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In this paper we prove simple estimates relating the value of a complex homoge-
neous polynomial at a point to the distance of the point to the zero set of the
polynomial, and also the distance to the zero set along a projective line to the
distance in projective space. Our motivation for doing this was to give a quantita-
tive aspect to the algorithm of W. Zulehner and to relate it to the algorithms of J.
Renegar, J. Canny, and M. Kim. © 1989 Academic Press. Inc.

Let F: C" — C be a homogeneous polynomial of degree m. Let H C

=t = F=Y0) N $2~!, where S¥' is the unit sphere in C". Given a
complex 2 plane C? through the origin it intersects $>~'in a 3 sphere, $°.
For any point x € S* we have the distance dg(x, H) and dg.(x, H) the
distances from x to H N S$* in §° and the distance from x to H in §27"
Obviously, dg(x, H) = de(x, H).

THEOREM |. Let R denote the furthest distance of a point in $? from
H, as measured in §*~'. Then

7 csc R dgs (x, H)""m'" = da(x, H) = dgo (x., H).

To prove Theorem 1 we use:

PROPOSITION 2. Let F: C* — C be a homogeneous polynomial of
degree m. Let |F| = max |F(x)|. Suppose for x, in the unit sphere §*"!
xe§-t

* Invited Paper.
t Partially supported by an NSF grant.
303

0885-064X/89 $3.00
Copyright © 1989 by Academic Press. Inc.
All rights of reproduction in any form reserved.



304 MICHAEL SHUB

that the distance from xy to F~Y0) N $jn §20-1ijs R > 0. Then

|F(X())|) Vim ()

|F]| < |F(xo)|(csc Ry or sin R < ( I

Proof: We may rotate the sphere $*~! so that the point x, = (1, 0, 0,
..., 0) € C" and we may assume |F(x¢)| = 1 and that F(x,, . . ., x,) =
X+ 2o aixy, . .., xu)x\, where ai{x,, . .., x,) is a homogeneous
polynomial of degree m — i in the variables x,, . . . , x,4;. F has no zeros
inside the double cone, K, on the sphere of radius tan R in the plane x; = 1
centered at (1,0, . . . ,0) € C". Infact, since F is homogeneous, any point
(o, 0, .. .,0)is at distance R from H for « € C of norm 1. Thus we may
assert that F has no zero in the orbit of the cone K, under the action of the
unit complex members, S! C C, on the first coordinate. The orbit is the
cone on S' x D=2, Here S’ denotes the i-sphere and D/ the j disk. The
complementary cone on D? X §2#=3in the 2n — 1 sphere has D?fibers over
Cr~!, and the radius of the two disk at £ € C*! is || £f|/tan R.

We write C" as C x C*!, With £ = (x5, . .., x,) € C*! fixed, the
polynomial F(x;, £) in x, has all its zeros in the disk of radius | £|/tan R and
since the ith coefficient is a symmetric function of the roots

) af DY
lad®)| = C; <tan R) ,

where || || is the Euclidean norm and C/" is the ith bionomial coefficient.
Thus for x = (x,, X) in the unit sphere.

S i X ' m=i — *—“-f" )m
Pl =3 0 (gag) bt = (1ol + e
and
(tan’R + l)'”)"’
[Flx)l = ( tan R
by calculus.

Now we return to the proof of Theorem 1. We may assume that
the point (1,0, . . . , 0) € C" is at distance R from H and that F((1, 0,
N U
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By Kellog (1928), (*) implies
|IDF(x)| = m (csc R)™ (+*)

for x in the unit ball.
Fix x; € $? and suppose that x, = (z, £) € C x C*~! with £ # 0.
Let dg.i(Xo, H) = c; then by (x+)

|F(xo)| < cm (csc R)™.
So with £ fixed there is a z’ with
|z = Z/| = ¢™m"™ (csc R)

and F(z', ) = 0.

The distance from x = (z, £) to (z’, £) is likewise at most c""m"™ (csc
R). As xg is on the unit sphere the projection of (z’, £) to the unit sphere
has distance from xo, magnified at most by . This finishes the proof for
those points (z, £) with £ # 0. The rest follows by continuity.

Theorem 1 has a natural statement in projective space, which follows
immediately by employing the S! action on $2*~! to define CP(n — 1). The
metrics are the unitarily invariant metrics.

THEOREM 2. Let H C CP(n) be a hypersurface of degree m and L be a
projective line. Let R be the furthest distance of a point in L from H. Then
forx € L

m"""lr(csc R)dcp(,,)(x, H)l/m =dix, HN L) = dcp(,,)(x, H).
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