

On the Distance to the Zero Set of a Homogeneous Polynomial*

MICHAEL SHUB†

*Mathematical Sciences Department, IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, New York 10598*

Received April 3, 1989

In this paper we prove simple estimates relating the value of a complex homogeneous polynomial at a point to the distance of the point to the zero set of the polynomial, and also the distance to the zero set along a projective line to the distance in projective space. Our motivation for doing this was to give a quantitative aspect to the algorithm of W. Zulehner and to relate it to the algorithms of J. Renegar, J. Canny, and M. Kim. © 1989 Academic Press, Inc.

Let $F: \mathbb{C}^n \rightarrow \mathbb{C}$ be a homogeneous polynomial of degree m . Let $H \subset S^{2n-1} = F^{-1}(0) \cap S^{2n-1}$, where S^{2n-1} is the unit sphere in \mathbb{C}^n . Given a complex 2 plane \mathbb{C}^2 through the origin it intersects S^{2n-1} in a 3 sphere, S^3 . For any point $x \in S^3$ we have the distance $d_{S^3}(x, H)$ and $d_{S^{2n-1}}(x, H)$ the distances from x to $H \cap S^3$ in S^3 and the distance from x to H in S^{2n-1} . Obviously, $d_{S^3}(x, H) \geq d_{S^{2n-1}}(x, H)$.

THEOREM 1. *Let R denote the furthest distance of a point in S^3 from H , as measured in S^{2n-1} . Then*

$$\pi \csc R d_{S^{2n-1}}(x, H)^{1/m} m^{1/m} \geq d_{S^3}(x, H) \geq d_{S^{2n-1}}(x, H).$$

To prove Theorem 1 we use:

PROPOSITION 2. *Let $F: \mathbb{C}^n \rightarrow \mathbb{C}$ be a homogeneous polynomial of degree m . Let $\|F\| = \max_{x \in S^{2n-1}} |F(x)|$. Suppose for x_0 in the unit sphere S^{2n-1}*

* Invited Paper.

† Partially supported by an NSF grant.

that the distance from x_0 to $F^{-1}(0) \cap S^{2n-1}$ in S^{2n-1} is $R > 0$. Then

$$\|F\| \leq |F(x_0)|(\csc R)^m \text{ or } \sin R \leq \left(\frac{|F(x_0)|}{\|F\|}\right)^{1/m}. \quad (*)$$

Proof: We may rotate the sphere S^{2n-1} so that the point $x_0 = (1, 0, 0, \dots, 0) \in \mathbb{C}^n$ and we may assume $|F(x_0)| = 1$ and that $F(x_1, \dots, x_n) = x_1^m + \sum_{i=0}^m a_i(x_2, \dots, x_m) x_1^i$, where $a_i(x_2, \dots, x_m)$ is a homogeneous polynomial of degree $m - i$ in the variables x_2, \dots, x_{n+1} . F has no zeros inside the double cone, K , on the sphere of radius $\tan R$ in the plane $x_1 = 1$ centered at $(1, 0, \dots, 0) \in \mathbb{C}^n$. In fact, since F is homogeneous, any point $(\alpha, 0, \dots, 0)$ is at distance R from H for $\alpha \in \mathbb{C}$ of norm 1. Thus we may assert that F has no zero in the orbit of the cone K , under the action of the unit complex members, $S^1 \subset \mathbb{C}$, on the first coordinate. The orbit is the cone on $S^1 \times D^{2n-2}$. Here S^i denotes the i -sphere and D^j the j disk. The complementary cone on $D^2 \times S^{2n-3}$ in the $2n - 1$ sphere has D^2 fibers over \mathbb{C}^{n-1} , and the radius of the two disk at $\hat{x} \in \mathbb{C}^{n-1}$ is $\|\hat{x}\|/\tan R$.

We write \mathbb{C}^n as $\mathbb{C} \times \mathbb{C}^{n-1}$. With $\hat{x} = (x_2, \dots, x_n) \in \mathbb{C}^{n-1}$ fixed, the polynomial $F(x_1, \hat{x})$ in x_1 has all its zeros in the disk of radius $\|\hat{x}\|/\tan R$ and since the i th coefficient is a symmetric function of the roots

$$|a_i(\hat{x})| \leq C_i^m \left(\frac{\|\hat{x}\|}{\tan R}\right)^i,$$

where $\| \cdot \|$ is the Euclidean norm and C_i^m is the i th binomial coefficient. Thus for $x = (x_1, \hat{x})$ in the unit sphere.

$$|F(x)| \leq \sum_{i=0}^m C_i^m \left(\frac{\|\hat{x}\|}{\tan R}\right)^i |x_1|^{m-i} = \left(|x_1| + \frac{\|\hat{x}\|}{\tan R}\right)^m$$

and

$$|F(x)| \leq \left(\frac{(\tan^2 R + 1)^{1/2}}{\tan R}\right)^m$$

by calculus.

Now we return to the proof of Theorem 1. We may assume that the point $(1, 0, \dots, 0) \in \mathbb{C}^n$ is at distance R from H and that $F((1, 0, \dots, 0)) = 1$.

By Kellogg (1928), (*) implies

$$|DF(x)| \leq m (\csc R)^m \quad (**)$$

for x in the unit ball.

Fix $x_0 \in S^3$ and suppose that $x_0 = (z, \hat{x}) \in \mathbb{C} \times \mathbb{C}^{n-1}$ with $\hat{x} \neq 0$. Let $d_{S^{2n-1}}(x_0, H) = c$; then by (**)

$$|F(x_0)| < cm (\csc R)^m.$$

So with \hat{x} fixed there is a z' with

$$|z - z'| \leq c^{1/m} m^{1/m} (\csc R)$$

and $F(z', \hat{x}) = 0$.

The distance from $x_0 = (z, \hat{x})$ to (z', \hat{x}) is likewise at most $c^{1/m} m^{1/m} (\csc R)$. As x_0 is on the unit sphere the projection of (z', \hat{x}) to the unit sphere has distance from x_0 magnified at most by π . This finishes the proof for those points (z, \hat{x}) with $\hat{x} \neq 0$. The rest follows by continuity.

Theorem 1 has a natural statement in projective space, which follows immediately by employing the S^1 action on S^{2n-1} to define $\mathbb{C}P(n-1)$. The metrics are the unitarily invariant metrics.

THEOREM 2. *Let $H \subset \mathbb{C}P(n)$ be a hypersurface of degree m and L be a projective line. Let R be the furthest distance of a point in L from H . Then for $x \in L$*

$$m^{1/m} \pi (\csc R) d_{\mathbb{C}P(n)}(x, H)^{1/m} \geq d_L(x, H \cap L) \geq d_{\mathbb{C}P(n)}(x, H).$$

ACKNOWLEDGMENT

It is a pleasure to acknowledge useful conversations with Harold Levine.

REFERENCES

CANNY, J. (1989), Generalized characteristic polynomials, preprint.
 KIM, M. (1989), Topological complexity of a root finding algorithm, preprint.
 KELLOG, O. D. (1928), On bounded polynomials in several variables, *Math Z.* **27**, 55–64.
 RENEGAR, J. (1987), On the efficiency of Newton's method in approximating all zeros of a system of complex polynomials, *Math. Oper. Res.* **12**, No. 1, 121–148.
 ZULEHNER, W. (1988), A simple homotopy method for determining all isolated solutions to polynomial systems, *Math. Comp.* **50**, No. 181, 167–177.