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These are clearly related to generation theory of nonlinear semigroups, the dissipative
realizations in L' and in H™! of A ¢ ¢ for maximal monotone ¥, and other well-
known proofs by monotonicity and compactness methods. These interconnections
are acknowledged but not developed, although this would have been interesting.

The highlight of the exposition is the set of Bibliographical Remarks which follow
each chapter. These compose a remarkably exhaustive (and exhausting) account of
the origin and credits for the many research works which are summarized or used.
The weak point is the overwhelming background required of the reader. In addition
to the usual linear functional analysis, measure and distribution theory, variational
theory of elliptic PDE and Sobolev spaces as known to applied mathematical analysts
and certain other scientists, the author cites facts from approximation theory, convex
analysis, singular integral operators, interpolation of operators, degree theory, linear
semigroups and certain topics for quasilinear elliptic or parabolic PDE. In spite of
these assumptions on the readers’ background, it occurs that one is referred elsewhere
for the details of a proof, these often seeming to this technician to be the crux moves.

R. E. SHOWALTER
University of Texas, Austin

Information, Uncertainty, Complexity. By J. F. TRAUB, G. W. WASILKOWSKI AND
H. WozN1AKOowsKI. Addison-Wesley, Reading, MA, 1983. xii + 176 pp. $34.95.
ISBN 0-201-07890-2.

Information, Uncertainity, Complexity generalizes A General Theory of Optimal
Algorithms by J. F. Traub and H. Wozniakowski, Academic Press, New York,
1980, which was recently very ably reviewed by Ed Packel (this Review, 28 (1986),
pp. 435-437). In the previous volume uncertainty was measured by a norm on a
linear space. In this volume it is measured by nested families of subsets of a given
space depending on a nonnegative real parameter and with nonempty intersection,
so that any problem considered has a solution. In this fashion discrete and continuous
problems can be treated in the same context. Despite the more general context, this
book is easier to get into because it is less technical and has worked-out examples on
binary search, integration, normed linear spaces, polynomial zeros, uniform approx-
imation and division. There is also a chapter of applications to algebraic coding
theory, distributed computation, continuous binary search, bin packing, nonlinear
equations, linear equations, database security, Boolean functions, information theory
and decision theory.

The problem addressed by this book is whether the problems studied can be
solved up to preassigned uncertainty, and if they can be, how difficult is this to do? If
algorithm is construed so broadly that any function mapping problems to solutions
is considered an algorithm, then the Axiom of Choice and the hypothesis that the
solution set is nonempty guarantee that there is always an algorithm to solve any
problem. In this formulation the existence of an algorithm to solve a class of problems,
approximately or exactly, is only interesting when the notion of algorithm is restricted
or the information about the exact problem we are to solve is incomplete, only
partially used or contaminated.

The first three chapters of this book fix the information and study the intrinsic
error of any algorithm using that information. The arguments are mostly adversary
arguments. The fourth chapter turns to optimal information and the issue of adaption.
The fifth studies cost and is called complexity. The sixth chapter contains the
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applications. Finally, there are Appendices A-H. Worst-case analysis is used in this
volume; an average case analysis is promised in a future volume.

There are various objections to the practicality of optimal algorithms. For
example, if in integrating functions defined on the unit interval using functional
evaluations at n points we find that spacing these points evenly is optimal, then the
transition from n to n+ 1 points is awkward. Frequently we may be unsure as to
which space our function shall be considered to lie in, so we do not know which
worst-case analysis to apply. Special algorithms tailored to special spaces may be
complex and we may prefer a simple algorithm which works well for a large class of
problems and spaces. But in any case, having bounds in terms of optimal algorithms
shows what is theoretically possible for comparison’s sake, even if the resulting
algorithms are for one reason or another impractical. Adversary arguments are clearly
very powerful for establishing lower bounds, and it is in the formalization of the basic
principles of these arguments in terms of the radius of information in the first three
chapters of Information, Uncertainty, Complexity that I find the book at its strongest.

As a beginner browsing through the book, I find all of the arguments mathemat-
ically correct and the authors clear about their hypotheses and the limitations of the
theory they propose. Yet I am not always convinced of the applicability of the theory
to the examples being studied on a practical level. Let me give some examples starting
with one from Chapter 4 of Information, Uncertainty, Complexity. 1 am thinking of
a number between 0 and 15. Guess my number. We are all familiar with the usual
divide and conquer technique of asking is the number between 0 and 7? and then
branching to is the number between 0 and 3? or is the number between 8 and 11?
depending on whether the answer to the first question is yes or no, etc. The information
we get is adaptive in the sense that the question we ask depends on the previous
information we have received. Moreover, the domain of definition of our question
can be considered to have changed; first it is a question about all numbers 0 to 15,
then about only those numbers from 0 to 7 or from 8 to 15. After four questions we
have found our number. Chapter 4 deals with the problem of whether nonadaptive
information can solve the same problem as adaptive information, and if so whether
it requires more information. Nonadaptive information may be computed in
parallel. In this case there are also four questions which solve the problem non-
adaptively. Here are four questions which work. Let 4=(02468 10 12 14), let
B=(0145891213),letC=(0123891011)andlet D=(01234567). Is the
number in A? Is the number in B? Is the number in C? Is the number in D? These
four questions amount to asking if the least significant bit is zero, if the next is zero,
etc. Thus they give enough information to solve the problem. So nonadaptive
information is as strong as adaptive for this problem. Yet it would seem, since the
fourth question we have asked in the nonadaptive setting is the same as the first we
have asked in the adaptive setting, and since the answer to the adaptive question
reduces our problem size by half, that there should be some preference for the adaptive
information. This might be wrong, but these considerations seem compelling even if
they go beyond the intentions of the example. Similar phenomena happen in other
examples as well. Optimal algorithms in the worst case may no longer be optimal
when the domain of definition of the problem is adaptively reduced, or the cost of
evaluating information operators on subsets may go down. There is much more about
this with regard to the integration problem in the thesis of Feng Gao “Nonasymptotic
Error of Numerical Integration—an Average Analysis,” Mathematics Department,
University of California, Berkeley, 1986.

The cost of the information becomes an issue again for me later with respect to
some real number problems. Example 4.1 studies the problem of division allowing
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for the exact operations of addition, subtraction and multiplication performed at unit
cost. The problem is to evaluate 1/(3 — f) for fin the closed interval —1 to 1. Here it
seems reasonable to me to assign the same cost of computation independent of the
point since the problem is well conditioned, f staying well away from 3. Thus the
complexity analysis of this example seems reasonable to me. On the other hand it
does not seem reasonable to me to assign unit cost to the functional evaluations of
all functions and points in order to locate a zero of a continuous function defined on
the closed unit interval, as the complexity analysis of the bisection algorithm example
of Chapter 6 does, since the question is most sensitive for values near zero, and
especially for functions which are near zero on the whole interval. More interesting
to me in the section on nonlinear equations is the theorem of Wasilkowski, which is
referred to there, that no algorithm using a finite amount of linear information can
produce epsilon approximations to the roots of all complex polynomials.

I have recently received a survey paper from H. Wozniakowski entitled “Infor-
mation Based Complexity” to appear in the Annual Review of Computer Science, 1
(1986), which concentrates more on continuous problems and the normed linear
space setting.

MICHAEL SHUB
IBM T. J. Watson Research Center

Homogenization and Effective Moduli of Materials and Media. Edited by J. L.
ERICKSEN, D. KINDERLEHRER, R. KOHN AND J.-L. LIONS. Springer-Verlag,
New York, 1986. x + 263 pp. $22.50. ISBN 0-387-96306-5. IMA Volumes in
Mathematics and Its Applications, Vol. 1.

To the uninitiated I note that homogenization is a theory developed by F. Murat
and L. Tartar which places in a functional analytic framework the following basic
problem of applied mathematics: Given a function u(x, y), where u is periodic in y,
what is the behavior in ¢ as e — 0 of the function u(x, (x/¢))? The function u is
regarded as the macroscopic variable and we wish to determine its behavior by
averaging the microscopic variable y. In fact, homogenization treats much broader
issues than this, e.g., the periodic structure is not necessary but the example provides
the flavor of the issue. Canonical physical examples arise in determining either the
homogenized thermal conductivity or homogenized elasticity tensor of a periodic
mixture of two different materials. These homogenized quantities represent the
effective moduli of the mixture. Furthermore, as one learns to compute effective
moduli, one sees that one may try to optimize them, e.g., make heat dissipate as
rapidly as possible or make the material as strong as possible by an optimal choice of
mixing strategy, i.e., perform an optimal structural design.

The volume under review is a collection of papers by world experts in both
homogenization and optimal structural design. The emphasis of all the papers is on
applications and examples. The papers are of high quality, well written, and happily
one need not be a specialist to gain insight from reading them.

I recommend the collection to anyone interested in seeing what is happining on
the applied side of homogenization and optimal structural design. For the record, the
following papers are included in the volume:

Generalized Plate Models and Optimal Design, Martin P, Bendsoe; The Effective
Dielectric Coefficient of a Composite Medium: Rigorous Bounds from Analytic Prop-
erties, David J. Bergman; Variational Bounds on Darcy’s Constant, James G. Berry-
man; Micromodeling of Void Growth and Collapse, M. M. Carroll; On Bounding the
Effective Conductivity of Anisotropic Composites, Robert V. Kohn and Graeme W.



