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The structural stability of a periodic solution 7 of an ordinary differential equation 
(O.D.E.) whose Poincare map has no eigenvalue of modulus one is well known. Less 

well known is the fact that 7 persists as an invariant embedded circle for small discrete 

perturbations of the time- r map of the flow, dr, r # 0. And yet less well known 
is the manner in which 7 depends smoothly on the perturbation. Issues like these arise 
naturally in the study of solution schemes for O.D.E.‘s. See Braun and Hershenov (1977), 
Shub (1984), or Eirola (1987). To be precise, let 

p = X(x) 

be an autonomous O.D.E. defined on an open subset Uo of R*, or for that manner on 
a manifold. Assume that X is of class C’, 1 5 r 5 co, and let 4 be the X-flow. That 
is, t + 4t(z) is the solution to the O.D.E. with the initial condition 40(z) = z. As a 

function of (t, z), 4 is of class Cr+i.+ in the sense that its partial derivatives respecting t 

and z exist and are continuous (jointly) up to order r+ 1 and r respectively. The domain 
of definition 4 is an open subset of R x UO. 

We want to speak of the curve of time-t maps t + 4t. To do so all the maps 4t should be 

defined on the same domain. We can assure this by assuming that U is an open subset 

of Ve. U has compact closure in UO, and t is small enough that 4tlu is an embedding 
U + R*. Alternatively, we could assume that X has compact support contained in 

some open U c Uo. In either case, 

t + 4tlu 

is a curve in Emb’(U, Rm), the space of C’ embeddings of U into R”‘. It is a special 

kind of curve because of the group property of a flow, 4t+a = 4t 0 4#. The space of 

embeddings is a subspace of the bounded C’ mappings U -+ R” and it carries the C’ 
topology induced by the C’ norm 

llfllr = SUP IfbdI+ SUP IIPfLII + .” +sup II(~‘fMI~ 
where x ranges over U. More generally, a curve in Emb’(U, R”), t + Et, is called a C’ 

compositional solution scheme for X if EO is the inclusion of U into R” and 

Il4t - (EtpJkllr -, 0 as k -, a. 
(Here and below we take r < 00. If X is C” then we say Et is C” when it is C’ for all 

r.) A curve of embeddings t + Et is said to be a C’ tangential solution scheme provided 

that Eo is the inclusion and 

114t - &II, 5 ct2 as t + o , 
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c being some constant. Examples of tangential solution schemes are the kth order Taylor 
methods for C2” vector fields, 0 < k < 00. This is fairly easily seen because the partials 

commute. See Shub (1984). The kth order Taylor methods are also compositional solution 

schemes for Ck+’ vector fields. 

The relation between the two types of solution schemes is this. A C’ tangential solution 

scheme for a Cr+l O.D.E. is a compositional solution scheme. The extra differentiability 

assumption (C +’ O.D.E.) is annoying, but we believe it is necessary. ‘vVe view either 

type of solution scheme t + Et as a discrete perturbation of q& and that will be our 
application of the following theorem. 

THEOREM 1.. Let 7 be a periodic orbit of the C’ O.D.E. i: = X(z) and suppose that 

7 is hyperbolic - no eigenvalue of the Poincare map around 7 has modulus one. Fix a 

time r # 0 of the X-flow 4. Then there exists a neighborhood yr of 4, in Emb’(U, R”) 
and a C’ map 

I’:u’x7--+Rm 

such that I’($, .) : 7 + R” is a C’ diffeomorphism of 7 onto an embedded circle p. It 
is $- invariant in the sense that $(a) = /3. Also, I’($,%) E z if $ = &. Finally, as a 

function of r # 0, the neighborhood Y’ contains a ball of radius 2 c[r/ at & in the C’ 

metric, c being some positive constant. 

In fact p is the unique embedded $-variant circle that lies near 7 in the C’ sense. 

Smoothness of P with respect to $ is what is novel. See also Shub (1987), p. 70, exercise 
4, for a similar idea in the case of stable manifolds. Note that we do not assert that 
II, + r(g) is a C’ map Y’ -+ C’(7, Rm). This would be too much. The topology of 
C’(7, R”) is too strong. Rather, it is the evaluated joint map (+, z) -+ I’($, z) that is 

C’. However, it does follow from standard Banach calculus methods that if we drop the 
target differentiability from r to r - j then 

is Cj,O 5 j 5 r. 

Y’ -+ Emb’-j(7, R”) 

Corollary 1. If Et is a C’ tangential solution scheme for X then for each small r # 0 
there is a unique E,-invariant embedded circle & near 7, and there is a C’ map (r, x) -+ 
b(r, x) sending 7C’ diffeomorphically onto ,f& 

PROOF. Define b(7, x) = I’(E,, x). Since II& - &II, 5 cr2 for small T, we see that E, 
lies in the neighborhood where I? is defined. QED 

Corollary 2. Let Et be a C’ compositional solution scheme for X and let r # 0 be 

given. If k is large then (E,,k)lc h as a uniqe invariant embedded circle ,&,& near 7 

and there is a C’ map (7, k, x) -+ b(r, k, x) sending 7C’ diffeomorphically onto /&,& as 
k ---* 00, b(r, k, .) tends to the inclusion of 7 into R” in the C’ sense. Lowering the target 
differentiability form r to r - 1 we conclude that the C1 distance from /3 to 7 is no more 

than a constant times ll#z - (E,,k)“llr 

PROOF. DEFINE. b(r, k, X) = I ((E+/k)k, X) . QED 

Theorem 1 is a special case of a more general result where the periodic orbit 7 is replaced 
by a boundaryless compact sub-manifold V of a manifold M. (For instance, V could be 
the 2-torus in R3.) Let U be a compact neighborhood of V and suppose that f : U ---) M 
is a C’ embedding which leaves V invariant in the sense that f(V) = V. Additionally, 
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we assume that if r-normally hyperbolic, which means the following. The tangent bundle 
of M along V splits as the sum of three bundles 

TvM= E”@TV~!BE’. 

They are invariant under the derivative of f, Tf(E”) = E“, Tf(TV) = TV, and 
Tf(Eb) = Eb. Th ere are constants A, A*, p, p* such that 0 < p < p* 5 1 I A* < X and 

Q4l 5 IIw4II ifweE” 

~*llwll I llWw)ll 5 X*llWil ifwnv 

IITf (411 5 ~llwll iiwsE’ 

P < b*)’ (x*)r < A. 

The behavior of f is the normal direction to V r-dominates the behavior of f along 
V. The norm is some continuous norm on the tangent bundle of M, ‘adapted” to f. 
See Hirsch, Pugh, Shub (1977)) p. 3. Using an unadapted norm would only necessitate 
replacing f with a power f”. We note that a hyperbolic periodic orbit 7 ia r-normally 
hyperbolic for f = &, T being the period of 7. In fact, f restricted to 7 is the identity 
map, so the constants p*, A* can be taken to be 1 in this case. 

THEOREM 2.. Let V be an r-normally hyperbolic invariant manifold for the embedding 
f sEmb’(U, M). Then there is a C’ neighborhood u’ of f and a C’ map 

u’xV-+M 

such that ug(V) is a g-invariant r-normaLly hyperbolic submainfold and u. sends VC’ 
diffeomorphically onto uB(V). If g = f th en ug is the inclusion of V into M. Moreover, if 
f lies on a one-parameter subgroup #t which is tangent to V (and therefore q&(V) = V), 
then each &, t # 0, is r-normally hyperbolic at V and the neighborhood vi may be 
chosen to contain a ball of radius cltl at &, c being a positive constant. 

sketch of the proof. Let N be a C’ tubular neighborhood of V. The map oV will be 
a section of N,uD : V + N. It is produced by the usual invariant manifold theory and 
is the unique section of N that is g-invariant. See Hirsch, Pugh, Shub (1977), p. 39. (In 
fact it is not necessary that f be injective on U so long as it is a diffeomorphism when 
restricted to V). To prove that (g, z) + erg(z) is jointly C’ we consider a new map. Let 
E = Emb’ (U, M) and define 

F:ExU-,ExM 

F is C’ and leaves invariant the compact submainfold W = f x V = {(f, z) : z E V}. 
We are going to apply Center Manifold Theory to F where W plays the role of the fixed 
point. We think of the bundles E”, TV, and E” as defined over W by 
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E;,, =OCB~ Tf,,V=O~T,V E;,,=O@E;. 

They are TF-invariant. The ‘0” indicates the component in the E direction. We claim 
that there exists a bundle EC over W such that 

Tw(ExU)=E“@EC@Ea, 

EC contains TV, and TF restricted to EU @ E’ r-dominates TF restricted to EC. To 
find EC we use 5 2 of Hirsch, Pugh, Shub (1977). A bundle map acts naturally on 
the space of bounded sections of the bundle, so TF : Tw(E x U) + Tw(E x U) induces 
(TF)# : sec(Tw(ExU)) -+ sec(Tw(ExU)). C orresponding to the splitting Tw ( EX U) = 
Tw(E) $ EU @ TV $ E” we express (TF)# in block matrix form as 

0 (Ti$iv 0 
(T”f)# 

By T” f, TV f, T” f we mean Tf restricted to E”, TV, Ed, and I is the identity map on 
the space of sections of Tw(E). The norms of the blocks are governed by X,p, X*,p*, 
except for the entries labelled “*“. They are bounded. Recall from Hirsch, Pugh (1970), 
p. 154, that a similarity of block matrices 

results from the assumption that either IIDjlIIA-l(l < 1 or llD-‘ljllA[l < 1. Grouping 
together the nine upper left blocks as A and the block (T’f)# as D let us eliminate the 
lowest entry U*n. This gives a TF- invariant bundle Ecu such that Tw (Ex U) = Ecu@ Ea. 
Arguing similarly with EU, we get an invariant bundle EC” with E”@ EC” = Tw(E x U). 
The intersection is EC, EC = Ecu n EC”. Again, TUF and T8 F r-dominate TCF. Now 
we apply a version of the Center Mainfold Theorem. 
We have a C’ compact sub-manifold W of a Banach manifold M = E x M, it is invariant 
by a C’ mapping F, the tangent to F leaves invariant a splitting TW (M) = E”@ EC @ Eb 
with EC I TW, and TUF, T’F r-dominate T”F. Prom this we construct via the graph 
transform method an F-invariant manifold WC containning W and nearly tangent to 
EC at W. (In the classical case W is a point.) In general, center manifolds are not 
unique, even in finite dimensions. However, they always contain the orbits which are 
both forward and backward bounded. This is true here too, and we see that WC contains 
the sets g x og(V). In fact, this means that near W,Wc consists exactly of C’. (In the 
finite dimensional case, the WC we construct via graph transform is 
Banach space case, we need to use this double Lyapunov stability.) 
But C’-ness of WC = ug x og(V) means that the map (2, g) ---) ~~(2) 
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