

THE INTEGRAL HOMOLOGY OF SMALE DIFFEOMORPHISMS

M. MALLER[†] and M. SHUB[‡]

(Received 28 June 1983)

THE dynamics and topology of diffeomorphisms are closely related. In this paper we show how to deduce information about the topology of a large class of diffeomorphisms from local information about the dynamics.

Let M be a connected closed manifold of dimension n , and $f: M \rightarrow M$ a diffeomorphism. A closed f -invariant subset $\Lambda \subset M$ is said to be *hyperbolic* if there exists an invariant splitting of the tangent bundle over Λ , $T_\Lambda M = E^s \oplus E^u$, and constants $C > 0$, $0 < \lambda < 1$ such that $\|Tf^n|E^s\| \leq C\lambda^n$ for all $n \geq 0$, and $\|Tf^n|E^u\| \leq C\lambda^n$ for all $n \leq 0$. f is said to satisfy *Axiom A* if the non-wandering set, $\Omega(f) = \{x \in M: \text{for all neighborhoods } U \text{ of } x, f^k(U) \cap U \neq \emptyset, \text{ for some } k > 0\}$, is hyperbolic and the periodic points of f are dense in $\Omega(f)$. For these diffeomorphisms Smale's spectral decomposition theorem says $\Omega(f)$ is a finite disjoint union of closed f -invariant subsets called *basic sets*, $\Omega(f) = \Omega_1 \cup \dots \cup \Omega_s$ [14]. The *index* of Ω_i is the fiber dimension of E^u/Ω_i .

For each Ω_i let $W^s(\Omega_i) = \{x \in M: d(f^n(x), \Omega_i) \rightarrow 0 \text{ as } n \rightarrow +\infty\}$ and $W^u(\Omega_i) = \{x \in M: d(f^n(x), \Omega_i) \rightarrow 0 \text{ as } n \rightarrow -\infty\}$. One writes $\Omega_i \geq \Omega_j$ if $W^u(\Omega_i) \cap W^s(\Omega_j) \neq \emptyset$. f is said to have *no cycles* if \geq can be extended to a total ordering of the basic sets. If in fact $W^u(\Omega_i) \cap W^s(\Omega_j) = \emptyset$ whenever $\text{index } (\Omega_i) < \text{index } (\Omega_j)$ we will say f has an *index-compatible* ordering. Finally, if $W^u(x)$ and $W^s(y)$ have transverse intersection for all $x, y \in \Omega(f)$, then f is said to satisfy the *strong transversality condition*.

A diffeomorphism is said to be *Smale* if it satisfies Axiom A and strong transversality and has zero dimensional Ω . Our results hold under somewhat weaker hypotheses. We will write $f \in \mathcal{F}$ if f satisfies Axiom A and no cycles, has zero dimensional Ω and an index compatible ordering on the basic sets.

Basic sets of Axiom A diffeomorphisms admit Markov partitions. When Ω_i is zero-dimensional the partition can be constructed so that Ω_i is topologically conjugate to the subshift of finite type Σ_{A_i} , where A_i is the 0-1 intersection matrix of f on the partition. Furthermore E^u/Ω_i is orientable, and if the partition is sufficiently fine the orientation numbers of $Tf|E^u$ are constant on rectangles, so the intersection numbers of f can be recorded with signs. The resulting integral matrix B_i is called a *signed representative* of Ω_i [3].

Let C_* be a free finitely generated \mathbb{Z} -complex $0 \rightarrow C_m \rightarrow \dots \rightarrow C_0 \rightarrow 0$. We will say C_* is a *complex of M* if $H_*(C_*) \cong H_*(M; \mathbb{Z})$. It follows that $H_*(C_*; R) \cong H_*(M; R)$ for all coefficient rings R . Given a chain map $E: C_* \rightarrow C_*$ we will say the pair (C_*, E) is an *R -endomorphism* of f if there exists an isomorphism which conjugates E_* and f_* .

$$\begin{array}{ccc} H_*(C_*, R) & \xrightarrow{\cong} & H_*(M; R) \\ \downarrow E_* & \text{--->} & \downarrow f_* \\ H_*(C_*, R) & \xrightarrow{\cong} & H_*(M; R) \end{array}$$

[†] Research partially supported by PSC-CUNY grant 1981-13723.

[‡] Research partially supported by an NSF grant.

If F_1, \dots, F_s are square integral matrices, we will say an integral matrix E is a *nilpotent extension* of F_1, \dots, F_s if E is similar over the integers to a matrix of the form

where the N_i are square nilpotent matrices and the above diagonal entries * are arbitrary.

THEOREM 1. Suppose M is orientable and $f \in \mathcal{F}$. For $0 \leq k \leq n$ let $B_1^k, \dots, B_{s_k}^k$ be signed representatives of the basic sets of index k . Then there exists a Z -endomorphism of (C_*, E) such that for each k E_k is a nilpotent extension of the $B_1^k, \dots, B_{s_k}^k$. \square

This theorem extends previous results of Bowen and Franks [3] who studied a single basic set on an orientable manifold. If f is actually a Smale diffeomorphism, Theorem 1 can also be proved using Pixton's theory of fitted rectangular decompositions, without requiring that M be orientable [10].

Fitted diffeomorphisms are Smale diffeomorphisms which preserve a handle decomposition of the manifold [13]. They are dense in the C^0 -topology on $\text{Diff}^1(M)$ and exhibit a particularly simple structure and a close connection between dynamics and homology theory. Examples of Bowen [2], Newhouse [9], and Pixton [11] show there exist Smale diffeomorphisms which are not fitted. In Pixton's terminology these diffeomorphisms are dynamically wild. From Theorem 1 and the techniques of [13] we obtain

THEOREM 2. *Let M be a 2-connected manifold with torsion free homology, and $\dim M \geq 6$. If $f \in \mathcal{F}$ has at least one fixed source and one fixed sink, then f is isotopic to an omega-conjugate fitted diffeomorphism. \square*

In principle this theorem reduces to algebra the problem of determining the omega-conjugacy types of Smale diffeomorphisms in the component of f , using the known machinery for fitted diffeomorphisms.

Let A and B be square integral matrices; they are said to be *shift equivalent* ($A \sim B$) if there exist integral matrices R and S and an integer $k > 0$ such that $A^k = RS$, $B^k = SR$, and $SA = BS$, $AR = RB$.

Bowen and Franks [3] proved that for a single basic set Ω_i of index k , the signed B_i^k is shift equivalent to the map induced by f in the relative k -homology of a filtration pair for Ω_i (see section 2). A main tool in the proof of Theorem 1 is a characterization of shift equivalence of integral matrices.

For square integral matrices A and B , we will say that A is *nil-equivalent* to B ($A \sim_{\text{nil}} B$) if there are nilpotent extensions

$$\begin{pmatrix} N_1 & * \\ 0 & A \\ 0 & N_2 \end{pmatrix} \text{ and } \begin{pmatrix} N_3 & * \\ 0 & B \\ 0 & N_4 \end{pmatrix}$$

of A and of B which are similar over \mathbb{Z} .

PROPOSITION. *If A and B are square integral matrices then $\widehat{A \text{ shift } B}$ if and only if $\widetilde{A \text{ nil } B}$.* □

We would like to thank Bob Williams, Dennis Pixton, Ken Kramer and Bruce Kitchens for very helpful conversations.

§1. NILPOTENT EXTENSIONS

Suppose L is a finitely generated \mathbb{Z} -module and $\alpha: L \rightarrow L$ a linear map. Let $\text{Nil}(\alpha) = \{v \in L: \text{for some } k \geq 0 \alpha^k(v) = 0\}$. Then $\text{Nil}(\alpha)$ is invariant under α . Let \bar{L} be the quotient module $L/\text{Nil}(\alpha)$ and $\bar{\alpha}: \bar{L} \rightarrow \bar{L}$ the injective quotient map. If L is free then \bar{L} is free as well, so the sequence $0 \rightarrow \text{Nil}(\alpha) \rightarrow L \rightarrow \bar{L} \rightarrow 0$ splits and α can be represented by a matrix

$$\begin{pmatrix} \alpha/\text{Nil}(\alpha) & * \\ 0 & \bar{\alpha} \end{pmatrix}.$$

Let \mathbf{M} be the category whose objects are pairs (L, α) and whose morphisms $i: (L, \alpha) \rightarrow (M, \beta)$ are linear maps $i: L \rightarrow M$ such that $\beta i = i\alpha$. Then \cdot is a functor from \mathbf{M} to itself. \cdot fails to preserve exactness. Given a short exact sequence in \mathbf{M}

$$\begin{array}{ccccccc} 0 & \longrightarrow & L & \xrightarrow{i} & M & \xrightarrow{j} & N \longrightarrow 0 \\ & & \downarrow \alpha & & \downarrow \beta & & \downarrow \gamma \\ 0 & \longrightarrow & L & \xrightarrow{i} & M & \xrightarrow{j} & N \longrightarrow 0 \end{array}$$

in the quotient sequence \bar{i} is 1-1 and \bar{j} is onto but in general $\text{image } (\bar{i}) \neq \text{kernel } (\bar{j})$. If $\bar{w} \in \text{kernel } (\bar{j})$ then for some $k \geq 0$, $0 = \gamma^k(jw) = j(\beta^k w)$ so there exists $v \in L$, $i(v) = \beta^k(w)$. Therefore the map induced by $\bar{\beta}$ on $\text{kernel } (\bar{j})/\text{image } (\bar{i})$ is always nilpotent. If $\bar{\alpha}$ is onto then exactness is preserved: for if $\bar{\alpha}^k(\bar{z}) = \bar{v}$ then $\bar{\beta}^k(iz) = \bar{i}(v) = \bar{\beta}^k(\bar{w})$ so $\bar{i}(\bar{z}) = \bar{w}$. In particular, exactness is preserved in the category of finite dimensional vector spaces. Similarly, if α is nilpotent then \bar{j} is 1-1, and again exactness is preserved. However consider the example

$$\begin{array}{ccccccc} 0 & \longrightarrow & \mathbb{Z} & \xrightarrow{i} & \mathbb{Z} \oplus \mathbb{Z} & \xrightarrow{j} & \mathbb{Z} \longrightarrow 0 \\ & & \text{(2)} & & \begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix} & & \text{(0)} \end{array}$$

where $i(v) = (v, 0)$ and $j(v, w) = w$. The quotient sequence is $0 \rightarrow \mathbb{Z} \xrightarrow{\bar{i}} \mathbb{Z} \xrightarrow{\bar{j}} 0$ which is not exact since $(0, 1) \notin \text{image } (\bar{i})$. We will need the following fact.

LEMMA 1. *Given two exact sequence in \mathbf{M} $0 \rightarrow (A, \alpha) \xrightarrow{i} (B, \beta) \xrightarrow{j} (C, \gamma) \rightarrow 0$ and $0 \rightarrow (B, \beta) \xrightarrow{k} (D, \delta) \xrightarrow{l} (E, \varepsilon) \rightarrow 0$, suppose that A and E are finite, α and ε are nilpotent, and $\gamma: C \rightarrow E$ is an isomorphism. Then $\text{Nil}(\delta)$ is finite and $(\bar{D}, \bar{\delta}) \cong (C, \gamma)$.*

Proof: Observe that $\text{Nil}(\beta) = i(A)$; therefore $(C, \gamma) \cong (\bar{B}, \bar{\beta})$, and exactness is preserved by \cdot in the second sequence. Since ε is nilpotent $(\bar{B}, \bar{\beta}) \cong (\bar{D}, \bar{\delta})$. If $\text{Nil}(\delta)$ were infinite, so would $\text{kernel } (l) \cap \text{Nil}(\delta) = \text{im}(k) \cap \text{Nil}(\delta) \cong \text{Nil}(\beta) = i(A)$ but A is finite. \square

If A is an $(n \times n)$ integral matrix then \bar{A} is defined up to similarity over \mathbb{Z} by allowing A to act on \mathbb{Z}^n . Recall that in the category of integral matrices shift equivalence coincides with the *a priori* stronger relation of strong shift equivalence. Let $A \approx_1 B$ if there exist integral matrices R and S such that $A = RS$ and $B = SR$, i.e. $A \sim_{\text{shift}} B$ with the lag $k = 1$. *Strong shift equivalence* ($A \approx B$) is the transitive closure of \approx_1 . These relations were introduced by Williams in [16]. The so called “Williams problem” is whether the two relations also coincide in the category of non-negative matrices [17]. In the category of integral matrices similarity over \mathbb{Z} implies strong shift equivalence; if $PAP^{-1} = B$ let $S = PA$ and $R = P^{-1}$. Therefore shift equivalence is also a relation on linear maps.

LEMMA 2. Let A, B be square integral matrices. Then $\bar{A} \approx_Z \bar{B} \Rightarrow A \approx_{\text{nil}} B \Rightarrow A \approx_{\text{shift}} B \Rightarrow \bar{A} \approx_Q \bar{B}$.

Proof: (i) $A \approx_Z \begin{pmatrix} A/\text{Nil}(A) & * \\ 0 & \bar{A} \end{pmatrix}$ so $A \approx_{\text{nil}} \bar{A} \approx_Z \bar{B} \approx_{\text{nil}} B$.

(ii) Let $*$ represent an arbitrary additional final column. Then

$$(A^*) \begin{pmatrix} Id \\ 0 \end{pmatrix} = A \quad \text{and} \quad \begin{pmatrix} Id \\ 0 \end{pmatrix} (A^*) = \begin{pmatrix} A & * \\ 0 & 0 \end{pmatrix}, \quad \text{so } A \approx_1 \begin{pmatrix} A & * \\ 0 & 0 \end{pmatrix}. \quad (\text{"bordering"})$$

Similarly

$$A \approx_1 \begin{pmatrix} 0 & * \\ 0 & A \end{pmatrix}.$$

Any nilpotent block N is similar over Z to a strictly upper triangular matrix so by iterating bordering $A \approx_{\text{shift}} \begin{pmatrix} N_{1,1} & * \\ 0 & N_2 \end{pmatrix}$ which proves the second implication. (iii) Bowen and Franks [3] proved that if $A \approx_{\text{shift}} B$, then for any abelian group G , regarding A and B as maps $G^n \rightarrow G^n$,

$$\xleftarrow{\text{Lim}}_G A \cong \xleftarrow{\text{Lim}}_G B. \quad \text{Let } G = Q; \text{ taking inverse limits over } Q \text{ we have } \bar{A} \cong \xleftarrow{\text{Lim}}_Q A \otimes l_Q \cong \xleftarrow{\text{Lim}}_Q B \otimes l_Q \cong \bar{B}. \quad \square$$

LEMMA 3. Let B be an $(n \times n)$ integral matrix and suppose $L \cong Z^k$ is a B -invariant sub-lattice of Z^n such that $B(Z^n) \subset L \subset Z^n$. Then $B \approx_1 B/L$.

Proof: Let A be a matrix representing $B/L: L \rightarrow L$ in the basis inherited from Z^k , and let R be the matrix of B regarded as a map $Z^n \rightarrow L \cong Z^k$, and let S be the matrix of the inclusion $Z^k \cong L \subset Z^n$. Then $RS = A$ and $SR = B$. \square

It follows that the $(k+n) \times (k+n)$ matrices

$$\begin{pmatrix} A & R \\ 0 & 0 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0 & R \\ 0 & B \end{pmatrix}$$

and similar over Z . For:

$$\begin{pmatrix} Id & 0 \\ S & Id \end{pmatrix} \begin{pmatrix} A & R \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & R \\ 0 & B \end{pmatrix} \begin{pmatrix} Id & 0 \\ S & Id \end{pmatrix}$$

Example: It seems natural to ask whether the non-singular quotient map $\bar{\cdot}$ can be changed by a nilpotent extension, i.e. if N is nilpotent is

$$\overline{\begin{pmatrix} A & * \\ 0 & N \end{pmatrix}} \approx_Z \bar{A}?$$

We show this fails as follows. Let C and D be non-singular $(n \times n)$ integral matrices which are similar over Q but not over Z . Let $PC = DP$ where P is integral; then $C \not\approx_Z D/P(Z^n)$ and there exists an integer k such that $kD(Z^n) \subset P(Z^n)$. Letting $B = kD$ and $L = P(Z^n)$ we have

$$\begin{pmatrix} kC & * \\ 0 & 0 \end{pmatrix} \approx_Z \begin{pmatrix} 0 & * \\ 0 & kD \end{pmatrix} \quad \text{but } kC \not\approx_Z kD.$$

Thus

$$\overline{\begin{pmatrix} kC & * \\ 0 & 0 \end{pmatrix}} \not\approx_Z \overline{kC}.$$

For example, let

$$C = \begin{pmatrix} 0 & -5 \\ 1 & 0 \end{pmatrix} \quad \text{and} \quad D = \begin{pmatrix} -1 & 3 \\ -2 & 1 \end{pmatrix}$$

which represent distinct ideal classes of the ring $Z[\sqrt{5}i]$. Then

$$\begin{pmatrix} 0 & -15 & -5 & 0 \\ 3 & 0 & -1 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \underset{\mathbb{Z}}{\sim} \begin{pmatrix} 0 & 0 & -5 & 0 \\ 0 & 0 & -1 & 3 \\ 0 & 0 & -3 & 9 \\ 0 & 0 & -6 & 3 \end{pmatrix} \underset{\mathbb{Z}}{\sim} \begin{pmatrix} -3 & 9 \\ -6 & 3 \end{pmatrix}$$

PROPOSITION 1. *In the category of integral matrices $A \underset{\text{nil}}{\sim} B$ if and only if $A \underset{\text{shift}}{\sim} B$.*

Proof: $\underset{\text{nil}}{\sim} \Rightarrow \underset{\text{shift}}{\sim}$ was proved in Lemma 2. To prove the converse, suppose that $A \underset{\mathbb{Z}}{\sim} B$ and $A = RS$, $B = SR$. Then, as above:

$$\begin{pmatrix} A & R \\ 0 & 0 \end{pmatrix} \underset{\mathbb{Z}}{\sim} \begin{pmatrix} 0 & R \\ 0 & B \end{pmatrix}$$

Therefore

$$A \underset{\text{nil}}{\sim} \begin{pmatrix} A & R \\ 0 & 0 \end{pmatrix} \underset{\mathbb{Z}}{\sim} \begin{pmatrix} 0 & R \\ 0 & B \end{pmatrix} \underset{\text{nil}}{\sim} B \quad \square$$

§2. Z-ENDOMORPHISMS

Let $f \in \mathcal{F}$. Number the basic sets Ω_i^k , $0 \leq k \leq n$, $1 \leq i \leq s_k$, where $k = \text{index } \Omega_i^k$ and if $i < j$ then $W^u(\Omega_i^k) \cap W^s(\Omega_j^k) = \emptyset$. There exist filtrations of M with one basic set added at each stage, that is, a sequence of submanifolds with boundary M_i^k such that

(i) $M_{i-1}^k \subset M_i^k$ (if $i = 1$ let $M_0^k = M_{s_{k-1}}^{k-1}$).

(ii) $f(M_i^k) \subset \text{int } M_i^k$

(iii) $\bigcap_{n \in \mathbb{Z}} f^n(\overline{M_i^k - M_{i-1}^k}) = \Omega_i^k$

If we require in addition that the boundaries of M_i^k and M_{i-1}^k meet transversely, then in the language of [3] M_i^k , M_{i-1}^k are a filtration pair for Ω_i^k .

We suppose that signed representatives B_i^k are given for Ω_i^k . Let $M_k = \bigcup_{i=1}^{s_k} M_i^k = M_{s_k}^k$. We will show that $f_{*k}: H_k(M_k, M_{k-1}; \mathbb{Z}) \xrightarrow{\sim}$ is shift equivalent to a matrix B_k which is itself a nilpotent extension of the signed representatives $B_1^k, \dots, B_{s_k}^k$.

We recall the following facts: Bowen proved that $f_{*j}: H_j(M_i^k, M_{i-1}^k; \mathbb{Z}) \xrightarrow{\sim}$ is nilpotent for $j \neq k$ [1]. Bowen and Franks proved that if M is orientable then $f_{*k}: H_k(M_i^k, M_{i-1}^k; \mathbb{Z}) \xrightarrow{\sim}$ is shift equivalent to B_i^k , and nilpotent on the torsion summand of $H_k(M_i^k, M_{i-1}^k; \mathbb{Z})$ [3]. Furthermore, if $0 \rightarrow (A, \alpha) \rightarrow (B, \beta) \rightarrow (C, \gamma) \rightarrow 0$ is an exact sequence in \mathbb{M} and α or γ are nilpotent, then the other two maps are shift equivalent. [3, Lemma 3.4].

LEMMA 4. $f_{*k}: H_k(M_k, M_{k-1}; \mathbb{Z}) \xrightarrow{\sim}$ is shift equivalent to a matrix B_k which is a nilpotent extension of the $B_1^k, \dots, B_{s_k}^k$.

Proof: Consider first the exact sequence of the triple $M_{k-1} \subset M_1^k \subset M_2^k$ (all coefficients are \mathbb{Z} , all maps induced by f .)

$$\begin{array}{ccccccccccc} H_{k+1}(M_2^k, M_1^k) & \rightarrow & H_k(M_1^k, M_{k-1}) & \xrightarrow{i} & H_k(M_2^k, M_{k-1}) & \xrightarrow{j} & H_k(M_2^k, M_1^k) & \rightarrow & H_{k-1}(M_1^k, M_{k-1}) \\ \downarrow \alpha & & \downarrow \beta & & \downarrow \gamma & & \downarrow \delta & & \downarrow \varepsilon \\ H_{k+1}(M_2^k, M_1^k) & \rightarrow & H_k(M_1^k, M_{k-1}) & \xrightarrow{i} & H_k(M_2^k, M_{k-1}) & \xrightarrow{j} & H_k(M_2^k, M_1^k) & \rightarrow & H_{k-1}(M_1^k, M_{k-1}) \end{array}$$

where $\beta \sim_{\text{shift}} B_1^k$ and $\delta \sim_{\text{shift}} B_2^k$. α and ε are nilpotent so applying $\bar{\cdot}$ we obtain

$$\begin{array}{ccccccc} 0 & \rightarrow & \bar{H}_k(M_1^k, M_{k-1}) & \xrightarrow{\bar{i}} & \bar{H}_k(M_2^k, M_{k-1}) & \xrightarrow{\bar{j}} & \bar{H}_k(M_2^k, M_1^k) \rightarrow 0 \\ & & \downarrow \bar{\beta} & & \downarrow \bar{\gamma} & & \downarrow \bar{\delta} \\ 0 & \rightarrow & \bar{H}_k(M_1^k, M_{k-1}) & \rightarrow & \bar{H}_k(M_2^k, M_{k-1}) & \rightarrow & \bar{H}_k(M_2^k, M_1^k) \rightarrow 0 \end{array}$$

which may fail to be exact, but the map induced by $\bar{\gamma}$ on $\ker(\bar{j})/\text{im}(\bar{i})$ is nilpotent. Now the sequence $0 \rightarrow \ker(\bar{j}) \xrightarrow{\text{inc}} \bar{H}_k(M_2^k, M_{k-1}) \xrightarrow{\bar{j}} \bar{H}_k(M_2^k, M_1^k) \rightarrow 0$ is exact and the right hand term is free so $\bar{\gamma}$ can be represented by a matrix:

$$\begin{pmatrix} \bar{\gamma}/\ker(\bar{j}) & * \\ 0 & \bar{\delta} \end{pmatrix}$$

Also $0 \rightarrow \text{im}(\bar{i}) \xrightarrow{\text{inc}} \ker(\bar{j}) \rightarrow \ker(\bar{j})/\text{im}(\bar{i}) \rightarrow 0$ is exact, so $\bar{\gamma}/\ker(\bar{j}) \sim_{\text{shift}} \bar{\gamma}/\text{im}(\bar{i}) \sim_z \bar{\beta} \sim_{\text{nil}} \beta \sim_{\text{shift}} B_1^k$. Similarly $\bar{\delta} \sim_{\text{nil}} \delta \sim_{\text{shift}} B_2^k$. It follows that $\gamma = f_{*k}: H_k(M_2^k, M_{k-1}) \hookrightarrow$ is shift equivalent to a nilpotent extension of B_1^k and B_2^k . The lemma follows by induction on the number of basic sets of index k . \square

Let (D_*, F) be the complex $D_k = \bar{H}_k(M_k, M_{k-1}; Z)$, $F_k = \bar{f}_{*k}: D_k \hookrightarrow$. It follows from the proof of [3 Lemma 3.3] that f_{*k} is nilpotent on the torsion summand of $H_k(M_k, M_{k-1}; Z)$ so D_k is a free Z -module and $F_k \sim_{\text{nil}} f_{*k} \sim_{\text{shift}} B_k$, so $F_k \sim_{\text{shift}} B_k$. We will prove Theorem 1 by constructing a Z -endomorphism of f from a nilpotent extension of (D_*, F) .

We observe first that $H_*(M; Z)$ and $H_*(D_*)$ have isomorphic free summands. Let K be a field, and, for $0 \leq j \leq n$ let $X_j = \varprojlim_{n \geq 0} f^n(M_j) \cong \varprojlim M_j \xrightarrow{f} M_j$. Using Čech theory $\varprojlim \{H_L(M_j, M_{j-1}; K) \hookrightarrow f_{*L}\} \cong \check{H}_L(\varprojlim(M_j, M_{j-1}) \hookrightarrow f; K) \cong \check{H}_L(X_j, X_{j-1}; K)$. Therefore, for $L \neq j$ it follows from the nilpotence of f_{*L} that $\check{H}_L(X_j, X_{j-1}; K) = 0$. Now $X_n = M$ and X_0 is discrete; since K is a field it follows that the complex $\check{C}_*^K, \check{C}_j^K = H_j(X_j, X_{j-1}; K)$ carries the K -homology of M [15, p. 205]. On the other hand, by the universal coefficient theorem $H_j(M_j, M_{j-1}; K) \cong (H_j(M_j, M_{j-1}; Z) \otimes K) \oplus (H_{j-1}(M_j, M_{j-1}; Z)^* K)$. Since f_{*j-1} is nilpotent on the second term on the right, $\check{C}_j^K \cong \varprojlim (H_j(M_j, M_{j-1}; Z) \otimes k) \hookrightarrow (f_{*j} \otimes 1_K) \cong \varprojlim (D_j \otimes K) \hookrightarrow (F_j \otimes 1_K)$. Now let $K = Q$; we have $\varprojlim (D_j \otimes Q) \hookrightarrow (F_j \otimes 1_Q) \cong (D_j \otimes Q) \hookrightarrow F_j \otimes 1_Q$. Therefore $H_*(M; Q) \cong H_*(\check{C}_*^Q) \cong H_*(D_* \otimes Q) = H_*(D_*) \otimes Q$. Therefore $H_*(M; Z)$ and $H_*(D_*)$ have the same free summands.

Remark. It follows from the work of Bowen and Franks that for K a field the inverse limit $\varprojlim B_j: K^{n_j} \rightarrow K^{n_j}$ where $n_j = \text{rank}(B_j)$ is a K -endomorphism of f . For $B_j \sim_{\text{shift}} f_{*j}: H_j(M_j, M_{j-1}; K) \hookrightarrow$ so by [3, 1.1] $\varprojlim B_j \cong \varprojlim f_{*j} \cong \check{C}_j^k$. However more delicate methods are needed working with Z -coefficients. In particular B_j may be injective but over Z , $\varprojlim B_j = 0$.

The next lemma shows we obtain the integral homology of M and f by applying $\bar{\cdot}$ again, to $H_*(D_*) \hookrightarrow F_*$.

LEMMA 5. $\text{Nil}(F_{*k}: H_k(D_*) \hookrightarrow)$ is finite for all k , and $(\bar{H}_*(D_*), \bar{F}_*) \cong (H_*(M; Z), f_*)$.

Proof: We show that for $0 \leq k \leq n$ there exists an F_{*k} -invariant subgroup $A_k \subset H_k(D_*)$ and an epimorphism $\emptyset_k: A_k \rightarrow H_k(M, Z)$ conjugating f_{*k} and F_{*k}/A_k ; furthermore kernel (\emptyset_k) and $H_k(D_*)/A_k$ are finite groups on which F_{*k} induces nilpotent maps. The result then follows from Lemma 1 above.

Consider the diagram of the exact sequences of (M_{k-1}, M_{k-2}) , (M_k, M_{k-1}) and (M_{k+1}, M_k) . (All coefficients are Z .)

$$\begin{array}{ccccccc}
& \searrow & H_k(M_{k-1}) & \nearrow & H_k(M_{k+1}) & \searrow & \\
& & \downarrow \partial_{k+1} & \nearrow j_k & & & \\
\rightarrow & H_{k+1}(M_{k+1}, M_k) & \longrightarrow & H_k(M_k, M_{k-1}) & \longrightarrow & H_{k-1}(M_{k-1}, M_{k-2}) \longrightarrow & \\
& \swarrow & & \downarrow \partial_k & \nearrow j_{k-1} & & \\
& & & H_{k-1}(M_{k-1}) & & &
\end{array}$$

First we prove by induction on L that $f_{*k}: H_k(M_L) \rightarrow H_k(M_{L+1})$ is nilpotent for $k > L$. When $L = 0$ consider $\emptyset \subset M_1^0 \subset \dots \subset M_{s_0}^0$. Now (M_1^0, \emptyset) is a filtration pair for Ω_1^0 so in this case the claim follows from [1]. Assume inductively that $f_{*k}: H_k(M_i^L) \rightarrow H_k(M_{i+1}^L)$ is nilpotent for $k > L$. Then in the exact sequence $\rightarrow H_k(M_i^L) \rightarrow H_k(M_{i+1}^L) \rightarrow H_k(M_{i+1}^L, M_i^L) \rightarrow$ the maps induced on the end terms are nilpotent, hence on the middle term as well, which proves the claim. In particular, for all k , $f_{*k}: H_k(M_{k-1}) \rightarrow H_k(M_k)$ is nilpotent so the maps $\bar{j}_k: \bar{H}_k(M_k) \rightarrow \bar{H}_k(M_k, M_{k-1})$ are injective.

Next suppose $k < L$ and consider the exact sequence $H_{k+1}(M_{L+1}, M_L) \rightarrow H_k(M_L) \xrightarrow{i} H_k(M_{L+1})$. The map induced by i on the left is nilpotent so $\bar{i}: \bar{H}_k(M_L) \rightarrow \bar{H}_k(M_{L+1})$ is injective for $k < L$. In addition, for $k \leq L$ we will prove by induction that \bar{i} is surjective. First let $L = n - 1$. Taking a power of f if necessary we can assume that $f_{*k}: H_k(M_n, M_{n-1}) \rightarrow H_k(M_n, M_{n-1})$ is zero for $k < n$. In the diagram

$$\begin{array}{ccc}
H_k(M_n, M_{n-1}) & \xrightarrow{f_{*k}} & H_k(M_n, M_{n-1}) \\
\downarrow f_* & \nearrow (\text{inc})_* & \\
H_k(f(M_n), f(M_{n-1})) & &
\end{array}$$

the map induced by f on the left is an isomorphism, so $(\text{inc})_*$ is also zero. Consider the diagram

$$\begin{array}{ccccc}
\rightarrow H_k(M_{n-1}) & \xrightarrow{i} & H_k(M_n) & \rightarrow H_k(M_n, M_{n-1}) & \rightarrow \\
\uparrow \text{inc}_* & & \uparrow \text{inc}_* & & \uparrow \text{inc}_* \\
\rightarrow H_k(f(M_{n-1})) & \xrightarrow{\bar{i}} & H_k(f(M_n)) & \rightarrow H_k(f(M_n), f(M_{n-1})) & \rightarrow
\end{array}$$

The right hand $(\text{inc})_*$ is zero while the middle $(\text{inc})_*$ is an isomorphism. It follows that $i: H_k(M_{n-1}) \rightarrow H_k(M_n)$ is onto, for $k \leq n - 1$. To continue the induction, observe that if $k \leq n - 2$ in the left square above both horizontal maps induce isomorphisms under $\bar{\cdot}$. Therefore, for $k \leq n - 2$ $(\text{inc})_*: \bar{H}_k(f(M_{n-1})) \rightarrow \bar{H}_k(M_{n-1})$ is an isomorphism, and the induction continues.

For all k we obtain a commutative diagram

$$\begin{array}{ccc}
\bar{H}_k(M_k) & \rightarrow & \bar{H}_k(M_n) \cong H_k(M; Z) \\
\downarrow \bar{j}_{*k} & & \downarrow \bar{j}_{*k} \\
\bar{H}_k(M_k) & \rightarrow & \bar{H}_k(M_n) \cong H_k(M; Z)
\end{array}$$

Let $A_k = (\bar{j}_k(\bar{H}_k(M_k)) / \bar{j}_k \circ \bar{\partial}_{k+1}(D_{k+1})) \subset H_k(D_*)$. A_k is invariant under $F_{*k}: H_k(D_*) \rightarrow H_k(M_k)$. We obtain a commutative diagram

$$\begin{array}{ccccc}
A_k & \xrightarrow{\cong} & \bar{H}_k(M_k) & \xrightarrow{\cong} & H_k(M; Z) \\
\downarrow F_{*k} & & \downarrow \bar{\partial}_{k+1}(D_{k+1}) & & \downarrow f_{*k} \\
A_k & \xrightarrow{\cong} & \bar{H}_k(M_k) & \xrightarrow{\cong} & H_k(M; Z) \\
& & \downarrow \bar{\partial}_{k+1}(D_{k+1}) & & \downarrow f_{*k} \\
& & \bar{H}_k(M_k) & \xrightarrow{\cong} & H_k(M; Z) \\
& & \downarrow \text{kernel } (\bar{i}_k) & & \downarrow \text{kernel } (\bar{i}_k) \\
& & \bar{H}_k(M_k) & \xrightarrow{\cong} & H_k(M; Z)
\end{array}$$

Let $\emptyset_k: A_k \rightarrow H_k(M, Z)$ be the composition of the rows. We have a diagram of exact sequences

$$\begin{array}{ccccccc}
 & & 0 & & & & \\
 & & \downarrow & & & & \\
 & & (\text{kernel } (\bar{i}_k)/\text{image } (\bar{\partial}_{k+1})) & & & & \\
 & & \downarrow & & & & \\
 0 & \longrightarrow & A_k & \longrightarrow & H_k(D_*) & \xrightarrow{\substack{\text{kernel } (\bar{\partial}_k) \\ \text{image } (\bar{j}_k)}} & 0 \\
 & & \downarrow \emptyset_k & & & & \\
 & & H_k(M, Z) & & & & \\
 & & \downarrow & & & & \\
 & & 0 & & & &
 \end{array}$$

By construction F_{*k} is nilpotent on $\text{kernel } (\emptyset_k) \cong \text{kernel } (\bar{i}_k)/\text{image } (\bar{\partial}_{k+1})$ and on $H_k(D_*)/A_k \cong \text{kernel } (\bar{\partial}_k) \text{ image } (\bar{j}_k)$. By the remarks above $H_k(D_*)$ and $H_k(M, Z)$ have the same free rank. It follows that $\text{kernel } (\emptyset_k)$ and $H_k(D_*)/A_k$ are finite groups. The lemma now follows by Lemma 1 above. \square

LEMMA 6. *Suppose (C_*, E) is an endomorphism and $T \subset H_k(C_*)$ is a finite E_* -invariant subgroup on which E_* is nilpotent. There exists an endomorphism (C'_*, E') such that $H_*(C'_*) \cong H_*(C)/T$, where E'_j is a nilpotent extension of E_j for $j = k+1, k+2$ and $E'_j = E_j$ otherwise.*

Proof. We construct a nilpotent resolution of $E_{*k}: T \rightarrow T$ as in [5]. Let Z_1 be a free Z -module with one generator for each element of $T - \{0\}$, $\varepsilon: Z_1 \rightarrow T$ the associated map, and define $N_1: Z_1 \rightarrow Z_1$ on generators according to E_*/T , so N_1 is nilpotent. Let $Z_2 = \text{kernel } (\varepsilon)$ and $N_2 = N_1/Z_2$.

$$\begin{array}{ccccccc}
 0 & \longrightarrow & Z_2 & \xrightarrow{\text{inc}} & Z_1 & \xrightarrow{\varepsilon} & T \longrightarrow 0 \\
 & & \downarrow N_2 & & \downarrow N_1 & & \downarrow E_{*k} \\
 0 & \longrightarrow & Z_2 & \xrightarrow{\text{inc}} & Z_1 & \xrightarrow{\varepsilon} & T \longrightarrow 0
 \end{array}$$

T is also resolved by cycles and boundaries: let $\psi: Z_k \rightarrow H_k(C_*)$ be the projection and $Z'_k = \psi^{-1}(T)$.

$$\begin{array}{ccccccc}
 0 & \longrightarrow & B_k & \xrightarrow{i} & Z'_k & \xrightarrow{\psi} & T \longrightarrow 0 \\
 & & \downarrow E_{k/} & & \downarrow E_{k/} & & \downarrow E_{*k} \\
 0 & \longrightarrow & B_k & \xrightarrow{i} & Z'_k & \xrightarrow{\psi} & T \longrightarrow 0
 \end{array}$$

Combining these sequences we obtain a resolution of Z'_k as in [4, V.2]. Since Z_1 is free and ψ is onto there exists $\rho: Z_1 \rightarrow Z'_k$ such that $\psi \rho = \varepsilon$. Let $K = \text{kernel } (i \oplus \rho: B_k \oplus Z_1 \rightarrow Z'_k)$. We obtain a diagram

$$\begin{array}{ccccccc}
 & & 0 & & 0 & & \\
 & & \downarrow & & \downarrow & & \\
 & & K & & Z_2 & & \\
 & & \downarrow \text{inc} & & \downarrow \text{inc} & & \\
 & & B_k \oplus Z_1 & & Z_1 & & \\
 & & \downarrow i \oplus \rho & & \downarrow \varepsilon & & \\
 0 & \longrightarrow & B_k & \xrightarrow{i} & Z'_k & \xrightarrow{\psi} & T \longrightarrow 0 \\
 & & \downarrow & & \downarrow & & \\
 & & 0 & & 0 & &
 \end{array}$$

where $i \oplus \rho$ is onto Z'_k and for all $z \in Z_2$ there exists a unique $b \in B_k$ such that $(b, z) \in K$. Also, for $z \in Z_1$ there exists a unique $b \in B_k$ such that $\rho N_1(z) - E_k \rho(z) = i(b)$; let $*(z)$ be that b . We obtain a resolution of E_k/Z'_k

$$\begin{array}{ccccccc} 0 & \longrightarrow & K & \longrightarrow & B_k & \xrightarrow{\oplus} & Z_1 \longrightarrow Z'_k \longrightarrow 0 \\ & & \downarrow H & & \downarrow E_k & & \downarrow N_1 \\ 0 & \longrightarrow & K & \longrightarrow & B_k & \xleftarrow{\oplus} & Z_1 \longrightarrow Z'_k \longrightarrow 0 \end{array}$$

where $H = \begin{pmatrix} E_k & * \\ 0 & N_1 \end{pmatrix}$ restricted to K . Since N_1 is nilpotent so is H .

The lemma follows by splicing in this resolution of Z'_k to kill T . Since B_k is free we have

$$\begin{array}{ccc} C_{k+1} & \cong & Z_{k+1} \oplus B_k \\ \downarrow E_{k+1} & & \downarrow E_{k+1} \\ C_{k+1} & \cong & Z_{k+1} \oplus B_k \end{array}$$

Let $\text{inc}: Z'_k \rightarrow C_k$ be the inclusion. Then (C'_*, E') is the following endomorphism

$$\begin{array}{ccccc} C_{k+3} & \longrightarrow & C_{k+2} & \xrightarrow{\partial_{k+2}} & Z_{k+1} \\ & & \oplus & & \oplus \\ & & K & \xrightarrow{\text{inc}} & B_k \\ & & & & \oplus \\ & & & & Z_1 \end{array}$$

with maps $E'_j = E_j$ for $j \neq k+1, k+2$ and

$$E'_{k+2} = \begin{pmatrix} E_{k+2} & 0 \\ 0 & H \end{pmatrix} \quad E'_{k+1} = \begin{pmatrix} E_{k+1} & * \\ 0 & N_1 \end{pmatrix} \quad \square$$

Remark. If $H_k(C_*)/T$ is free then (C'_*, E') can be constructed so that $E'_j = E_j$ except for $j = k, k+1$. For Z'_k is free so the resolution of E_k/Z'_k can be folded to obtain:

$$\begin{array}{ccc} B_k \oplus Z_1 & \xrightarrow{\cong} & K \oplus Z'_k \\ \downarrow E_k & \nearrow * & \downarrow H \\ B_k \oplus Z_1 & \xrightarrow{\cong} & K \oplus Z'_k \end{array}$$

Now $0 \rightarrow Z'_k \rightarrow Z_k \rightarrow H_k(C_*)/T \rightarrow 0$ is exact so if $H_k(C_*)/T$ is free then Z'_k is a direct summand of Z_k and the map $*: Z'_k \rightarrow K$ extends to a map $**: C_k \rightarrow K$. The new complex C'_* is

$$\begin{array}{ccccccc} \longrightarrow & C_{k+2} & \longrightarrow & C_{k+1} \oplus Z_1 & \longrightarrow & C_k \oplus K & \longrightarrow \\ & & & \downarrow \text{II} & & \downarrow \text{II} & \\ & & & (Z_{k+1} \oplus B_k \oplus Z_1) & \xrightarrow{\text{II}} & (B_{k-1} \oplus Z_k \oplus K) & \\ & & & \downarrow \text{II} \oplus \alpha & & \downarrow \text{II} \oplus \alpha & \\ & & & Z'_k \oplus K & & Z'_k \oplus K & \end{array}$$

with maps

$$E'_{k+1} = \begin{pmatrix} E_{k+1} & * \\ 0 & N_1 \end{pmatrix} \quad \text{and} \quad E'_k = \begin{pmatrix} H & ** \\ 0 & E_k \end{pmatrix},$$

where both N_1 and H are nilpotent. \square

THEOREM 1. Suppose M is orientable and $f \in \mathcal{F}$. Given signed representatives B_i^k for the basic sets of f , there exists a \mathbb{Z} -endomorphism of $f(C_*, E)$ such that for all k , E_k is a nilpotent extension of the signed representatives of index k .

Proof: We construct a nilpotent extension of (D_*, F) . By Lemma 5 $\text{Nil}(F_{*,0}; H_0(D_*) \hookrightarrow)$ is finite; using Lemma 6 there exists a nilpotent extension (D'_*, F') such that $(H_0(D'_*), F'_{*,0}) \cong (\bar{H}_0(D_*, \bar{F}_*), \cong (H_0(M; \mathbb{Z}), f_{*,0})$. Continuing inductively we obtain a \mathbb{Z} -endomorphism of $f(C_*, E)$ such that for all k , E_k is a nilpotent extension of F_k . Thus $E_k \xrightarrow{\text{nil}} F_k \xrightarrow{\text{nil}} B_k$, where B_k is the nilpotent extension of the signed representatives of index k of Lemma 4.

It follows there exist nilpotent blocks N_k, N'_k such that the matrix

$$\begin{pmatrix} N_k & *_1 & *_2 \\ 0 & E_k & *_3 \\ 0 & 0 & N'_k \end{pmatrix}$$

is a nilpotent extension of B_k . Let L_k, L'_k be free \mathbb{Z} -modules, of $\dim L_k = \text{rank } N_k, \dim L'_k = \text{rank } N'_k$. At the k -th stage we adjoin contractible pairs in dimension $k+1, k$ and, $k-1$.

$$\begin{array}{ccccccc} \rightarrow C_{k+2} & \xrightarrow{\partial_{k+2}} & L_k & \oplus & C_{k+1} & \xrightarrow{1 \oplus \partial_{k+1}} & L_k \\ \downarrow E_{k+2} & \quad \downarrow N_k & \searrow \begin{smallmatrix} \circ \partial_{k+1} \\ \oplus \end{smallmatrix} & \downarrow E_{k+1} & \quad \downarrow N_k & \downarrow & \downarrow N'_k \\ \rightarrow C_{k+2} & \xrightarrow{\partial_{k+2}} & L_k & \oplus & C_{k+1} & \xrightarrow{1 \oplus \partial_{k+1}} & L_k \\ & & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ & & C_k & \oplus & C_k & \oplus & L'_k \\ & & \downarrow E_x & \downarrow & \downarrow & \downarrow & \downarrow \\ & & \oplus & \oplus & \oplus & \oplus & L'_k \\ & & C_k & & C_k & & N'_k \\ & & \downarrow & & \downarrow & & \downarrow \\ \rightarrow C_{k-1} & \oplus & L'_k & \longrightarrow & C_{k-2} & \longrightarrow & \\ \downarrow E_{k-1} & \searrow & \downarrow N'_k & \downarrow & \downarrow E_{k-2} & \downarrow & \\ \rightarrow C_{k-1} & \oplus & L_k & \longrightarrow & C_{k-2} & \longrightarrow & \end{array}$$

Since the homology of (C_*, E) is unchanged we obtain at the n -th stage the desired \mathbb{Z} -endomorphism of f .

When $k = 0$ the last step could introduce (-1) chains. Each component of M_0 either contains a periodic sink or else its orbit eventually wanders into such a component. We can absorb the wandering components into $M_1 - M_0$ and still have a filtration for f . Therefore we can assume M_0 has one component for each periodic sink so $f_{*,0}: H_0(M_0; \mathbb{Z}) \hookrightarrow$ is a permutation and $B_0 = f_{*,0} = F_0 = E_0$, and no (-1) chains are introduced. Similarly, when $k = n$, the last step in the proof need not introduce $(n+1)$ chains. However, $(n+1)$ chains could be introduced when we kill $\text{Nil}(F_{*,n-1}; H_{n-1}(D_*) \hookrightarrow)$ using Lemma 6. If $H_{n-1}(M; \mathbb{Z}) \cong H_{n-1}(D_*)/\text{Nil}(F_{*,n-1})$ is free we can use the folded technique above and preserve the dimension of the complex. \square

Remark. If f is a Smale diffeomorphism, Theorem 1 can be proved using Pixton's theory of fitted rectangular decompositions, without the assumption that M is orientable. Pixton proves that for Smale diffeomorphisms there exist filtrations $M_k, 0 \leq k \leq n$ where $M_k - M_{k-1}$ is a finite disjoint union of rectangles $R_i^- \times R_i^+$ [10]. R_i^-, R_i^+ are submanifolds with boundary, which embed in Euclidean spaces of dimensions $k, n-k$, but are not necessarily discs. After choosing orientations the partition gives a choice of signed representatives, and it follows from the Künneth formula that $f_{*,k}: H_k(M_k, M_{k-1}; \mathbb{Z}) \hookrightarrow$ is a nilpotent extension of the signed representatives of index k . Any two signed representatives of the same basic set are shift equivalent [3], so this is true independent of the choice of signed representatives. The rest of the proof of Theorem 1 is unchanged.

§3. GEOMETRIC REALIZATION

Let (C_*, E) be a \mathbb{Z} -endomorphism of f . The geometric realization techniques of [13] require the stronger condition of chain homotopy equivalence. Suppose $\dim M \geq 6$, $\Pi_1(M) = 0$, and let $C_*(M)$ be the complex of a given handle decomposition of M and $f_*: C_*(M) \rightarrow$ the induced map. (C_*, E) is realized by a handle decomposition of M and a diffeomorphism isotopic to f if and only if there exists a chain homotopy equivalence $h: C_* \rightarrow C_*(M)$ such that $hE \simeq f_*h$. This will be satisfied provided (C_*, E) is also an R -endomorphism of f for $R = \mathbb{Z}/n$ all n . (The problem is the off diagonal term in $(E \oplus 1_R)_*$ on $H_k(C_*; R) \cong (H_k(C_*) \otimes R) \oplus (H_{k-1}(C_*) * R)$. In case $H_*(M; \mathbb{Z})$ is torsion free it suffices that (C_*, E) be a \mathbb{Z} -endomorphism of f .

THEOREM 2. *Let M be a 2-connected manifold with torsion free homology and $\dim M \geq 6$. If $f \in \mathcal{F}$ has at least one source and one sink which are fixed then f is isotopic to an omega-conjugate fitted diffeomorphism.*

Proof: Let (C_*, E) be a \mathbb{Z} -endomorphism of f , as in Theorem 1. If $C_1 = C_{n-1} = 0$ then by [13] there exists a handle decomposition of M and a fitted diffeomorphism g isotopic to f whose chain map realizes E . g may be chosen so its geometric intersection numbers agree up to sign with the entries of E . If the nilpotent blocks in the E_k are put in upper triangular form they give rise to wandering handles in g . If the signed representatives B_i^k of f arose from Markov partitions with 0-1 geometric intersection numbers, then $\Omega(f)$ is topologically conjugate to $\Omega(g)$. Therefore the result follows provided $C_1 = C_{n-1} = 0$.

We use *folding*, as in [13, Appendix A] to eliminate 1 and $(n-1)$ chains. Suppose (C_*, E) is given, $H_k(C_*) = 0$ and $\partial_k: C_k \rightarrow C_{k-1}$ is zero. Since all boundaries are free we have a splitting of C_{k+1}

$$\begin{array}{ccccccc} \longrightarrow & C_{k+2} & \longrightarrow & B_{k+1} & \oplus & H_{k+1} & \oplus & C_k & \longrightarrow & C_k & \longrightarrow & 0 \\ & \downarrow & & \downarrow E_{k+2} & & \downarrow E_{k+1} & & \downarrow E_k & & \downarrow E_k & & \\ & C_{k+2} & \longrightarrow & B_{k+1} & \oplus & H_{k+1} & \oplus & C_k & \longrightarrow & C & \longrightarrow & 0 \end{array}$$

*₂ *₂ *₁

Folding C_k up into $(k+2)$ we obtain:

$$\begin{array}{ccccccc} C_{k+2} & \oplus & C_k & \overbrace{(B_{k+1} \oplus H_{k+1} \oplus C_k)} & \longrightarrow & 0 & \longrightarrow C_{k-1} \longrightarrow \\ \downarrow & & \downarrow & & & & \downarrow \\ C_{k+2} & \oplus & C_k & \overbrace{(B_{k+1} \oplus H_{k+1} \oplus C_k)} & \longrightarrow & 0 & \longrightarrow C_{k-1} \longrightarrow \end{array}$$

The off-diagonal term $*_2: C_k \rightarrow B_{k+1}$ in E_{k+1} can be balanced by an off-diagonal term $(\partial_{k+2})^{-1} \circ *_2: C_k \rightarrow C_{k+2}$ in dimension $(k+2)$ after folding. However a term $*_1: C_k \rightarrow H_{k+1}$ in E_{k+1} cannot be compensated for this way. We assume M is 2-connected so this problem does not arise in folding C_1 and C_{n-1} .

Recall that when $k = 0$ the endomorphism E_0 and the signed representative B_0 coincided in the proof of Theorem 1. Therefore if f has a fixed sink the corresponding component of M_0 represents an invariant Z in $H_0(M; \mathbb{Z})$ and hence in C_0 ; the components do not represent boundaries in $\partial_1: H_1(M_1, M_0; \mathbb{Z}) \rightarrow H_0(M_0, \mathbb{Z})$ so we obtain an invariant splitting of E_0

$$\begin{array}{ccc} C_0 & \cong & (B_0 \oplus Z) \\ E_0 \downarrow & & \downarrow E_0 \\ C_0 & \cong & (B_0 \oplus Z) \end{array}$$

We first fold $B_0 \xrightarrow{E_0} B_0$ up into dimension $k = 2$ so $\partial_1: C_1 \rightarrow C_0$ is zero. Then we fold $C_1 \xrightarrow{E_1} C_1$ up into dimension $k = 3$. $(n-1)$ chains can be folded similarly. The theorem

follows since all the non-wandering information in the E_k is preserved although the index is not. \square

Remark. “Folding” was introduced in [13] where it was described for complexes. Here we will elaborate further the method for v.p. endomorphisms. Suppose C_* is a free \mathbb{Z} complex $0 \rightarrow C_m \rightarrow \dots \rightarrow C_L \rightarrow 0$ which has the homology of a simply connected manifold of dimension n and $E: C_* \rightarrow C_*$ is represented by virtual permutation (v.p.) matrices. Then we claim (C_*, E) is chain homotopy equivalent to a v.p. endomorphism concentrated in dimensions $0 \leq k \leq n$ with $C_1 = C_{n-1} = 0$. As above, off-diagonal terms can present problems in folding. Let $E'_k = E_k$ except delete these off-diagonal terms in $k = n, n-2$ and 0, 2. 1: $(C_*, E) \rightarrow (C_*, E')$ is a chain homotopy equivalence and E' is still quasi-unipotent. Folding we obtain a new endomorphism (C_*, E) where C_* has the required form and E is quasi-unipotent. By [5] we can add inverses on contractible pairs in adjacent dimensions so that all C_k , $2 \leq k \leq (n-3)$ have 2-step v.p. resolutions i.e. exact sequences $0 \rightarrow (D_1, F_1) \rightarrow (D_0, F_0) \rightarrow (C_k, E_k) \rightarrow 0$ where the D_i are free and the F_i are v.p. The Euler characteristic $\chi(C_*, E)$ is unchanged so (C_{n-2}, E_{n-2}) has a resolution as well. Now splice in the resolutions for $2 \leq k \leq n-3$ as in [5]. To avoid re-introducing $(n-1)$ chains we need a transposed v.p. resolution of (C_{n-2}, E_{n-2}) , i.e. a sequence $0 \rightarrow (C_{n-2}, E_{n-2}) \rightarrow (D'_0, F'_0) \rightarrow (D'_1, F'_1) \rightarrow 0$. Now modules (M, E) which have v.p. resolutions are closed under short exact sequences [5, see also 8]. By duality so are free modules with transposed v.p. resolutions and a v.p. object trivially has a transposed v.p. resolution. Therefore a free object which has a v.p. resolution also has a transposed v.p. resolution. Splicing in a transposed v.p. resolution of (C_{n-2}, E_{n-2}) we obtain the desired v.p. endomorphism. \square

It would be good to relax the restrictive conditions of Theorem 2. Our arguments are a continuation of algebraic ideas that appeared briefly in [13] as the Čech theory “going up” proof that Morse–Smale diffeomorphisms can be represented by v.p. matrices, and of the related algebraic methods of [1] and [3]. One would also want to prove Theorem 2 geometrically, possibly in the spirit of the “going down” proof of [13] using the filtration by open manifolds and simple homotopy theory. In a forthcoming paper Pixton proves that a Smale diffeomorphism is fitted provided it satisfies a condition he calls dynamically tame. A natural approach would be to modify a Smale diffeomorphism by an isotopy to make it dynamically tame. This would also give more information about the original diffeomorphism.

REFERENCES

1. R. BOWEN: Entropy versus homology for certain diffeomorphisms. *Topology* 13 (1974), 61–67.
2. R. BOWEN: Markov Partitions are not smooth. *Proc. Am. Math. Soc.* 71 (1978), 1, 130–132.
3. R. BOWEN and J. FRANKS: Homology for zero dimensional non-wandering sets. *Ann. Math.* 106 (1977), 73–92.
4. H. CARTAN and S. EILENBERG: *Homological Algebra*. Princeton University Press, Princeton, 1956.
5. J. FRANKS and M. SHUB: The Existence of Morse–Smale diffeomorphisms. *Topology* 20 (1981), 273–290.
6. K. BAKER: Strong shift equivalence of (2×2) matrices. Preprint.
7. M. MALLER: Fitted diffeomorphisms of non-simply connected manifolds. *Topology* 19 (1980), 395–410.
8. M. MALLER: Algebraic problems arising from Morse–Smale dynamical systems. To appear in *Geometric Dynamics*, Rio de Janeiro 1983.
9. S. NEWHOUSE: On simple arcs between structurally stable flows. *Dynamical systems–Warwick 1974*, *Springer Lecture Notes in Math*, No. 468. (1975).
10. D. PIXTON: The structure of Smale diffeomorphisms (to appear).
11. D. PIXTON: Wild unstable manifolds. *Topology* 16 (1977), 167–172.
12. M. SHUB: Dynamical systems, filtrations and entropy. *Bull. Am. Math. Soc.* 80 (1974), 27–41.
13. M. SHUB and D. SULLIVAN: Homology theory and dynamical systems. *Topology* 14 (1975), 109–132.
14. S. SMALE: Differentiable dynamical systems. *Bull. Am. Math. Soc.* 73 (1967), 747–817. Reprinted with commentary in S. Smale. *The Mathematics of Time* Springer, Berlin, 1980.
15. E. SPANIER: *Algebraic Topology*. McGraw-Hill, New York, 1966.
16. R. F. WILLIAMS: Classification of sub-shifts of finite type. *Ann. Math.* 98 (1973), 120–153 and Errata, *Ibid.* 99 (1974), 380–381.
17. R. F. WILLIAMS: Strong shift equivalence of matrices in $GL(2, \mathbb{Z})$. Preprint.