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ABSTRACT

We study an average condition number and an average loss of precision for the
solution of linear equations and prove that the average case is strongly related to the
worst case. This holds if the perturbations of the matrix are measured in Frobenius or
spectral norm or componentwise. In particular, for the Frobenius norm we show that
one gains about log, n +0.9 bits on the average as compared to the worst case, n
being the dimension of the system of linear equations.

1. INTRODUCTION

In this paper we analyze an average condition number of the solution of a
linear system. We consider the numerical solution of Ax=>b in a floating
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point arithmetic. Here A is an n X n real nonsingular matrix and b an n X1
nonzero vector. The coefficients of A and b may be known only to some
order of precision due to measurement errors or rounding errors.

Even if A and b are known exactly, at best we can count in floating point
arithmetic on computing the vector ¥ which is the exact solution of a slightly
perturbed system,

(A+E)i=h, (1.1)

where the matrix E is “small” relative to A. In fact, commonly used
algorithms such as Gaussian elimination with pivoting or the Householder or
Gram-Schmidt algorithm produce % for which the matrix E satisfies

1E|| < pl|All (1.2)

for some norm ||| and for p which is usually a small multiple of the relative
precision of floating point arithmetic; see e.g., [9]. It was shown in [6] that
(1.2) can be improved by a few steps of iterative refinement. That is, one
computes ¥ for which the matrix E satisfies

le.jl < pla |+ O(p?), (1.3)

where e,; and a;; are the entries of E and A respectively. The inequalities
(1.2) and (1.3) are reasonable hypothesis to make also if E represents
measurement errors.

Let x = A~ ! be the exact solution. The error of ¥ = #(E) is given by

x—#E)=(+A"'E) 'A'Ex=A"'Ex + O(p?), (1.4)

assuming that p is sufficiently small. We are interested in the error of the kth
component of x — #(E), k=1,2,...,n, for E satisfying (1.2) or (1.3). For
simplicity we drop O(p?) terms in (1.3) and (1.4), and estimate

|x —%(E)|, =A™ Ex|y, (1.5)

where |z|, denotes the absolute value of the kth component of the vector z.
The matrix E belongs to the set E which is defined by either (1.2) or (1.3).
We note that

|A Ex|,

<pcond(A, k), (1.6)
llx]]
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where cond(A, k) = (1/p|ix|)sup{|A~'Ex|,: E € E} is the (worst case) con-
dition number of the matrix A. Note that cond(A, k) depends also on the
vector x. For simplicity we do not list x as an argument of cond.

It is a common belief that the upper bound (1.6) is realistic for most
matrices E; see [7, p. 195]. We prove that this is indeed the case by
considering the average condition number. Specifically, let p be Lebesgue
measure in R™ normalized so that p(E)=1. Define the average condition
number in L, p>1, as

1/p
cond®®( A, k,p) = {f|AlEx|£u(dE)} ) (1.7)
E

1
plix|l

We show in Sections 2 to 4 that cond®*®( A, k, p) is comparable to cond(A, k).
This holds for all values of p and the set E defined by (1.2) for the Frobenius
or spectral norm, as well as for E defined by (1.3). For instance, for the
Frobenius norm we have

cond™8( A, k,1) [2 1
cond(A,k) Va7 on
cond*¥( A, k,2) 1

cond(A, k) Vn2+42

This means that for modest n, the average condition number is roughly the
same as the worst case one.

We now comment on the definition of the average condition number.
Elements of the matrix E are regarded in (1.7) as uniformly distributed inside
the ball (1.2) or (1.3). Clearly, the assumption about uniform distribution is
unrealistic if E is fully deterministic and depends on coefficients of A and b,
a specific algorithm used for the solution of a linear system as well as floating
point arithmetic. In such a case, our results can be interpreted as saying that
even a hypothetical assumption of uniform distribution of elements of E does
not lead to a substantial gain, since the average condition number is compar-
able to the worst case one. On the other hand, one may argue that each
individual rounding error resembles a random process with uniform distribu-
tion and, quoting Wilkinson [8, p. 25], “We may expect that the rounding
errors in a computation will be more or less randomly distributed.” In any
case, uniform distribution is a crude assumption if E represents roundoff
errors.

The situation changes if E represents measurement errors, especially if
their bound is significantly larger than the relative precision of floating point

(1.8)




82 N. WEISS ET AL.

arithmetic. Then it seems reasonable to assume that elements of E are
independent and identically distributed, and uniform distribution is one of
the possible distributions to be considered.

We also study the average loss of precision. Let 2" =|A ~!'Ex|, /p||x]|.
Then'

|A™ Ex),
loss = loss( E ) = log ————, (1.9)
ellxll

called the loss of precision, tells us how many bits are lost due to computa-
tional (or measurement) errors. Due to (1.6), the (worst case) loss of precision
is

loss(A, k) =logcond( A, k). (1.10)
The average loss of precision is defined by

g |A 'Ex|,
loss™5( A, k) /1og N p(dE). (1.11)
X

We prove that the average loss of precision is comparable to the worst case
one. In particular, assuming the Frobenius norm in (1.2) we have

loss( A, k) —loss®5( A, k) =logn +0.916 + O(n"2). (1.12)

As we mentioned before, the coefficients of b as well as A may not be
known exactly. They are measured with some error, and instead of Ax=b
we have a perturbed system (A + E)x = b — h. The matrix E satisfies (1.2) or
(1.3) with p depending on measurement errors. The vector h is small relative
to b, ie., ||h||<n|b|| or |hi <nlbil k=1,2,...,n, for some small 5. In
Section 5 we show how the results of Sections 2 to 4 can be extended for the
case when both A and b are perturbed.

Our paper is motivated by recent interesting work [1, 2, 4, 5] dealing with
the average condition number ||A~!||-||A} or the average loss of precision
log(|]A~Y|-]|A|]) of n X n random matrices. Assuming that all entries of A
are independent random variables with standard normal distribution on the
class of n X n real or complex matrices, it has been proved that the average

! Throughout, log = log,; In = log,.
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condition number is infinity for the real case and finite for the complex case.
Along these lines one may analyze the average value of cond®8( A, k, p) over
matrices A. Since cond®8(A, k, p) is proportional to cond(A, k), using the
results mentioned above shows that the average value of cond®%( A, k, p) is
infinity over real matrices A and finite if taken over complex matrices. In [5]
it is shown that the average of In(||A !||,||A||,) over n X n real matrices is
between (2 —¢)lnn and (3+ ¢€)inn, where & tends to zero if n goes to
infinity. The upper bound was improved in [4] to 3Inn + 1. Thus the gain in
(1.12) is significant on going from the worst case to the average one.

2. FROBENIUS NORM

In this section we assume the Frobenius norm of matrices, |E||=
! j;leizi)l/ 2, The norm of a vector z is given correspondingly by |z| =
(X7_,122)"/2% We assume that E has now the form

E={E:|E| <pllAll}, (2.1)

and the measure p of a Borel subset B of R™ is given by

A(BNE)

u(B) = TANE) (2.2)

where A is standard Lebesgue measure on R”. By A;! we denote the kth
row of A~1 The worst case condition number is now given by

cond(A, k) =||A Y- |All.
TuaeoreMm 2.1. We have
cond™¥(A,k,p)=a, ,cond(A,k), (2.3)

where

p+1 n?
(5| 5+
P 2 2

n2+
ﬁr( 2"

n,p

+1
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and
loss*®®( A, k) =loss(A, k) —a,, (2.4)
where
1 1 1 1
2 (ln2+2+4+ +—) if n is even,
a“ = 1
1+ — + + ) if n is odd.
In2 3

Proof. We need to compute
a= [ (1A "Ex|,)u(dE)
E

for flu)=wu” (p>1) and f(u)=logu. Note that (A 'Ex), =
L} j-imye;;x;, where m,, are the elements of the kth row of AL Let
t;=e;/(pllAl) and y;;=mx; Let t and y be the n>Xx1 vectors with
components ¢;; and y;;. Then

1
a= Wj;f(pllAll-l(y,t)l)dt

where B is the unit ball with center zero in R"™ and A(B) its Lebesgue
measure.

Take an orthogonal matrix Q such that Qy = |y|[[1,0,...,0]". Note that
llyll=11A¢ "I ||x|l. Change variables by setting u = Ot. Since the Lebesgue
measure is invariant under orthogonal transformations and QB = B, we have
du =dt and (y,t)=|ly||u,,. Thus for ¢ = p||A; Y||||A]|||x|| we have

1
= Wj;;f(clulﬂ) du
:TlB)fllf(Cltl)Vol(nZ—l,m)dt, (2.5)

where Vol(n%2—1,V1—¢2) denotes the volume of the ball in R" ! with
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radius V1 — ¢2. Since
A(B)=f“Vol(n2—1,\/1—t2)dt
-1

and Vol(n® —1,V1 —t?) is proportional to (1 — t2)‘"2’ 172 we have

[ et (1 -2 2y
_ 0
o [ae e
0

If f(t)=1t?, then [3, 3.251] yields

()5

=cP — nPuP
> cra

n“+p
‘/;F( +1

2

which implies (2.3). If f(t) =log¢, then [3, 4.246, 4.253] yields
a=logc—a,,

which implies (2.4). [ |

Consider now the constants a,, , from (2.3). It is immediate that a, , =
1/Vn®+2. For arbitrary p, it follows from Stirling’s formula that

p+1 Lp
_2 r( 2 ) -
an'p=7 ——‘/;— if n > p,

so, in particular, a, ; =2/71/n. Also, limp_,ooan,p =1 for each n.
As for a, in (2.4), let

1 1
vy= lim 1+-2—+ <o+ +——1Ini | =0.577...
i

i~ 00
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be Euler’s constant. It is easy to check that

| vy+in2 )
=logn + +0(n~
a,=logn+— — (n™?)
=logn+0916... + O(n 2). (2.6)

Theorem 2.1 states that the average and worst case condition numbers
and losses of precision are related. For instance, from (2.4) and (2.6) it follows
that one gains roughly log n +0.9 bits, on the average, over the worst case.
Specifically, if n =232 and ||A; !||||A]| =2, then one loses 10 bits in the
worst case and about 4.1 on the average.

3. COMPONENTWISE PERTURBATIONS

In this section we assume that the matrix E = (¢, ;) satisfies (1.3). That is,
let

E={E=(eij):|eij|<p‘aij|}‘ (3.1)

Without loss of generality assume that «, j# 0 forall i, j. The measure p is
now given by

H(B):( ﬁ 2P|aij|) " A(BNE), (3.2)

ij=1

where B is a Borel set in R" and X is Lebesgue measure.
It is easy to check that the worst case condition number cond( A, k) for E
given by (3.1) is

(1A 11A]Jx]),

cond( A, k)= el

, (3.3)

where |x| denotes the vector with components |x,|, while |A],]A 1| denote
matrices with elements |a,;| and |m,,], and A= (m;;).
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TureoreMm 3.1. We have

cond™®(A,k,p)=a, ,cond(A, k), (3.4)
where
+1y\ V7
F(p ) [2 1 1
l1+e )—2 - —<a, ,<—~
( n,p ‘/7—7_ 3 n =%np= (p+1)l/p
with ¢, , =0 and lim,, _, e, , =0 for all p; and
loss®™8( A, k) =loss(A,k) —a,, (3.5)
where
logn + - (1og6+
— <a,<logn+ +—
Ing S SO8" (Og In 2)
with lim, _ e, =0. Here y=0.577... is Euler’s constant and ;(log6+

v/In2) =1.708..

Proof. We need to estimate

a= [ (147 Exl,)u(dE)

for flu)=u? and f(u)=logu. Let t;;=e;;/(pla;;)) and y;; = pmyla;j|x;.
Let ¢t and y be the n%X1 vectors Wlth components f,; and y;;. Then
|A~'Ex|, =|(t,y)| Since the Lebesgue measure is symmetnc we have

a=27"[ A (Ele) Dar (3.6)

To estimate a, we need the following

Lemma 3.1.  Let A be Lebesgue measure on R™. Let y =y, ys,--->Yn]
€ RYand Y=2V y,>0. Foru € R let

F(u;y)=>\({t€[—I,I]N:(y,t)>u}).
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Then forallu € R |,
Fu;y*) < F(us y) < F(us y**),

where y*=(Y/N)[1,1,...,1] and y** =[Y,0,...,0].

Proof. The case N =2 can be verified directly. Suppose inductively that
N > 2 and Lemma 3.1 holds for N — 1. We first prove that

Fu:y,y,.... 9, 98]) <F(wy) <F(w;[(N-1)7.0,...,0,y5]), (3.7)

where y = [1/(N — )] 'y,. Note that

1
F(u§y)=f*l F(“_y‘\'tx;y/)dt,\'s (3.8)

where y'=(y,,...,yy_;) and y = (y’, y» ). Thus if u > y,. then (3.7) follows
immediately from the inductive hypothesis. Suppose therefore that u <y,.
Then (3.8) can be rewritten as

u/yy 1 ,
F(usy) =/ y\F(u_ Yntns y’)dt‘\,+f Flu—yyty;y')dty.

-1 u/yy

For t € [u/yn, 1],

Flu—ynty;y') :>‘N—1({t/€ [ - 1’1]1\'715(’5/»!//) >u— y,\'t‘\'})

’ N1 , ,
ZAN—l(_{tE[—l,l] :(t,y)<y‘\,tx—u})’
where A, is Lebesgue measure on RY"L Since A, _, is symmetric and

Ao ([ =LY H =281 we get F(u-—yyty\;y')= 2N — F(ynty —
u; y’). Thus

. w/yx ,
Flu;y) =f 1 Flu—ypty; y')dey

! . u
- F(!/Ntlv"u;y’)dt‘\,+2‘~1(1_7)_
u/yy Yn
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Change the variable ¢, in the second integral by setting x = —#y +2u/yy.
Then

u/yn
F(u;y)=f lyF(“"!/NtN;y')dtN

u/yy N—1 u
—f F(u—yyx;y’')dx +2 1-—
1+2u/yy Yn

- 2u : u
=f b l/yNF(u—yNtN;y’)dtN+2N’l(l—y—). (3.9)
-1

N

Note that for every ty, € [—1, ~1+2u/yy], u — yyty > 0. Thus we can
apply the inductive hypothesis to (3.9) to get

—1+2u/ _ _ B u
F(u;y);f 1 NF(u—yyty: (Goe-o, 7)) dty +27 l(l—gv)
_ N

and

_ u/yn _ _ u
FBNE (4 — gty (N = 1)7,0,...,0] ) iy + 2V 1(1 ~ y—)
N

F(u;y)sf

-1
= F(u; [(N-1)§,0,...,0,yx]).

This completes the proof of (3.7). Thus the point y* at which F(u;-)
takes its minimum has its first N — 1 components equal to each other. Since
F(u; y) does not depend on the permutations of the components of y and
since N—1 2 2, all the components of y* are equal.

To prove that F(u; -) takes its maximum at y**, permute components in
(3.7) to get

F(u;y) < F(u;[(N-1)7,yy.0,...,0]). (3.10)
Using (3.7) on the right-hand side of (3.10), we have
F(u;y) < F(u3[Y,0,...,0]) = F(u; y**)

as claimed. u
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CoroLLarY 3.1.  Let y, y*, and y** be as in Lemma 3.1. Suppose that f
is continuous and increasing on (0,+ ). Set P(y)= Jio vy fCy, ) dt.
Then

D(y*) <P(y) <(y**).
Proof. For j=1,2,..., and i=0,1,...,[Y2/], Y =TN y,, set

f_:{l i 277 < x|,
T 0 otherwise.

Note that if f=f;, then O(y)=2F(i27J; y). For the given function f
define

fyai]
fi=f2 N+ ¥ [AGi+1)277) = fi2 D] f...

i=1

Since f is increasing, f(x) decreases to f(x) a.e. as j— +oo, |x|<Y.
Corollary 3.1 is thus a consequence of Lemma 3.1 and the monotone
convergence theorem. ]

We obtain bounds for the a in (3.6) by applying Corollary 3.1 with
N=n% Let ¢ =1} j=1lyi> 4| so that ¢ = plx||cond(A, k). For flu)=u” we
have

a=2“'"va ( > |y.,||t,,|) dt

i.j=1

1

1 4
Sc"—f t,|Pdt, =——c?,
2 ~l| 11' 11 p+1

which yields a, ,<1/(p+1)"? in (3.4). For f(u)=logu, by the same
reasoning,

1

I A
a<logc+§/7110g|t“[dtll logc—n

which yields a, > 1/In2 in (3.5).
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Turning back to the case f(x)= x?, we again apply Corollary 3.1 to get

p

dt.

1 n
a>cP2‘"2f 1) tij
f-Lu™|n -

The variables ¢, can be treated as independent, identically distributed
random variables with mean zero and variance 3. The central limit theorem
implies that 3 W) =1/nHE} j=1ti; has a distribution on [—1,1]" " with
respect to 2™ dt which approaches the normal distribution with mean zero
and variance o = 1/(3n?). Therefore

” 1 + oo
2= ) dt=(1+e, ,)— Pe=3"/29) g
[ e 0lde=(e ) [ e 2

1 /2\»21 [p+1
=(1+ —| = — I —
(1+e,,) r77(3) n,,r( 5 )

where lim__ e, =0 and, of course, ¢, ,=0. This proves the first in-
n—oo “n,p n,2 p

equality in (3.4). If we now set f(u)=log u, then Corollary 3.1 yields

. 1
a;logc+2‘"f[ 11]"210g 3 tii || dt
-1 1

Applying the central limit theorem a second time, we see that

= (l+en‘p)

n
)y
ij=

azlogc+(1+e,

) S e —#/e0 g
Nor f_w og|z|e z,

where lim = 0. The last integral can be rewritten as

n -— oo Y'l

ff log(vV20 t)e~ " dt =log2—logn

2 o0 '21 J
+ — e ' logtdt
\/?fo g

Y
= —-logn+llog—~—2l—2——l
n



92 N. WEISS ET AL.

due to [3, 4.333]. This proves the lower bound on — a, and completes the
proof. [ |

ReMARk 3.1. Note that recourse to the central limit theorem can be
avoided by an explicit formula for

[ (EXGD L
[-1.1]"

Specifically, if f, is determined by requiring that £V = f and £0X0)=0,
i=0,1,...,n% — 1, then repeated integration yields

N EXOTEY "2)"21,122/%('}2)(—1)’,,(1—%), (3.11)

ji=0

For example, if f(x)=logx then

n® | 1 1
fx)= s )[logx-rz—(l+2+ +?)]

By using (3.11) with f(x)=x and f(x) =log x, for instance, we determined
that in (3.4), ¢, ;> 0 for small n and already ¢, | < 0.014, and that in (3.5),
g, <0 for small n and |e,| < 0.014.

For f(x)=x? we have the exact formula for a in (3.6),

Z |y1]| 2 "f ll]ngtizjdtii Z |y1]|2‘

ij=1 . 3 ij=1
The best one can do with this is to obtain the bounds in (3.4),

1 1

<a",2<ﬁ. [ ]

V3n =

We conclude this section by showing that the bounds in Theorem 3.1 are
sharp. From the proof of the theorem, it is clear that the average condition
number and average loss will be close to the given upper bounds whenever
there exists (i, j,) such that |y, ol > 1431 if (i, j) # (ig, jo), where y,]
m,a, ]x as usual. This is easy enough to arrange. One can take x = [1,0,...,0],
a,= and|a j<lifi#l

Similarly, the average condition number and loss will be close to the given
lower bounds if all but a few |y, ;| are equal to each other, and the rest are
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smaller. Letting x =[1,...,1] and noting that (m,,)=A;'=r"1[1,...,1]
whenever

i 0, j+k,
—{ 1 (3.12)

r, j=k,

we see that it will suffice to find A =(a;;) which is non-ingular, satisfies
(3.12), and is such that la;;|=1 for most (i, j) and a;;=0 otherwise.

We now find such a matrix. For any m, let B,, = (b;;), C, = (c;;) be the
m X m matrices given by

. 2, j=i

1, =1, ’ ’

bij={—1 :<] C‘f___{_Q’ j=i+l,
’ I 0 otherwise.

Note that B,, and C,, are nonsingular. If n = 2m, set

- Bnl + C"l B"I
B | -8B,

m

A =

n

Then det A, =det C,det(— B, ) #0; A, satisfies (3.12) with k=1, r=2;
and la;;| =1 for all (i, j). If n is odd, modify A,_, to A,_, by changing
a,;=1to d, =0, and set

-1,0,...,01 1
where ¢ is the last column of A, ,. Then det A, =det A

satisfies (3.12) with k=n, r=1; and |a,;;/ =1 except that a,,
for j=2,3,...,n—1.

3

170, A
0,a,=

[

n
nj 0

4. SPECTRAL NORM

In this section we assume the spectral norm on matrices, |E| =
sup{||Ex||/||x||: ||x|| # 0}. E, p, and A; ! are as in Section 2, and it is easy to
see that again

cond(A,k) = |A; 'IlIAl

If now B={E:|E| <1}, then the first equality in (2.5) continues to
hold, but we have been unable to calculate for ¢ €(0,1) the n2 —1 dimen-
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sional volume of the set of matrices in B with the fixed element a,,=t.
Consequently our estimates are not as sharp as in Section 2.

Tueorem 4.1. We have

cond**(A,k,p)=a, ,cond(A, k), (4.1)
where
n2 , 1/p n2 L/p
b < 5
n +p n.p an P n2+ n.p
with
p+1 n
5 )rls)
b = 2 2
np n+ >
x/77r( p)
2
and
loss*¥(A, k) =loss(A, k) —a,, (4.2)
where
1
b,+ 5r—<a,<2b,+
n"ln2 n*In2
with
1 1 1 1
- E(ln2+§+z+---+n_2) if n is even, .
" L 1 L ! f dd
— 14+ =+ -+ if n is odd.
In2( 3 n—2) nnsoe

As in Section 2, we have an exact value for b, , and asymptotic results

otherwise: b, ,=1/Vn, b, ,=/2/(n=),

Z (M2
hnp \/;(——‘/;—) if n P,

fit
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and

+In2
2In2

b,=ilogn+ +0(nt)

=3logn +0916... + O(n™!).

Proof of Theorem 4.1. As before, we can write

a= [ f1A7 Exl)u(dE) = MB

S (plAIIA Vel ) dr.

95

Note now that (A~'Yx), = (A; %, Yx) and that for fixed U in O,, the group
of orthogonal matrices, the map Y — UY preserves both Lebesgue measure

dY and the ball B. Thus, we can write

a= X(LB;fo(p”A”j(Akl,UYx)J)dY.

(4.3)

Now let » be Haar measure on O,,, normalized so that »(O,) = 1. Integrating
over O, both sides of (4.3) and then reversing the order of integration on the

right, we see that

a= ——f[f flolan-|(a %UYx)l)v(dU)}

A(B)

On the other hand, for any r >0 and £, 7€R",

1
/O "f(rl(s,Un)l)v(dU) ) fz FCE- Il 1§D o(d8),

where 2= {{=[{,....$.]: lI$ll=1} and ¢ is the usual measure on Z. And

SO

1
“= mf,,[ﬁfzf(bunn Ifll)o(df)} dy

with b= p||All-|A; !

(4.4)
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To obtain a lower bound for a, we notice that for each matrix Y, there is
a unit vector §, with the property that |Yq|>||Y||-[(£,.m)| for each n €
R". (In fact, if Y =PW, with P positive definite and W orthogonal, we can
take £, to be W !, where ¢, is a unit eigenvector for the largest
eigenvalue of P.) From this, since f is in any case an increasing function, it
follows that

fo(bann) dy = fo [ fB f(bnYVxn)dY}v(dV)

>fo [fo(bHYH-y(g),,vx)i)dY]u(dv)

1
=L{0(2) /Ef(bllyll'llxll'lfll)dedY, (4.5)

where the last equality comes from reversing the order of integration in the
previous integral and arguing as we did to establish (4.4).
A simple observation will lead to an upper bound for «:

L FblYx]) dY < /I; ABIY | 1x]) dY. (4.6)

Suppose now that f(t)=t”. Combining (4.4), (4.5), and (4.6), we see that

b2 1

npnp aSban"p

c?, (4.7)
where
fltp(l —¢2)" T2 gy

0
[a—2ye2g
0

bun = 5255 Lol -

[YIPdY and c=bljx||=pllA[|[IAZ ][]l

1
e = XE)

The explicit formula for b, , follows as in Section 2. As for I, oo if Y=1Y",
r>0, ||Y'|| =1, then dy = r" “!dra(dY’), where « is an appropriate mea-
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sure on {Y': ||| =1}, so [1/A(B)] [gllY|[PdY = [dr?*™*~Vdr/[lr" ~Ldr =
n2/(n? + p). Taking pth roots in (4.7), we have (4.1).
Similarly, combining (4.4), (4.5), and (4.6) when f(t)=logt leads to

—-2b,—1I,+logc<a< —b,— I, +logc, (4.8)
where
b, = —;flog(lfll)o(dfl), I,= ———l—flog”Y”dY,
o(2) /x A(B) /g
and (4.8) yields (4.2) as (4.7) did (4.1). .

5. PERTURBATIONS OF A AND b

We now indicate how the results of Sections 2 to 4 can be extended for
perturbations of A and b. We begin with the case when the matrix A is
unperturbed. That is, consider the perturbed system

A¥=b—h,
where the vector h satisfies

IRl < nl|B]] (5.1)
or

b <mlbl, i=12,...,n, (5.2)

for some small 7. Since Frobenius and spectral norms of vectors are the same,
we need to consider now only these two cases. We have ¥ = %(h) and

|x— f(h)lk _ |A71h|k
[l (x|l

<ncond(b, k),

where the worst case condition number is now equal to

AL 11 Ax]]
]
(1A~ Ax]),
x|

if h satisfies (5.1),
cond(b, k) =
if h satisfies (5.2).
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The average condition number cond®®(b, k, p) and the average loss
loss®&(b, k) of precision are defined as in (1.7) and (1.11). Since |A " 'h|, is
of the same form as |A ~'Ex|,, the results of Sections 2 and 3 go through with
n replaced by Vn.

For the norm perturbations we have

cond®¥(b,k,p)=a, ,cond(b, k)

n,p

with

p+1 n
(2= r(—+1)
J T2
an’p= p >
\Fr( )
loss*#(b, k) =loss(b, k) —a,
with ¢, =(n2+3+1+ ---+2)/In2 for n even and a,=(1+3

+ -+ +1)/In2 for n odd.

For the componentwise perturbations we have

cond™®&(b, k,p) = an‘pcond(b, k)

with
p+1 1
(1+6,,)| 21 \/ :
+e,
» ‘/_ (p+1)1/p
where lim,, , e, , =0 for all p; and
loss®%(b, k) =loss(b, k) —a,
with
1 <a, <il + (l 6+ Y )
T A X X9 O; R R
In2 @n<Sz0BT & In2
where lim e =0.

n—oon
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We now consider the general case where both A and b are perturbed,
ie.,

(A+E)i=b-h.
Then % = %(E, h), and dropping the second order term, we have
x—%(E,h)=A 'Ex+ A" 'h. (5.3)

Consider first componentwise perturbations, |e;;| <pla;;l, |h;] < n|b;|.

ib
ijb
Then the worst case error is given by

A" Ex+ AR, (JATYIAxD), (1A Ax)),
ES = +n
[l llxIl llxIl

It is easy to observe that the results of Section 3 go through with n replaced

by Vn? + n. That is, let
B={(E,h):le;| <plal |h|<nlbl} cR™*",

and let pu be Lebesgue measure normalized so that u(B) =1. Then

e f |A 'Ex + A 'h|, P(duzh» /v
edV = “ s =q n. eWOl‘,
B IE3] g
where
p +1 Y
(10| - ) T :
+ ¢,
’ e
with lim, _, e, =0 for all p. For the average loss of precision we have

|A"'Ex + A~ 'h|,
loss""g=flog w(d(E,h)) =loge* ™ —a,,
B Il "
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where

1 1+¢ v
—<a,<ilog(n*+n)+ (log6+—)
In2 2 n

with lim,, _, ¢, =0.

Consider now norm perturbations, i.e., suppose that E satisfies (1.2) for
the Frobenius or spectral norm, and h satisfies (5.1). Let

B = {(E.h):IE|l<pllAll Al <nlibll} <R,

and again let p be Lebesgue measure normalized to make p(B)= 1. In this
case we can obtain

max(p cond™8( A, k, p), ncond™&(b,k,p))
<e™® < pcond™B(A,k,p)+ ncond™8(b, k,p), (5.4a)
max(log p +loss*#( A, k), log n +loss™3(h, k))

< loss®® < log[p cond®®( A, k,1) + ncond®#(b, k,1)].  (5.4b)

The upper bound in (5.4a) follows from the triangle inequality for L?. In
(5.4b), the upper bound follows from the observation that the log function is
concave on (0, + o0).

As for the lower bounds in (5.4), write B= B, XB,, u=p, X , where B,
and B, are balls in R™ (with respect to either spectral or Frobenius norm)
and R", respectively, and the p; are the appropriately normalized Lebesgue
measures. The desired inequalities amount to the assertion that if f(u)=1logu
or flu)=uP, and a = [3f(|A 'Ex + A 'h|,)u(d(E, h)), then

>ay= [ 1A Exl Jm(dE), (5.52)
a>az=/82f(|A’ 'h) wo(dh). (5.5b)

At this stage, notice that the reasoning leading to (4.4) is valid when B is
the unit ball in the Frobenius norm as well as in the spectral norm, and that
with respect to either norm one can also prove the following slight variant, in
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which B, is the unit ball in R™ in either norm, X is again the unit sphere in
R", and ¢ € R:

j;f(|(A‘1Ex)k+cl)p1(dE)

B A(;l) _[Bf(|P||A|I(A_1Yx)k+c|)dY
1
~A(B)) -/1; [%z)f;f(lpllAllllA;‘H IYx()¢, + cl)o(dS) | dY.

Recalling that p,(B,) = 1, we see that (5.5a) follows if we set ¢ =(A'h),
in (5.6) and then apply the general fact that if f is any nondecreasing
function on (0,00) and r,¢ € R, then

fz FIrt,+ cla(dg) > fz Freo(de). (5.7)

As in the proof of Corollary 3.1, it suffices to show that (5.7) holds
whenever f is the characteristic function of an interval (¢, + ) and t > 0,
i.e., that

o({$eZ:rl +cl=t})>o({S €282 t)). (5.8)

Since (5.8) follows easily from the nature of o [see (4.7)], our proof of (5.5a)
is finished. Moreover, there is an obvious analog of (5.6) for B,, which
together with (5.7) leads to (5.6b).

We note that it is substantially easier to establish the lower bounds in
(5.4) if either f(u)= u® or the norm in R™ is the Frobenius norm.

As an example, if we combine (5.4a) with our formulas for cond*3(b, k,2)
and cond®&( A, k,2) for the Frobenius norm, we have when p = 2

| A_lumax(p | Al , || Ax|
, Vn2+2 " ||x|lVn +2
A [| Ax|)

<e™<| ALY

p +7
\/n2+n ||x||Vn +2

Similarly, combining (5.4b) with our previous estimates for loss®8(A, k)
and cond®8( A, k, 1) and observing also that if ¢, ¢, > 0 then log(c; + ¢,) <1



102 N. WEISS ET AL.

+ max(log ¢}, log ¢,), we have in the Frobenius norm case

loss®® = log||A; !||+ max|log p +log||A|| — log n,

Ax

li=

log n +log I —slogn)+b,,

where —0916... <b, <3log(2/7)+1=0674....
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