
Stably Ergodic Diffeomorphisms

Matthew Grayson; Charles Pugh; Michael Shub

The Annals of Mathematics, 2nd Ser., Vol. 140, No. 2. (Sep., 1994), pp. 295-329.

Stable URL:

http://links.jstor.org/sici?sici=0003-486X%28199409%292%3A140%3A2%3C295%3ASED%3E2.0.CO%3B2-F

The Annals of Mathematics is currently published by Annals of Mathematics.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/annals.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Wed Sep 19 15:29:41 2007

http://links.jstor.org/sici?sici=0003-486X%28199409%292%3A140%3A2%3C295%3ASED%3E2.0.CO%3B2-F
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/annals.html


Annals of Mathematics, 140 (1994), 295-329 

Stably ergodic diffeomorphisms 
By MATTHEWGRAYSON, PUGH, SHUBCHARLES and MICHAEL 

Introduction 

Ergodicity (time averages equal space averages) is the most basic, global, 
gross, statistical feature of conservative dynamical systems. Yet it was not 
until twenty-five years ago that D.V. Anosov [I] established the existence of 
open sets of ergodic systems on a wide range of compact manifolds. These 
systems, now called "Anosov" , are globally uniformly hyperbolic. For diffeo- 
morphisms this means that the derivative is the direct sum of a uniform expan- 
sion and a uniform contraction. Anosov systems are structurally stable-they 
are homeomorphically conjugate to their perturbations. All dynamical fea- 
tures of Anosov systems and their perturbations are the same at all scales. 
If, however, there are center directions (directions invariant under the diffeo- 
morphism but neutral with respect to expansion and contraction) then the 
situation is rather different. Indeed, the work of Kolmogorov-Arnol'd-Moser 
(KAM) on invariant tori implies that ergodicity is often impossible. 

Here we show that the KAM center theory may sometimes be irrelevant 
to ergodicity, even in the non-hyperbolic case-we construct examples of er- 
godic diffeomorphisms which are not hyperbolic, not structurally stable, but 
which remain ergodic after volume-preserving perturbations. They are stably 
ergodic but not structurally stable. Center directions exist but the fine scale 
structure of the dynamics in the center direction plays no role in the analysis. 
Instead, ergodicity results from the behavior of the strong unstable and stable 
directions. 

The basic geometric Anosov system is the geodesic flow cp on M3, the 
unit tangent bundle of a compact surface with constant negative Gaussian 
curvature. The flow cp is ergodic with respect to the natural Liouville measure 
on M ~ ,and so are the geodesic flows for perturbations of the Riemann struc- 
ture. (This two-dimensional differential geometry result predates the work of 
Anosov and is due to Hedlund (1934) and Hopf (1939).) Our example is simply 
the time-one map 

c p l :  M 3  -+ M3. 

As does any smooth flow, Tcpl sends the vector field cC, to itself. Thus, 
span cC, is an invariant center direction, and cpl is non-hyperbolic. Although 
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the flow is structurally stable as a flow, its time-one map is not structurally 
stable as a diffeomorphism. To see this, observe that 91 leaves invariant all the 
orbits of the flow, and some of these orbits are periodic-they are diffeomorphic 
copies of the circle. The restriction of 91to a periodic orbit is a circle rotation, 
perturbations of which can dramatically alter the number and type of periodic 
points of 91. This precludes structural stability. 

THEOREM on  the unit tan- 1. The time-one map of the geodesic flow 
gent bundle of a surface of constant negative curvature is  stably ergodic-it is  
ergodic and so are all c2small volume-preserving perturbations of it. 

Let us say a few words about how we became interested in stably ergodic 
dynamics. Our work on the existence of open sets of non-Anosov topologically 
transitive diffeomorphisms on the 4-torus, announced in Shub ([12], [13]) and 
published in Hirsch, Pugh, and Shub [6], and the appearance in English of 
Anosov-Sinai [2] led us to wonder about the corresponding phenomenon for 
ergodicity. It was well known that a linear automorphism of the torus is er- 
godic if and only if none of its eigenvalues are roots of unity. William Parry [9] 
proved that toral automorphisms (or automorphisms of nil-manifolds) are er- 
godic if and only if their strong stable manifolds are dense. We asked whether 
nonlinear, non-measure-preserving perturbations of such non-hyperbolic er-
godic automorphisms of the torus remain topologically transitive and ergodic. 
Theorem 1answers the ergodicity question in the 91 context. The correspond- 
ing topological transitivity question for non-measure-preserving perturbations 
of 91 remains open. 

Here is an example. Consider the 4 x 4 matrix 

Peter Walters [15] proved that the eigenvalues of A are not roots of unity 
although two of them lie on the unit circle. It follows that the diffeomorphism 
A :  T~ --t T~ is ergodic, topologically transitive, but not Anosov. Even for 
this example the following question is open: 

Is every small volume-preserving perturbation of A ergodic 
and/or topologically transitive? 

The idea of the proof Theorem 1 is as follows. The diffeomorphism cpl 
is normally hyperbolic respecting the foliation of M3by the 9-orbits, and its 
unstable and stable manifolds foliate kf3.These are the horocycle foliations 
'FIU,'FIS.Let f : M3-+ M3be a volume-preserving perturbation of 91. Stable 
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manifold theory shows that f leaves invariant foliations WU, WS similar (but 
perhaps not homeomorphic) to  the horocycle foliations. It also leaves invari- 
ant a center foliation WC which is homeomorphic to the orbit foliation 'FIC of 
p. According to Pugh and Shub [lo], the foliations WU, WS are absolutely 
continuous and their Radon-Nikodym derivatives are uniformly bounded on 
reasonable transversals. See Lemma 2.2. 

To analyze ergodicity off we adapt the ideas from Hopf ([7]; see also Pugh 
and Shub [lo, p. 20]), and consider the forward, backward, and bi-directional 
Birkhoff averages of functions g : M~ -+ R along f -orbits, 

If g is any L1 function, these Birkhoff averages converge almost everywhere 
to limit functions B+g, 13-9, and Bg as N + m. These three functions are 
invariant under f and are equal almost everywhere. In fact the map 

is a continuous linear projection from L1 onto the closed linear subspace Inv f 
of f-invariant functions. See Ma% [8, pp. 89-1001. 

Suppose that f is not  ergodic. Then Inv f includes essentially noncon- 
stant functions-functions which are nonconstant on every set of full measure. 
The set C of continuous functions is dense in L1 and a continuous transforma- 
tion carries dense subsets of the domain to dense subsets of the range. Thus, 
B(C) is dense in Inv f ,  and for some continuous function g, G = Bg is essen- 
tially nonconstant. However, except for a zero set, G is constant along stable 
leaves and along unstable leaves. For if y, y' belong to a common stable leaf 
then the distance between fn(y) and fn(y') is tiny when n is large. Continuity 
of g implies that g( fn(y)) - g(f n(y')) is small. The forward Birkhoff average 
BNg(y) is insensitive to the first few terms in the sum, so B+g(y) exists if and 
only if B+g(y1) exists, and when they do exist they are equal. Since we know 
that B+g(y) exists almost everywhere, it follows from the absolute continuity 
of WS that for almost all Ws-leaves, WS(y), B+g exists everywhere on WS(y) 
and is constant along the leaf. The same is valid for unstable leaves respecting 
backward Birkhoff averages. Since B+g(y) = B-g(y) = G almost everywhere, 
we deduce that our essentially nonconstant function G is essentially constant 
along stable and unstable leaves. 
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For any value v E EX, divide M3, modulo a zero set, as M3  = A U B 
where A = {p E M3 : G(p) < v)  and B = {p E M3 : G(p) > v). Since G 
is C1, A and B are measurable, and since G is essentially nonconstant there 
exists a choice of v so that A and B both have positive measure. Since G is 
essentially constant along unstable and stable leaves, A and B consist (modulo 
zero sets) of essentially complete unstable and stable leaves. That is, A and 
B are essentially WUls-saturated. (In contrast, a set is completely WU+- 
saturated if it consists of complete (whole) unstable leaves and complete stable 
leaves.) If A is essentially Wu+-saturated one can replace it by its unstable  
s a tu ra t e  SatU A = the union of the unstable leaves it meets essentially. This 
does not affect its measure; however SatU A may fail to be essentially WS- 
saturated. In other words essential Wu$s-saturation of A and B cannot be 
strengthened to  complete Wu+-saturation. 

The horocycle foliations have the property that any two points in M3 are 
connected by a path of unit horocycle arcs, and the number of arcs in the path 
is uniformly bounded. This is due to  the fact that the bracket of the unstable 
and stable horocycle directions is the geodesic direction, 

Although the unstable and stable directions for f may not be of class C1,and 
so their bracket makes no sense, and although the foliations WU, WS need not 
be homeomorphic to the horocycle foliations, they do share the property that 
any two points of M3  can be joined by a path of N unit unstable and stable 
arcs where N is fixed. We call such a path a Wu+-path. See Figure 1 and 
Lemma 1.1below. 

FIGURE A WU.Spath.1. 

Let a be a density point of A and b be a density of B. They are joined 
by a Wuls-path I?, and we claim that this leads to a contradiction. Here are 
two similar, false proofs of this fact. Both rely on the correct intuition that 
sliding along r forces too much of A to  exist near b. See Figure 2. 
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FIGURE2. A slides to B along a WU.'path 

Assume that the center foliation Wc is absolutely continuous. Since A 
and B have positive measure they meet many center leaves in sets of positive 
leaf measure. Thus, we may assume that a is a density point of A n WC(a) 
and b is a density point of B n WC(b). The natural thing to do is to start 
at a and slide along the foliations WU, WS in the neighborhood of F, using 
WU along the unstable arcs and WS along the stable ones. Sliding along 
the unstable foliation sends center manifolds to center manifolds because the 
unstable manifolds foliate the center unstable manifolds. The same is true for 
the stable manifolds. See Figure 3. 

FIGURE3. The concatenated holonomy map 0 :  Wc(a)-+ Wc(b). 

Thus, the concatenated holonomy map along F, 0 : Wc(a) -+ WC(b), is 
absolutely continuous with bounded Radon-Nikodym derivative. It carries 
A n WC(a) onto A n WC(b) since A is essentially WUls-saturated. The map 0 
is a C1 diffeomorphism (see Lemma 2.3) and therefore does not affect density 
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points, so we see that b is a density point of both A n Wc(b) and B n WC(b). 
Since A and B are disjoint this is impossible. 

The first defect in this proof is the assumption that Wc is absolutely 
continuous. Although the orbit foliation of p is absolutely continuous, being 
smooth, there is no reason to expect that the same is true for its perturbation. 
Eventually we hope to find a dynamic example of this pathology. The second 
defect is that essential Wu$s-saturation of A does not imply that 8 carries 
A n Wc(a) to A n Wc(b). Complete saturation is necessary to deduce this. 

Here is a second false proof. Instead of using the unstable and stable 
foliations to define holonomy maps on transverse center manifolds, one can 
use them to slide a three-dimensional neighborhood U of a along r .  See 
Figure 2. (Points of U slide along unstable arcs neighboring the first leg of 
I?, then along stable arcs neighboring the second leg of r, etc.) This gives a 
homeomorphism 0 : U -+ V with O(a) = b and V a neighborhood of b. By 
absolute continuity of WU,Ws, 19 and 0-I are absolutely continuous. Since A 
is essentially Wuls-saturated, O(A n U) = A n V except for a zero set. Since 
O(a) = b, b is a density point of both A and B,  a contradiction. 

The defect of this proof is the tacit assumption that 0 carries density 
points to density points. Although a Lipeomorphism between open sets of Eu- 
clidean space has this property,* the existence of a bounded Radon-Nikodym 
derivative does not imply Lipschitzness in dimensions > 1. Indeed, it is a sad 
fact that absolutely continuous homeomorphisms can destroy density points, 
as is shown in the following picture, Figure 4, of a smooth area-preserving 

FIGURE A smooth area-preserving homeomorphism which destroys a density point.4. 

homeomorphism of the 2-disc which destroys the density of A at the cusp. Also, 
although it is clear that an absolutely continuous homeomorphism preserves 
almost a11 density points, this is not good enough for our purposes. 

' 2 . Buczolich [4] proved this is also true for non-open subsets of Euclidean space. 
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To get around the problem of density point destruction we resort to  a 
finer description of the way A looks at  the density point a. Density points of 
A have more regularity than density points of general measurable sets. The 
set A is not merely highly concentrated in small regular neighborhoods U of a 
(in terms of measure) but it is also spread through U thoroughly in terms of 
thin substrips, called "juliennes". See Section 3. It turns out that sliding along 
WU, WS preserves this stronger type of density, and we do get a contradiction 
after all. 

Brin and Pesin [3] also studied ergodic properties of partially hyperbolic 
systems and focused on the transitivity of the strong stable and unstable lam- 
inations. This transitivity is central to our analysis. Their techniques prove 
and generalize the ergodicity of the time-t map of the geodesic flow on surfaces 
of negative curvature and non-hyperbolic toral automorphisms with dense sta- 
ble manifolds, but do not extend to  perturbations. The false proofs we have 
given above have their correct counterparts in Brin and Pesin. We thank Tolya 
Katok for pointing out their work to  us. 

1. Transitivity 

Recall that cp is the geodesic flow on the unit tangent bundle M of a 
compact surface with constant negative curvature. The manifold M is three- 
dimensional and cp is hyperbolic respecting the splitting T M  = HU$HC$HS. 
The center direction HCis the span of the vector field 6. Tangent to  HUand 
HSare the horocycle foliations 'FIU and Xs; tangent to the HCis the orbit 
foliation. All three foliations are cp-invariant and smooth, in fact, analytic. 
Similarly, if f C2-approximates cpl then f leaves invariant a unique splitting 
T M  = EU@ EC@ ESwhich approximates the horocycle splitting. Tangent to  
EU,EC,and ESare unique f-invariant foliations WU, WC, and WS. A path 
consisting of arcs alternately in Wu-leaves and in Ws-leaves is a WU+ path. 

1.1LEMMA.Any two points in M are connected by a WU+ path consisting 
of at most N arcs, each of length at most a,where N depends only on the 
manifolds M .  

We give two proofs, the first geometric and the second topological. 

Proof # l .  We start with the horocycle foliations Xu and 'FIS. Since the 
unit tangent bundle of the hyperbolic plane T ~ ( w ~ )covers our manifold, we 
will work there and cover a fundamental domain. 

Given a unit vector v in T1(W2), there are two points a t  infinity, v+ and 
v-, corresponding to  the forward and backward limit points of the geodesic 
through v. The stable (unstable) leaf through v corresponds to the unit vectors 
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normal to the horocycle through v centered about v+ (v-). Thus an 7iu$S-path 
in M3 lifts to  (the unit normal vectors to) a path of sequentially tangent 
horocycle arcs in JH2. 

To cover a large open set in T~(JH~),  we must be able to translate and 
rotate an arbitrary vector. We rotate via horocyclic triangles: Three distinct 
points a t  infinity in the hyperbolic plane define an ideal triangle. Centered 
on those ideal points are three pairwise tangent horocycles. By arranging the 
three ideal points in the upper half-plane model to lie a t  -1, 1, and oo,we can 
calculate the side length of the horocyclic triangle which results in the center. 
See Figures 5a, 5b. The metric on the line Im(z) = 2 is ds = dx/2.Therefore, 

horocycles 1 i d e a l  
triangle 

-1 

..-.., , 

( 4  (b) 

FIGURE5. (a) Poincare disk model. (b) Upper half-plane model 

this equilateral horocyclic triangle has unit length sides. Following the sides of 
this triangle realizes a rotation by 180". See Figure 6. Shortening the sides of 

FIGURE6. Following the sides of horocyclic triangles yields rotation. 

the triangle, while retaining two of the tangencies, yields all smaller rotations. 
To achieve translation, we use a pair of horocycle arcs. Two of unit length 
produce a translation by over 1.9. See Figure 7. By now, the astute reader 
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unstable 
x 

FIGURE7. Following these horocyclic arcs yields translation. 

should be annoyed by our lack of a metric on M.  There is some ambiguity 
in choosing a metric, even if we require invariance under the action of the 
isometries of W2. The most natural metric assigns length 2n to the unit circle 
in the tangent plane at a point, and is the standard hyperbolic metric for 
parallel translations. Since horocycles have constant geodesic curvature = 1, 
the translational and rotational parts are equal, and the length of an NU+- 
path in M is precisely fi times the hyperbolic length of its corresponding 
horocyclic path. 

With the moves described above, it is possible to cover a ball of diameter 
R in T ~ ( W ~ )  with a three-parameter family of NUls-paths, each made up of 2 
1.1R + 12 arcs of length 5 fi.The 12 comes from triangles at the beginning 
and end to aim and to change directions, each triangle being allowed two 
circuits to avoid trouble with the -n = n identification; we cover (-2n, 2n), 
and thus we cover the full [-n, n] in an open fashion. See Figure 8. The 

FIGURE8. Horocyclic path from vo to v l .  

three parameters are the lengths, ll and 12, of the edges of the two horocyclic 
triangles opposite the endpoint vectors and the length l3 of each arc in the 
translational part. These are analogous to 8,z ,  and r in Euclidean cylindrical 
coordinates. The length of the first triangle base determines the angle of 
translation, the last triangle edge determines the point in the target fiber, and 
the translational length is, after a multiplicative correction between .9 and 1, 
the radial distance to the base point of the target fiber. With the open subset of 
the parameters .1 < 11,12,  l3 < .9, the image of a fixed vector is an open subset 
of M ,  and the derivative map is surjective (the exact Jacobian is a nice exercise 
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in plane hyperbolic geometry). Geometrically, we cover every fiber whose base 
point lies in an annulus with inner radius .2R and outer radius 1.6R. (The 1.6 
is less than 2(.g2).) If R is the diameter of a fundamental domain, then the 
preimage of this annulus contains at least one complete closed fundamental 
domain. An open map from the interior of one compact set, covering another 
compact set, which is a local homeomorphism on the preimage of the interior 
of the target is still onto after a continuous perturbation. Q.E.D. 

The second proof of Lemma 1.1 is somewhat more general. It has two 
steps. Given smooth vector fields X,  Y on a manifold M ,  an X, Y path of 
length 5 N consists of 5 N concatenated trajectory arcs of the X- and Y -
flows, each having time length < 1. 

PROPOSITION X ,Y , Z  are smooth, pointwise linearly independent 1.2. If 
vector fields on a compact 3-manifold M ,  [X,Y] = 2, and 2 has a dense 
orbit, then there is an N such that any pair of points in M can be joined by 
an X ,Y path of length 5 N. 

Proof. Let y , + ,  and q be the X ,  Y, and 2 flows. Fix p E M and 
consider the map 

: (r,3, t) H 50, 0 $s 0 %(P) 

where r, s ,  t are small. Since X,  Y, Z do not vanish at p, is a diffeomorphism 
from a neighborhood of (O,0, 0) in (-1, 1)3 C R3 to a neighborhood U of p 
in M .  By compactness of M, these neighborhoods U have inner radius pp 
uniformly bounded away from zero, say pp 2 p > 0 for all p E M. Let Up 
denote the open neighborhood of radius p at p, and let y be a dense orbit of 
Z. There is a constant L such that any two of these neighborhoods Up and 
U, are joined by an arc of y having time length 5 L. Otherwise, there is a 
sequence of pairs p,, q, such that the shortest time for y to transit from Upn 
to U,, is 2 n. By compactness, we may assume p, + p and q, + q. Since y 
is dense there is an arc yo C y from Up to U,. Since Up,, Up, U,,, and U, all 
have the same radius p, yo also joins Upn to U,,, contrary to the assumption 
that the shortest transit time is 2 n. 

Since [X, Y] = Z there is a constant c > 0 such that if q = qt(p) and 
[t] 5 c, where q is the 2-flow, then there is an X,  Y path of length 4 from p 
to q. This is the usual picture of the Lie bracket [X, Y] = Z,  and becomes 
especially clear if drawn in a flowbox for X .  

Now, given any pair p, q E M ,  there is an X,  Y path from p to q defined as 
follows. Some pl E Up is joined to some ql E U, by a Z-path of time length 5 
L and this path can be replaced by an X , Y  path of length approximately 
4Llc. Also there is an X,  Y, Z path from p to pl of length 3, for pl E Up. 
The 2-arc of this path can again be replaced by an X,  Y path of length 5 Nl 
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where Nl = 4/c. The same is true at q. Concatenation gives an X,  Y path of 
length N = 4 + (8 + 4L)/c from p to q. Q.E.D. 

COROLLARY path of length 5 N joining any pair 1.3. There is an 
of points in M = T~(IH2). 

Proof. The geodesic flow is ergodic, therefore topologically transitive, 
and therefore has a dense orbit. The formula [HU, HS] = -HC = -+ completes 
the proof. Q.E.D. 

PROPOSITION on a com- 1.4. Suppose that X,Y are smooth vector fields 
pact m-manifold M and every pair of points p,q E M can be joined by an 
X,Y path of length 5 N .  If Xf,Y' are uniquely integrable vector fields which 
Co-approximateX,Y well enough, then every pair of points in M can be joined 
b y  an X',Yf path of length 1 2N. 

Proof. Let cp and $ be the X- and Y-flows. Let IN be the unit cube in 
IRN, where I = (-1,l) .  Fix some p E M and consider the map I?: IN -+ M 
defined by 

r :  ( t l > " ' > t ~ )  (Ptl '$t2 O " ' O $ t N ( ~ ) '  

(We tacitly assume that N is even.) The map r is smooth and onto. By Sard's 
Theorem, most of its values are regular. Choose one, say r .  Since r is onto, 
r - l ( r )  # 0. Choose t = ( t l , . . . , tN)  E r-'(r). Regularity implies that there is 
a small m-disc D at t which r carries diffeomorphically onto a neighborhood 
U of r .  

Let q be an arbitrary point of M. There exists s = (sl, . . . ,sN) E such 
that @ ( r )= q where @ is the composition 

The diffeomorphism @ carries the neighborhood U onto a neighborhood V, of 
q. This neighborhood V, contains a compact sub-neighborhood W, of q, and 
taking the appropriate orientation of the disc D ,  for all w E W, we have 

By equicontinuity and unique integrability, the perturbed vector fields X' and 
Y' generate flows cp' and $' which C0 approximate cp and $ uniformly on 
compact time intervals. Thus, for all w E W,, 

where a' = cpkl o $La 0 . . . 0 $LN and I" = cp& o $[2 o . . . ${N (p). Consequently, 
@' o r f ( D )> W,. 
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By compactness, we cover M with finitely many such neighborhoods Wg. 
If XI, Y' approximate X ,  Y well enough then we conclude that 

That is, each pair p, q E M is joined by an XI, Y' path of length 5 2N. Q.E.D. 

COROLLARY1.5. W i t h  reference to  Lemma 1.1, if f approximates pl 
well enough i n  the C1 sense, then any two points i n  M = TI (m2) are connected 
by a Wu9s-path consisting of at most  N arcs, each of length at most  1, where 
N depends only o n  the manifold M .  

Proof. By Corollary 1.3 there is an Xu'S path of length 5 No joining 
any two points in M. When f approximates pl  in the C1 sense, then the 
line fields EU,ESapproximate HU,HSin the C0 sense and they are uniquely 
integrable. Since HU,HSare orientable, so are EU,ES,and they support vector 
fields. By Proposition 1.4 any p, q E M are joined by a WU>S path of length 
2N0. Q.E.D. 

Remark. Generalizing 1.2, 1.4 to more than two vector fields presents 
no problem. The hypothesis that XI, Y' are uniquely integrable may be su- 
perfluous. 

2. Uniformities 

In this section we sharpen and refine several estimates involving pertur- 
bations of pl .  

2.1 LEMMA.The  hyperbolic splitting for a perturbation of pl  is uniformly 
Holder i n  the sense described below. 

Proof. Fix any 6 , 0 5 6 < 1. If N is a sufficiently small c2-neighborhood 
of pl and f E N then we claim that the hyperbolic splitting EU@EC@ESfor f 
is 6-Holder and that the 6-Holder constant is uniformly bounded. SHolderness 
of the splitting is standard (see Pugh and Shub, [ lo,  p. 51, for example); the 
only issue is uniformity. The plane-field ECUis found as the unique F-invariant 
section of a bundle of linear maps 

L F ' L  

The fiber of L at p E M is L, = { P  E L(HcU,HS): J J  PI1 5 1) and F, sends 
L, to Lfp according to the natural Tf-action, 
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where 
A B  A : H C U + H C U  B :  HS-tHCU 

~ p f= ( C  K )  ' C :  HU+HCS' K :  HS- tHS 

respecting T M  = HCU@ HS. As the neighborhood N shrinks to pl  in the 
C1-sense, Tp f converges uniformly to 

Thus, the fiber constant k = supp LipF, tends uniformly to A - l ,  while the 
base constant p = Lip f- l  tends uniformly to A. This gives the fiber domi- 
nance condition kp8  < 1. Besides, since N is a C2-neighborhood, the C2-size 
of f E N is uniformly bounded. This implies that the c'-size of F is uni- 
formly bounded, and therefore that the 0-Holder constant H of F is uniformly 
bounded. According to the Hijlder Section Theorem in Shub [14, p. 461, the 
&Holder constant of the uniquely F-invariant section is estimated as at most 

which is uniformly bounded. Q.E.D. 

Next, we consider the holonomy along the unstable f-invariant lamination 
WU of a C2-small perturbation f of pl .  Let D ,  D' be C1 2-discs in M which 
are uniformly transverse to the unstable horocycle foliation Xu in the sense 
that the angle between HUand the tangent planes to D ,  D' is always at least 
45 degrees. Since f approximates p l ,  D and D' are transverse to WU also. 

A Wu-holonomy m a p  is a continuous function nu defined on an open 
subset U C D which satisfies nU(p) E WU(p)nD' for all p E U .  See Figure 9. 

We shrink D so that U = D. The fundamental fact about nu is that it is a 
homeomorphism to its image and although nu may fail to be differentiable, it 
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is absolutely continuous: It sends sets of Lebesgue area zero in D to sets of 
Lebesgue area zero in Dl. Any absolutely continuous function has a Radon- 
Nikodym derivative, a "generalized Jacobian" ,which is locally integrable. The 
Radon-Nikodym derivative Jac nu of nu is not only locally integrable but ac- 
tually continuous and positive. See Pugh and Shub [lo, p. 81. 

2.2 LEMMA.If f E N and N is a C2-neighborhood of cpl which shrinks 
to cpl then rUconverges unzformly to the ~u-holonomy map hU in the Radon- 
Nikodym sense described below. If D cWq then Jac nu converges uniformly 
to 1. 

Proof. Consider p E D,  nU(p) = q E WU(p)n Dl, and assume that 
the arc length in WU(p) from p to q is at most 1. With D ,  Dl as above, we 
claim that nu 3 hU and JacnU 3 Jac hU as N shrinks to pl .  The fact that 
nu 3 hU amounts to the locally uniform convergence of WU to Xu,  and this is 
a consequence of its construction via the graph transform method in Hirsch, 
Pugh, and Shub [6] .See also Lemma 2.4 below. 

Anosov's formula for Jacnu as explained in Pugh and Shub [lo, p. 81, is 

det Tp ( f  -n 1 D)Jac, nu = lim 
n-m det Tq(f ID') ' 

By the chain rule, this limit is the infinite product 

" 
detTpk(f-]If-k~) det Tpk(f-' / f - k D )  det T;: f - I  det T:: f 

det Tqk(f-llf-kDl) det Ti; f -1 det T;; f -l det Tqk( f -l I f - k D l )  ' k=O k=O 

where f - I C p  = pk and f-ICq = qk. We claim that the product converges 
uniformly exponentially. That is, its factors differ from 1by at most CPk where 
C, p are uniform constants and p < 1. Uniformity refers to all f ,p, q, D ,  Dl 
as hypothesized. Since ECSis a uniformly exponential attractor under Tf-IC 
as k + cxl, the angle between the tangent plane T~~f - k ~and the plane Eg is 
at most C~P! for uniform constants C1, pl with pl < 1. Since M is compact 
and T f is continuous, the outer factors 

det Tpk ( f  -'1 f - k ~ o )  det T;; f -' 
and

det Ti; f -1 det Tqk ( f  -'lf-kol) 

differ from 1 by at most C2Pi. The same is true of the middle factor. For by 
Lemma 2.1, the planes EE ,EGi differ by at most Hd(pk, qk)', d being the dis- 
tance in M. Since f is uniformly C2, the determinants det T;; f l ,det T;: f -' 
differ by at most C3d(pk, qk)o where C3 is a uniform constant. The determi- 
nants themselves are bounded away from 0 and m since M is compact. Thus, 
their ratio differs from 1by at most C4d(pk, qk)' where C4 is another uniform 
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constant. Since q E WU(p) and the arc length from p to q in WU(p) is uni- 
formly bounded, d(pk, qk) 5 C5(X- E ) - ~ where E + 0 as the neighborhood 
JVshrinks to 91, and C5 is a uniform constant. Thus, 

! det Ti: f -' ! o -k- 1  < C 6 ( ( X - & ) )  . 
det Tiif 

Because each of the three factors in the infinite product converges uniformly 
exponentially to 1, the infinite product converges uniformly to a uniformly 
bounded limit. 

Since the infinite product expression for Jacnu is dominated by a fixed 
absolutely convergent product, n(l+ Cpk), and since for each fixed k, 

the Lebesgue dominated convergence theorem implies that the limit of the 
products is the product of the limits as N shrinks to 91. That is, 

Jac nu 3 Jac hU 

If D C WpCS and D' C WgCS then JacnU 3 1 since Jac hU = 1 on center stable 
transversals. Q.E.D. 

This last is easily seen in the SL(2, R) model for the geodesic flow. Here 
the flow is g u [$  e"]g. The center stable manifold through g is given by 

,!,Ig and the hu-holonomy from g to [i ; I g  is hu(t, v) = (s,w) when 
there exists an x such that 

The matrix of partial derivatives at t = 0 = v is 

which has determinant 1. The frames in which the matrix calculation is done 
are orthonormal, so the Jacobian of hU is 1. 

Remark. Here is a second way to prove Lemma 2.2. Returning to the 
proof of Anosov's Jacobian formula in Pugh and Shub [lo,  pp. 5-11], note that 
all constructions of pre-foliations and pre-foliation Jacobians depend continu- 
ously on f EJV.The natural action of T f on these Jacobians is also continuous 
with respect to f ,  and this action can be viewed as a contraction mapping on 
the space of trial Jacobian functions. The fixed point of a family of uniform 

[: 
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contractions which depend continuously on a parameter also depends contin- 
uously on that parameter. In this case the fixed point is the actual Jacobian 
of the Wu-holonomy and the parameter is the diffeomorphism f .  

The unstable horocycle foliation 'Flu is subordinate to the center unstable 
horocycle foliation 'FICU,so the 'Flu-holonomy map hU preserves the 'FICU-leaves. 
It sends the p-trajectory H i  to the p-trajectory H i  when q E H:, and its 
restriction to H i  is an isometry, 

The next result states that the same is nearly true after perturbation. 

2.3 LEMMA.The Wu-holonomy map rUpreserves the center foliation 
WC. If q E WU(p) then z - ~sends WC(p) to WC(q), is C1, and is uniformly 
nearly isometric. 

Proof. The Wu-foliation is subordinate to the Wcu-foliation, so the WU- 
holonomy map ruautomatically carries WC(p) to WC(q). We will show that 
the line field EU,restricted to each Wcu-leaf, is C1. It follows that the WU- 
foliation and its holonomy maps along WCU are C1. In the proof of Lemma 2.2, 
we exhibited ECUas an invariant section of a bundle of linear maps. Similarly, 
to construct EUdirectly one considers the new bundle map 

where the fiber of L at p E W is L, = : ((P(({PE L(HU,HCS) 5 I),  F is the 
natural map L, -+ Lfp sending P to F ( P )  = ( C  + K P )  o (A + BP)-', and 

respecting T M = HU$HCS. Thus, F is a fiber contraction with fiber constant 
k =f A-l  and base constant p = Lip f -' =f A. (So far, this tells us nothing 
new because the fiber constant only dominates the base constant at &Holder 
scales, 8 < 1.) However, we can replace the base manifold M with a manifold 
where the base constant tends to 1. Namely, let W be the non-separable C2 
manifold consisting of the disjoint union of all the WCu-leaves. Since WCU 
is f-invariant, f is a diffeomorphism of W to itself and F becomes a fiber 
contraction 
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Now the fiber constant k dominates the base constant ,LL = Lip(f Iw)-' since 
p 3 1 as N shrinks to pl .  The Cr Section Theorem of Hirsch, Pugh and 
Shub [6] implies that the unique F-invariant section of L, namely EU,is C1. 
The C1-uniformity of the invariant section follows from the facts that the WCU- 
leaves are uniformly C2, the map f is uniformly C2, the splitting HU$ HCSis 
fixed and C1, and the fiber constant uniformly dominates the base constant. 
Since EUis uniformly C1 on W,  the Wu-holonomy maps on W are also locally 
uniformly C1. As N shrinks to p l ,  the Wcu-leaves tend locally C2-uniformly 
to the Xcu-leaves and the line field EU,considered on W, tends locally C1- 
uniformly to HU.  Thus, the holonomy maps i.ru restricted to the center leaves 
tend locally C1-uniformly to the horocycle isometry H; -+ HG. Q.E.D. 

2.4 LEMMA. Given 6, 0 5 6 < 1, the unit Wu-holonomy maps for any f 
in a small C2-neighborhood of p l  are uniformly 6-Holder. 

Remark. By the proof of Lemma 2.3, the line field EUis Holder, but 
in general the integral curves of a Holder line field need not form a Holder 
foliation. By a unit holonomy map we indicate the assumption that the WU- 
arcs along which we slide have length at most 1. 

Proof. Let p, q, D ,  D' be points and transversal discs as in Lemma 2.2. 
We know that the Jacobian of the holonomy map D -+ D' is uniformly 
bounded and we also know by Lemma 2.3 that the holonomy map restricted 
to the center leaves is C1. Thus, if the holonorny map were differentiable, its 
derivative would be a 2 x 2 matrix ( t  ) respecting the splitting ECCB Es, 
while the entry a and the determinant would be bounded and bounded away 
from 0. Thus d would be bounded and bounded away from 0. However, this 
would still give us no control over the shear entry b. 

To prove that the Wu-holonomy map is uniformly 6-Holder, we exhibit the 
unit unstable manifolds WU(p) as graphs of maps which are Holder functions 
of p. To simplify the estimates, we introduce uniform coordinate systems 
adapted to p.  Given p E M ,  we define wp: R3 -+M as follows. 

(1) wp sends the x-axis to HU(p),  the unstable horocycle at p. The parame- 
trization is an orientation-preserving isometry. 

(2) wp sends the (x,y)-plane to HS(HU(p)) UqEHUp= HS(q), and for each 
fixed x, the parametrization (x, y, 0) ++ wp(x, y, 0) is an orientation-preserving 
isometry from the y-line x x R x (0) onto HS(wp(x, 0,O)). 

(3) wp(x,Y, t) = ~ l ( w p ( x ,Y, 0)). 
See Figure 10. 

Since the horocycle foliations for the geodesic flow p are smooth, each wp 
is Cm. In fact w : h!l x R3-+ M x M defined by (p, w) ++ (p, wp(w)) is Cm 
too. The wp-coordinate system is a special type of flowbox for p. Thus, wp is 
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FIGURE The horocycle foliations at p.10. 

uniquely specified: ( I ) ,  (2) specify it on the (x, y)-plane through p = (0,0,0) 
and (3) specifies elsewhere. Besides, the center unstable horocycles are the 
(x, 2)-planes and the center stable horocycles are the (y, z)-planes. However, 
since [HU,HS]# 0, the (x, y)-planes have no dynamical significance. 

On R3 we choose the maximum coordinate norm ( x  y z )  = 

max(lxl, Iyl, 121) and the corresponding metric. 
Let the time-one map cpl be called q5 and represent q5 in w-coordinates at 

p and q5p as 
4p -W 4 ~- - 1 0 q 5 0 ~ p .  

More precisely, restrict wp to a large cube Q(R) in IR3 such that w#p o q5 o 

up(Q(R)) makes sense. In these coordinates q5 is linear, 

and X > 1. Next, consider a C2-approximation f to q5. Its representation in 
the w-coordinates is 

f - - l 0 f o w p .
P -W f ~  

Since w is Cm, fp  uniformly C2-approximates q5p when f C2-approximates cpl. 
Consider the space G of maps g : [-R, R] -+ R2 such that g(0) = 0 and 

Lipg < 1. The natural action of q5p on G is given by the graph transform, 

The graph of q5p#g is the q5p-image of the graph of g. The graph transform is 
a contraction respecting the special metric 
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The sup is taken over x E [-R, R]. In fact, since we use the maximum 
coordinate norm in EX3, 

lg(X-lx) - g'(X-lx)l IX-1x1 
= 1. sup 

IX-1x1 1x1 I X-ld(g, 9'). 

Now fp  C1-approximates +p and it too defines a graph transform fp# : 6 -+ S .  
The formula for fp# is 

where G :  x t-t (x, gs), while rl and ~ 2 3are the projections of iR3 onto the x- 
axis and the (y, z)-plane. Thus, G is the function whose image is the graph of 
g. Since fp  C1-approximates +p, fp# is a contraction of S with nearly the same 
contraction constant x-' as has +p#. Since M is compact these contractions 
are uniform over M and we get a fiber contraction 

M X S % M X S  

"1 1" F : (P, 9) " (P, fP#d  
M f ,  M .  

We claim that the Holder Section Theorem implies that the unique F-invariant 
section of this bundle is @-Holder. The unique invariant section is of course 
the unstable manifold at p. To apply the theorem we must check that F is a 
@-Holder map of the bundle M  x  6 and that the fiber constant appropriately 
dominates the base constant. In fact we prove that F is Lipschitz. We first 
establish 

(4) Ifp(w) - fp4w)l 5 Clwld(p,pl) 

for a uniform constant C.  We know that fp(0) = 0 for all p E M and that 

w ++ fp(w) is C2. Thus, ap is C1 and vanishes identically when w = 0. By 
the mean value theorem in local coordinates when d(p, p') is small, 

which implies that I fp(w)- fPl(w)l 5 Clwl Ip - p'l. Interpreted in the metric 
of M this gives (4). 

Now we deduce that F is Lipschitz. We know that F contracts the fiber 
p x  S  into the fiber f p  x 6 , and also that it is Lipschitz on the base, being 
just f there, so we must merely estimate the shear term. We claim that 

mailto:@-Holder
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for a uniform constant C.  For brevity, write h(x) = nl o fp o Gx, and hl(x) = 
TI o fpt o Gx. Thus h, h' are overflowing, expanding Lipeomorphisms: 

Lip hl-' I = o fp o G o hK1(x), and so by (4): 1. Then fp#g(x) ~ 2 3  

(fP#g(x)- fPl#g(x)I 5 b 2 3  0 f p  0 G 0 h-'(x) - n23 0 fp '  O G O  h-l(x)l 

+ In23o fpl  o G o h - ' ( ~ )- 0 fpl o G o hl-l(x)l~ 2 3  

I GIG 0 h-'(x) (d(p, P') 

+ L i p ( ~ r ~ ~fpl) Lip G I  h-' (x) - hl-' (x)1o 


l clh-'(x) ld(p, P') 

+ 1. I h-' o h' o h'-' (x) - h-' o h o h'-'(2) 1 
5 Clxld(p, +~ i p  - h o hl-'(x)(h-'~h' o h'-'(x) 

I Clxld(p,pl)+ Ih1(x') - h(x')l 

where x' = h'-'(2). By (4), 

Jh1(x')- h(xl)J= Jnlo fp  0 Gx' - nl 0 fpl 0 Gx'l I CIGxlld(p, p') 

I Clxlld(p,P') l Clxld(p, PI). 

Thus, ( fp#g(x) - fp'#g(x) 1 I2C(x(d(p, p'), which completes the proof that F 
is Lipschitz, since 

The Holder Section Theorem therefore applies and we deduce that M x S 
has a unique F-invariant section a : M -+ M x G,  which is 6-Holder provided 
that kpe < 1, Ic being the fiber constant of F and p = Lip f- l  being the base 
constant. If f E N and N shrinks to cpl, k tends to A-' and p tends to /\. 
Thus, when JVis small, kpe < 1 and so a is @-Holder. Besides, the 6-Holder 
constant of a is at most ~ p ' / ( l  - kpe) where H = Lip F. It is uniformly 
bounded. 

Since the graph of a (p)  is the unit unstable manifold at p, the Wu-foliation 
is uniformly 6-Holder. Q.E.D. 

3. Juliennes 

We are going to study some geometric objects which could be described as 
"small, narrow, nonlinear prisms", or 'ijuliennes" since they resemble slivered 
vegetables. First we introduce coordinates adapted to a perturbation f of 
91. Let f be such a perturbation and denote its invariant splitting as TpM3 = 

mailto:@-Holder
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Ei@EE@E;. These line fields are a-Holder functions of p E M3 and a is nearly 
equal to 1. The center unstable and center stable bundles are ECU= EU$ EC 

ES@ EC. Tangent to the bundles EU, ECS,and ECS= ES,ECU, ECare unique f -
invariant laminations WU, WS, WCU, WCS,WC. All of them have smooth leaves 
but they need not be smooth foliations (hence the word "lamination"). Of the 
five laminations, only WU, WS are absolutely continuous in general. 

On a neighborhood U of any point p E M3 we introduce a smooth 
(x, y, z)-coordinate system such that 

p = (0,0, 01, span (&)p = $, span (day), = $, span (g),= E;, 

the vectors (&),, (&),, (k),have unit length, and the orientations agree. 
For example we can use the exponential chart at p adapted to the splitting. 
Strictly speaking, we should write the coordinates of a point in U as (x, y, Z ) ~ , J  

to indicate that the coordinates depend on p and f .  We denote by Zp the 
set of points in U with zero z-coordinate and by rr the projection U -+ Zp, 
~ ( x ,  = (x,y). The rectilinear square in Zp with center POand width 2w y, z) 
is 

S = S(P,PO, W) = [XO -W, XO + w] X [YO - W, YO + w], 

while the rectilinear box with center po = (xo, yo, 0), width 2w, and height 2h 
is 

R(P, Po, w, h) = S x [-h, hl. 

See Figure 11. 

FIGURE11. The square S and box R. 

Since the laminations WCU, WCS are transverse to Zp and to each other 
they give transverse laminations 

LU= WCUn Zp and LS= WCSn Zp 

mailto:Ei@EE@E;
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of 2,. The leaves LU, LS of these laminations give a second coordinate grid on 
2,. It is Holder, not smooth. Let Lg(po) denote the arc of Lkc(po) between 
the lines x = x o f  w on Zpwhere po = (xo, yo, 0) and w > 0 is small. Similarly, 
let L&(po) denote the arc of Lf,,(po) between the lines y = yo fw on Zp. 
These two arcs through po have length approximately equal to 2w and form 
the axes of a nonlinear square 

c = C(P, PO, W) = ULrOc(r)nLfoc(s) 

where q ranges over Li(po)  and r ranges over Lk(po). See Figure 12. The 

PI  xo xo + wx o - w  x-axis 

FIGURE12. The base C of the julienne J in the plane 2, 

square is centered at po and has width approximately equal to 2w. Trans-
versality of the laminations implies that each of the intersections referred to 
in the definition is a single point. Consistent with this notation, we set W{(t) 
equal to the arc of Wic(t)  between the planes z = f h .  Then 

J = J(P, PO,w, h) = UWh"(t) 
t EC 

is the julienne with center po, width 2w, and height 2h. See Figures 13, 14. 
The vertical boundary of J is the set d C J  = W{(t).UtEdC 

Under reasonable conditions we will show that boxes and juliennes ap- 
proximate each other well. To make this precise it will be useful to dilate 
coordinates and write 

cR = R(p, po, cw, ch) and c J  = J (p ,  po, cw, ch) 

where c is a real constant. We will assume that po, PI ,  p2 are nearby points of 
M and that po lies on the horizontal plane in the (x,y,  z) coordinate systems 
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FIGURE13. The julienne J consists of center manifold arcs between z = -h and z = +h. 

FIGURE14. A julienne at  three magnifications. 
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at  both pl and p2. That is, po E Zpl f l  Zp2. Then 

are the appropriate sets to compare. 

3.1 JULIENNENESTINGLEMMA.Let c E (0,1) be fixed. If f -+cpl in the 
c2sense and w = h3I2 -+ 0, while d(po,pl)/h and d(po,p2)/hstay bounded, 
then 

cR1 C J 2  C c-'R~ and cJl c R2 c c-I ~ 1 .  

Remarks. If no relation between w and h is imposed then nesting fails. 
For example, if h3I2 >> w then the juliennes are very thin neighborhoods of the 
center manifold (an arc) through po while the box is a very thin neighborhood 
of a vertical straight line segment. Generically these two arcs in 3-space meet 
only at po, so thin neighborhoods of them hardly intersect at  all, much less 
nest. See Figure 15a. On the other hand, if h << w then Jl, J2 are virtually 
equal to the small nonlinear squares El,  C2 in Zpl, Zpz Generically, these 
squares meet in a curve, so thin neighborhoods of them will not nest. See 
Figure 15b. As a special case, if pl = pa, then the lemma asserts that a 

FIGURE15. (a) h is too big, h3I2 >> W. (b) h is too small, h << w. 

julienne nests between two dilated boxes and a box nests between two dilated 
juliennes. Since c can be chosen nearly equal to 1,this provides the possibility 
of interchanging juliennes with boxes. By the way, the exponent 312 could be 
replaced by any fixed power between 1and 2. 
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Proof. Let p = pl or pa. The boundary of C = C(p, po, w) consists 
of four arcs: two .Cu-arcs through the endpoints of LS,(po) and two Cs-arcs 
through the endpoints of Lk(po). The tangents to these arcs approximate E: 
and E; uniformly as w + 0 and f + cpl. Rom this information alone, it 
follows that 

c s  c C c c-ls. 

See Figure 16. Similarly, the tangent vectors to the center manifolds Wz(t) 

FIGURE16. Nested squares in Z, 

comprising J differ from Ez by at most Chff. For ECis a-Holder and the 
distance of any point of J to p is no more than h + d(p, po) = 2h. It follows 
that Wi(t)  differs from the vertical segment t x 1-h, h] by at most chff+l .  
As f + cpl, a -+ 1. When a > 112, h"+' is on a smaller order than w = h3I2. 
That is, the linear projection r(W$(t)) has diameter << w so the projection 
of the vertical boundary of J fits between cS  and c-lS. This implies that 

C R CJ C C - ~ Rand CJCRCc-'J.  

which takes care of the case pl = pa. 
Next, suppose that pl # pa and consider the box R2 as it appears to an 

observer in the coordinate systems at pl. It is not rectilinear. The change of 
variables between the (x, y, z ) ~ ,coordinate system and the (x, y, z ) ~ ,  coordin- 
ate system uniformly approaches the identity map in the C1 sense as w -+ 0 
and f + cpl . For d(p1, pa) 5 d(p1, po) +d(po, pa) which is dominated by h, and 
h + 0. Thus, at scale w, S2-+ S1. Similarly, at scale h, the planes z = fh in 
the pa-coordinate system converge to the planes z = f h  in the pl-coordinate 
system. The trajectories of cp comprising R2 are intrinsically defined; they are 
independent of which coordinate system is used. It follows that 
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To get the corresponding assertion with R2 replaced by J2,we let e = A, 
which is merely another constant in (0 , l ) .  We apply what we have just proved 
to the boxes eR2 and e-'R2. As w -+ 0 and f -+ pl ,  we can bracket the former 
between eeR -1 and e-'eR1, while we can bracket the latter between eeP1 R~ 
and e-le-lR1. Since they themselves bracket J2,concatenation gives 

The same manipulation with e = proves that cJ1 c R2 c c-I J1. Q.E.D. 

To understand the degree to which a set A saturates a julienne J we 
would like a nonlinear Fubini estimate that relates the measure of A in J to 
its measure in the Wcs-slices of J .  This is not quite straightforward due to the 
lack of absolute continuity of WCS. The density of one measurable set X in 
another measurable set Y is the conditional measure of X n Y in Y, namely 

where m is the measure and we assume 0 < m(Y) < oo.Given measurable sets 
Xi,  . . . , X,, the minimum of m(Xi : Xj) over 1 5 i ,  j 5 n is their mutual 
density. By taking c near 1,the Julienne Nesting Lemma lets us assume that 

the mutual density of R1, R2, J1, J2 is near 1. 

For it is clear that m(cR: c - ~ R )  = c6 = 1 when c = 1. 
The plane x = E meets the box R = R(p, po, w, h) in a center stable 

slice 
Ry = {(x, y, Z )  E R :  x = c). 

The center stable midslice of R is RE,  which we also denote as RCS. See 
Figure 17. (As usual, po has coordinates (xo, yo, O).) The foliation of R by 
these slices is smooth and Fubini's Theorem applies to it. As a further abuse 
of notation, we use the same letter "m" to indicate M-volume, slice area, and 
density respecting either of these measures. 

3.2 LEMMA.Let 8 < d < 1 and .1 5 p 5 .9 be given constants. If f 
C2-approzimates pl  well enough and w = h3I2 is small enough then for any 
essentially Wu-saturated set A, 

(5) m(A: R) 2 p = +  m(AU: RCS) 2 dp 
(6) m(AU: RCS)2 p +m(A : R) 2 dp, 

where R = R(p,p,w,h) and AU is the Wu-saturate of A. See Figure 18. 

Proof. First note that since A is essentially Wu-saturated, AU differs 
from A by a zero set, so m(A: R) = m(AU: R) in (5), (6). The letter "d" 
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FIGURE17. Center stable slices of R, extended beyond R. 

stands for "deteriorates": the density of A in R deteriorates to density dp in 
the slice. Choose constants c, r E (0 , l )  such that 

This is possible since for c = r = 1, we have 1 > d. Let A: denote the set of 
arcs WGc(q)nR where q E AUncR. Clearly 

FIGURE18. Wu-leaves in A are black while those in its complement are gray. AU discards leaves which 

meet A in sets of leaf-measure zero, while it fills in leaves which meet A in sets of full leaf measure. 
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Since the vectors tangent to these arcs W&(q) n R approximate E; and since 
the constant c is fixed, these arcs stretch all the way across R when w is small 
and f C2-approximates cpl well. See Figure 19. That is, the Wu-holonomy 
map is well defined: 

FIGURE19. The arcs WIU,,(q) stretch across R without hitting the top or bottom. 

According to Lemma 2.2, its Radon-Nikodym derivative is nearly 1. This lets 
US assume 

r 5 Radon-Nikodym derivative of nu 5 r-I 

on RCS. Consequently, the area of the slices A,U nRF are all about the same, 
from which ( 5 ) , (6) follow easily. More precisely, assume that m(A : R) 2 p. 
Then 

--	 (m(AUnR) - (m(A" nR) - m(A: nR))
m(R) 

which verifies (5). The proof of (6) is similar; assume that m(Au : RCS)p2 p. 
Then 

J> m(A: nRF)dx m(A,Un Rcs) 
- > dp.m(A: R) 2 	 I r 1 r ( l  - 10(1 c ~ ) ) ~

m(RCS) m(RCS) 
Q.E.D. 

The nonlinear center stable slice of a julienne J = J (p ,po, w, h) is 
defined similarly, using the center stable foliation WCS instead of the linear 
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planes x = constant. Namely, we set 

for points x in the Lu-arc L$(po). (Recall that this arc is the intersection of 
the z = 0 plane with the center unstable manifold through PO.) The midslice 
of J is the center stable slice through po; it is denoted as JCS.See Figure 20. 

FIGURE20. The center stable midslice of the julienne, viewed at the top. 

3.3 LEMMA. Under the same hypotheses as in Lemma 3.2, 

(7) m(A: J )  2 p + m(AU: JCS)2 dp 
(8) m(AU: JCS) J)2 dp,2 p + m(A : 

where J = J(p,p,w,h) and AU is the Wu-saturate of A. 

Proof. This follows immediately from Lemma 3.2 and the consequence 
of Lemma 3.1 which states that the mutual densities of R and J, and of RCS 
and JCS, Q.E.D.are nearly equal to 1. 

3.4 LEMMA. As W = h3I2-+ 0 and f -+ cpl in the C2 sense, 

where J = J(p,p,w,h) and m denotes area on the leaf WgC(p). Also, if Jy 
denotes the part of JCSlying to the right of W{(p), then 

(See Figure 21.) 
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FIGURE Although the edges of JCSare bumpy, they stay away from each other. 21. 

Proof. (9) is an immediate consequence of Lemma 3.1 and the fact that 
WEc(p) converges uniformly to EF in the C1 sense. The proof of (10) amounts 
to re-inspecting the proof of Lemma 3.1. If q denotes the right endpoint of 
the base Lk(p) of JCSthen the distance between W{(p) and Wi(q) cannot 
differ from w by more than chl+", and hl+" << w. At scale w the two center 
manifolds are nearly parallel lines at  a distance of w apart, and of length 2h. 
Thus, the area of Jy is well approximated by 2wh. Q.E.D. 

It goes without saying that all these geometric assertions about center 
stable slices hold equally well for center unstable slices. 

4. Juliennes and holonomy 

Next we discuss Wu-holonomy at unit displacement. Consider JCS,the 
center stable midslice of the julienne J = J (p ,  p, w, h). If p' E W;-'(p) then 
the Wu-holonomy nu carries JCShomeomorphically into WEc(p1). According 
to Lemma 2.4, nu is a-Holder and a is near 1. Moreover, its Radon-Nikodym 
derivative nearly equals 1. Although nu is locally quite different from an 
isometry, we claim that its overall effect on JCSis nearly isometric in the 
following sense. 

4.1 JULIENNE LEMMA. Let a constant c E (0,l) be given. IfHOLONOMY 
p,pl,J are as above, if h = w2I3 is small enough, and if f C2-approximates 
cpl well enough then 

cJtcSC nu(JCs)c C - ~ J ' ~ ~  

where J' = J(p1,p',w,h). 

Proof. According to Lemma 2.3, nu sends center manifolds to center 
manifolds, and restricted to each center manifold it is Lipschitz with Lipschitz 
constant approximately equal to 1. Thus, the image nU(JCS) is the union of 
center manifolds, all of whose heights are on the order of (1 + o(1))h. Since 
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ruis a-Holder, the top and bottom horizontal arcs of JCSmap to arcs of 
diameter 5 CW" for some uniform constant C. Q.E.D. 

The point of the whole construction: Cw" is very small compared 
to h, even though it is huge compared to w. 

Set e = A. Since Cw" << h, the nu-image of the top boundary arc of 
JCVies between the planes z = eh and z = e-'h in the (x,y, z) coordinate 
system at p', and the bottom arc has image between the planes z = -eP1h 
and z = -eh. See Figure 22. 

FIGURE22. The julienne JCSand its holonomy image .rrUJCSin JiCS. 

The same reasoning does not imply that the width of nU(JCS) is 5 2c-'w. 
Instead, we will use the fact that the Radon-Nikodym derivative of nu is nearly 
equal to 1. Let Jy denote the right half of JCS;it is U Wl(t) where t ranges 
over the right half of the arc Lk(p). (These points t have positive y coordin-
ate. Recall that LfoC(p) is the intersection of Wgc(p) with the plane z = 0.) 
Let Wl(q) be the right edge of J y .  Consider also the right half Jp of JfCS, 
and especially consider its right edge, Wl(qf). The holonomy map rupre-
serves orientation and carries W$(q) into a local center manifold W;,(r). See 
Figure 23. 

We claim that r approximates q' at scale w. Suppose first that r E L:, (p'). 
That is, r is too close to p'. Two dimensionality of JtCS liesimplies that W;,(r) 
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FIGURE23. Jy and its .rru holonomy image 

wholly between W;,(pf) and WLC(cq1) where cq' denotes the right endpoint 
of LZs(pf). See Figure 24a. According to Lemma 3.4, the area of the part of 
W1",",(pt) bounded by WIC,,(pt), W;,(cqf), and the arcs where W1",",(pf) meets 
the planes z = fe-lh is well approximated by (cw)(2eC1h) = 2ewh. Moreover, 
this region contains rU(Jy)which has area well approximated by 2wh. Since 
e < 1, this is a contradiction. 

On the other hand if r is too far from p' in the sense c-lq' lies to  the its 
left, then i.rU( J y) contains the region bounded by W;, (p') ,w;, (c-' q'), and 
the arcs where the planes z = feh meet W1",",(pf). See Figure 24b. The area 
of this region is well approximated by (c-'w)(2eh) = 2e-lwh, while the larger 
region i.rU(Jy) has area well approximated by 2wh. Since e-l > 1, this is a 
contradiction. Thus, r lies somewhere between cq' and c-lqt, so that 

The same holds for the left-hand half of the juliennes, and the lemma is 
proved. Q.E.D. 

4.2 JULIENNE Let c,p E (0,l) be constants HOLONOMY DENSITY LEMMA. 

such that .15 cp < p < .9, and let f,cp,J,p,pf,w,h have the same meanings 
as in Lemma 4.1. If h = w2I3 is small enough, if f c2approzimates cpl well 
enough, and if A is an essentially Wu-saturated set which has density > p in 
J, then A has density > cp in J'. 

Proof. The effect here is to let us "turn the corner". Let d = c1I4. By 
Lemma 3.3, if w = h2I3 is small enough and f C2 approximates cpl well enough, 
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FIGURE24. (a) r is too near p'. (b) r is too far from p'. 

the density of AU in JCsdeteriorates by no worse than d, 

m(AU: JCs)2 dp. 

Since AU is Wu-saturated, rusends AU nJCsonto AU n rU(JCs) .The Radon- 
Nikodym derivative of rUis nearly equal to 1, and so 

By Lemma 4.1, the density of JfCsand i.rU(JCs) in each other is nearly equal 
to  1 and so 

m(AU: JICS)) d3p. 

By Lemma 3.3, it follows that m(A : J') d 4 ~cp.= Q.E.D. 

5.  Ergodicity 

Now we pull together the estimates in the preceding sections and prove 
our main theorem-"the small volume-preserving perturbation f of the time- 
one map cpl of the geodesic flow on a surface of constant negative curvature 
is ergodic". In the introduction we showed that if f is not ergodic then there 
exist measurable sets A, B c M~ which are disjoint, have positive volume, 
and are composed of essentially complete Wu-leaves and essentially complete 
Ws-leaves. (To do this we used Birkhoff averages, which is where the volume- 
preserving hypothesis entered the picture.) 

Let a E A and b E B be density points of A and B. For all sufficiently 
small h, the density in a small cube with side 2h about a or b is 2 .9. Divide 
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the cubes into rectilinear boxes of width 2w and height 2h where w = h3I2. 
(This requires h-'I2 to be an integer.) It follows that the density of A in 
one of these boxes R(a, ao, w, h) near a is 2 .9, as is the density of B in one 
of the boxes R(b, bo, w, h) near b. According to Lemma 3.1, these boxes are 
highly concentrated in the corresponding juliennes Juo= J (ao ,  ao, w, h) and 
Jbo= J(bo,bo, w, h),  so we may assume that the density of A in J,, is 2 .8, as 
is the density of B in Jbo(Note that in this application of Lemma 3.1, pl = a,  
and p2 = a0 = po. The fact that a0 is not necessarily equal to a is the reason 
that we dealt with po # p1 in Lemma 3.1. Note also that the hypotheses 
d(pl, po)/h and d(p2, po)/h being bounded are met because a0 lies in the cube 
of edge 2h around a.) 

Let N be the number supplied by Lemma 1.1. Any two points of M can 
be connected by a WU+path with N edges. Fix the constant c = (.5)'lN. 
If necessary decrease h so that the hypothesis of Lemma 4.2 is satisfied for 
this choice of c. There is a path a0 = po + p1 + p2 + . . . + p~ = b0.WUls 

Lemma 4.2 asserts that at each step in the path the density of A in the julienne 
decays at  worst by the factor c. Therefore, the density of A in the N~~julienne, 
J (pN,  w, h) = Jbo,is at least half of its original density of .8 in J,,. That is, 
m(A:  Jbo)1 .4, contrary to the fact that the disjoint set B has density 2 .8 
in the same julienne. Q.E.D. 
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