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ABSTRACT 

We study an average condition number and an average loss of precision for the 
solution of linear equations and prove that the average case is strongly related to the 
worst case. This holds if the perturbations of the matrix are measured in Frobenius or 
spectral norm or componentwise. In particular, for the Frobenius norm we show that 
one gains about log, n +0.9 bits on the average as compared to the worst case, n 
being the dimension of the system of linear equations. 

1. INTRODUCTION 

In this paper we analyze an average condition number of the solution of a 

linear system. We consider the numerical solution of Ax = b in a floating 

*This research was supported in part by the National Science Foundation under Grant 
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point arithmetic. Here A is an n X n real nonsingular matrix and b an n X 1 

nonzero vector. The coefficients of A and b may be known only to some 
order of precision due to measurement errors or rounding errors. 

Even if A and b are known exactly, at best we can count in floating point 
arithmetic on computing the vector f which is the exact solution of a slightly 
perturbed system, 

(A+E)?=b, (1.1) 

where the matrix E is “small” relative to A. In fact, commonly used 
algorithms such as Gaussian elimination with pivoting or the Householder or 
Gram-Schmidt algorithm produce 2 for which the matrix E satisfies 

for some norm ]I. ]I and for p which is usually a small multiple of the relative 
precision of floating point arithmetic; see e.g., [9]. It was shown in [6] that 
(1.2) can be improved by a few steps of iterative refinement. That is, one 
computes 2 for which the matrix E satisfies 

(1.3) 

where e,j and u,~ are the entries of E and A respectively. The inequalities 
(1.2) and (1.3) are reasonable hypothesis to make also if E represents 
measurement errors. 

Let x = A ~’ be the exact solution. The error of x” = Z(E) is given by 

x-f(E)=(Z+A--‘E)~‘A~‘Er=A~‘Ex+O(p2), (1.4) 

assuming that p is sufficiently small. We are interested in the error of the kth 
component of x - f(E), k = 1,2,. . . , n, for E satisfying (1.2) or (1.3). For 
simplicity we drop O(p’) terms in (1.3) and (1.4) and estimate 

Jx-;~‘(E)I,=IA-~ExI,, (1.5) 

where ]Z Ik denotes the absolute value of the kth component of the vector Z. 
The matrix E belongs to the set E which is defined by either (1.2) or (1.3). 
We note that 

IA-‘Exl, 

bll 
< pcond(A, k), (1.6) 
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where cond(A, k) = (l/p]]x]])sup{ IA-‘Exlk: E E E} is the (worst case) con- 
dition number of the matrix A. Note that cond(A, k) depends also on the 
vector x. For simplicity we do not list x as an argument of cond. 

It is a common belief that the upper bound (1.6) is realistic for most 
matrices E; see [7, p. 1951. We prove that this is indeed the case by 
considering the average condition number. Specifically, let p be Lebesgue 
measure in R”’ normalized so that p(E) = 1. Define the average condition 
number in L,, p > 1, as 

condavg(A, k, p) = &( L]AP’Er][p(dE)) 
l/P 

. (1.7) 

We show in Sections 2 to 4 that cond”“R( A, k, p) is comparable to cond( A, k). 
This holds for all values of p and the set E defined by (1.2) for the Frobenius 
or spectral norm, as well as for E defined by (1.3). For instance, for the 
Frobenius norm we have 

cond”‘s(A,k,l) 2 1 

cond(A,k) G r n’ J 
_- 

condaVg(A, k,2) 1 
=p 

cond(A, k) &&2 ’ 

(1.8) 

This means that for modest n, the average condition number is roughly the 
same as the worst case one. 

We now comment on the definition of the average condition number. 
Elements of the matrix E are regarded in (1.7) as uniformly distributed inside 
the ball (1.2) or (1.3). Clearly, the assumption about uniform distribution is 
unrealistic if E is fully deterministic and depends on coefficients of A and h, 
a specific algorithm used for the solution of a linear system as well as floating 
point arithmetic. In such a case, our results can be interpreted as saying that 
even a hypothetical assumption of uniform distribution of elements of E does 
not lead to a substantial gain, since the average condition number is compar- 
able to the worst case one. On the other hand, one may argue that each 
individual rounding error resembles a random process with uniform distribu- 
tion and, quoting Wilkinson [B, p. 251, “We may expect that the rounding 
errors in a computation will be more or less randomly distributed.” In any 
case, uniform distribution is a crude assumption if E represents roundoff 
errors. 

The situation changes if E represents measurement errors, especially if 
their bound is significantly larger than the relative precision of floating point 
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arithmetic. Then it seems reasonable to assume that elements of E are 
independent and identically distributed, and uniform distribution is one of 
the possible distributions to be considered. 

We also study the average loss of precision. Let 210”” = ]A~‘E~]~/p]lxj]. 
Then’ 

loss = loss( E ) = log 
]A~‘Ex], 

PIIXII ’ 
(1.9) 

called the loss of precision, tells us how many bits are lost due to computa- 
tional (or measurement) errors. Due to (1.6) the (worst case) loss of precision 
is 

loss(A,k)=logcond(A,k). (1.16) 

The average loss of precision is defined by 

IA ‘EXlk 
lo~s”“~(A, k) = Ilog pllxl, I”(cE). (1.11) 

We prove that the average loss of precision is comparable to the worst case 
one. In particular, assuming the Frobenius norm in (1.2) we have 

loss(A,k)-loss”‘“(~4,k)=logn+0.916+O(n~”). (1.12) 

As we mentioned before, the coefficients of b as well as A may not be 
known exactly. They are measured with some error, and instead of Ax = b 
we have a perturbed system (A + E)x = b - h. The matrix E satisfies (1.2) or 
(1.3) with p depending on measurement errors. The vector h is small relative 
to b, i.e., llhll <qllbll or lhkl <qlbkl, k = 1,2 ,..., n, for some small 9. In 
Section 5 we show how the results of Sections 2 to 4 can be extended for the 
case when both A and b are perturbed. 

Our paper is motivated by recent interesting work [l, 2,4, 51 dealing with 
the average condition number ]]AP’]l~]lA]] or the average loss of precision 
log( ]I A _ ‘11. II All) of n X n random matrices. Assuming that all entries of A 
are independent random variables with standard normal distribution on the 
class of n X n real or complex matrices, it has been proved that the average 
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condition number is infinity for the real case and finite for the complex case. 
Along these lines one may analyze the average value of condavg( A, k, p) over 
matrices A. Since cond”‘s(A, k, p) is proportional to cond(A, k), using the 
results mentioned above shows that the average value of cond”“s( A, k, p ) is 
infinity over real matrices A and finite if taken over complex matrices. In [5] 
it is shown that the average of ln(]]AP’]],]]A]],) over n X n real matrices is 
between (! - e)ln n and (3 + e)ln n, where E tends to zero if IZ goes to 
infinity. The upper bound was improved in (41 to 5 In n + 1. Thus the gain in 
(1.12) is significant on going from the worst case to the average one. 

2. FROBENIUS NORM 

In this section we assume the Frobenius norm of matrices, \lEll = 

(Cy, j= le,2i)1/2. Th e norm of a vector z is given correspondingly by I] z]] = 

cc:,=,a, ) . ’ ‘I2 We assume that E has now the form 

E = {E: IElI =s PIMP > (2.1) 

and the measure p of a Bore1 subset B of Iw n2 is given by 

X(BnE) 
P(B) = qE) 3 (2.2) 

where X is standard Lebesgue measure on Iw “‘. By Ai1 we denote the kth 
row of A- l. The worst case condition number is now given by 

cond(A, k) = ]]A~r]J.]]A]]. 

THEOREM 2.1. We have 

cond”‘s(A, k, p) = a,,,cond(A, k), 

where 

(2.3) 
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u ncl 

lo~~“‘~(A,k)=loss(A,k)-a,,, 
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(2.4) 

if n is even, 

if n is odd. 

Proof. We need to compute 

a = ,f IA-‘W&.(W /( 

for f(u) = f_fp (p > 1) and f(u) = log U. Note that (A ‘Ex), = 
E~~j=lrnk,e,l~j, where mki are the elements of the kth row of A-r. Let 
t,j = e,j/(PIIAIJ) and yij = mkjxj. Let t and y be the n2 x 1 vectors with 
components t, j and yij. Then 

where B is the unit ball with center zero in Iwn2 and X(R) its Lebesgue 
measure. 

Take an orthogonal matrix Q such that Qy = Ilyll[ LO,. . . , O] “. Note that 
jlyll = IIAi’ll-llxll. Change variables by setting u = Qt. Since the Lebesgue 
measure is invariant under orthogonal transformations and QB = B, we have 
du = dt and (y, t) = /IyIIuII. Thus for c = pIIA; ‘11 IlAjl llxll we have 

= & /I,f(clt[)Vol(tr”-l,P)&. (2.5) 

where Vol( n2 - l,dg) denotes the volume of the ball in R ‘lLP 1 with 
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radius dg. Since 

X( B ) = j:‘Vol( n2 - 1) J1-t2) dt 

85 

and Vol( n2 - l,dg) is proportional to (1 - t2)(“- i)12, we have 

J ‘f(ct)(1- t2)(“2-‘)‘2dt 
0 

a= 

J 
It1 _ t2)(n”-w2dt . 

0 

If f(t) = tp, then [3, 3.2511 yields 

r( ~)r(~+l/ =cpap 

a=cP vi;;r(n?z+p I L) “,p’ 

which implies (2.3). If f(t) = log t, then [3, 4.246, 4.2531 yields 

a=logc-a,, 

which implies (2.4). n 

Consider now the constants an,p from (2.3). It is immediate that a n, 2 = 

l/d=. For arbitrary p, it follows from Stirling’s formula that 

P+l l/P 

a ,E r2 i i 
n.P 

i I 6 
if n2 2+ p, 

n 

so, in particular, a,, 1 E ml/n. Also, limp _ m a “, p = 1 for each n. 

As for a,, in (2.4), let 

y= lim l+i+ ... 
i 

1 
+--1ni =0.577... 

i-m i 1 
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be Euler’s constant. It is easy to check that 

y + In 2 
a, =logn+~+O(n~‘) 

= logn +0.916... + O(n-“). (2.6) 

Theorem 2.1 states that the average and worst case condition numbers 
and losses of precision are related. For instance, from (2.4) and (2.6) it follows 
that one gains roughly log n +0.9 bits, on the average, over the worst case. 
Specifically, if n = 32 and ilA;‘ll l[All = 2r0, then one loses 10 bits in the 
worst case and about 4.1 on the average. 

3. COMPONENTWISE PERTURBATIONS 

In this section we assume that the matrix E = ( eij) satisfies (1.3). That is, 
let 

E = {E = (ejj): Ieijl < p(uijl}. (3.1) 

Without loss of generality assume that a I j # 0 for all i, j. The measure p is 
now given by 

(3.2) 

where B is a Bore1 set in (w”’ and X is Lebesgue measure. 
It is easy to check that the worst case condition number cond( A, k) for E 

given by (3.1) is 

(3.3) 

where 1x1 denotes the vector with components Ix I 1, while IAl, J A ‘1 denote 
matrices with elements laijl and Irnljl, and A-’ = (mjj). 
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THEOREM 3.1. We have 

condavg(A, k, p) = a”,,cond(A, k), 

where 

with E, 2 =0 and lim_,s,,p=O for&p; and 

loss”‘g(A,k)=loss(A,k)-a,,, 

87 

(3.4) 

(3.5) 

where 

1 
-<a.<logn+ 
ln2 

q(log6+ &) 

with lim n - ,e* =O. Here y=O.577... is Euler’s constant and i(log6+ 

y/ln2) = 1.708... . 

Proof. We need to estimate 

a= f IA-‘ExI,)&lE) 
J( E 

for f(u) = up and f(u) = logu. Let tij = eij/(Plaijl) and yij = pmkilaijlxj. 
Let t and y be the n2 x 1 vectors with components t, j and yij. Then 
I A _ ‘Ex I k = I (t, y ) I. Since the Lebesgue measure is symmetric, we have 

a = 2-n= A_, Jl (m4) IW (3.6) 

To estimate a, we need the following 

LEMMA 3.1. Let X be Lebesgue measure on RN. Let Y = [ yi, ys, . . , y,v] 
E IWyand Y=Xrzv=,yi>O. Foru E R let 
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Then for ~11 u E R +, 

F(u; y*) < F(u; y) G F(u; y**)t 

mizerey*=(Y/N)[l,l,..., l] andy**=[Y,O ,..., 01. 

Proof. The case N = 2 can be verified directly. Suppose inductively that 
N > 2 and Lemma 3.1 holds for N - 1. We first prove that 

F(u;[y,y,...,y,y,])~F(u;y)~F(u;[(N-l)y,O,...,O,~,,]), (3.7) 

where ij = [l/( N - l)]C:“l-,‘y,. Note that 

F(u; y) = /_‘,I”( 21 - y,vt,v; Y’) dts, (3.8) 

where y’=(yr,..., y,v_ 1) and y = (y’, yh.). Thus if u >, y.v, then (3.7) follows 
immediately from the inductive hypothesis. Suppose therefore that u < yv. 
Then (3.8) can be rewritten as 

F( u; y) = jyF(u - yxt,.; y’) dt,,, + j’ F(zf - Y.\-t.y; Y') dt,-. 
“/Y\ 

F(2(-y,~fh.;y')=XN_L({tfE [ -l,l]~~~‘:(t’,Y’)‘~-Y.\t.\}) 

=A,_,( - {t’E[-l,l]‘V L:(tl,yI)<y,~t\-u}), 

where A,. , is Lebesgue measure on R ‘A_ I. Since h ,, ~, is symmetric and 
x ,, _,([ - 1,1]1VP1)=2”~‘, we get F(u- ~,~t,~;y’)=2”~~- F(y,.t,-- 

u; y’). Thus 

F( u; y) = /“:‘(“F( u - Y,$~; y’) dt,, 

_ 
/ 

’ F(y,,,t, - u; y’)dt,v t-2.‘- I 
“/Y,\ 
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Change the variable t, in the second integral by setting x = - t, +2u/y,. 

Then 

q u; y) = jy”“F( u - YhdNi y’) dt, 

/ 
U/Y, 

- F(u-y,x;y’)dx+2N-* 1-k 
~ I +2u/y, i i 

= 
J 

-l+2~~“~~(U-y~tS;y~)dtN+2N-~ 1-k . 
i 1 

(3.9) 
-1 

Note that for every t, E [ - 1, - 1+ 2u/y,], u - yNtN & 0. Thus we can 
apply the inductive hypothesis to (3.9) to get 

F(u;yb/ -1+2U/YNF(U - yNtN; [y ,...,g])dtN+2N-’ 
-1 

and 

= F(u; [(N- l)Y,O,...~O~YNI). 

This completes the proof of (3.7). Thus the point y* at which F(u; .) 
takes its minimum has its first N - 1 components equal to each other. Since 
F( u; y) does not depend on the permutations of the components of y and 
since N - 1 >, 2, aI the components of y* are equal. 

To prove that F(u; .) takes its maximum at y**, permute components in 
(3.7) to get 

F(u;y)~F(u;[(N-l)y,y,,O ,... A)]). (3.10) 

Using (3.7) on the right-hand side of (3.10), we have 

as claimed. m 
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COROLLARY 3.1. Let y, y*, and y** be as in Lemmu 3.1. Suppose that f 

is continuous and increasing on (0, + co). Set Q(y) = /, I,Il x f( I( y, t )I) dt. 

Then 

Proof. For j=1,2 ,..., and i=O,l,..., [Y2J], Y=C;\_,y,,set 

1 if i2_j<lxl, 

0 otherwise. 

Note that if f = fi,, then Q(y) = 2F(i2-j; y). For the given function f 

define 

fi= f(2Pj)f,,o+ C [f((i+1)2-j) - f(i2mj)]f;,i. 
i=l 

Since f is increasing, f;(x) decreases to f(x) a.e. as j ---) + m, 1x1 < Y. 
Corollary 3.1 is thus a consequence of Lemma 3.1 and the monotone 
convergence theorem. n 

We obtain bounds for the a in (3.6) by applying Corollary 3.1 with 
Ri= n”. Let c = C:‘,j=l/yi, jl, so that c = PI/xllcond(A, k). For f(u) = ul’ we 

have 

1 
< cr$ j; It,,lPdt,r = PC P 

1 p+1 ’ 

which yields a ,1, p < l/( p + l)‘jp in (3.4). For f(u) = log u, by the same 
reasoning, 

1 
<loge 

1 
a + - 

2 
/ loglt,,ldt,, 

1 
= loge - 

-1 
12 
n 

which yields a,, >, l/ln2 in (3.5). 
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Turning back to the case f(x) = xp, we again apply Corollary 3.1 to get 

a >, CP2-n” 

/ I 

L i t.. Pdt. 
[-l,l]“’ n2 i,j=l ‘I 

The variables tij can be treated as independent, identically distributed 
random variables with mean zero and variance f . The central limit theorem 
implies that z,,(t) =(l/n2)Cy,j;=ltij has a distribution on [ - l,l]“* with 
respect to 2-” dt which approaches the normal distribution with mean zero 
and variance (J = 1/(3n”). Therefore 

where lim n _ M E, p = 0 and, of course, E,,~ = 0. This proves the first in- 
equality in (3.4). if we now set f(u) = log u, then Corollary 3.1 yields 

a>logc+2-nZ J [ ~ l,l]"* 

log $ i tij dt. 

il I) i,j=l 

Applying the central limit theorem a second time, we see that 

1 
a>logc+(1+&“)- 

J 

+CC 
G _ oc log]z]e-Z”/(20)dz, 

where lim *-m&n = 0. The last integral can be rewritten as 

gi” log(Jza t)e-‘2dt=~log~-logfl 

= -logn+ilog:-A-1 
n 
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due to [3, 4.3331. This proves the lower bound on - an and completes the 
proof. n 

REMARK 3.1. Note that recourse to the central limit theorem can be 
avoided by an explicit formula for 

Specifically, if f;, is determined by requiring that En’) = f and f,“)(O) = 0, 
i = 0,l ,...,n ’ - 1, then repeated integration yields 

For example, if f(r) = log x then 

f;,(x) = &)! :[logX-&jl+;+ . . +$I]. 

By using (3.11) with f(x) = x and f(x) = log x, for instance, we determined 
that in (3.4) E,,,, > 0 for small n and already ~a,~ < 0.014, and that in (3.5), 
E,, < 0 for small n and ]sZ] < 0.014. 

For f(x) = x2 we have the exact formula for a in (3.6) 

The best one can do with this is to obtain the bounds in (3.4), 

We conclude this section by showing that the bounds in Theorem 3.1 are 
sharp. From the proof of the theorem, it is clear that the average condition 
number and average loss will be close to the given upper bounds whenever 
there exists (io, j,) such that ]Y~,,~,,] YP ]yij] if (i, j) # (io, j,), where yij = 
nlkia i jx j as usual. This is easy enough to arrange. One can take x = [ l,O, ,O], 

ull = 1, and ]aij] K 1 if i # 1. 
Similarly, the average condition number and loss will be close to the given 

lower bounds if all but a few (yij( are equal to each other, and the rest are 
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smaller. Letting x = [ 1,. . . , l] and noting that (mki)=A;‘=rpl[l,...,l] 
whenever 

0, j+k, 
r> j=k, 

(3.12) 

we see that it will suffice to find A = (aij) which is non-singular, satisfies 
(3.12), and is such that laijl = 1 for most (i, j) and aij = 0 otherwise. 

We now find such a matrix. For any m, let B,, = (bij), C,, = (cij) be the 
m x m matrices given by 

0 otherwise. 

Note that B,,, and C,, are nonsingular. If n = 2m, set 

A,,= [w]. 

Then det A ,, = det C, det( - B,,) # 0; A,, satisfies (3.12) with k = 1, r = 2; 
and laijl = 1 for all (i, j). If n is odd, modify A,-, to A,-, by changing 
a,,=1 to ii,,=O, andset 

where c is the last column of A”_r. Then det A,, = det A’,_,# 0; A, 
satisfies (3.12) with k = n, r = 1; and ]aij] = 1 except that a,,= 0, anj = 0 
for j=2,3 ,..., n-l. 

4. SPECTRAL NORM 

In this section we assume the spectral norm on matrices, IIE(J = 
sup{ IIExll/llxjl: llxll f 0). E, p, and ALi are as in Section 2, and it is easy to 
see that again 

cond(A,k) = IlAi’ll IL-VI. 

If now B = {E: lIEI 6 l}, then the first equality in (2.5) continues to 
hold, but we have been unable to calculate for t E (0,l) the n2 - 1 dimen- 
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sional volume of the set of matrices in R with the fixed element u 1, = t. 
Consequently our estimates are not as sharp as in Section 2. 

THEOREM 4.1. We have 

cond”‘“(A, k, p) = a,,~,cond(A, k), 

with 

and 

where 

Ioss”“~( A, k ) = loss( A, k) - a ,I, 

(4.1) 

(4.2) 

1 1 
h, + ~ 

n’ln2 
< a,, < 2h,, + __ 

n2 In 2 

with 

if n is even, 

n 

if n is odd. 

As in Section 2, we have an exact value for b,,, and asymptotic results 
otherwise: b, 2 , =1/h, b,,&m> 

b ~ 2 U(P +1)/2) 1’p if 
nP Fi n 6 1 n2B p, 



AVERAGE CONDITION NUMBER 

and 

95 

y +ln2 
b,=~logn+---- 21n2 + W-7 

=:logn+0.916...+O(n-‘). 

Proof of Theorem 4.1. As before, we can write 

Note now that (AP’Yx), = (A; ‘, Yx) and that for fixed U in O,, the group 
of orthogonal matrices, the map Y 4 UY preserves both Lebesgue measure 
dY and the ball B. Thus, we can write 

(4.3) 

Now let v be Haar measure on O,, normalized so that ~(0,) = 1. Integrating 
over 0, both sides of (4.3) and then reversing the order of integration on the 
right, we see that 

On the other hand, for any r > 0 and .$‘, 9 E R”, 

where Z= {{= [Ci,...,{,,]: IlSll=I} an cl u is the usual measure on Z. And 
so 

(4.4) 

with b = pllAlI.llA;‘lI. 
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To obtain a lower bound for a, we notice that for each matrix Y, there is 
a unit vector tu with the property that IIYq11 >, IjYJ1.[([r,~)l for each 77 E 
R ‘I. (In fact, if Y = PW, with P positive definite and W orthogonal, we can 
take <r to be WP ‘tP, where tP is a unit eigenvector for the largest 
eigenvalue of P.) From this, since f is in any case an increasing function, it 
follows that 

QIr,ljYxlI) 0 = /, 
rt 
[ Jd(“iyvxll) dY] v(dV) 

= /I 1 R & ~~(~ll~Il~ll~ll~I~~l)nZ ClY, 
1 

(4.5) 

where the last equality comes from reversing the order of integration in the 
previous integral and arguing as we did to establish (4.4). 

A simple observation will lead to an upper bound for (11: 

Q-(Wll) 0 G Qvll~ll Il4l) 0. (4.6) 

Suppose now that f(t) = tp. Combining (4.4) (4.5) and (4.6) we see that 

(4.7) 

where 

/ 
$P(l- t2)‘“-3)/2& 

b ".P = & jrlwJ(W = O 
J 
,1(1- p)‘“-3)‘2& ’ 

1 
Z = - n,p J h(B) B 

lP’IIPdY and c = bll4l = dIAlI II Ak’ll IW 

The explicit formula for b,,, follows as in Section 2. As for I_, if Y = rY’, 

r > 0, IIY’II = 1, then dY = rnzP’dra(dY’), where (Y is an appropriate mea- 
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sure on {Y’: ]]Y’]] = l}, so [l/X(B)]js]]Y]]PdY = /OlrP+n2-1dr/~~r”2-1dr = 
n”/(n” + p). Taking pth roots in (4.7), we have (4.1). 

Similarly, combining (4.4) (4.5) and (4.6) when f(t) = log t leads to 

where 

-2b,,-Z,+logc<ag -b,-Z,+logc, (4.8) 

b, = - 

and (4.8) yields (4.2) as (4.7) did (4.1). 

5. PERTURBATIONS OF A AND b 

We now indicate how the results of Sections 2 to 4 can be extended for 
perturbations of A and b. We begin with the case when the matrix A is 
unperturbed. That is, consider the perturbed system 

Ax’=b-h, 

where the vector h satisfies 

llhll 6 #4 

or 

lhil G Vlbil, i = 1,2 ,*.., n, 

(5.1) 

(5.2) 

for some small 17. Since Frobenius and spectral norms of vectors are the same, 
we need to consider now only these two cases. We have z = i!(h) and 

Ix - l?(h) Ik W’hl, 
llxll 

= r G qcond(b, k), 

where the worst case condition number is now equal to 

I 
ll4’ll IlAxll 

llxll 
if h satisfies (5.1), 

cond( b, k) = 
(IA-‘1 IW), 

llxll 
if h satisfies (5.2). 
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The average condition number cond”“g(b, k, p) and the average loss 
lossavg(b, k) of precision are defined as in (1.7) and (1.11). Since lAP’hl, is 
of the same form as 1 A - ‘Ex 1 k, the results of Sections 2 and 3 go through with 
n replaced by 6. 

For the norm perturbations we have 

cond”‘“(b, k, p) = a,,,,jcoId(b, k) 

with 

a = Il>P 

lossavs( b, k) = loss( b, k) - a,, 

with a,, = (In 2 + i + a + . . + i)/ln 2 for n even and an = (1 + $ 
+ . . . + f)/ln2 for n odd. 

For the componentwise perturbations we have 

cond”“g(b, k, p) = a,,,,cond(b, k) 

with 

where lim ,( _ ~ E, p = 0 for all p; and 

loss”“R(b, k) =loss(b,k) -a,, 

with 

1 1-t E, 
P<a”<+logn+- 
ln2 2 ( 

lo@+& , 
n 1 

where hm E =o. n-m n 
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We now consider the general case where both A and b are perturbed, 
i.e., 

(A+E)x’=b-h. 

Then i = Z( E, h), and dropping the second order term, we have 

x - Z(E, h) = A-‘Ex + A-‘h. (5.3) 

Consider first componentwise perturbations, leijl < plaijl, [hiI < qlbil. 
Then the worst case error is given by 

IA-‘Ex + A-‘hi, 
< ewor = p 

W’I I4 I4 
,lrll 

IHI 
+ ~ w’I+w)k 

II4 . 

It is easy to observe that the results of Section 3 go through with n replaced 

by d=. That is, let 

and let p be Lebesgue measure normalized so that p(B) = 1. Then 

ea”?J = 

i 
J B 

where 

(1+ sll,p) 

IA-‘Ex + A-‘hi, 

llxll 

P 

P@(E~ h)) 

P+l r- 
i i 

l/P 

: 

2 1 

lb 

1 

3 J+n Ga”.p G (p+l)l’P 

with lim n _ m~,,p = 0 for all p. For the average loss of precision we have 

loss a”a = 
/ 

log 
IA-‘Ex + A-‘hi, 

B II4 
p(d(E, h)) = logewo’- a,, 
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where 

1 1-t E, 
-<ua,<~log(nZ+n)+ - 
ln2 2 

log6 + 6 
n 

with lim ,1- 3ten = 0. 
Consider now norm perturbations, i.e., suppose that E satisfies (1.2) for 

the Frobenius or spectral norm, and h satisfies (5.1). Let 

B= {(E,h):JIEll~pllAll, llhll~~ll~ll) CR”gi’l> 

and again let p be Lebesgue measure normalized to make p(B) = 1. In this 
case we can obtain 

max(pcond”“g(A,k,p),77cond”“g(h,k,p)) 

<.e avg < pcond”vg( A, k, p) + nc~nd”“~( b, k, p), 

max(l0g p + 10SSaVg (A, k), log77 +loss”‘“(h, k)) 

(5.4a) 

The upper bound in (5.4a) follows from the triangle inequality for Lp. In 

(5.4b), the upper bound follows from the observation that the log function is 
concave on (0, + co). 

As for the lower bounds in (5.4), write B = B, X B,, p = p 1 p2 where B, 
and B, are balls in R n2 (with respect to either spectral or Frobenius norm) 
and R”, respectively, and the p j are the appropriately normalized Lebesgue 
measures. The desired inequalities amount to the assertion that if f( u ) = log u 
or f(u) = up, and a = lsf(lAp’Ex + Ap’h\,)p(d(E, h)), then 

(5.5b) 

At this stage, notice that the reasoning leading to (4.4) is valid when B is 
the unit ball in the Frobenius norm as well as in the spectral norm, and that 
with respect to either norm one can also prove the following slight variant, in 
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which B, is the unit ball in R .* in 
Iw”, and c E R: 
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either norm, Z is again the unit sphere in 

= ~/,Pl~llAll(A-‘Y*)~+cl)~Y 

= i&[&k-( IPIIAII llAi’ll Ily4l~l+ +(a) a. 1 
Recalling that p,(B,) = 1, we see that (5.5a) follows if we set c = (A- ‘It), 

in (5.6) and then apply the general fact that if f is any nondecreasing 
function on (0, co) and r, c E R, then 

(5.7) 

As in the proof of Corollary 3.1, it suffices to show that (5.7) holds 
whenever f is the characteristic function of an interval [t, + co) and t 2 0, 
i.e., that 

.({~~Z:IrS~+cl~t})~u({5~Z:lrr~~t}). (5.8) 

Since (5.8) follows easily from the nature of u [see (4.7)], our proof of (5.5a) 
is finished. Moreover, there is an obvious analog of (5.6) for B,, which 
together with (5.7) leads to (5.6b). 

We note that it is substantially easier to establish the lower bounds in 
(5.4) if either f(u) = up or the norm in R n2 is the Frobenius norm. 

As an example, if we combine (5.4a) with our formulas for condavs( b, k, 2) 
and cond”‘s( A, k, 2) for the Frobenius norm, we have when p = 2 

Similarly, combining (5.4b) with our previous estimates for lo~s”“~(A, k) 
and condavs( A, k, 1) and observing also that if cr, cs > 0 then log(c, + cs) d 1 
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+ max(log ci,log c,), we have in the Frobenius norm case 

lossa’~=log~~A;l~~+max logp+logl(AI\ -logn, 
i 

llA4l 
1% II +hz ,,x,, ---1ogn +h,, 

1 

where - 0.916.. . <b,<$log(2/~)+1=0.674.... 
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