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1. Introduction

This paper was born with the realization that a theorem of Smale can be applied
to unify the polynomial-time bound proofs of several of the recent LP interior
methods. For the sake of completeness, we deduce the version of the theorem that
we use from the Kantorovich theory.

Let £ and % denote Banach spaces, where the norm on & is || ||. For an
operator M:¥*->%, let |[M| denote the usual operator norm |M]:=
sup{|M(u", ..., u®)]||; ||u'”| =1Vi}. Assume that f: 2> ¥ is an analytic map,
i.e., the Fréchet derivatives D*f(x): ¥* > ¥ exist for all xe &, k=1 and if y is in
a sufficiently small open neighborhood of x, then f(y) =Y, _, (1/k!) D*f(x)(y — x)~.
If Df ' exists at x, define

B(x) = Df(x)"'f(x)],

1/(k—1)

y(x)i=sup |- Df(x) DAf(x)
k=2 .

Note that B(x) is the step length at x when Newton’s method is applied to
approximate a zero of f.

This research is supported by NSF grants.
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Theorem 1 (Smale [17]). If B(€)y(€) <4, then the Newton sequence x'% = £ x"V =
xO— Df(x"™) 7 f(x'7) is well-defined (i.e., the inverses exist), converges to a zero of
1, and satisfies

x0T —x ) <207 xV-x@). O

The particular ease with which this theorem can be applied derives from the fact
that it depends only on data at the initial point £ as opposed to typical theorems
in the Kantorovich theory requiring bounds on data at all points in a sufficiently
large neighborhood of &

For our goals, a slight variation of the above theorem allows the most expedient
application. The algorithms we consider are of the following general form. Assume
that F:R" xR, >R, Let x'* be given. Recursively define

X(i+1):: x(i)_DxF(x(i)’ t(i+l))—1F(x(i), t(i+1))

for some V0. We will be interested in finding specific & 6>0 such that if
[x®— &7 <e, where F(£7,17)=0, and if [t —¢D|/1"<8, then ||x"*V—
£V < ¢ for some £V satisfying F(£'"Y, ") = 0. (The norms we consider will
actually depend on £, but we ignore this at present.)

One way to approach finding £ and & is simply as follows. Find ¢, § > 0, indepen-
dent of ¢, such that if F(& t)=0, |—¢|<e, |t'—t]/t<8, f(x)= F(x,t'), then B(§)
and y(&) are sufficiently small so that the above theorem implies ||& — £'|| < &, where
&'=¢-Df(&)"f(&) and f(¢') =0. However, because for the maps we consider the
values B(¢£) and y(&) are easier to compute than B(£) and y(£), the following
theorem provides an even quicker approach.

Let B(x, r)={y; [ly —x[|<r}.

Theorem 2. Assume that f: U~ ¥ is analytic, where U is an open subset of . Assume
that 8= B(¢), y=v(§) and =0 satisfy B=36<1/(40vy) and B(¢£48)< U. If
|€—¢|| <8, then the Newton sequence x' = & x""" = xV —~ Df(x'")™" f(x'") is well-
defined and converges to a zero ¢ of f in B(&3B), this being the only zero of f in
B(¢, 46). Moreover,

Ix?—¢)<33)s.

We remark that the power series of f at £ converges for all x€ B(£ 1/y) by the
root test, and hence for naturally defined f the required containment B({ 48) < U
follows from the other assumptions. In particular, for rational functions f:R" > R"
(i.e., quotients of polynomials) the containment need not be checked when applying
the theorem.

We prove the theorem in Appendix A by showing that it is a consequence of a
Kantorovich theorem as presented in Deuflhard and Heindl [5]. We first proved
this result using Smale’s [17] arguments, but felt the Kantorovich arguments would
be more accessible to the optimization community. The constant § in Smale’s theorem
cannot be replaced with 3, as he showed. The requirements 8 <35<1/(40y) and



J. Renegar, M. Shub / Unified complexity analysis 3

B(£,48) < U in the latter theorem can certainly be made better, but probably at the
price of a longer proof.

We apply the theorem to prove O(v/m L) iteration bounds for several of the recent
LP and QP interior algorithms. Here, m refers to the number of linear inequalities,
assumed to exceed the number of variables, and L is the number of bits required
to specify the problem to be solved.

We first apply Theorem 2 in Section 2 to the barrier method. Here the application
is particularly simple. One is tempted to say that the barrier method was made for
the theorem. Gonzaga [7] obtained an O(vm L) iteration bound for the barrier
method. Daya and Shetty [3] have also studied this algorithm.

In Section 3, we briefly discuss the slight modifications in the LP argument
required to prove an O(v/m L) iteration bound for the barrier method applied to
convex QP. Goldfarb and Liu [6] and Ye [21] proved this bound. Daya and Shetty
[4] have also obtained this bound.

In Section 4, Theorem 2 is applied to the primal algorithm studied by Renegar
[14]. Sonnevend [19] proposed a similar algorithm, but gave no complexity analysis.
Vaidya [20] also considered a closely related algorithm.

In Section 5, we consider the primal-dual algorithm studied by Kojima et al. [9]
and Monteiro and Adler [13]. This algorithm has roots in the work of Megiddo
[11]. Monteiro and Adler obtained an O(v/m L) iteration bound for this algorithm.
Their analysis is simple and direct, but from a different vantage point than ours.

In Section 6, we briefly consider the primal-dual algorithm applied to convex
QP. Kojima et al. [10] and Monteiro and Adler [13] obtained an O(v'm L) iteration
bound for this algorithm.

All of the above algorithms follow the “‘central trajectory,” as studied by Bayer
and Lagarias [1] and Megiddo and Shub [12].

Our focus is on iteration bounds as opposed to overall arithmetic complexity.
However, only a moderate amount of additional work is required to obtain the
record O(n’mL) arithmetic operation bound for LP, proven independently by
Gonzaga [7] and Vaidya [20]. In Appendix B we display this for the barrier method.
Minor modifications of the arguments yield the same bound for convex QP, a bound
that was first proven by Kojima et al. [10] and, shortly thereafter, by Monteiro and
Adler [13].

We do not discuss bit operation bounds. Of course that is what is really required
to prove polynomial-time bounds.

Smale [17] motivated several papers. Royden [16] derived both the Kantorovich
theory and Smale’s theorem from a single theorem. He also slightly improved Smale’s
requisite bound on Bvy. Rheinboldt [15] has given a direct derivation of Smale’s
theorem from the Kantorovich theory. In Appendix A we follow Rheinboldt’s
approach.

Curry [2] extended Smale’s theorem to higher order methods in the case of
univariate polynomials. Independently of both Smale and Curry, Kim [8] proved
similar results for univariate polynomials.
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Of related interest is Smale [18], especially Section 4, where a similar theorem
for a path-following algorithm is discussed.

Beware that we aim at giving short proofs. Little motivation for some of the ideas
in the proofs is given, in particular, for the choice of norms that make everything
work out so nicely. Some motivation can be found by reading, for example, Sections
2 and 3 of Renegar [14].

Now we fix some notation. Throughout we consider problems of the form min ¢”x,
subject to Ax = b, although application of the theorem is also easy for the linear
equalities, non-negative variables format. (Most of the aforementioned LP papers
assume the latter format.) We use «; to denote the ith row of A.

We assume {x; Ax> b} to be non-empty and bounded, and we assume a known
“good” starting point for the algorithms. Although we may make these assumptions
without loss of generality, we avoid the arguments as to why. For the puzzled reader
we remark that almost every paper in the area discusses this. Because all of the
algorithms follow the central trajectory, good starting points for one algorithm are
generally easily translated into good starting points for another. Furthermore, many
papers in the area discuss how to obtain an optimal solution from a feasible point
%, where ¢'x is sufficiently close to the optimal objective value — sufficiently close
is of the form 27" (e.g., see [14], Lemma 8.1).

We use e to denote the vector of all ones, and || ||, to denote the usual Euclidean
norm.

Finally, note that the conclusions of Theorem 2 imply that the Newton iterates
are in 9. In particular, if as in some of our applications the natural domain % is
the interior of the feasible region, then the iterates are feasible.

We appreciate the careful consideration and comments given by the referees.

2. The LP barrier method

In this section we consider the LP barrier method that was first analyzed by Gonzaga
[71.
Let Int={x; Ax> b}, and let h:Int xR, >R denote the map

h(x, t)y=c"x—1tY In(ax—b,).

For fixed ¢, the map x - h(x, t) is strictly convex, having a unique minimum. The
sequence of minima as 7}0 converges to the optimal solution of the LP. The algorithm
simply computes a Newton sequence x©@ xV ... where

x(i+1):= x(i)_vih(x(i)’ t(H»l))—leh(x(i), [(i+1))

and 19)0.

We claim that for appropriately chosen x'’, we may always take
(1—-1/(41vm)) 1" and each x" will then be a “good” approximation to the minimum
of the map x - h(x, t'”). Now we prove this claim.

) (D
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Let A(x) be the diagonal matrix with ith diagonal entry a;x —b;.

Assume ¢t >0 fixed. Let ¢ be the minimum of x> h(x, 1), i.e., c—tATA(&) e =0.
Define | x| :=|A4(&)7'Ax|,. For t'>0, define ¢ and || ||" in the obvious way.

Assume that ||—¢&| <3, i.e., £ is a “good” approximation to £ Assume that
(1-1/(41Vm))t<t'<t Define f(x)=c—t'ATA(x) 'e. Let £ == £ — Df (&) ' f(£). To
prove our claim, we show that ||§' — &'|' < 5.

First note that

B=11D1(O) O] == 1A ALATAE) AT ATAE) el

t—t .
==Llela=ib,
where the first inequality follows from the fact that the eliminated matrix is a
projection matrix.
Next we compute a bound on

1/(k—1)

yi=sup | 2 DA€ D1(8)

k=2
Observe that the operator D*f(£): (R")* - R" sends the tuple (1, ..., u'®) e (R")*
to (—1)*t'k!ATA(¢€)"'w where weR™ is the vector with w,=[];w}’ and w'’ =
A(&)"Au. Since w7, =lu""|, it easily follows that ||w|,=<1 if |u"”||<1 for
all j. Consequently,

the equality because the eliminated matrix is a projection matrix. Hence, y<1.
Theorem 2 now implies that ||£' —¢'|| <725 and ||~ &'|| <. Since

1
DA DE(¢) H <[14(&) "A[ATA(¢) AT ATA(E) =1,

- o —b; _ 1 - 1 -
o —b, 1-[a(6—&))/[ag—b] 1—]e—¢] '
we have for all v that
loll"=A(&) " Avll,=< A& " A(O)|llvll <55l

In particular, ||§ — £'||'<25, concluding the proof of the claim.
The principal remaining ingredient for proving an O(v'm L) iteration bound is
an inequality of the form

15

3

cTE~k*<2tm,
where k* is the optimal objective value. In proving this inequality, first note that
since ¢~ tATA(¢) e =0, we have
c(E-&)=1"A(&) A - ) < t]e].) A(6) A - §)|-
=Vmit|é—¢f <svme
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Hence, assuming that x* is an optimal solution,
TE—kF=c(E- &)+ (E-x¥)
<sotvVm4+c(E—x*)+1t Z%gk—__fi
=stvm+tm+(E—x*)[c—tATA(£) e]
=s5tvVm+tm+ (£~ x%)"0.
In Appendix B we present an argument for modifying the preceding O(n’m'’L)
arithmetic operation algorithm into one requiring only O(n’mL) operations. The

latter operation count was first established for LP by Gonzaga [7] and Vaidya [20],
but with much longer proofs.

3. The QP barrier method

In this section we briefly consider the barrier method applied to convex quadratic
programming. The notation and definitions remain exactly the same as in the previous
section, except that the objective ¢"x is replaced throughout by 5x"Qx + ¢"'x, where
Q is symmetric and positive semi-definite, and hence h:IntXR, - R is defined by

h(x, t)=3x"Qx+c'x—tY In(ax —b,).

The crucial fact here is that if M is an m X n matrix of rank n, m=n, then
[M(Q+MT™M)'MT"|,=<1. We will prove this inequality momentarily.

Proceeding exactly as in the preceding section for computing 8 and v, except
that now Df(¢) ' =[t'ATA(£) *A] 'isreplaced by Df(¢) '=[Q+1t'ATA(&)PA] Y,
and using the above inequality shows that we may again take ("*V=
(1-1/(41vVm)) ",

Now to prove the inequality. Let S denote an m x m orthogonal matrix moving
the range of M onto R" x {0}, and let M be the n X n invertible matrix defined by
M= PSM, where P is projection onto R". Then

IM(Q+M ™M) 'M"|,
=|[SMU(Q+[SM][SM])"'[SM]"||, (by othogonality of S)
=|[[PSM}(Q+[PSMT'[PSM]) '[PSM]"|,
= ||M(Q+M ™M) M"|,
=[(I+MTQM )|,
=1,

where the third, fourth and fifth expressions are with respect to the Euclidean norm
on R", and where the final inequality is because M ~"QM ~ is positive semi-definite.
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4. A primal LP algorithm

In this section we consider the algorithm studied in Renegar [14]. (Also see
Sonnevend [17] and Vaidya [20].)

Assume that k¥ is a known strict upper bound on the optimal objective value.
Assume that Ax®> b, ¢"x@ < k'”, The sequence x'”, i=1,2, ..., is defined recur-
sively as follows. Let x"""! be obtained by applying one iteration of Newton’s
method, beginning at x'”, in attempting to maximize

x->mIn(k“ P —c"x)+ ¥ In(ax—b),
i=1
where kY =5cTx"+(1-68)k" and 0<8<1 is some prespecified value. (The
function is strictly concave on {x; Ax> b, ¢'x < k"*V})

We claim that if x‘” is chosen appropriately and 0< §=<1/(42vm), then for all
i, x'” is a “good” approximation to the actual maximum it is meant to approximate.
We now prove this claim.

Let A denote the 2m X n matrix with ith row «; if ism, —¢" if i>m.

Assume that k is a strict upper bound for the optimal objective value. Let A(x)
be the 2m X 2m diagonal matrix with ith diagonal entry ax—~b; if ism, k—c"x if
i>m. Let ¢ be the unique zero in {x; Ax> b, ¢'x <k} of the function

x> ATA(x) Te(=V [mIn(k—c"x)+Y In(ax~b)]).

Assume that £ satisfies |4(£) 'A(£—§)|, =+, i.e., € is a “good” approximation
to & Let k"= 8c"£+(1—8)k, where 0< 8<1/(42vm). Define A’(x) and ¢ in the
obvious way. Let f(x)=A"A'(x)""e, and let & :=¢— Df(&)""f(£). To prove our
claim we show that |A'(¢)'A(& — &), <%

Let § =(k—Kk')/(k—c"€&). Then

(B L
0=5=a(1+E5E) < a1+ a0 AE- )l <1/ 0.

Defining f(£)= ATA'(£) 'e, note that
(&) =AT[A' (&) = A(£) "le=8ATA(§)7¢,

where & =0if i<m, & =1if i > m. Thus, defining ||v] = [|4"(£§) ' Av]|, for all veR",
we have that

B=IDf(&) f(&) = 8]l 4(&) " A(ATA (&) A ATA(E) |
<38)|é], =<0,
the first inequality following from the fact that the eliminated matrix is a projection

matrix. Moreover, by exactly the same argument as in Section 2 we have that

1/¢k=1)
=1.

1 -1k
D& D)

y=sup
k=2
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Since
Ilé—fllsIIA’(§)’1A(§)II2|IA(5)"5(5—f)llzﬂ%g-%<%,
the theorem implies that ||£'— ¢'|| <{- 35 and ||£ — ¢ <g;. Hence,
4 AE-elh= e s -el=; 52 <,

concluding the proof of the claim.
The principal remaining ingredient for proving an O(v'm L) iteration bound is
an inequality of the form

k' —k*<(1-38)(k—k*),

where k* is the optimal objective value. In proving this inequality, assume that x*
is an optimal solution. Then

CkF=(k—c §)<_CTXf)_

c'é
However,
k—c"x* k—c'x* ax®—b,
0s=m =W + : .
k—c'¢ ' k—c"¢ 2 o — b

=2m+(x*—&)TATA(¢) e =2m+ (x*— £)"0.
Hence, k—cT¢=1(k—k*), and thus
K= k¥ = (k—k*) — (k— k') = (k — k*) = 8 (k — cT&) = (1-38) (k — k*).

Since

s (-8 - A gE 20
5_3(1 i cg) 5(1- |4 AZ-£)],) =28,

it now follows that

k'—k*<(1-38)(k—k*).

5. The primal-dual LP algorithm

In this section we consider the primal-dual LP algorithm studied by Kojima et al.
[9] and Monteiro and Adler [13]. This algorithm has roots in the work of
Megiddo [11].

As in Section 2, define Int={x; Ax>b} and let h:IntxR, >R be given by
h(x,t)=c"x—tY In(a;x—b;). The unique minimum of x- h(x, t) is the point
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satisfying ¢ —tA"A(x) 'e=0, where A(x) is the m X m diagonal matrix with ith
diagonal entry a;x —b;. Equivalently, it is determined by the equations

ZA(x)e—te=0,
c—ATz=0,

where Z is the diagonal matrix with ith diagonal entry z,. Letting w = (x, z) e R""™,
and letting H(w, t) =0 denote the above system of equations, the algorithm simply
computes a Newton sequence w'”, w'¥, ... where

w(i+1) — W(i)_DwH(W(i), t(i+l))~1H(W(i)’ t(i+1)),

and 9}0.

We claim that for appropriately chosen w'”’, we may always take
(1-1/(40vm))t"” and each w'” will then be a “good” approximation to the zero
of w- H(w, t'”) satisfying x € Int. Now we prove this claim.

Fix w=(0, ) satisfying c— A"2=0.

Let Z={(x,z)eR""™; A"z =0}. We assume that w'” satisfies c — A"z” =0. Then
w— e for all i

In what follows, w = (x, z) always refers to points in Z.

Assume >0 fixed. Let £ =(p, w)c Z be the unique zero of w->H(w+Ww, 1)
satisfying p € Int. Let {2 denote the m X m diagonal matrix with ith diagonal entry
;. Then (2+2)A(p)e—te=0.

For w=(x, z) ¢ Z, define

) t(i+1) =

1 .
wl 1=;II(Q +Z)Ax+ZA(p)e|,

1 A
=~ (I(2+2)Ax I3+ ZA(p)elD)',

where the equality is because (ZA(p)e) (2 + 2)Ax =1zTAx =0.

For t'>0, define ¢ =(p’, w’), 2’ and || ||’ in the obvious way.

Assume that €€ Z, ||E—£]| <7, i.e., £ is a good approximation to £ Assume that
(1-1/(40vVm))t<t'<t. Define f:Z~>R™ by f(w)= (Z+2Z)A(x)e—t'e. Let &=
E—Df(§) ' f(£). To prove our claim we show that ||£'— &'| <.

Observe that for we Z, ||w|| =(1/1)|| Df(£)w]|,. Hence

t—t'
t

B=|Df(&)'f(&)] =

llel>< 5.

Let wtl=(x1) zl1)) i =1, 2, denote two arbitrary vectors in . Note that D*f(¢)
maps (wH'), w') to the vector ZMAx™1+ ZAxM. Since ||w| = (1/)|| Df(é)w],,
it follows that Df(£) "D’ f(£) maps (w''!, w'?)) to a vector of || ||-length at most

1 1
LNZO A+ | 225V,
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Now,

1 o
12 A, = [ 2 A (p) (2 + Z2) AP,

1 A
== 12MAp)elofl(2+ Z)AxH o= e wh ] w].

The same inequality holds for | ZP'AxM|,. Since D*f=0 for k=2, it follows that

1/(k-1)
=1.

=

yi=sup Df() DH(&)

The theorem now implies that ||§' — &'|| <3 - 25 and ||é — &'|| <s5.
Note that by the non-negativity of the entries in the diagonal matrices,

[A(p)A(p) 2= 1+ A(p) 'A(p" ~p)l>

=122+ 26~ p)l

1 A
$1+;||(!2 +2)4A(p" —p)ell,

<1+|¢-¢|.
Similarly, [[(2'+ Z)(2+Z) '|.<1+]|& — &|. Hence, for all we Z,

ol < (1@ + 2)(2+ 2) 30+ 2) Ax

+[4(p")4(0) 2 Za(p)ell)"?
<(1+[&=£Dlwll.

In particular, it now follows that ||’ — £'||'<+5, concluding the proof of the claim.
Assuming £ = (p, @), the primal feasibility of 5 follows from w;+ ;>0 (for all i)
and

- 1 . 1 A
w5=[|E= €)== (2 + 2)AG —p)l. =7 (2 +2)A(p) ~ te]..

Similarly, for the dual feasibility of w+ Z.
The principal remaining ingredient for proving an O(v'm L) iteration bound is a
duality gap bound of the form

' p—bN(w+2)<2mm.
This is implied by combining
Tp—(w+2)"b=(w+2)"Ap—- e [(2+2)(A(p)+b)+te]=tm
with
T(p—p)=[e"(2+2)A(p —p)| = Vm||E~ &| <5v/m

and similarly, |b™(d —w)|<%vVm.



J. Renegar, M. Shub / Unified complexity analysis 11

6. The primal-dual QP algorithm

In this section we briefly consider the primal-dual algorithm applied to convex
quadratic programming, as has been analyzed by Kojima et al. [10] and Monteiro
and Adler [13]. Replacing the objective by 3x"Qx + ¢"x where Q is positive semi-
definite, the same motivation as in the preceeding section leads us to consider the
system of equations

ZA(x)—te=0,
Qx—A"z+c=0,

which again we denote by H(w)=0. The algorithm is defined analogously to the
LP case. Following are the changes in the analysis that need to be made.

Now fix w = (£, 7) satisfying QX — A"Z+ ¢ = 0. Also, assume that the initial iterate
w'? satisfies this equation.

Let Z={(x,z)eR"™; Qx —A"z=0}.

Let ¢=(p, w)e & be the unique zero of w-> H(w+ W, t) satisfying p+ X< Int.
Define ¢ similarly.

Beginning with the paragraph “Assume ¢>0 fixed...
A(x) by A(x+X), e.g., replace A(p) by A(p+%).

For we &, define

23

onward, replace every

1 . .
Iwll= T2+ 2)Ax+ ZA(o + S)ell

1 5 .
=@+ 2)Ax |3+ ZA(p+ $e ),

the inequality following from the fact that z' Ax = x"Qx=0. Define || ||’ similarly.
Leaving the arguments otherwise unchanged, again we find that we may take

1Y = (1-1/(40vm)) 7.

Appendix A

In this appendix we prove the theorem.

We begin by noting it is not difficult to verify that the following theorem is implied
by Theorem 2 of Deuflhard and Heindl [5].

Let B(x, ) ={y; [x—yll=r}.

Theorem 3. Let B be an open convex subset of a Banach space with norm | |, and
assume that f: B> Y is a twice continuously Fréchet-differentiable mapping into a
Banach space ¥. Assume that Df is invertible at x'° € B. Furthermore, assume that
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B, o > 0 satisfy

IDF (™) f(x0) | < B

IDF(x) ' D f(y)<w forallye B,

Olh

Bw =g,

B(x",38)= %.

Then Df(x)™' exists for all xe B(x'”,3B). Moreover, the Newton sequence

x@ xM, ..., is contained in B(x*,3B), converges to the unique zero x* of f in

B B(x”, 1/w), and satisfies

[x?—x*|<2()*B fori=1. O
Now to prove our theorem.

Proof of Theorem 2. We first obtain the bound on || —¢']]. For y € B = B(& 48)
note that

1Df (&) D* f(»)l

=[orie 3 Lo oo

Sygo(i+2)(i+l)[y”y—§||]ig <4y, (A1)

2y
(-5
Letting x ¢, our assumed bounds and the previous theorem imply that there
exists a zero & of f in B(¢ 38), and this is the unique zero of f in B(&, 48). (The
uniqueness will imply that the Newton sequence initiated at £ converges to the same
Zero.)

Now we turn attention to x

IDF(€)' L Df (&) - DA

©) .

@:= £ Begin by noting that

= |preert 3 Lo oo
S (i Pl o2
gigl(l'*_l)[y”f’_f”] \(1_%)2 1=3.

In particular, using the identity B'=Y; ,(-1)'(A7'[B—A]))A™" (assuming
|AT'[B—A]| <1), we have that for any ve Z,

| Df (&) o] <3| Df(&) "o (A.2)
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Consequently,

B =D& AOI <N DA f(DI

3 D= |

<g(B+&- §|| Z [yllé—€117)

é
=g B+ <36.
1—3

Moreover, for ye B(£,3-%8) (and hence y € B(¢ 48)), we have using (A.1) and
(A.2) that

IDA(E) "D f(II <3 DF (€)' D f ()] <3v.

Hence

@ =sup{|DF(&) ' D’ f(»)|l; y€ B(£35 - 18)} <3y.

Since 8 <1/(207), we have that B& <3. The previous theorem applied with & B, &
now gives our theéorem. [J

Appendix B

In this appendix, we obtain an O(n°mL) arithmetic operation bound for the following
modified barrier method.

Let x(© be a feasible point, 19 >0, 4 = A(x?), and M© = ATA(x¥) > A. Define
1= (1-1/(41 \/ﬁ))t“)

(1+1) . X [M(x)] l(c_ t(z+1)ATA(x(l)) e)
Define A“*" to be the m x m diagonal matrix with jth diagonal entry

i 1
soen. [8)7 if |1 =87/ (ax™ — b)) <55,
J T (i+1) b

ax'"'—b; otherwise,

and let MUV = AT[AUTD]2A,

The Sherman-Morrison-Woodbury formula can be applied to compute M
from M in O(n* N) arithmetic operations, where N = #{j; 8" 6(”} The
number of arithmetic operations required by the algorithm is then O(n Z, o N @y,
where I is the number of iterations required to guarantee that k* — ¢"x!is sufficiently
small to determine an optimal solution x* (implicitly assuming the iteration costs
to dominate the cost of determining x* from x!/!, as is the case with our bounds).

Let £ be the unique zero of x> c—t"VATA(x) 'e in {x; Ax> b}. We claim that
if |A(ED)TTAGXD = £9) |, <5, then [|A(£) TA(xD — £)||, <2 for all i It then
follows that I = O(vm L).

(i+1)
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Retaining the notation and assumptions of Section 2, let A be an m X m diagonal
with jth diagonal entry §; satisfying |1 — 8,/ (a;& — b;)| <sgforall j. Let M == ' ATA A
Since, as we have shown, ||£' — £'||' <35, to prove our claim it suffices to show that

I(M ™" = DfF(E) () <220,

because then [[(§—M ' f(£))—€'<x
Assume that ||v[| =1, that is, |A(&)"'Av|,= 1. Then

IDF(&) (M - Df(&))v]]

=[4(&) TA[ATA(E) AT ATA(E) T (ATPA(E* - DA(E) T Av|,

< | 4(&) AL A(E)TTALATA(E) AT ATA(E)
x[[4724(8) = I|)>]l0]

=47 A@) - |4 A~ 1],

20

<(1+||§_§”) . (21)2$ﬁ-
Hence,
(M~ =Df(&)")f(d)]
—Df(E)))'Df (€)' f(&) H
%IlDf(f) f(@).
Since

IDFE) ' f(DN=NE-Ell<llE—¢]+|¢- €I+ [1E - € <50,
and as we have seen, ||o]|'<¥| v| for all v, our claim is proven.
Now we obtain a bound on ¥/ _ N,

Defining &= E— M ' f(§), (B.1) and (B.2) imply that || — & <.

148 AG—Ba= | AD " A@) | |E-El < ﬂf”;_f”gn

In particular, since for any v e R™ satisfying |v|,<1,

¥ [ In(1+ ) < v o/ (1~ oll),
J
it follows that

Gi+1) _
1n<ajx A b;
a-x(')—bj

J

Now if 8"V # 8!", then |In(8{"""/8{")| =1n(1+3;). Hence,

(6(1+1))
s /I

X =gvm.

Jj

I-1

Y NVs———) Z

i=0 1n(l“‘so) j i=0

<3.

Hence,

(B.1)

(B.2)
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However, assuming for fixed j that 8{*"# 8!" precisely when i=1ii,..., i, (and

defining iy =1),
ln(aj(_iﬁjl)) ‘ _ hil ikz—l 1n( ajx(i-‘H) _ bj) n<ajx(iir1) _ bj>
8" k=0 | i=i apx' = b, ax’—b; )|

It follows that ¥'1_y N =0(/m1I).

I—-1

)

i=0

I-1
=<

=

i=0

Note added in proof

In the period between when this paper was submitted for publication and when we
received the galleys, we became aware of the work of Nesterov and Nemirovsky [22].
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