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INTRODUCTION

This paper extends some of the results of Megiddo and Shub (1986) to
include the case of the projective rescaling vector field and a discrete
version which is one of Karmarkar’s (1984) algorithms. First it is shown
that under nondegeneracy conditions every interior orbit of the projective
rescaling vector field is tangent to the inverse of the reduced cost vector at
the optimal vertex. This is accomplished by showing that for a nonde-
generate problem in Karmarkar standard form, the linear and projective
rescaling vector fields agree through quadratic terms; then the resuits of
Megiddo and Shub (1986) apply. Using the quadratic expression for a
nondegenerate problem in Karmarkar standard form, the asymptotic rate
of approach of the discrete algorithm to the optimum is shown to be
1 — oy for all starting points in a cone around the central trajectory
and near the optimum. Here,

1
Vm((m — n)n) + y(n — m)in)’

0<as

where

(?F) X = ((1)) (= Rmvl X R = Rm,
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4) an m X n matrix and x = 0 define the polytope, and vy is a fixed
constant. Thus the domains where the asymptotic rates of approach have
been determined for Karmarkar (1984), Barnes (1985), and Renegar (1986)
are essentially the same and the best possible rate for Karmarker is also
essentially the same as the proven rates for the other two. See also Me-
giddo and Shub (1986). Finally, we end the paper with some open prob-
lems concerning Karmarkar’s algorithm.
Jeff Lagarias, in work in progress which was reported on at Columbia
University, has a result which also implies that all orbits of the projective
rescaling vector field are tangent at the optimum.

1. THE ASYMPTOTICS OF THE PROJECTIVE RESCALING VECTOR FIELD

For x € R", let D = D, be the diagonal matrix with entries x; . . . x,.
For a matrix M, let P,; denote the orthogonal projection on the null space
of M. If M is m X n, M: R" — R™ and the null space of M = {x € R" |
Mx = 0}.

Karmarkar’s standard form for a linear programming problem is

Minimize c¢Tx
subject to Ax = 0
eTx =1
x =0,
where Aisan (m-1) X nmatrix(1 =m=<n);x,cER"ande=(1. . . 1T
€ R». Moreover, it is assumed that the minimum of ¢Tx over the polytope
S=x€ER|Ax =0, efx = 1, x = 0} is 0. We will not use this last
hypothesis before Theorem 1. )
Let S denote the interior of the polytope, S = {x € R"|Ax =0, eTx = 1,
x > 0}, and let A = (%). The linear, projective, u-barrier method vector
fields for p a real parameter and r-vector field are
& = DPsipDc
& = (D — xx)PypDc
V. = DP;p(Dc — pe)
T= PADDC.

They are defined in S. Megiddo and Shub (1986) prove that the vector
fields &, £,, V,,, and Dr extend differentially to all of S, the extensions of
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&, &, and V, are tangent to any face in which the point of the polytope
lies. Moreover, with the nondegeneracy condition that for any m columns
Ay . . . A; of A, the m x m matrix (A, A, . . . A;)is invertible, then the
vector fields &, &,, V,,, and 7(x) extend real analytically to all of S.

DEerINITION. For x € S, let u(x) = (xTr(x)) = (D, 7(x)).

ProposiTION 1. Let

minimize c¢'x

subjectto Ax =0
etx =1
x=0

be a linear programming problem. Let v be a vertex of P, and suppose
that ¢'v = 0. Then the derivatives of the vector field Dyr(x) and the
function u(x) are both zero at v,

p'w) =0, (D)) =0.

Proof. Since u(x) = e"(D,7(x)) it is sufficient to prove that (D7)’ (v) =
0. Now we establish some notation.

(i) Let I, be the set of indices i such that v; > 0 and I, the set of indices
i such that v; = 0.
(i) Let R;, i = 1,2, be defined by

Ri={x€R|x;=0forj & I}

(iii) Let E = null space A. Let E, = D;'E = null space AD,.

(iv) Let E, = E N R,. Since v is a vertex of P, this implies that £, N
{y ERy|y>0and Zy; = I} = {v} and thus E, has dimension one and
consists of multiples of v.

(v) Let F, be the orthogonal complement of D;'E; in E,.

(vi) Let nf, be the orthogonal projection of Dc onto F,. Let ng,, be
the orthogonal projection of Dc on Dy 'E;. Thus 7ME,, can also be expressed
as the orthogonal projection of Dc on D~!v. That is,

_ (Do)™Dw (T ) Dy = 0
MEx = (DD - (D wiD v

Now 7(x) = mp, + mg,,. By Megiddo and Shub (1986, Appendix F) the
derivative (Dymg)'(v) = 0. Thus (D,7)'(v) = (Dme,,)'v = 0 by (vi).
Q.E.D.
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As in Megiddo and Shub (1986), we use the comparison between V, and &,
first observed by Gill et al. (1985).

PropPosITION 2 (Gill et al., 1985). The vector fields V, and & are
equal. The vector field £, may be expressed as £,(x) = V,y(x).

Proof. The first statement is immediate from the definitions. The sec-
ond follows quickly by a short computation which we repeat here:

(Dc)TPypx
(Papx)TPpx

eTPapx
~ WPy + HR) oA Pap).

Vo) = Dy PanDe) - Panx

Now P,p is symmetric and e € null space AD; thus (Dc)TPpx =
(PapDc)Tx = (v(x)Tx) = u(x) and e"Popx = P4pe’x = e"x = 1. Hence,

Vuny(x) = D Pap(Dc) — u(x)e) = D,PapDC — (xTPpDc)x = £,(x).
Q.E.D.

It is interesting to note here that the function u(x) may take negative
values. Nguyen Hoan (personal communication) has constructed such
examples. While the u-barrier method is generally defined only for posi-
tive u the vector field V, makes sense for all u.

The vector fields &,, &, V., and D,r are generically real analytic, but
they are only proven to be differentiable in all cases. It is an open problem
as to whether they are twice differentiable under all possible degenera-
cies. In the next proposition we assume that they are twice differentiable.

PROPOSITION 3. Suppose that the vector fields ¢,, V., uw € R, and D, v
are twice differentiable. Let v be a vertex of the polytope S, and suppose
ey = 0. Then

(@) &(v) = Vo(v) = &(v) = 0.
(b) £,(v) = Vo(v) = £i(v) = 0.
(c) £p(v) = Vi) = €/(v).

Proof. (a) By Megiddo and Shub (1986) the vector fields are tangent to
any face in which a point lies, so £,(v) = V,(v) = £(v) = 0 for any vertex.
Thus, also (dVu/ou)(w) = 0.

(b) Differentiating £,(x) = V,u(x) gives, as in Megiddo and Shub
(1986, Proposition 74) that

g _ oV, dp 3V, OV

dx ou dx = ax’  ap
by Megiddo and Shub (1986, Proposition 6.5).

(v) = 0 and %—‘;“ ) = —u@I
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Using the notation of Proposition 1, 7(x) = ng, + ng,,. Now ng, = 0 by
Megiddo and Shub (1986, Appendix F) and ng,, = 0 since ¢ - v = 0. Thus
() = 0 and w(v) = 0.

(c) Differentiating one more time gives

d%,(v) _ &V, [d/J,(U)] av,L

d? P*vu d vV,
dx? f‘( ) '“(v) e R

® d;wx dx ax?

(v).

The derivative (du/dx)(v) = 0 by Proposition 1, and (8Vu/ou)(v) = 0 by
part (a) so we have &,(v) = V{(v) and Proposition 2 finishes the proof.
Q.E.D.

Given a vertex v of the polytope S, I, the set of indices such that v; > 0,
and I, the set of indices i such that v; = 0, the space R, = {x ER" | x; = 0
forj € I,} is the space of the basic variable and R, = {x € R, | x; = 0 for j &
b} is the space of nonbasic variables. The nondegeneracy hypotheses on
the matrix A imply that any vertex the basic variables may be solved for in
terms of the nonbasic. That is, if we let R* = R, X R, and N: R"— R, the
projection, then N(P) is a polytope P, contained in the positive orthant of
R, with a vertex at 0 and there is a linear map L: R, — R, such that P is the
graph of L + v over P,. Symbolically, P = {(}'")) + v for p € P,}. Then all
vector fields and discrete iterations we consider may be projected into P;.
The orbits in P are simply the graphs over the orbits in P,. Given the
vector field or discrete iteration W we consider the vector field or iteration
NW on P; and say we have expressed W in the nonbasic variables. The
reduced cost vector 7 = (L, Id)c, where ¢ has been written in the R; X R,
coordinates, expresses the cost vector in terms of the R, coordinates.

THEOREM 1. Given a nondegenerate linear programming problem in
Karmarker standard form:

(i) The projective rescaling vector field ép(x) may be expressed in
terms of the (n-m) nonbasic variables at an optimal vertex as

Nép(x) = + éx? + o(x|P),

where ¢ is the (n-m)-dimensional reduced cost vector and the j* compo-
nent of éx? is ¢;xj.

(ii) If, moreover, the optimum is unique every interior solution curve
of the differential equation x = Né&p(x) is tangent at the optimum to the
vector 1/¢, that is, the vector whose j* component is 1/¢;.

Proof. This is now immediate from Sections 4 and 5 of Megiddo and
Shub (1986). The vectorfield Nép(x) = éx2 + of||x|?) so Proposition 3
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proves (i). The uniqueness of the optimum guarantees that no ¢; = 0, so
1/¢ makes sense.

2. THE ASYMPTOTICS OF DISCRETE ALGORITHM

With minor modification the discrete version of Karmarkar’s algorithm
used to prove his polynomial convergence theorem (Karmarker, 1984) is
given as a transformation, Y, of the polytope to itself which takes a step
from the point x in the direction —¢,(x) with step size ¢(x) a nonnegative
continuous function

Y(x) = x = $p()€p(x).

The function ¢(x) is defined as follows:

Let
— AD
A= ( eT)
Let
np(x) = PzDc.
Then

- y
el — yxTnp(x)’

dlx

where 0 < vy is a fixed real constant, originally chosen as } (see Megiddo
and Shub (1986) for this derivation). We will need some information about

b(x).

LeMMA 1. (i) me(x) = 7(x) — (cTx/n)e,
(i) x™np(x) = u(x) — cx/n,
(i) ép(x) = Dyr(x) — u(x)x = Dmp(x) — (xTmp(x))x,
(iv) 9p(x) = D5 %ép(x) — (cTxin)e + p(x)e.

Proof. Part (i) follows from the fact that e is in null space AD. Thus
the orthogonal projection of D¢ into null space AD N null space T is
achieved by projecting first into null space AD and then subtracting the
projection on e. That is,
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T D T T
m) = 100 = T ¢ = 1) - L o = 10 - £X,,

The second equality is true once again since e € null AD and thus 7(x)Te =
(D.e)Te.

Part (ii) follows from (i), the definition of u(x), and the fact that ¢Tx = 1.

Part (iii) follows from the definition of £€p(x) and (i) and (ii).

Part (iv) follows from (iii) by applying D;! and using (ii).

For a nondegenerate problem we express the iteration Yin terms of the
nonbasic variables at the optimal vertex as

NY(x) = x — NPp(x)NEp(x),

where x is in the positive orthant R; of R, as in Section 1. We are
interested in the iterates (NY)9(x).

THEOREM 2.
Let min ¢Tx
subjectto Ax =0
elx =1

be a nondegenerate linear programming problem in Karmarkar standard
form with (¢) an m X n matrix and with a unique optimal vertex. Then
there is a neighborhood U; of the origin in R; the space of the nonbasic
variables and a neighborhood U, C U, of the intersection of U, with the
line Cx = ye, y = 0, such that

(i) The set U, contains a definite angle at the origin.
(ii) For every x € U,

CUNY)(x) _

CINY)4(x));

for all i and j.
(iii) There exist constants K,, K> > 0 and an «,

1
Vm(in — m)in) + y((n — m)n)’

0I<a=

such that

Ki(l — ay)? = [(NY)Ax)|| = K1 — ay)e.

The proof of Theorem 2 occupies the remainder of this section. Cx
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means the vector whose j* component is C;x;. The C; are strictly positive
since we have a unique minimum. Thus we may find a neighborhood U of
the line segment with bounded angle away from the coordinate planes;
that is, there exists a constant, K3 > 0, such that |x/x]| > K; for x € U; and
U, contains a definite angle about Cx = ye at the origin.

LEMMA 2. Suppose we are in the circumstances of Theorem 2. Then

Nnp(x) = Cx — —C—:—’f N(e) + o(lx)  for x € Us.

Proof. By Theorem 1,

Né¢p(x) = Cx? + o(dP)
D:'Nép(x) = Cx+ o)  in Us.
Now use Lemma 1(iv) and Proposition 1.

In the notation of Section 1, the polytope P is the graph of L + v over
the polytope P, in R5. We define the inner product

(, )y on R3 by (x, x2) = {(x;, L(x1)), (x2, L(x2))),
where ( , ) is the usual inner product on R" = R, X R,. We let || [|; be the

norm associated to { , )y, i.e., lxi = (x, x)I? for x € R,.
In terms of the nonbasic variables then

y
NY(x) = x — _ N ,
@ =x |Nnp()lli + v(CTx/n) + wl(x)( £e(x)

where du/dx = 0. Thus

_ Y
[Cx = (Cx/nye + ofx|| i + ¥(Cx/n) + ollx||

(C%x2 + ofdP)

NY(x) = x

Y -
=X T = - C 2 + 2 .
|Cx — Cx/n)ell; + y(CTx/n) + ofjx; (Cx* + ol

If we make the change of variable y = Cx then the iteration becomes

(D) NY(y) =y olly|.

— Y 2 4
Iy = (elyin)ell; + y(eTyin) + o] ”
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As in Megiddo and Shub, Sect. 8) we study this equation in ‘‘polar coordi-
nates.”” Fory D R; let R(y) = |y — (eTy/n)e]|; + y(e"y/n) and let B C R; be
the set of points {y | R(y) = 1}. Finally, let « = 1/R(e) = n/(mlle||; +
yln — m)).

LEMMA 3.

(n—m)

lelli = /7 =

1
“= Vm((n ~ m)n) + y((n — m)in)

Proof. The vector (e, L(e)) is tangent to the simplex, thus eTL(e) =
—(n — m) and

lelli = ke, L@ = (lel? + L)) = (2 = m) + |L())'>
as
=n- S Ll ) S (Rl )i
leTL(e)l = n — m ||L(e)|} = ( - ) m= 2=
Thus
_ 2 —
= (o O < a2

1
«= (m/n)llel, + y(n — m)/n)

so substituting the inequality for ||e||; gives the inequality for a.
LEMMA 4. Fory = V212, ay < 4.
Proof.

1 1

< ! = < V2.
| (n—m) (n—m) \/(n—m) \/;—1
m + vy m
n n n

n

Remark. If the point (1/n, . . ., 1/n) € R"is in P then (e, Le + v) =
(1/n, . . ., 1/n) with 2v; = 1. Thus it is easy to see that

llelly = n n
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and consequently

1
*= mVin — Din + y((n — m)ln)

To change to ‘‘polar coordinates,” let (o, &) € R, X B and let y = ou.
Then

W(O’, u) = (R(NY(O’L()), m NY(O’M))

expresses NY in the (o, u) coordinates. It follows from (I) that there is an
ro > 0suchthat W: [0, r] X S— [0, r] X S for 0 <r =< r,. Moreover, W and
Z are tangent on 0 X B, where

Z(o, u) = (R(u — yu?), u — yud).

1
R(u — yu?)
The map Z takes rays to rays, and the ray through «e is fixed by Z; that is,
(0, ae) is a fixed point for Z.
PRrROPOSITION 4. The derivative of Z at (0, ae) is

’ = l - C\!’y 0
Z'0, ae) = ( 0 (1-ayl- av))l)

Proof. The derivative of u — yu? at ae is (1-2 ay)l. The derivative of
(1/R(u — vyu?))(u — yu?) applied to tangent vectors to B at ae is

1 1
Rlae — y@o) | ~ 2 = s " apR@

=(ﬂ)1=<1__‘¥l’_>1.
1 — ay 1~ ay

(1 = 2ay)I

The derivative along the ray is just R(ae — y(ae)?) = 1 — ay. Q.E.D.
Now we return to the proof of Theorem 2.

Proof. Since ay < 3,1 — ay/(1 — ay) is positive and less than 1 — ay,
thus (1 — ay/(1 — ay)) I represents a stronger contraction that 1 — ary for
Z'(0, ae). For the linearized system it is simple to see that any orbit under
iteration becomes tangent to the cigenspaces of 1 — ay and has an ulti-
mate rate of attraction 1 — ay toward 0. That the same is true for the
nonlinear approximations Z and W to Z’ follows from center manifold
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theory (see Shub, 1986). The theorem for NY results by the change of
coordinates. The rate of attraction to zero remains unchanged under lin-
ear conjugation. Q.E.D.

3. PROBLEMS

PrOBLEM 1. Given a nondegenerate linear programming problem in
Karmarkar standard form, is the asymptotic rate of approach to the opti-
mum of the discrete algorithm I — «y for every interior point of the
polytope?

A similar problem is stated by Megiddo and Shub (1986) for the discrete
affine rescaling algorithm and is still open.

ProBLEM 2. For fixed polytope P with center x,, let C be a cost
function and £ > 0. Define $4(C, €) and S,(C, &) to be the number of steps
of the discrete algorithm described above, or the number of steps of line
search on Karmarkar’s potential function using the projective rescaling
vectorfield starting at x, necessary to be within £ of an optimal point. For
nontrivial polytopes, even the unconstrained simplices of dimension 3 or
4 (or even 27?), is it true that for fixed & sufficiently small, the functions
S4(C, €) and S,(C, ) are unbounded on the space of problems? Their
averages over the unit sphere in the space of problems should be finite.
What are the averages?

The recent paper of Anstreicher (1987) might be relevant to this
problem.
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