) N R where q € A" NcR. Clearly

AiNcR=A"NcR.

L
W /——\__/
W W
P o S, ]
N /\/
/N// /W
N /-\__/
/—\/ A A“/-\—/

FIGURE 18. W@’-leaves in A are black while those in its complement are gray. A" discards leaves which
meet A in sets of leaf-measure zero, while it fills in leaves which meet A in sets of full leaf measure.
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Since the vectors tangent to these arcs Wi3 (q) N R approximate Ej and since
the constant c is fixed, these arcs stretch all the way across R when w is small
and f C2-approximates ¢; well. See Figure 19. That is, the WW*-holonomy

map is well defined:

™ AgNR® - ALNRY, —w<z<w.

FIGURE 19. The arcs W

.(q) stretch across R without hitting the top or bottom.
According to Lemma 2.2, its Radon-Nikodym derivative is nearly 1. This lets
us assume

r < Radon-Nikodym derivative of 7% < r~}

on R®. Consequently, the area of the slices Ay N RS are all about the same,
from which (5), (6) follow easily. More precisely, assume that m(A: R) > p.
Then

Y m(AYN Rcs)da:
m(R) (R
= T—nm(m(All NR) — (m(A" N R) — m(A! N R))

="

m(Au RCS) > m(Au RCS) > 2w —w

(AL 0 R

3
= ) p>r1(1—10(1 - )p > dp,

=r(p—(1—c3))=r(1—1_

which verifies (5). The proof of (6) is similar; assume that m(A": R®)p > p.
Then

¥ m(A% N RE)da . M4 N R)
m(Rcs) - m(Rcs)

m(A: R) > >r(1 - 10(1 = c?))p > dp.

Q.E.D.

The nonlinear center stable slice of a julienne J = J(p,pg,w,h) is
defined similarly, using the center stable foliation W instead of the linear
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planes z = constant. Namely, we set
Iy =Wige(z)nJ

for points z in the L"-arc L%(po). (Recall that this arc is the intersection of
the z = 0 plane with the center unstable manifold through pg.) The midslice
of J is the center stable slice through pg; it is denoted as J*. See Figure 20.

FIGURE 20. The center stable midslice of the julienne, viewed at the top.
3.3 LEMMA. Under the same hypotheses as in Lemma 3.2,
(7) m(A: J) > p=>m(A": J%) >dp
(8) m(A%: J¥) > p=m(A: J) > dp,
where J = J(p,p,w,h) and A" is the W"-saturate of A.
Proof. This follows immediately from Lemma 3.2 and the consequence

of Lemma 3.1 which states that the mutual densities of R and J, and of R*®
and J, are nearly equal to 1. Q.E.D.

3.4 LEMMA. As W =h%2 -0 and f — ¢1 in the C? sense,

m(JCS)
9) iwh =1

where J = J(p,p,w,h) and m denotes area on the leaf W (p). Also, if J&
denotes the part of J° lying to the right of W{(p), then
m(Jg)

(10) owh = 1.

(See Figure 21.)
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FIGURE 21. Although the edges of J* are bumpy, they stay away from each other.

Proof. (9) is an immediate consequence of Lemma 3.1 and the fact that
Wi (p) converges uniformly to E° in the C! sense. The proof of (10) amounts
to re-inspecting the proof of Lemma 3.1. If q denotes the right endpoint of
the base LS,(p) of J then the distance between W((p) and W{(q) cannot
differ from w by more than Ch'*®, and h'*® « w. At scale w the two center
manifolds are nearly parallel lines at a distance of w apart, and of length 2h.

Thus, the area of J§® is well approximated by 2wh. Q.E.D.

It goes without saying that all these geometric assertions about center
stable slices hold equally well for center unstable slices.

4. Juliennes and holonomy

Next we discuss W"-holonomy at unit displacement. Consider J%, the
center stable midslice of the julienne J = J(p,p,w,h). If p’ € W{'(p) then
the WY-holonomy 7" carries J® homeomorphically into W (p’). According
to Lemma, 2.4, m" is a-Hoélder and « is near 1. Moreover, its Radon-Nikodym
derivative nearly equals 1. Although 7" is locally quite different from an
isometry, we claim that its overall effect on J® is nearly isometric in the
following sense.

4.1 JULIENNE HOLONOMY LEMMA. Let a constant ¢ € (0,1) be given. If
p,p,J are as above, if h = w23 is small enough, and if f C2-approzimates
p1 well enough then

CJ/cs C ,n.ll(JCS) C C—IJ/cs

where J' = J(p',p’,w,h).
Proof. According to Lemma 2.3, 7" sends center manifolds to center
manifolds, and restricted to each center manifold it is Lipschitz with Lipschitz

constant approximately equal to 1. Thus, the image 7"(J) is the union of
center manifolds, all of whose heights are on the order of (1 + o(1))h. Since
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7" is a-Holder, the top and bottom horizontal arcs of J° map to arcs of

diameter < Cw® for some uniform constant C. Q.E.D.

The point of the whole construction: Cw® is very small compared
to h, even though it is huge compared to w.

Set e = y/c. Since Cw® < h, the 7"-image of the top boundary arc of
J lies between the planes z = eh and z = e™'h in the (z,y,2) coordinate
system at p’, and the bottom arc has image between the planes z = —e~'h
and z = —eh. See Figure 22.

FIGURE 22. The julienne J* and its holonomy image 7%J in J/°.

The same reasoning does not imply that the width of 7%(J%) is < 2¢™lw.
Instead, we will use the fact that the Radon-Nikodym derivative of 7" is nearly
equal to 1. Let J§* denote the right half of J; it is |J W(t) where t ranges
over the right half of the arc L3 (p). (These points t have positive y coordin-
ate. Recall that Lj (p) is the intersection of W& (p) with the plane z = 0.)
Let Wy(q) be the right edge of J$°. Consider also the right half J' of J'*s,
and especially consider its right edge, W¢(q'). The holonomy map 7" pre-
serves orientation and carries Wy (q) into a local center manifold W (r). See
Figure 23.

We claim that r approximates q' at scale w. Suppose first that r € LS, (p').
That is, r is too close to p’. Two dimensionality of J* implies that W, (r) lies
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Wi(q)

™J$

(
JE

FIGURE 23. J§ and its 7" holonomy image.

wholly between W (p') and W (cq’) where cq' denotes the right endpoint
of L3,(p’). See Figure 24a. According to Lemma 3.4, the area of the part of
WS (p') bounded by WE (p'), Wi (cq'), and the arcs where Wi (p’) meets
the planes z = +e~'h is well approximated by (cw)(2e 'h) = 2ewh. Moreover,
this region contains 7%(J$*) which has area well approximated by 2wh. Since
e < 1, this is a contradiction.

On the other hand if 7 is too far from p’ in the sense c¢~'q’ lies to the its
left, then 7%(J$) contains the region bounded by Wg.(p'), W< (c7'¢), and
the arcs where the planes z = teh meet WS.(p'). See Figure 24b. The area
of this region is well approximated by (c~!w)(2eh) = 2e~!wh, while the larger
region 7'(JS) has area well approximated by 2wh. Since e™! > 1, this is a

contradiction. Thus, r lies somewhere between cq’ and c¢~1q, so that
cJiS C i (JF) C eI

The same holds for the left-hand half of the juliennes, and the lemma is
proved. Q.E.D.

4.2 JULIENNE HOLONOMY DENSITY LEMMA. Let ¢,p € (0,1) be constants
such that .1 < cp < p < .9, and let f,p,J,p,p',w,h have the same meanings
as in Lemma 4.1. If h = w?/3 is small enough, if f C? approzimates p; well
enough, and if A is an essentially W"-saturated set which has density > p in
J, then A has density > cp in J'.

Proof. The effect here is to let us “turn the corner”. Let d = c!/%. By
Lemma 3.3, if w = h?/3 is small enough and f C? approximates 1 well enough,
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(a) (b)

FIGURE 24. (a) r is too near p’. (b) 7 is too far from p’.

the density of A" in J* deteriorates by no worse than d,
m(A": J%) > dp.

Since A" is W"-saturated, 7" sends A" N J* onto A" N 7%(J%). The Radon-
Nikodym derivative of 7" is nearly equal to 1, and so

m(A%: 7(J%)) > d2p.

By Lemma 4.1, the density of J'® and n"(J®) in each other is nearly equal

to 1 and so
m(A%: J') > d3p.

By Lemma 3.3, it follows that m(A: J') > d*p = cp. Q.E.D.

5. Ergodicity

Now we pull together the estimates in the preceding sections and prove
our main theorem— “the small volume-preserving perturbation f of the time-
one map ; of the geodesic flow on a surface of constant negative curvature
is ergodic”. In the introduction we showed that if f is not ergodic then there
exist measurable sets A, B C M3 which are disjoint, have positive volume,
and are composed of essentially complete WW"-leaves and essentially complete
We-leaves. (To do this we used Birkhoff averages, which is where the volume-
preserving hypothesis entered the picture.)

Let a € A and b € B be density points of A and B. For all sufficiently
small h, the density in a small cube with side 2h about a or b is > .9. Divide
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the cubes into rectilinear boxes of width 2w and height 2h where w = h3/2,
(This requires h~!/2 to be an integer.) It follows that the density of A in
one of these boxes R(a,ap,w,h) near a is > .9, as is the density of B in one
of the boxes R(b,by,w,h) near b. According to Lemma 3.1, these boxes are
highly concentrated in the corresponding juliennes J,, = J(ao, ap, w,h) and
Jpy = J(bo, bp, W, h), so we may assume that the density of A in J,, is > .8, as
is the density of B in Jp,. (Note that in this application of Lemma 3.1, p; = a,
and p2 = agp = pg- The fact that ag is not necessarily equal to a is the reason
that we dealt with py # p; in Lemma 3.1. Note also that the hypotheses
d(p1,po)/h and d(pz, po)/h being bounded are met because ag lies in the cube
of edge 2h around a.) :
Let N be the number supplied by Lemma 1.1. Any two points of M can
be connected by a W™ path with N edges. Fix the constant ¢ = (.5)'/V.
If necessary decrease h so that the hypothesis of Lemma 4.2 is satisfied for
this choice of c. There is a W"* path ag = pg — p1 — p2 — -+ — pn = bg.
Lemma 4.2 asserts that at each step in the path the density of A in the julienne
decays at worst by the factor c. Therefore, the density of A in the N*! julienne,
J(pn,w,h) = Jy, is at least half of its original density of .8 in J,,. That is,
m(A: Jy,) > .4, contrary to the fact that the disjoint set B has density > .8
in the same julienne. Q.E.D.

IBM T.J. WATSON RESEARCH CENTER, YORKTOWN HEIGHTS, NY, first and third authors
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