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I. Introduction 

This paper  was born  with the real izat ion that a theorem of Smale can be appl ied  

to uni fy  the po lynomia l - t ime  b o u n d  proofs of several of  the recent LP inter ior  

methods.  For  the sake of completeness,  we deduce  the version of the theorem that  

we use from the Kantorovich  theory. 

Let ~ and  ~ denote  Banach spaces, where the no rm on Y' is II II- For  an 

operator  M : ~ f k ~ ~ f ,  let IIMII denote  the usuat  operator  no rm IIMII:= 

sup{llM(u(1),.., u(k))ll; Ilu(')ll = 1 vi}.  Assume that  f :  ~ ~  ~ is an analyt ic  map,  

i.e., the Fréchet  derivatives D k f ( x )  : ~k  ~ ~ exist for all x c ~,  k i> 1 and  if y is in 

a sufficiently small  open ne ighborhood  of  x, then f ( y )  = ~ ~ ( 1 / k  !) D k f ( x )  ( y  -- x )  k. k = 0  

I f  D f  i exists at x, define 

~(x) := IIDf(x)-If(x)ll, 
1/(k 1) 

7(x)  := sup D f ( x )  1 D k f ( x )  
k ~ 2  

Note that i l (x )  is the step length at x when  Newton ' s  method is appl ied  to 

approximate  a zero of f 

This research is supported by NSF grants. 
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Theorem 1 (Smale [17]). I f / 3 ( 0 y ( Õ  <~½, then the Newton  sequence x (°)= ~ x (i+1) = 
x ( i ) -  D f ( x  (i)) l f(x(i~) is well-defined (Le., the inverses exist),  converges to a zero o f  

f ,  and satisfies 

The particular ease with which this theorem can be applied derives from the fact 
that it depends only on data at the initial point ( as opposed to typical theorems 
in the Kantorovich theory requiring bounds on data at all points in a sufficiently 
large neighborhood of 

For our goals, a slight variation of the above theorem allows the most expedient 
application. The algorithms we consider are of the following general form. Assume 
that F : E " ×  R+ ~ E. Let x/°) be given. Recursively define 

X (i+1) := X (i) _ D x F ( x  (i), t ( i+l) ) - lF(x  (i), tU +l)) 

for some t(i~+o. We will be interested in finding specific e, 3 >  0 such that if 
IIx(i~-(~>ll<~e, where F(~(i~,t(i))=O, and if It(i+l)-t(i~l/t(i~<~6, then Il x(i+l)- 
sc(i+~)[] ~< e for some s c(g+l~ satisfying F ( (  (~+l~, t (g+~)) = 0. (The norms we consider will 
actually depend on s e(i), but we ignore this at present.) 

One way to approach finding e and 6 is simply as follows. Find e, 6 > 0, indepen- 
dent of t, such that if F(~:, t) = 0, [[ ~ -  ~[[ <~ ~, I t ' -  t[/ t  <~ 3, f ( x )  := F(x ,  t'), then/3 ( 0  
and Y(0 are sufficiently small so that the above theorem implies [[ ~ ' -  ('[[ <~ e, where 
Jf' = ( - -  D f ( ( )  l f (  0 and f ( s  c') = 0. However, because for the maps we consider the 
values /?(s c) and y(~) are easier to compute than /3(0  and y( ( ) ,  the following 
theorem provides an even quicker approach. 

Let B(x,  r ) :={y;  [[y-  xH < r }. 

Theorem 2. Assume  that f : °Il -~ ~ is analytic, where óll is an open subset o f t .  A s sume  

that /3:=/3(~), y : = y ( s  c) and 6 ~ 0  satisfy /3~<½6<~1/(40y) and B(~,46)_c°R. I f  

[ l ( -  ~II <~ 3, then the Newton sequence x (°) := ~ x (i+1) := x (i) - Df (x ( i ) ) - l  f ( x  (i)) is well- 

defined and converges to a zero ~' o f  f in B(,~, 3/3), this being the only zero o f  f in 
B(£, 43). Moreover, 

IIx ~i~- ~'11 <~ ~(½)2'6. 

We remark that the power series o f f  at « converges for all x e B(~, 1 / y )  by the 
root test~ and hence for naturally defined f the required containment B(~, 46) c 
follows from the other assumptions. In particular, for rational functions f :  R"-> R ~ 
(i.e., quotients of polynomials) the containment need not be checked when applying 
the theorem. 

We prove the theorem in Appendix A by showing that it is a consequence of a 
Kantorovich theorem as presented in Deuflhard and Heindl [5]. We first proved 
this result using Smale's [17] arguments, but felt the Kantorovich arguments would 
be more accessible to the optimization community. The constant ½ in Smale's theorem 
cannot be replaced with ~, as he showed. The requirements /3 <~½6~ < 1/(40y) and 
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B(~:, 48) _c ~// in the latter theorem can certainly be made better, but probably at the 
price of a longer proof. 

We apply the theorem to prove O(x/-m L) iteration bounds for several of the recent 
LP and QP interior algorithms. Here, m refers to the number of linear inequalities, 
assumed to exceed the number of variables, and L is the number of bits required 
to specify the problem to be solved. 

We first apply Theorem 2 in Section 2 to the barrier method. Here the application 
is particularly simple. One is tempted to say that the barrier method was made for 
the theorem. Gonzaga [7] obtained an O(~/-mL) iteration bound for the barrier 
method. Daya and Shetty [3] have also studied this algorithm. 

In Section 3, we briefly discuss the slight modifications in the LP argument 
required to prove an O(x/mL) iteration bound for the barrier method applied to 
convex QP. Goldfarb and Liu [6] and Ye [21] proved this bound. Daya and Shetty 
[4] have also obtained this bound. 

In Section 4, Theorem 2 is applied to the primal algorithrn studied by Renegar 
[14]. Sonnevend [19] proposed a similar algorithm, but gave no complexity analysis. 
Vaidya [20] also considered a closely related algorithm. 

In Section 5, we consider the primal-dual algorithm studied by Kojima et al. [9] 
and Monteiro and Adler [13]. This algorithm has roots in the work of Megiddo 
[ 11]. Monteiro and Adler obtained an O( , /mL)  iteration bound for this algorithm. 
Their analysis is simple and direct, hut from a different vantage point than ours. 

In Section 6, we briefly consider the primal-dual algorithm applied to convex 
QP. Kojima et al. [10] and Monteiro and Adler [13] obtained an O(x/-mL) iteration 
bound for this algorithm. 

All of the above algorithms follow the "central trajectory," as studied by Bayer 
and Lagarias [1] and Megiddo and Shub [12]. 

Our focus is on iteration bounds as opposed to overall arithmetic complexity. 
However, only a moderate amount of additional work is required to obtain the 
record O(n2mL)  arithmetic operation bound for LP, proven independently by 
Gonzaga [7] and Vaidya [20]. In Appendix B we display this for the barrier method. 
Minor modifications of the arguments yield the same bound for convex QP, a bound 
that was first proven by Kojima et al. [10] and, shortly thereafter, by Monteiro and 
Adler [13]. 

We do not discuss bit operation bounds. Of course that is what is really required 
to prove polynomial-time bounds. 

Smale [17] motivated several papers. Royden [16] derived both the Kantorovich 
theory and Smale's theorem from a single theorem. He also slightly improved Smale's 
requisite bound on fly. Rheinboldt [15] has given a direct derivation of Smale's 
theorem from the Kantorovich theory. In Appendix A we follow Rheinboldt 's 
approach. 

Curry [2] extended Smale's theorem to higher order methods in the case of 
univariate polynomials. Independently of both Smale and Curry, Kim [8] proved 
similar results for univariate polynomials. 
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Of related interest is Smale [18], especially Section 4, where a similar theorem 

for a path-fol lowing algorithm is discussed. 
Beware that  we aim at giving short  proofs.  Little mot ivat ion for some of  the ideas 

in the proofs  is given, in particular, for the choice o f  norms that make everything 

work out so nicely. Some motivat ion can be found  by reading, for example, Sections 

2 and 3 of  Renegar  [14]. 
Now we fix some notation. Throughou t  we consider  problems of  the form min cTx, 

subject to A x  >1 b, al though applicat ion of  the theorem is also easy for the linear 

equalities, non-negat ive variables format.  (Most  o f  the aforement ioned LP papers 

assume the latter format.)  We use a~ to denote  the /th row o f  A. 
We assume {x; A x  > b} to be non-empty  and bounded ,  and we assume a known 

" g o o d "  starting point  for the algorithms. Al though we may make these assumptions 

without  loss o f  generality, we avoid the arguments  as to why. For  the puzzled reader 
we remark that a lmost  every paper  in the area discusses this. Because all o f  the 

algorithms follow the central trajectory, good  starting points  for one algorithm are 

generally easily translated into good  starting points for another.  Furthermore,  many  
papers in the area discuss how to obtain an optimal solution from a feasible point  

2, where cT)~ is sufficiently close to the opt imal  objective va lue - - su f f i c i en t ly  close 

is o f  the form 2 -°(L~ (e.g., see [14], Lemma 8.1). 
We use e to denote  the vector o f  all ones, and [[ [[2 to denote  the usual Eucl idean 

norm. 
Finally, note that  the conclusions o f  Theorem 2 imply that the Newton iterates 

are in 0g. In  particular, if as in some of  our  applications the natural domain  ag is 

the interior o f  the feasible region, then the iterates are feasible. 
We appreciate the careful considerat ion and comments  given by the referees. 

2. The LP  barrier method 

In this section we consider  the LP barrier  method that was first analyzed by Gonzaga  

[7]. 
Let Int = {x; A x  > b}, and let h : Int × E+ ~ R denote the map  

h(x ,  t) = cTx - t Z ln(a/x - bi). 

For fixed t, the map x ~  h(x ,  t) is strictly convex, having a unique minimum. The 

sequence o f  minima as t$0 converges to the optimal solution o f  the LP. The algori thm 

simply computes  a Newton  sequence x (°), x (1), . . . ,  where 

x(i+l):= x(i~_ V2h(x(i~,  t( i+l~)-,Vxh(x(i) ,  /(i+1)) 

and t(«)$0. 
We claim that for appropria te ly  chosen x ~°), we may  always take t (i+1)= 

(1 - 1/(41x/m)) t (i~ and each x (~~ will then be a " g o o d "  approximat ion  to the min imum 

of  the map x ~ h(x ,  t(~)). N o w  we prove this claim. 
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Let A(x)  be the diagonal  matr ix  with /th d iagonal  entry a i x - b i .  
Assume t > 0 fixed. Let ~: be the m i n i m u m  of  x ~  h(x, t), i.e., c -  tATA(~)-~e = O. 

Define IIxll := IIA(¢)-'AxlI2 • For  t ' > 0 ,  define s ~' and  Il [1' in the obvious way. 
Assume that  I1(-~11~<~, i.e., ~ is a " g o o d "  app rox ima t ion  to ¢. Assume tha t  

(1 - 1 / (41x/m)) t  ~< t ' ~  t. D e f i n e f ( x ) : =  c - t 'ATA (x)  -1 e. Let ~' := ( - D f ( ( ) - i f ( ~ ) .  TO 
prove  our claim, we show that  I I~ ' - ( l l '<  1 

First note that  

t - t '  
13 := [ I D f ( , ~ ) - i f ( ~ ) l l  = ~ r - I l a ( ~ )  1A[ATA(~)-2A]- 'ATA(~)- 'e]I2 

t - - t '  
< ~7 Ile[12~<A, 

where the first inequal i ty  follows f rom the fact  that  the e l iminated matr ix  is a 
project ion matr ix.  

Next  we compu te  a bound  on 

l 1 k 1/(k-1) 
y:=sku> p ~. .Df(~) -  D f(,~) 

Observe  that  the opera to r  Dkf(~)  : (~ù)k _~ R.  sends the tuple  (u ( l~ , . . . ,  u (k~) c (~~)k 
to ( - 1 ) k t ' k ! A X A ( ~ ) - l w  where w ¢ ~  r~ is the vector  with w~=I]jwl j) and w ( j )=  

A(~) - IAu  (j). Since Hw°)[[2 = [lu'»ll, it easily follows that  ]lwll2~ 1 if Ilu(J~ll ~ 1 for  
all j. Consequent ly ,  

v.Df(~)-~Dkf(~) <~ [[A(~)-IA[ATA(,~) 2A]-~ATA(~)-III2= 1, 

the equali ty because  the e l iminated matr ix  is a projec t ion  matrix.  Hence,  3' ~ 1. 
Theorem 2 now implies that  I[~'-~'11 ~ ~ "  ~o and  I1~:-~'11 < ~ .  Since 

0 ~ - - - -  a i~  -- bi 1 ~ 1 ~ so 
a ,~ ' -b ,  1 - [ a , ( ~ - ~ ' ) ] / [ a , ~ - b , ]  1 - l l ~ - ( l l  -~~ 

we have for  all v that  

I1~11':: I1~(() 1Avll2~< I1~(¢) la(¢)11211~[1 ~7~11~11. 

In particular, Il ~ ' -  ~'1['< ~~, concluding the proof of the claim. 
The pr incipal  remaining  ingredient  for  proving  an O ( x / m L )  i teration b o u n d  is 

an inequali ty of  the form 

cT( - k* < 2tm, 

where k* is the opt imal  objective value. In p rov ing  this inequality,  first note  tha t  
since c - t A T z I ( ~ ) - I e  = O, we have 

c T ( ~ - - ~ )  = teTA(~)  1 A ( ~ - ~ ) ~ <  tl]e]]211A(~)-'A(~-~)H2 

= ~~/-m t [[ ~--  ~:[[ ~ lo,~/-m t. 
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Hence, assuming that x* is an optimal solution, 

cT~ - k* = cT(~ - ~:) + cT(~: -- X*) 

OgiX* -- bi 
<~~ot~-~+ c~(~-x *) + t y~ ~ - b i  

= 21o t-,/-m + tm + (~:- X*)T[C -- tATA(()- le]  

= ~ t , f m  + tm + ( ~ -  x*)To. 

In Appendix B we present an argument for modifying the preceding O(n2mlSL) 
arithmetic operation algorithm into one requiring only O(n2mL) operations. The 
latter operation count was first established for LP by Gonzaga [7] and Vaidya [20], 
but with much longer proofs. 

3. The QP barrier method 

In this section we briefly consider the barrier method applied to convex quadratic 
programming. The notation and definitions remain exactly the same as in the previous 
section, except that the objective cTx is replaced throughotat by ½xTQx + cTx, where 

Q is symmetric and positive semi-definite, and hence h : I n t  x ~+--> R is defined by 

h(x, t) = ½xT Qx + cT x -- t ~ ln(«/x -- bi). 

The crucial fact here is that if M is an m x n matrix of  rank n, m~> n, then 
H M ( Q + M T M )  IMTII2<~ 1. We will prove this inequality momentarily. 

Proceeding exactly as in the preceding section for computing /3 and y, except 
that now Df(«) ~ = [t'ATA(~) 2A] 1 is replaced by Df(~)- '  = [ Q +  t 'ATA(() 2A] 1, 

and using the above inequality shows that we may again take t (i+1)= 
( 1 - 1/(41 ~/m)) t ~'). 

Now to prove the inequality. Let S denote an m x m orthogonal matrix moving 
the range of M onto ~" x {0}, and let AT/be the n x n invertible matrix defined by 

= PSM, where P is projection onto N". Then 

IIM ( Q + MT M)- I  MT[[2 

= II[SM](Q + [SM]T[SM])-I[SM]TH2 (by othogonality of  S) 

= [[[PSM](Q + [PSM]T[PSM])-'[PSM]TI[ 2 

= [[(I+]~/-TQ A~ *)-'112 

~ 1 ,  

where the third, fourth and fifth expressions are with respect to the Euclidean norm 
on ~", and where the final inequality is because/~/-TQ/~-I is positive semi-definite. 
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4. A primal LP algorithm 

In this section we consider the algorithm studied in Renegar [14]. (Also see 
Sonnevend [17] and Vaidya [20].) 

Assume that k ~°) is a known strict upper  bound on the optimal objective value. 
Assume that Ax(°~> b, c*x(°)< k (°~. The sequence x (°, i = 1, 2 , . . . ,  is defined recur- 
sively as follows. Let x ~+1~ be obtained by applying one iteration of Newton 's  
method, beginning at x ~ ,  in attempting to maximize 

x ~  m ln(k ~ + ~ -  cXx)+ ~ ln (a~x-  b~), 
i ~ l  

where k ~+~= g c ~ x ~ ° + ( 1 - ~ ) k  ~° and 0 <  ~ < 1 is some prespecified value. (The 
function is strictly concave on {x; Ax > b, cVx < k~+~).) 

We claim that if x ~°~ is chosen appropriately and 0 < ~ ~ 1 / ( 4 2 ~ ) ,  then for all 

i, x ~° is a "good"  approximation to the actual maximum it is meant to approximate.  
We now prove this claim. 

Let ~ denote the 2m x n matrix with ith row a~ if i ~  m, - c  y if i >  m. 
Assume that k is a strict upper  bound for the optimal objective value. Let ~ (x) 

be the 2m x 2m diagonal matrix with ith diagonal entry a~x-  b~ if i ~ m, k -  cTx if 
i > m. Let ~ be the unique zero in {x; Ax > b, cTx < k} of  the function 

x ~ ~ (x) -q e (=  V~[m ln(k - cTx) + ~ ln(a~X -- b~)]). 

Assume that (sat isf ies  ]]d(~)-qA(~-~)~2 ~ ~-, i.e., ( i s  a "good"  approximation 
to ~. Let k ' :=  6c~(+ ( 1 -  6)k, where 0 ~ 6 ~ 1 / ( 4 2 ~ ) .  Define A'(x) and ( '  in the 

obvious way. Let f ( x ) :=~v~ ' (x ) -~e ,  and let ( ' :=  ~ - D f ( O - ~ f ( ~ ) .  To prove our 
claim we show that 1! a ' ( ~ ' ) - ~ ( ~ ' -  ~')1t2 ~ ~-  

Let g = (k - k ' ) / (k  - cV~). Then 

0 ~  g = 3 1 ~ ~ ] ~ 6(1 + I I A ( ~ ) - ' ~ ( ( -  ~)[[2) < 1 / ( 4 0 v ~ ) .  

Defining f (~ )  := ~vd ' (~)-~e ,  note that 

f ( ( )  = ~ T [ a  t ( ~ ) - . l  _ a (¢)-1]e = g ~ r a  '(¢)-'~, 

where E = 0 if  i m, E = 1 if  i > m.  us, def in ing  II > for all v ~ 
we have that 

a . . . .  ~ 

fl := tl Df (  ~ )-' f (  ~)ll = 8 ll A'( ~)-' A(  A W A,( ~)- 2A )-'  A W A,( ~)-~ elI~ 

gllille<2 , 

the first inequality following from the fact that the eliminated matrix is a projection 
matrix. Moreover, by exactly the same argument as in Section 2 we have that 

Y : = : ~ [ ] ~ D f ( ~ ) - ' D ~ f ( ~ ) [ [ ' / ( ~ - ~ ) ~ l .  
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Since 
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1 
II(-«ll ~ Ila'(O la(~:)[12[IA(~:) 'Ä( ( -OI I2  ~ l - g "  ~ < ~ '  

the theorem implies that I1('-(11 ~<~" 21o and I1~-~'1/~<~- Hence, 

I1~'(O 1Ä(~'-()112~<1[~'(¢)'~'(0[1211~'-¢'11 <~ I1~'-(11 , <" 21 ~ 
1-[1(-~11 

concluding the proof of the claim. 
The principal remaining ingredient for proving an O(,/-mL) iteration bound is 

an inequality of the form 

k ' - k * < ~  (1 - ~ 6 ) ( k - k * ) ,  

where k* is the optimal objective value. In proving this inequality, assume that x* 
is an optimal solution. Then 

k c T k --  c T x  * 

However, 

k - cTx  * k - eTx  * c¢iX* -- bi 

0 <~ m k - cT~ <~ m k - cTs c 4- ~ Cer~ -- bi 

= 2 m  -[- ( x *  - ~ ) T d T A  ( ~ ) - l e  = 2m + (x* - sQv0. 

Hence, k - cT~:/> ½(k - k*), and thus 
1 A 

k ' -  k* = ( k -  k*) - ( k -  k') = ( k -  k*) - g ( k -  e T c )  ~ (1 - ~ 8 ) ( k -  k*). 

Since 

( «T(«_O) ~o 

it now follows that 

k ' - k * < ~  ( 1 - 1 8 ) ( k - k * ) .  

5. The primal-dual LP algorithm 

In this section we consider the primal-dual LP algorithm studied by Kojima et al. 
[9] and Monteiro and Adler [13]. This algorithm has roots in the work of 
Megiddo [11]. 

As in Section 2, define I n t = { x ; A x > b }  and let h : I n t × R + ~ R  be given by 
h ( x , t ) = c V x - t Y l n ( a i x - b i ) .  The unique minimum of x ~ h ( x , t )  is the point 
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satisfying c - - t A T A ( x )  % = 0 ,  where A(x) is the m x m diagonal  matr ix  with /th 

d iagonal  entry a i x - b »  Equivalently,  it is de te rmined  by the equat ions 

ZA (x)e  - te = O, 

c - ATz  = 0, 

where  Z is the d iagonal  matr ix  w i t h / t h  d iagonal  entry zi. Lett ing w := (x, z) c R n+m, 

and  letting H(w,  t ) =  0 denote  the above system of  equat ions,  the a lgor i thm s imply  
computes  a Newton  sequence w (°), w (1), . . . ,  where  

wO+i)= w(i)_ DwH ( w(i), t(i+l))-l H ( w (i), t(i+l)), 

and t(°~0. 
We claim that  for  appropr ia te ly  chosen w (°), we m a y  always take t (~+1)= 

( 1 - 1 / ( 4 0 ~ / - m ) ) t  u) and  each w (~) will then be a " g o o d "  approx ima t ion  to the zero 
o f  w ~ H(w,  t (°) satisfying x c Int. N o w  we prove  this claim. 

Fix k = (0, ~) satisfying c - A T z  = 0. 
Let ~ =  {(x, z) ~ N"+~; ATz = 0} .  We assume that  w (°) satisfies c - - A T z  (°) = 0. Then  

w (n - ~ c ~f for  all i. 
In what  follows, w -- (x, z) always refers to points  in W. 
Assume t > O  fixed. Let ~:=(p,  t o ) E ~  be the unique zero of  w ~ H ( w + ~ , t )  

satisfying p ~ Int. Let ~ denote  the m x m diagonal  matr ix  w i t h / t h  d iagonal  entry 
toi. Then  (E2 + 2 ) z l ( p ) e  - te = O. 

For  w = (x, z) c ~f, define 

Ilwll := ~ II(n +2)Ax+Za(p)ell~ 

1 
= ~([l( n + 2)Axl l~  + IIZA (p )e[[2) 1/2, 

where  the equali ty is because  (ZA(p)e)T(~2 + Z ) A x  = tzTAx = O. 

For  t ' >  0, define s ~' = (p ' ,  w'), a '  and Il I[' in the obvious  way. 
Assume that  ~ c  ~,  I1(- ~11 <~~'0, i.e., ( i s  a good  app rox ima t ion  to ~:. Assume that  

( 1 - 1 / ( 4 0 , / m ) ) t ~  < t ' ~  < t. Define f : ~ - ~ R "  by f ( w ) : =  ( Z + Z ) g ( x ) e - t ' e .  Let ( ' =  
( - D f ( ( ) - l f ( ( ) .  To prove  our  claim we show that  [[ ~ ' -  s~'[['~ < I0. 

Observe  that  for  w c ~,  Ilwll = (a/ t ) l lDf(~)wll2.  Hence 

t - t '  
/3 := [[Df(s ~) lf(~:)ll = -~- ] [e [ [2~<  4~o • 

Let w Eq= (x E~], zE~]), i = 1, 2, denote  two arbi t rary vectors  in W. Note  that  D2f (~ )  
maps  (w m,  w [2]) to the vector  ZmAx~~l+ZE~~Axm.  Since Ilwll =(a/t)llDf(~)wl]z, 
it follows that  Df(~)  ~D2/(~ :) maps  (w En, w [21) to a vector  o f  II II-leng th at mos t  

~ùZE'1Ax~21L,2+~ ZE21AxE'ILL2 
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Now, 
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! 

I[ZmAxE2]]12 = t [ [ z [ ' ] d ( P ) ( n  + 2)Ax[2]ll  2 

<~ ]]Z[1]A(p)e[I21](l'2+Z)Ax [ ]H2 ~< tHw[l][[ Hw[']H. 

The same inequality holds for HZ[2]Ax[I]]]2. Since D k f  =- 0 for k/> 2, it follows that 

~ ! D f  ( ,/(k-,) "y := sup ~) ~Dkf(~) <~1. 
k~>2 

The theorem now implies that Il('-sc'Il ~<7.2'0 and list-~:'ll ~<5. 
Note that by the non-negativity of the entries in the diagonal matrices, 

HA(p')A(p)-l[[2~-~ 1 + ]lA(p) 'A(p '-P)l l2 

= 1 +~l l(a + 2)Zl(p'-p)l[ 2 

1 
t 

<~1+11(-~11. 
similarly, [ 1 ( ~ ' + 2 ) ( ~  +2)-111~<~ 1 + I l ( -  ~11. Hence, for all w ~ ~, 

II w I1'~< ~, ( l l (n '+ 2)(n + 2) ' II~ll(~ + 2)Ax I1~ 

+ I[zl(p')g(p) ' l ]~l lz~l(p)e[[~) '/~ 

~< ( l+  I1¢- ~ll)llwll. 
In particular, it now follows that I1~'-~:'11 '~< 20, ooncluding the proof of the claim. 

Assuming ~= (fi, o5), the primal feasibility of fi follows from wi + ~i > 0 (for all i) 
and 

1 
I> lid- ~ll/>@ll(a +Z)A(f i -p) l l==Gl l (a +2)~ (~ ) -  teil=. 

Similarly, for the dual feasibility of ~ + £ 
The principal remaining ingredient for proving an OG/-mL) iteration bound is a 

duality gap bound of the form 

cTjõ -- bT(w + ~) < 2tm. 

This is implied by combining 

cTp - (oo + 2)Tb = (o~ + 2)T A p  - eV[(g/+ 2 ) ( , a  (p)  + b) + te] = tm 

with 

[cT(t ~ --P)l = [eT( a +Z)A( f i  - p ) l  ~< ~ ] l (  ~ll ~< ~'o,/-~ 

and similarly, [bT(tõ -- to)[ ~ < ~ o ß .  
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6. The primal-dual QP algorithm 

11 

In this section we briefly consider the primal-dual algorithm applied to convex 
quadratic programming, as has been analyzed by Kojima et al. [10] and Monteiro 
and Adler [13]. Replacing the objective by ½xXQx+ cVx where Q is positive semi- 
definite, the same motivation as in the preceeding section leads us to consider the 
system of equations 

Z A  (x)  - te = O, 

Q x - A T z +  c = 0 ,  

which again we denote by H ( w ) =  0. The algorithm is defined analogously to the 
LP case. Following are the changes in the analysis that need to be made. 

Now fix ~ = (9~, ~) satisfying Q:~ - A x t +  c = 0. Also, assume that the initial iterate 
w (°) satisfies this equation. 

Let ~f:= {(x, z )c  R"+m; Q x - A V z = O } .  

Let s c = (p, oJ) c 3f be the unique zero of w ~ H(w  + ~, t) satisfying p + 9~ ~ Int. 
Define sC' similarly. 

Beginning with the paragraph "Assume t > 0 f i x e d . . . "  onward, replace every 
A(x) by A(x+)~), e.g., replace A(p )  by A(p+~) .  

For w c ~f, define 

Ilwll :: }][(n + 2)Ax + ZZ~(p + 9)ell2 

A 2 
([l(n +Z)Axllz+ IIZA (p + ~)ell~) '/~, 

the inequality following from the fact that zXAx  = xVQx  >~ O. Define II Il' similarly. 
Leaving the arguments otherwise unchanged, again we find that we may take 

t ~i+1)= (1 - 1/(40-~/m)) t ¢~). 

Appendix A 

In this appendix we prove the theorem. 
We begin by noting it is not difficult to verify that the following theorem is implied 

by Theorem 2 of Deuflhard and Heindl [5]. 
Let /3(x, r ) = { y ;  Hx-y]]<~r}. 

Theorem 3. Let  ~ be an open convex subset o f  a Banach space with norm II [[, and 

assume that f :  ~ - ~  ~ is a twice continuously Fréchet-differentiable mapping into a 

Banach space o~. As sume  that D f  is invertible at x ~°) c ~ .  Furthermore, assume that 
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[3, to > 0 satisfy 

II Df(x(°))-lf(xo)II <~/3, 

[[ Df(x(°)) 1D2f(Y)H <~ to for ally c ~,  

80) ~ ~~ 

B(  x ~°~, ~t~ ) = ~ .  

Then Df(x)  -1 exists for all x cB(x(°),~ß).  Moreover, the Newton sequence 
x (°), x(1), . . ,  is eontained in B(x(°),~ß), converges to the unique zero x* o f f  in 

c~ B(x  (°), 1/ w ), and satisfies 

I I x " ) -  x*l[ ~< 2(½)='/3 fori>~l. [] 

Now to prove our theorern. 

Proof of Theorem 2. We first obtain the bound on IIC-([I. For y c N := B(C, 48) 
note that 

[[ D f ( C ) l D 2 f ( y ) [ [  

]Df(C)  ~ 1 D  'f(C)(Y C) 1 2+ i 

i=o • 

<~ ")' ,=o ~Ä (i+2)(i+l)[y[[Y-Cll]'<~~ <4~" (A . I )  

Letting x (°):= C, our assumed bounds and the previous theorem imply that there 
exists a zero C' o f f  in B(C, ~ß), and this is the unique zero o f f  in B(C, 46). (The 
uniqueness will imply that the Newton sequence initiated at (converges  to the same 
z e r o . )  

Now we turn attention to x (°) := ~ Begin by noting that 

II D f ( C ) - l [  D f ( O  - Pf(C)]I I  

= Df(C)_I °° 1 - ,~'1= ~ D~+lf(c)(c. - C)' 

~ ( i + l ) [ y ] ] ( _ C [ [ ] i ~  ( 1 
,=t 1-1o) 2 - 1  = 33@1" 

In particular, using the identity B ~ = ~ i ~ o ( - 1 ) i ( A - l [ B - A ] ) i A  -a (assuming 
I]A 1[B-A]I] < 1), we have that for any v c ~, 

I IDf ( ( ) - lv l l  ~ 9l lDf(«)  'v[[. (A.2) 
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Consequent ly ,  

B :=  I IDf ( ( ) - '  f (O l l  <~~lIDf(~)-' f (O l l  

=~ Df (« ) - ' i~_oßDi f ( sc ) (~ - -« ) i  

<~~(~+ll(-£ll 2 b, ll(-scllY) 
j - 0  

Moreover ,  for  y c B ( ~  3 .7~)  (and hence y ~ B(SC, 46)) ,  we have using (A.1) and 

(A.2) that  

][Df(s?) 1D2 f(y)[ [ « gl[Df(~)-,  D2 f ( y ) [  [ < 9 % 

Hence  

05 := sup{]l Df(~)  1D2f(y)II;Y ¢ B ( ~  3 . 7 a )  ) ~< 9% 

4 Since ~ <~ 1/(20y~), we have that/305 <~~. The previous  theorem appl ied with s c, fl, 05 

now gives our  thè~orem. [] 

Appendix B 

In  this appendix ,  we obtain  an O(n2mL) ar i thmetic  opera t ion  bound  for  the fol lowing 
modif ied barr ier  method.  

Let x (°) be a feasible point,  t (°) > 0, A (o) = A (x(°)), and  M (°) = ATA (x(°))-2A. Define 

t (i+') := (1 - 1/(41 x/m)) t (°, 

x (i+1) := x (i) - [M(i)]- l (« - t(i+l)A TA (x(i)) -1 e). 

Define A (~+1) to be the m x m diagonal  matr ix  with j t h  d iagonal  entry 

a(,+l) f6.1 ° i f l l  - -  Ô~i)/(o(jx(i+l)- bi) I ~<1o,  
: =  

J l aax (i+~)- bj otherwise,  

and  let M(~+I): = AT[A (i+1)] 2A. 
The S h e r m a n - M o r r i s o n - W o o d b u r y  fo rmula  can be appl ied  to compu te  M (i+1) 

f rom M ~') in O ( n 2 N  (°) ari thmetic opera t ions ,  where  N ( ° =  # { j ;  ~5~+1) # 85,)}. The  
n u m b e r  of  ar i thmetic  opera t ions  required by the a lgor i thm is then O(n  2 ~~=ò N ( ° ) ,  
where  I is the n u m b e r  of i te ra t ions  required to guaran tee  that  k* - cTx EIl is sufficiently 

small  to determine an opt imal  solut ion x* (implicit ly assuming the i terat ion costs 
to domina te  the cost o f  determining x* f rom x En, as is the case with our  bounds ) .  

Let SC(~) be the unique zero of  x ~ c - t(OATA (X) ~ e in {x; A x  > b}. We cla im that  

if  Ila((°))-lA(x¢°~-(°~)ll=~<~0, then Ila(SC (°) 1A(x«~-(°)ll~<~~o for  all i. It  then  
follows that  I = O(x/-mL). 
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Retaining the notat ion and assumptions of  Section 2, let A be an m x m diagonal 
wi th j th  diagonal  entry 6j satisfying 11 - t3 j / (c9(-  bj)] ~< 1 o for all j. Let M := t'A vA -2A. 
Since, as we have shown, lid'-~'ll'<~12, to prove our claim it suffices to show that 

II ( M - I  - -  Df(O 1)f(()ll,+< 1 

because then I I ( ~ - M  t f (~ ) ) -+ ' l l ' ~2 to .  
Assume that  Ilvll = 1, that is, IIA(+)-IAvlI2 = 1. Then 

II D f ( [ ) ' ( M - D f ( [ ) ) v l l  
=IIA(s c) 'A[ATA(~)-2A] tATA(~)- ' (A 2A(~)2--I )A(~)  'Avll 2 

~11,~(«) 1A(()]]2[[A(()-IA[ATA(f)-2A]-IATA(~" ) 1112 

× 11~-2a (++~2- iIl+ll ~ Il 

= Ila(¢)-'a(011=. I l a -=a (02 -  II1~ 

20 
<( i+I I~-~I I )  " - - ~ ±  (21)2 ~ 21. 

Hence,  

Since 

II(M 1 __ Df(O-,)f(O II 

= +=,~+ (-1) ' (Df((-)- '[M-Df(()]) 'Df(()- t f (()  

<~ ~rl D f ( ~  +) t f(~+)II. (B,t) 

Iß Df ( s  F) 'f(sF)ll = las F -  ('Il ~< las F -  «11 + I1«- ('16 + ] iC-  ~:'ll <70, 

and as we have seen, ]]v[l'<~7~llvll for  all v, ou t  claim is proven.  
t-] N(i) .  Now we obtain a bound  on ~~=o 

Defining ~:= ~ - M  ~ f ( 0 ,  (B.1) and (B.2) imply that  I1~-(11 <11o - Hence,  

ll+a(O 'A(~-()ll~~lla(g)-la(«)ll21l~-++ll ~ II,~-,~II 1 
i- i i (-+~ii  <0" 

In particular,  since for any v c ~"+ satisfying Il vll+< l, 

J 

it follows that 

[ ajx (i+')- bi", 

Now if S}++I) # 6j+), then Iln(SJ'+l>/sJi>) I ~>ln(1 +1o). Hence,  

i i 1 I I I /6!i+1)\  

i=o I n ( l + + )  • i~o 6; 

(B.2) 
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t~(i+l) ~ t~!i) p r e c i s e l y  w h e n  i = ia, i h ( a n d  H o w e v e r ,  a s s u m i n g  fo r  f ixed j tha t  ~j ~j . . . ,  

de f in ing  io = 1), 

I-1 //~!i+1)\ I h~l i~1 fŒjx(i+l)_bj '~ ~ 1  i/Œjx(i+a) bj '~ .  

l n [ ~ )  : ~ : ik ln~ a j x ( i ) _ b  i ) <~ l n l  (i) / 
i=0 k=0 i=0 \ %X -- by ] 

I t  f o l l ows  tha t  ~~ 1 N(~) = O ( , / m  I ) .  i=0 

Note added in proof 

In  the  p e r i o d  b e t w e e n  w h e n  this  p a p e r  was  s u b m i t t e d  fo r  p u b l i c a t i o n  a n d  w h e n  we  

r e c e i v e d  the  ga l leys ,  we b e c a m e  aware  o f  the  w o r k  o f  N e s t e r o v  a n d  N e m i r o v s k y  [22]. 
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