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This paper  extends some of the results of Meg iddo and  Shub (1986) to 
include the case of the projective resealing vector field and  a  discrete 
version which is one  of Karmarkar’s (1984) algorithms. F irst it is shown 
that under  nondegeneracy conditions every interior orbit of the projective 
resealing vector field is tangent to the inverse of the reduced cost vector at 
the optimal vertex. This is accomplished by showing that for a  nonde-  
generate problem in Karmarkar standard form, the linear and  projective 
resealing vector fields agree through quadratic terms; then the results of 
Meg iddo and  Shub (1986) apply. Using the quadratic expression for a  
nondegenerate problem in Karmarkar standard form, the asymptotic rate 
of approach of the discrete algorithm to the opt imum is shown to be  
1  - ‘my for all starting points in a  cone around the central trajectory 
and  near the optimum. Here, 

O<(Y~ 1  
V/m((m - n)ln) + y(n - m)ln)’ 

where 

E RI?‘-I x R = RI?’ ’ 
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($) an m x n matrix and x 2 0 define the polytope, and y is a fixed 
constant. Thus the domains where the asymptotic rates of approach have 
been determined for Karmarkar (1984), Barnes (1985), and Renegar (1986) 
are essentially the same and the best possible rate for Karmarker is also 
essentially the same as the proven rates for the other two. See also Me- 
giddo and Shub (1986). Finally, we end the paper with some open prob- 
lems concerning Karmarkar’s algorithm. 

Jeff Lagarias, in work in progress which was reported on at Columbia 
University, has a result which also implies that all orbits of the projective 
resealing vector field are tangent at the optimum. 

1. THE ASYMPTOTICS OF THE PROJECTIVE RESCALING VECTOR FIELD 

For x E [w”, let D = D, be the diagonal matrix with entries xi . . . x,. 
For a matrix M, let PIM denote the orthogonal projection on the null space 
ofM.IfMismXn,M:UP~R”andthenullspaceofM={xElR”~ 
Mx = O}. 

Karmarkar’s standard form for a linear programming problem is 

Minimize cTx 

subject to Ax = 0 

eTx = 1 

x 2 0, 

where A is an (m-l) x n matrix (1 I m 5 n); x, c E iw”; and e = (1 . . . l)T 
E llP. Moreover, it is assumed that the minimum of cTx over the polytope 
S={xERnIAx=O,eTx= 1,x~O)isO.Wewillnotusethislast 
hypothesis before Theorem 1. 

Let S denote the interior of the polytope, ,$ = {x E IR” 1 Ax = 0, eTx = 1, 
x > 0}, and let A = ($). The linear, projective, p-barrier method vector 
fields for p a real parameter and r-vector field are 

cfl = DPA,Dc 

&, = (D - xxT)PADDc 

V, = DPio(Dc - ,ue) 

r = PmDc. 

They are defined in $. Megiddo and Shub (1986) prove that the vector 
fields &, &,, V,, and Dr extend differentially to all of S, the extensions of 
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&, &, and V, are tangent to any face in which the point of the polytope 
lies. Moreover, with the nondegeneracy condition that for any m columns 
Ai,. . . A, of A, the m X m matrix (AilA,, . . . Ai,) is invertible, then the 
vector fields &, .$,, V,, and r(x) extend real analytically to all of S. 

DEFINITION. For x E S, let p(x) = (x~T(x)) = eT(&-(x)). 

PROPOSITION 1. Let 

minimize cTx 

subject to Ax = 0 

eTx = 1 

x20 

be a linear programming problem. Let v be a vertex of P, and suppose 
that cTv = 0. Then the derivatives of the vector field DJ(x) and the 
function p(x) are both zero at v, 

p’(v) = 0, (0,7)‘(v) = 0. 

Proof. Since p(x) = eT(DXT(x)) it is sufficient to prove that (DJ)‘(v) = 
0. Now we establish some notation. 

(i) Let Ii be the set of indices i such that vi > 0 and Zz the set of indices 
i such that vi = 0. 

(ii) Let Ri, i = 1,2, be defined by 

Ri = {X E [w” 1 xj = 0 for j 4 Ii}. 

(iii) Let E = null space A. Let E, = D;‘E = null space AD,. 
(iv) Let E, = E n R,. Since v is a vertex of P, this implies that El fl 

{y E RI 1 y > 0 and Cyi = I} = {v} and thus El has dimension one and 
consists of multiples of v. 

(v) Let F, be the orthogonal complement of D;‘El in E,. 
(vi) Let nFX be the orthogonal projection of DC onto F,. Let nEIX be 

the orthogonal projection of Dc on D;‘E,. Thus qEIX can also be expressed 
as the orthogonal projection of DC on D-‘v. That is, 

(Dc)~D-‘v 
%lx = (D-‘#D-,~ = cD$;,;f;‘-,v D-‘v = 0. 

NOW r(x) = 7)~~ + r)~,~. By Megiddo and Shub (1986, Appendix F) the 
derivative (DX~F,)‘(v) = 0. Thus (DJ)‘(v) = (DXqEJ’v = 0 by (vi). 

Q.E.D. 
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As in Megiddo and Shub (1986), we use the comparison between V, and &, 
first observed by Gill et al. (1985). 

PROPOSITION 2 (Gill et al., 1985). The vector jields V, and 51 are 
equal. The vector Jield tp may be expressed as ~Jx) = V,&X). 

Proof. The first statement is immediate from the definitions. The sec- 
ond follows quickly by a short computation which we repeat here: 

Now Pm is symmetric and e E null space AD; thus (Dc)~PADx = 
(PADDc)Tx = (FIX) = y(x) and eTPADx = PmeTx = eTx = 1. Hence, 

V,,,,(X) = DxP,&Dc) - p(x)e) = D,PADDC - (X~PADDC)X = Qp(x). 
Q.E.D. 

It is interesting to note here that the function p(x) may take negative 
values. Nguyen Hoan (personal communication) has constructed such 
examples. While the p-barrier method is generally defined only for posi- 
tive p the vector field V, makes sense for all CL. 

The vector fields &,, 51, V,, and Dg are generically real analytic, but 
they are only proven to be differentiable in all cases. It is an open problem 
as to whether they are twice differentiable under all possible degenera- 
ties. In the next proposition we assume that they are twice differentiable. 

PROPOSITION 3. Suppose that the vectorfields &,, V,, t.~ E R, and DXr 
are twice diflerentiable. Let v be a vertex of the polytope S, and suppose 
eTy = 0. Then 

(4 &Au) = V,(v) = 5r(v) = 0. 
(b) t;(v) = V;(v) = <i(v) = 0. 
(c) g(v) = Vi(v) = (i’(v). 

Proof. (a) By Megiddo and Shub (1986) the vector fields are tangent to 
any face in which a point lies, so &.(v) = V,(v) = h(v) = 0 for any vertex. 
Thus, also (aV&~p)(v) = 0. 

(b) Differentiating i&(x) = V&x) gives, as in Megiddo and Shub 
(1986, Proposition 74) that 

4%) = av, dcL + av, 
dx ap dx ax' $ (v) = 0 and $$ (v) = -p(v)Z 

by Megiddo and Shub (1986, Proposition 6.5). 
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Using the notation of Proposition 1, r(x) = qFX + vElx. Now qF, = 0 by 
Megiddo and Shub (1986, Appendix F) and qE,” = 0 since c 3 u = 0. Thus 
r(u) = 0 and p(u) = 0. 

(c) Differentiating one more time gives 

The derivative (&ldx)(u) = 0 by Proposition 1, and (13Vp/C&)(u) = 0 by 
part (a) so we have t;(u) = V;(u) and Proposition 2 finishes the proof. 

Q.E.D. 

Given a vertex u of the polytope S, I, the set of indices such that ui > 0, 
and Z2 the set of indices i such that u; = 0, the space RI = {x E [w” 1 xj = 0 
forj 4 Zr} is the space of the basic variable and R2 = {x E R,, 1 Xj = 0 forj g 
Zz} is the space of nonbasic variables. The nondegeneracy hypotheses on 
the matrix A imply that any vertex the basic variables may be solved for in 
terms of the nonbasic. That is, if we let R” = R, x R2 and N: R”+ Rz the 
projection, then N(P) is a polytope P2 contained in the positive orthant of 
R2 with a vertex at 0 and there is a linear map L: R2 -+ RI such that P is the 
graph of L + u over P2. Symbolically, P = {(k(P)) + u for p E Pz}. Then all 
vector fields and discrete iterations we consider may be projected into P2. 
The orbits in P are simply the graphs over the orbits in P2. Given the 
vector field or discrete iteration W we consider the vector field or iteration 
NW on P2 and say we have expressed W in the nonbasic variables. The 
reduced cost vector 7 = (L’, Z&z, where c has been written in the RI X R2 
coordinates, expresses the cost vector in terms of the R2 coordinates. 

THEOREM 1. Given a nondegenerate linear programming problem in 
Karmarker standard form: 

(i) The projective resealing vector field [p(x) may be expressed in 
terms of the (n-m) nonbasic variables at an optimal vertex as 

N&o(x) = + i;x2 + 0(11x11*), 

where C is the (n-m)-dimensional reduced cost vector and thefh compo- 
nent Of &X2 is EjXj* 

(ii) Zf, moreouer, the optimum is unique every interior solution curue 
of the differential equation X = Ntr(x) is tangent at the optimum to the 
vector l/C, that is, the vector whose jrh component is l/Cj+ 

Proof. This is now immediate from Sections 4 and 5 of Megiddo and 
Shub (1986). The vector-field N,$(x) = cx2 + 0(11x112) so Proposition 3 
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proves (i). The uniqueness of the optimum guarantees that no Cj = 0, so 
l/E makes sense. 

2. THE ASYMPTOTICS OF DISCRETE ALGORITHM 

With m inor modification the discrete version of Karmarkar’s algorithm 
used to prove his polynomial convergence theorem (Karmarker, 1984) is 
given as a transformation, Y, of the polytope to itself which takes a step 
from the point x in the direction -5Jx) with step size C#J(X) a nonnegative 
continuous function 

The function 4(x) is defined as follows: 

Let 

Let 

Q(X) = PxDc. 

Then 

where 0 < y is a fixed real constant, originally chosen as 3 (see Megiddo 
and Shub (1986) for this derivation). We will need some information about 
fm). 

LEMMA 1. (i) qp(x) = Q-(X) - (cTxln)e, 
(ii) xTnp(x) = p(x) - cTx/n, 
(iii) M-4 = D,44 - 1.4-4~ = DmW - (x~w(x))x, 
(iv) rip(x) = D;‘&~x) - (cTxln)e + p(x>e. 

Proof. Part (i) follows from the fact that e is in null space AD. Thus 
the orthogonal projection of DC into null space AD n null space eT is 
achieved by projecting first into null space AD and then subtracting the 
projection on e. That is, 
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q&) = T(X) - 9 e = T(x) - OTe 
T 

eTe 
e = 7(x) - y e. 

The second equality is true once again since e E null AD and thus r(x)Te = 
(D,e)Te. 

Part (ii) follows from (i), the definition of p(x), and the fact that eTx = 1. 
Part (iii) follows from the definition of &p(x) and (i) and (ii). 
Part (iv) follows from (iii) by applying 0;’ and using (ii). 
For a nondegenerate problem we express the iteration Yin terms of the 

nonbasic variables at the optimal vertex as 

where x is in the positive orthant R: of R2 as in Section 1. We are 
interested in the iterates (NY)q(x). 

THEOREM 2. 

Let min cTx 
subject to Ax = 0 

eTx = 1 

be a nondegenerate linear programming problem in Karmarkar standard 
form with ($) an m X n matrix and with a unique optimal vertex. Then 
there is a neighborhood Ui of the origin in R: the space of the nonbasic 
variables and a neighborhood LJ, C 171 of the intersection of U1 with the 
line dx = ye, y 2 0, such that 

(i) The set Uz contains a definite angle at the origin. 
(ii) For every x E U, 

for all i and j. 
(iii) There exist constants K,, K2 > 0 and an CX, 

o<acr 1 
Vm((n - m)ln) + y((n - m)/n)’ 

such that 

K,(l - ayp 5 )J(NY)qx)(l 5 &(I - ayp. 

The proof of Theorem 2 occupies the remainder of this section. & 
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means the vector whose. Jth component is CjXj. The Ci are strictly positive 
since we have a unique minimum. Thus we may find a neighborhood U3 of 
the line segment with bounded angle away from the coordinate planes; 
that is, there exists a constant, Kj > 0, such that Ix;/xjl > K3 for x E U, and 
U3 contains a definite angle about cx = -ye at the origin. 

LEMMA 2. Suppose we are in the circumstances of Theorem 2. Then 

Nqp(x) = cx - $ N(e) + ocllxll> forx E U3. 

Proof. By Theorem 1, 

A&(x) = (2x2 + o(~~x(~2) 
D,‘N&(x) = cx+ o(llxll2) in U,. 

Now use Lemma 1 (iv) and Proposition 1. 
In the notation of Section 1, the polytope P is the graph of L + u over 

the polytope P2 in R:. We define the inner product 

( , >I on Ri by (~1, 4 = ((XI, L(xI)), b-2, Ud), 

where ( , ) is the usual inner product on R” = RI x Rz. We let 11 111 be the 
norm associated to ( , ),, i.e., ~~x~~~ = (x, x)!” for x E Rz. 

In terms of the nonbasic variables then 

NY(x) = x - 11Nqp(x)l)1 + y(g’xin) + -y/-q(x) 
WSP(XN 7 

where d,uJdx = 0. Thus 

NY(x) = x - II& - (dTxln)e + o,i 11, + y(c*xln) + 01~11 @x2 + o((xl12) 
= x - IICX - f?x/n)ell, : y(d*x/n) + ollxll, (cx2 + ob”f)- 

If we make the change of variable y = cx then the iteration becomes 

(I) NY(y) = ’ - IIy - (eTyln)elll Z y(eTyln) + ollyll y2 + olly112* 
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As in Megiddo and Shub, Sect. 8) we study this equation in “polar coordi- 
nates.” For y 3 R: let R(y) = /y - (eTyln)elll + r(eTyln) and let B C R: be 
the set of points {y ( R(y) = I}. Finally, let (Y = l/R(e) = nl(mllellt + 
rh - 4). 

LEMMA 3. 

I 025 l/m((n - m)ln) + y((n - mynj 
Proof. The vector (e, L(e)) is tangent to the simplex, thus eTL(e) = 

-(n - m) and 

lIeIll = Il(e, L(e)11 = (l(ell* + llL(e)l12Y2 = ((n - m) + llL(e)l12)1i2 

as 

leTL(e)l = n - m [IL(e)/)* > (y)2 m = (n im)2. 

Thus 

IleJJ, 2 ((n - m) + (n irnJ2)“’ = JF, 

1 
ff = (mln)l(eJI, + y(n - m)ln) 

so substituting the inequality for llelli gives the inequality for (Y. 

LEMMA 4. For y 5 d/2, ay < f. 

Proof. 

m- 

Remark. If the point (l/n, . . . , l/n) E R” is in P then (e, Le + IJ) = 
(l/n, . . . ) l/n) with ZVi = 1. Thus it is easy to see that 
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and consequently 

1 
CYZ 

md/(n - 1)/n + y((n - m)lnj 

To change to “polar coordinates,” let ((T, p) E R, x B and let y = CU. 
Then 

expresses NY in the ((T, U) coordinates. It follows from (I) that there is an 
r. > 0 such that W: [0, r] x S --, [0, r] x S for 0 < Y 5 ro. Moreover, Wand 
Z are tangent on 0 x B, where 

Zb, u) = Wu - yu*L R(u ! yu2j u - yuq. 

The map Z takes rays to rays, and the ray through (Ye is fixed by Z; that is, 
(0, ae) is a fixed point for Z. 

PROPOSITION 4. The derivative of Z at (0, eye) is 

Proof. The derivative of u - yu* at are is (l-2 ay)Z. The derivative of 
(l/R(u - ~u*))(u - yu2) applied to tangent vectors to B at (ye is 

1 
R(ae - -y(ae)2) 

(1 - 2ay)Z = a(1 - #ky)R(e) (’ - 2ay)z 

= (yy)z= (1 -+-)I. 

The derivative along the ray is just R(ae - -y(cue)*) = 1 -. wy. Q.E.D. 

Now we return to the proof of Theorem 2. 

Proof. Since ay < f, 1 - a$(1 - (~7) is positive and less than 1 - ay, 
thus (1 - cry/( 1 - ay)) Z represents a stronger contraction that 1 - ay for 
Z’(0, ae). For the linearized system it is simple to see that any orbit under 
iteration becomes tangent to the eigenspaces of 1 - ay and has an ulti- 
mate rate of attraction 1 - ay toward 0. That the same is true for the 
nonlinear approximations Z and W to Z’ follows from center manifold 
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theory (see Shub, 1986). The theorem for NY results by the change of 
coordinates. The rate of attraction to zero remains unchanged under lin- 
ear conjugation. Q.E.D. 

3. PROBLEMS 

PROBLEM 1. Given a nondegenerate linear programming problem in 
Karmarkar standard form, is the asymptotic rate of approach to the opti- 
mum of the discrete algorithm 1 - a-y for every interior point of the 
polytope? 

A similar problem is stated by Megiddo and Shub (1986) for the discrete 
affine resealing algorithm and is still open. 

PROBLEM 2. For fixed polytope P with center x0, let C be a cost 
function and E > 0. Define &(C, E) and S,(C, E) to be the number of steps 
of the discrete algorithm described above, or the number of steps of line 
search on Karmarkar’s potential function using the projective resealing 
vector-held starting at X, necessary to be within E of an optimal point. For 
nontrivial polytopes, even the unconstrained simplices of dimension 3 or 
4 (or even 2?), is it true that for fixed E sufficiently small, the functions 
&(C, E) and S,(C, E) are unbounded on the space of problems? Their 
averages over the unit sphere in the space of problems should be finite. 
What are the averages? 

The recent paper of Anstreicher (1987) might be relevant to this 
problem. 
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