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The structural stability of a periodic solution v of an ordinary differential equation
(O.D.E.) whose Poincare map has no eigenvalue of modulus one is well known. Less
well known is the fact that « persists as an invariant embedded circle for small discrete
perturbations of the time- r map of the flow, ¢,, 7 # 0. And yet less well known
is the manner in which v depends smoothly on the perturbation. Issues like these arise
naturally in the study of solution schemes for O.D.E.’s. See Braun and Hershenov (1977),
Shub (1984), or Eirola (1987). To be precise, let

dz

- = X(2)

be an autonomous O.D.E. defined on an open subset Uy of R™, or for that manner on
a manifold. Assume that X is of class C",1 < r < oo, and let ¢ be the X-flow. That
is, t — ¢¢(z) is the solution to the O.D.E. with the initial condition ¢o(z) = z. As a
function of (t,z), ¢ is of class C"*1'" in the sense that its partial derivatives respecting ¢
and z exist and are continuous (jointly) up to order r+1 and r respectively. The domain
of definition ¢ is an open subset of R x Up.

We want to speak of the curve of time-t maps t — ¢;. To do so all the maps ¢, should be
defined on the same domain. We can assure this by assuming that U is an open subset
of Up. U has compact closure in Up, and ¢ is small enough that ¢¢|y is an embedding
U — R™. Alternatively, we could assume that X has compact support contained in
some open U C Uy. In either case,

t— dulu

is a curve in Emb" (U, R™), the space of C" embeddings of U into R™. It is a special
kind of curve because of the group property of a flow, ¢¢4s = ¢¢ © ¢,. The space of
embeddings is a subspace of the bounded C™ mappings U — R™ and it carries the C”
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topology induced by the C" norm

Ifli- = sup |f(2)] + sup | (Df)all + - - - + sup (D" f)a|l;

where = ranges over U. More generally, a curve in Emb" (U, R™),t — E,, is called a C"
compositional solution scheme for X if Ej is the inclusion of U into R™ and

i¢: — (Ee)*ilr = 0as k& — oo.
(Here and below we take r < co. If X is C* then we say E; is C* when it is CT for all

r.) A curve of embeddings ¢t — E, is said to be a C" tangential solution scheme provided
that Ey is the inclusion and

s — Eilr < ct> ast — 0,
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¢ being some constant. Examples of tangential solution schemes are the k** order Taylor
methods for C?* vector fields, 0 < k < co. This is fairly easily seen because the partials
commute. See Shub (1984). The k** order Taylor methods are also compositional solution
schemes for C**+1 vector fields.

The relation between the two types of solution schemes is this. A C" tangential solution
scheme for a C"t! O.D.E. is a compositional solution scheme. The extra differentiability
assumption (C™*! O.D.E.) is annoying, but we believe it is necessary. We view either
type of solution scheme ¢ — E; as a discrete perturbation of ¢; and that will be our
application of the following theorem.

THEOREM 1.. Let y be a periodic orbit of the C* O.D.E. £ = X(z) and suppose that
~ is hyperbolic — no eigenvalue of the Poincare map around ¥ has modulus one. Fix a
time 7 # 0 of the X-flow ¢. Then there exists a neighborhood v" of ¢, in Emb" (U, R™)
and a C™ map

I':v»"x4—R™

such that T'(¥,-) : v = R™ is a C" diffeomorphism of 7 onto an embedded circle £. It
is 4- invariant in the sense that ¢¥(8) = B. Also, I'(¢,z) = z if ¥ = ¢,. Finally, as a
function of 7 # 0, the neighborhood v" contains a ball of radius > ¢|r| at ¢, in the C"
metric, ¢ being some positive constant.

In fact B is the unique embedded t-variant circle that lies near v in the C! sense.
Smoothness of I' with respect to 1 is what is novel. See also Shub (1987), p. 70, exercise
4, for a similar idea in the case of stable manifolds. Note that we do not assert that
¢ — I'(¢) is a C" map v" — C"(vy,R™). This would be too much. The topology of
CT (v, R™) is too strong. Rather, it is the evaluated joint map (¢, z) — T'(3, z) that is
C7. However, 1t does follow from standard Banach calculus methods that if we drop the
target differentiability from r to r — 5 then

v — T(v,) V" — Emb™I(y, R™)

isCi,0<j5<r.

Corollary 1. If E, is a C" tangential solution scheme for X then for each small 7 # 0
there is a unique E,-invariant embedded circle §; near v, and there is a C" map (r,z} —
b(r, z) sending yC* diffeomorphically onto 8,

Proor. Define Mr 2\ =TIE_ 2. Since léd, — BN < 202 for small r, we see that E

i nuoor 4,818 \T, %) L\Zry .ul DICE 1Py grjr = C7 sOF Siliaia Ty WC SCC wilav iy
lies in the neighborhood where T is defined. QED

Corollary 2. Let E; be a C" co*rpOS' tional solution scheme for X and let 7 # 0 be
given. If k is large then (E,/k) has a unique invariant embedded circle §;x near «
and there is a C™ map (r,k,z) — b(r, k, z) sending vC" diffeomorphically onto B, as
k — o0, b(r, k, ) tends to the inclusion of v into R™ in the CT sense. Lowering the target
differentiability form r to r — 1 we conclude that the C! distance from 8 to v is no more

than a constant times {|¢, — (E./x)*||

PROOF. DEFINE. b(r,k,z) =T ((E,/x)*,3). QED
Theorem 1 is a special case of a more general result where the periodic orbit « is replaced
by a boundaryless compact sub-manifold V' of a manifold M. (For instance, V could be

the 2-torus in R3.) Let U be a compact neighborhood of V and suppose that f : U — M
is a C" embedding which leaves V invariant in the sense that f(V) = V. Additionally,
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we assume that if r-normally hyperbolic, which means the following. The tangent bundle
of M along V splits as the sum of three bundles

TvM=E*9TVeE.

They are invariant under the derivative of f, Tf(E*) = E¥, Tf(TV) = TV, and
Tf(E®) = E®. There are constants A, A*, u, u* such that 0 < p< pu* <1< A* < X and

Alwll < ITf ()l if w eE®
#rllwll < ITFHw)l < AW if w eTV
ITf ()l < pllwl if weE®
p<(u) (%) <A

The behavior of f is the normal direction to V r-dominates the behavior of f along
V. The norm is some continuous norm on the tangent bundle of M, “adapted” to f.
See Hirsch, Pugh, Shub (1977), p. 3. Using an unadapted norm would only necessitate
repla.cing f with a power f¥. We note that a hyperbolic periodic orbit 7 is r-normally
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map, so the constants u*, A* can be taken to be 1 in this case.

THEOREM Let V be an r-normally hyperbolic invariant manifoid for the embedding

2..
feEmb" (U, M). Then there is a C" neighborhood v" of f and a C" map

VXV - M

(gr :C) - ag(z)

T ATAN ) invariant r-normally hyperbolic submainfold and ¢, sends VT

hat o,(V) is a g-invariant r-normally hyperbolic submainfold and o, sends V
d1ffeomorpbxcal]y ontoay(V). If g= f then g is the inclusion of V into M. Moreover, if
f lies on a one-parameter subgroup ¢; which is tangent to V (and therefore ¢:(V) =V),
then each ¢;, t # 0, is r-normally hyperbolic at V and the neighborhood v{ may be
chosen to contain a ball of radius c|t| at ¢¢,c being a positive constant.

sketch of the proof. Let N be a C" tubular neighborhood of V. The map o, will be
a section of N, g ¢ V — N. It is produced by the usual invariant manifold theory and
is the unique section of N that is g-invariant. See Hirsch, Pugh, Shub (1977), p. 39. (In
fact it is not necessary that f be injective on U so long as it is a diffeomorphism when
restricted to V). To prove that (g, z) — o,(z) is jointly C™ we consider a new map. Let

E = Emb" (U, M) and define

;
X
-
23

F:ExU—-ExM

(9, 2) — (9, 9(=)).

F is C" and leaves invariant the compact submainfold W = f xV = {(f,z): z € V}.
We are going to apply Center Manifold Theory to F' where W plays the role of the fixed
point. We think of the bundles E%, TV, and E* as defined over W by
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E}‘,z =06 E: Tf,zv =0T,V E},z =00 E;_

They are T F-invariant. The “0” indicates the component in the E direction. We claim
that there exists a bundle E° over W such that

Tw(ExU)=E“@© E°o E*,

E° contains TV, and TF restricted to E* @ E® r-dominates TF restricted to E¢. To
find E° we use § 2 of Hirsch, Pugh, Shub (1977). A bundle map acts naturally on
the space of bounded sections of the bundle, so T'F : Ty (E x U) — Tw (E x U) induces
(TF)4 : sec(Tw (ExU)) — sec(Tw (ExU)). Corresponding to the splitting Ty (Ex U) =
Tw(E) ® E* @ TV @ E*® we express (TF)4 in block matrix form as

I 0 0 0

_|* TN 0 0

(TF)s =1 0 (Tv f)# 0
* 0 0 (T*f)a

By T*f, Tv f, T° f we mean T f restricted to E¥, TV, E°, and I is the identity map on
the space of sections of Tw (E). The norms of the blocks are governed by A, u, A*, u*,
except for the entiies labelled “*”. They are bounded. Recall from Hirsch, Pugh (1970),
p. 154, that a similarity of block matrices

A O A 0

¢ D|7|o D
results from the assumption that either || D||[|A7]] < 1 or |[D~1||||A|| < 1. Grouping
together the nine upper left blocks as A and the block (T f) 4 as D let us eliminate the
lowest entry “*”. This gives a T F- invariant bundle E* such that Tw (ExU) = E*“@E°.
Arguing similarly with E*, we get an invariant bundle E°* with E* @ E°® = Ty (E x U).
The intersection is E¢, E¢ = E°* N E°. Again, T*F and T*°F r-dominate T°F. Now
we apply a version of the Center Mainfold Theorem.
We have a C" compact sub-manifold W of a Banach manifold M = E x M, it is invariant
by a C" mapping F, the tangent to F leaves invariant a splitting Tw (M) = E*® E°® E*
with E° D TW, and T*F, T*F r-dominate T°F. From this we construct via the graph
transform method an F-invariant manifold W¢ containning W and nearly tangent to
E° at W. (In the classical case W is a point.) In general, center manifolds are not
unique, even in finite dimensions. However, they always contain the orbits which are
both forward and backward bounded. This is true here too, and we see that W° contains
the sets g X 0g(V). In fact, this means that near W, W*° consists exactly of C". (In the
finite dimensional case, the W° we construct via graph transform is always, C", in the
Banach space case, we need to use this double Lyapunov stability.)
But C"-ness of W = Ug X 0,(V') means that the map (z, g) — o,(z) is C". QED
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