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THE INTEGRAL HOMOLOGY OF SMALE DIFFEOMORPHISMS

M. MaLLert and M. SHUB:

(Received 28 June 1983)

THE dynamics and topology of diffeomorphisms are closely related. In this paper we show
how to deduce information about the topology of a large class of diffeomorphisms from local
information about the dynamics.

Let M be a connected closed manifold of dimension n,and f: M — M a diffeomorphism.
A closed f-invariant subset A = M is said to be hyperbolic if there exists an invariant splitting
of the tangent bundle over A, T,M = E* @ E*, and constants C > 0, 0 < 4 < 1 such that
ITf"| E*|| < CA*foralln = 0,and |Tf"|E*|| < CA" foralln < 0. f is said to satisfy Axiom A if
the non-wandering set, Q(f)= {xeM: for all neighborhoods U of x, fX(U)nU # 9, for
some k > 0}, is hyperbolic and the periodic points of f are dense in Q(f). For these
diffeomorphisms Smale’s spectral decomposition theorem says Q( f) is a finite disjoint union
of closed f-invariant subsets called basic sets, Q(f) = Q, U ... U, [14]. The index of Q; is
the fiber dimension of E*/Q,.

For each Q; let W*(Q)={xeM:d(f"(x),Q)—0 as n— +o} and W*Q)
= {xeM:d(f"(x),Q)—0asn— —oo} One writes Q; = Q; if W“(Q,) nW*(Q;) #0.f is
said to have no cycles if = can be extended to a total ordering of the basic sets. If in fact
W*(Q) n W*(Q;) = @ whenever index (Q;) < index (Q;) we will say f has an index-
compatible ordering. Finally, if W*(x) and W*()) have transverse intersection for all
x, yeQ(f), then f is said to satisfy the strong transversality condition.

A diffeomorphism is said to be Smale if it satisfies Axiom A and strong transversality and
has zero dimensional Q. Our results hold under somewhat weaker hypotheses. We will write
fe F if f satisfies Axiom A and no cycles,has zero dimensional Q and an index compatible
ordering on the basic sets.

Basic sets of Axiom A diffeomorphisms admit Markov partitions. When €, is zero-
dimensional the partition can be constructed so that Q; is topologically conjugate to the
subshift of finite type X,, where 4, is the 0-1 intersection matrix of f on the partition.
Furthermore E*/Q; is orientable, and if the partition is sufficiently fine the orientation
numbers of Tf|E* are constant on rectangles, so the intersection numbers of f can be
recorded with signs. The resulting integral matrix B, is called a signed representative of Q, [3].

Let C,, be a free finitely generated Z-complex0 —» C,, — ... - C, - 0. We will say C,, is
a complex of M if H,(C,)= H, (M;Z). 1t follows that H,(C,;R) = H,(M; R) for all
coefficient rings R. Given a chain map E: C, — C, we will say the pair (C,, E) is an R-
endomorphism of f if there exists an isomorphism which conjugates E, and f,

H,(C,;R)—=—> H_(M;R)

2O

H,(C,; R)—=— H,(M;R)
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If Fy, ..., F, are square integral matrices, we will say an integral matrix E is a nilpotent
extension of F, ..., F, if E is similar over the integers to a matrix of the form
Nl
Fl
N2 >
F,
N;
F,
Ns+ 1

where the N, are square nilpotent matrices and the above diagonal entries * are arbitrary.

THEOREM 1. Suppose M is orientable and fe #. For0 < k < nlet BY, . . ., B¢, be signed
representatives of the basic sets of index k. Then there exists a Z-endomorphism of f (C,, E) such
that for each k E, is a nilpotent extension of the B, ..., B .

This theorem extends previous results of Bowen and Franks [3] who studied a single
basic set on an orientable manifold. If fis actually a Smale diffeomorphism, Theorem 1 can
also be proved using Pixton’s theory of fitted rectangular decompositions, without requiring
that M be orientable [10].

Fitted diffeomorphisms are Smale diffeomorphisms which preserve a handie de-
composition of the manifold [13]. They are dense in the C°-topology on Diff (M) and exhibit
a particularly simple structure and a close connection between dynamics and homology
theory. Examples of Bowen [2], Newhouse [9], and Pixton [11] show there exist Smale
diffeomorphisms which are not fitted. In Pixton’s terminology these diffcomorphisms are
dynamically wild. From Theorem 1 and the techniques of [13] we obtain

THEOREM 2. Let M be a 2-connected manifold with torsion free homology, and dim M = 6.
If fe F has at least one fixed source and one fixed sink, then f is isotopic to an omega-
conjugate fitted diffeomorphism. l

In principle this theorem reduces to algebra the problem of determining the omega-
conjugacy types of Smale diffeomorphisms in the component of f, using the known
machinery for fitted diffeomorphisms.

Let A and B be square integral matrices; they are said to be shift equivalent (Agi B) if
there exist integral matrices R and S and an integer k > 0 such that A* = RS, B* = SR, and
SA = BS, AR = RB.

Bowen and Franks [3] proved that for a single basic set Q; of index k, the signed BY is shift
equivalent to the map induced by f in the relative k-homology of a filtration pair for Q; (see
section 2). A main tool in the proof of Theorem 1 is a characterization of shift equivalence of
integral matrices.

For square integral matrices A and B, we will say that A is nil-equivalent to B (Agj B) if
there are nilpotent extensions

N, * N; »
A and B
0 N, 0 N,
of A and of B which are similar over Z.

PROPOSITION. If A and B are square integral matrices then Agy B if and only if A77 B.

a

We would like to thank Bob Williams, Dennis Pixton, Ken Kramer and Bruce Kitchens
for very helpful conversations.
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§1. NILPOTENT EXTENSIONS

Suppose L is a finitely generated Z-module and o: L — L a linear map. Let Nil () = {ve L:
for some k > 0 a*(v) = 0}. Then Nil(a) is invariant under a. Let L be the quotient module
L/Nil(x) and & L — L the injective quotient map. If L is free then L is free as well, so the
sequence 0 — Nil(a) » L » L — 0 splits and « can be represented by a matrix

o/Nil(x) *
0 @)
Let M be the category whose objects are pairs (L, o) and whose morphisms i: (L, a)

— (M, p) are linear maps i: L — M such that fi = ia. Then - is a functor from M to itself.
- fails to preserve exactness. Given a short exact sequence in M

0 —>L—t>M-—LisN

|

in the quotient sequence i is 1-1 and  is onto but in general image (i) # kernel (j). If
w € kernal (j) then for some k > 0, 0 = y*(jw) = j(f*w) so there exists v e L, i(v) = f*(w).
Therefore the map induced by B on kernel (j)/image (i) is always nilpotent. If @ is onto then
exactness is preserved: for if @(2) = # then B*(iz) = i(5) = B*(W) so i(Z) = w. In particular,
exactness is preserved in the category of finite dimensional vector spaces. Similarly, if « is
nilpotent then j is 1-1, and again exactness is preserved. However consider the example

0
o Y
. : 0

B
0— L ‘s> M-

0—Z—'>Z2@Z2-L5Z2—0
o 9, O
(2) (0 0) ©)

where i(v) = (v, 0) and j (v, w) = w. The quotient sequence is 0 — Z i5 Z J5 0 which is not

exact since (0, 1) ¢ image (i). We will need the following fact.

LeMMA 1. Given two exact sequence in M 0 — (A, o)-*>(B, B)<>(C,7) =0 and 0
- (B, )~ (D, 6)-> (E, ¢} — 0, suppose that A and E are finite, a and ¢ are nilpotent, and y: C
— C is an isomorphism. Then Nil () is finite and (D, §) = (C, 7).

Proof: Observe that Nil(8) = i(A); therefore (C, y) = (B, B), and exactness is preserved
by - in the second sequence. Since ¢ is nilpotent (B, §) = (D, §). If Nil(6) were infinite, so
would kernel (/) n Nil(d) = im(k) nNil(8) = Nil(8) = i(A) but A is finite. O

If Ais an (n x n) integral matrix then A is defined up to similarity over Z by allowing 4 to
act on Z". Recall that in the category of integral matrices shift equivalence coincides with the
a priori stronger relation of strong shift equivalence. Let A ~ ;B if there exist integral
matrices R and § such that 4 = RS and B = SR, i.e. A5, B with the lag k = 1. Strong shift
equivalence (A ~ B) is the transitive closure of ~ ;. These relations were introduced by
Williams in [16]. The so called “Williams problem” is whether the two relations also coincide
in the category of non-negative matrices [17]. In the category of integral matrices similarity
over Z implies strong shift equivalence; if PAP~! = Blet S = PA and R = P~ 1. Therefore
shift equivalence is also a relation on linear maps.
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LemMA 2. Let A, Bbe squareintegral matrices. Then A~y B=>A 7 B= A SB=A > B.
Proof: (i) A~y <A/Nil(A) :) so A A~ B~ B.
0 A

nil

(ii) Let * represent an arbitrary additional final column. Then

(A*)((I)d>=A and <(I)d>(A*)=(A *

’ SO 11 ~1 . boI deI lllg

0 =
Az1<0 A>'

Any nilpotent block N is similar over Z to a strictly upper triangular matrix so by iterating
N
bordering As’ﬁf‘t( oo *

0 N ) which proves the second implication, (iii) Bowen and Franks
2

[3] proved that if A ¥, B, then for any abelian group G, regarding A and B as maps G"—G",

Lm A = Lim B. Let G = Q; taking inverse limits over Q we have A & Lim A ®l, =
‘ ¢ <
Lim B®Il, = B.

LEMMA 3.

U
Let B be an (n x n) integral matrix and suppose L = Z* is a B-invariant sub-
lattice of Z" such that B(Z") « L < Z". Then B~ , B/L.

Proof: Let A be a matrix representing B/L: L — L in the basis inherited from Z*, and let
R be the matrix of B regarded as a map Z" — L = Z* and let S be the matrix of the inclusion
Z¥=L cZ" Then RS = Aand SR = B.

It follows that the (k + n) x (k + n) matrices

O
A R d 0 R
o o) * \o B
and similar over Z. For:
Id 0 A R _ 0 R Id 0
S 1dJ)\0 0/ \0o B S Id

Example: 1t seems natural to ask whether the non-singular quitient map - can be changed
by a nilpotent extension, i.e. if N is nilpotent is

4" Yy
0 N/?
We show this fails as follows. Let C and D be non-singular (n x n) integral matrices which are

similar over Q but not over Z. Let PC = DP where P is integral; then C 3 D/P(Z") and
there exists an integer k such that kD(Z") < P(Z"). Letting B = kD and L = P(Z") we have

kC = 0 *
0,4
(0 0)2"(0 kD) but kC ?¢ kD.
Thus

kC * —
%kC.
For example, let
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which represent distinct ideal classes of the ring Z [\/ (5)i]. Then

0 -15 -5 0 00 =50

3 0 -1 3 ~ 00 -1 3 7(-—3 9>
0 0 00 00 -39 -6 3
0 0 00 00 -6 3

ProrosiTION 1. In the category of integral matrices A, B if and only if A B

nil

Proof: ~~ = 2~ was proved in Lemma 2. To prove the converse, suppose that A ~,B
nil shift PP 1

and A = RS, B = SR. Then, as above:

(A R,\Z, 0 R
0 0 0 B
A R\ ._ (0 R\_
4% (3 5)% (o 5)u5 0

§2. Z-ENDOMORPHISMS

Let fe #. Number the basic sets Q*,0 <k < n,1 < i <s,, where k = index Qf and if i
<jthen W*@QY) n W+ (Q") = (. There exist filtrations of M with one basic set added at each
stage, that is, a sequence of submanifolds with boundary M¥ such that

(i) Mi,cM; (fi=1let Mg =M:"h
(i) f(M¥ cint M*

Therefore

(i) ~ MME—ME,) = Q}
nez

If we require in addition that the boundaries of M¥ and M*_, meet transversely, then in the
language of [3] M¥, M*_, are a filtration pair for Q.

We suppose that signed representatives B¥ are given for Q¥. Let M, = U M! = M{. We

will show that f, : H,(M,, M,_,, Z)® is shift equivalent to a matrix B Wthh is itself a
nilpotent extension of the signed representatives BY, ..., Bt

We recall the following facts: Bowen proved that f‘ 5 H (M k, M*_; Z)® is nilpotent
forj # k [1]. Bowen and Franks proved that if M is onentable then f, : H (M}, M}_,; Z)®
is shift equivalent to B¥, and nilpotent on the torsion summand of H,(M*, M*_,;Z) [3].
Furthermore, if 0 — (4, a) — (B, B)— (C,y) = 0 is an exact sequence in M and « or y are
nilpotent, then the other two maps are shift equivalent. [3, Lemma 3.4].

LemMma 4. f,,: H (M, M, _,; Z)®© is shift equivalent to a matrix B, which is a nilpotent
extension of the B%, ... B*

;"

Proof: Consider first the exact sequence of the triple M, _, = M% = M¥ (all coefficients
are Z, all maps induced by f))

Hk+l(M,‘:H M‘i)" Hk(M‘fa M,_)) 5 Hk(M'i, M,_,) - Hk(M’;’ M’f) g Hk—l(MIir M,_,)

N & P |

Hy, (M%, M%) > H(M%, M, ) & H (MY%, M, _,) 5 H (M%, M%) - H,_ (M%, M, _,)
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where S5y B% and o4 B5. o and ¢ are nilpotent so applying = we obtain

O*Hk(Mli,Mkﬂ)_i’ﬁk(Mz’ k- 1)‘*Hk(Mk,M )—0
N LA & |7
O*Hk(M‘iaMk-l)"Hk(Mz’ k—l)—’Hk(Mg,M,i)“’O

which may fail to be exact, but the map induced by 7 on ker (j)/im(i) is nilpotent. Now the
sequence 0 — ker (7) % H,(M%, M,_,) > H,(M%, M¥) - 0 is exact and the right hand term

is free so § can be represented by a matrix:
j/ker (j) *
0 3

Also 0 — 1m(l) inc ker(; ) — ker(j)/im (i) — O is exact, so 7/ker (j) shm’y/lm(l) ~ B ~ B o B%.
Similarly & ~ 5 B It follows that y =f,,: H (M5 M,_,)® is shift equ1va1ent to a
nilpotent extens1on of B% and BY. The lemma follows by induction on the number of basic
sets of index k. O
Let (D,, F) be the complex D, = H,(M,, M,_,; Z), F, = f,: D,® . It follows from the
proof of [3 Lemma 3.3] that f,_ is nilpotent on the torsion summand of H(M,, M, _,; Z)so
D, is a free Z-module and F, 3 fux 5 B 30 Fi 3 B.. We will prove Theorem 1 by

constructing a Z-endomorphism of f from a nilpotent extension of (D, F).
We observe first that H_(M; Z) and H_(D,) have isomorphic free summands. Let K

be a field, and, for 0 <j<n let X; = r\ f (M) = yim M; —»M Using Cech theory

Lm {H, (M;, M;_; K} f, } ~H L ( Lim M M )2 K= HL(X i—1; K). Therefore,
for L + j it follows from the nilpotence ce of f* L that a (X X 1, K)=0. Now X,=Mand
X, is discrete; since K is a field it follows that the complex C C = H(X;, 1; K)carries
the K- homology of M [15 p- 205] On the other hand, by the umversal coefﬁcnent theorem

Hy(M;, M;_;K)= (H;(M;, M;_; 2)®K)®(H,_, (M,, M Z)*K). Since f, , is nil-

potem on the second term on the right, C§ = 4LuL(H ( -1 2)®K)° (f,,®1x) =
JLim(D;®K)® (F;®1x). Now let K = Q; we have ‘_Lin_(D ®Q)b (F,®1) = (D;®0Q)
SF,Q1, Therefore  H +M; Q) =H,(C¢)=H,(D,®Q) = H,(D,)®Q. Therefore

H,(M;Z)and H,(D,) have the same free summands.

Remark. It follows from the work of Bowen and Franks that for K a field the inverse limit
AmB;: KY— K" where n; =rank(B;) is a K-endo‘morphism of f For
; Shlﬂj;] H;(M;,M;_;K)® so by [3,1.1] suim B; = _Lim f, = Ck. Hoyvever. more delicate

methods are needed working with Z-coefﬁments In partlcular B; may be injective but over Z,
Lim B. = 0.
J
“" The next lemma shows we obtain the integral homology of M and f by applying - again,
to H,(D,)® F,.

LemMma 5. Nil(F, : H,(D,)® ) is finite for all k, and (H,(D,), F,) = (H,(M; Z).1,).

Proof: We show that for 0 < k < n there exists an F, -invariant subgroup 4, < H,(D,)
and an eppimorphism 0,: 4, - H, (M, Z) conjugating f,, and F_ /A,; furthermore kernel
(0,) and H,(D,)/ A, are finite groups on which F,, induces nilpotent maps. The result then
follows from Lemma 1 above.

Consider the diagram of the exact sequences of (M,_,, M,_,), (M,.M,_,) and
M, ., M,). (All coefficients are Z.)
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k k—1 k k+1
\ /
LHMY

—H, (M M)———> H M, M,_,)——> H,_ (M, |, M;_;)—

T~ A

Hk 1 (M)

First we prove by induction on L that f, : H,(M L)fD is nilpotent for k > L. When L =0
consider 9 =« M9 < ... « M. Now (M3$, 0) is a filtration pair for Q so in this case the
claim follows from [1]. Assume inductively that f, : H,(M7)® is mlpotent for k > L. Then
in the exact sequence — H,(M}) » H (M*%,,) - H,‘(M‘“, M) - the maps induced on the
end terms are nilpotent, hence on the middle term as well, which proves the claim. In
particular, forallk, f, : H,(M,_,)® is nilpotent so the mapsfk: H.(M,) - H (M,,M,_,)are
injective.

Next suppose k<L and consider the exact sequence  Hyy (M, M) >
H, (M) 5 H(M_,,). The map induced by f on the left is nilpotent so i: Hk( )~ H (M.,
is injective for k < L. In addition, for k < L we will prove by induction that i is surjective. First
let L = n—1. Taking a power of f if necessary we can assume that f, : H,(M,, M,_,)® is
zero for k < n. In the diagram

H (M, M, )2

Hk(Mm Mn 1)
Je (inc),

H(f(M,), f(M,_,))

the map induced by f on the left is an isomorphism, so (inc), is also zero. Consider the
diagram
>H M, ) Hk(M)"'Hk( n-1)

- H(f(M,_,))5 Hy(f(M,)- H (f(M,), f(M, _,)) >

The right hand (inc), is zero while the middle (inc), is an isomorphism. It follows that
iH,(M,-,)— H(M,) is onto, for k < n—1. To continue the induction, observe that if
k = n—2 in the left square above both horizontal maps induce isomorphisms under .
Therefore, for k <n—2 (inc),: H(f(M,_,)— H(M,_,) is an isomorphism, and the
induction continues.

For all k we obtain a commutative diagram

H,(M,)—» H,(M,) =~ H,(M; Z)
_lf.. . l‘., lf.
H,(M,)» H,M,)=H,(M;Z)

Let A4, = (j(H.(M))/j, ° Ox+1(Dysy)) < H\(D,). A, is invariant under F_ : H,(D,)® .
We obtain a commutative diagram

Iie

H, (M, HM =
A, - BMY | fM,,) — HM; 2)
= Geripe+n kernel (iy) = =
S A S
H (M, H,(M, —
420, A H,(M,,,) —> H,(M; Z)
= O (Diyy) kernel (i,) =
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Let 0,: A, —» H,(M, Z) be the composition of the rows. We have a diagram of exact
sequences

0
v

(kernel (i,)/image (Gy 1)

kernel ()

0 A, H,D,) )

image (j,)
0,

H,(M,Z)

0
By construction F,, is nilpotent on kernel (§,) = kernel (i, )/image (G, ) and on H,(D,)/ A,
= kernel (J,) image (j,). By the remarks above H,(D,) and H,(M; Z) have the same free
rank. It follows that kernel (§,) and H, (D, )/ A, are finite groups. The lemma now follows by
Lemma 1 above. O

LemMA 6. Suppose (C,, E) is an endomorphism and T < H,(C,) is a finite E_-invariant
subgroup on which E, is nilpotent. There exists an endomorphism (C,, E') such that H,(C',)
= H,(C)/T, where E’; is a nilpotent extension of E; forj = k+1,k+2and E; = E; otherwise.

Proof. We construct a nilpotent resolution of E, ;T —T as in [5]. Let Z, be a free Z-
module with one generator for each element of T— {0},e:Z, — T the associated map, and
define N,:Z, — Z, on generators according to E, /T, so N, is nilpotent. Let Z, = Kernel (¢)
and N, = N,/Z,.

0 22 inc Zl £

T
[NZ lN1 [E
inc

0—Z2, Z, & T

T is also resolved by cycles and boundaries: let y: Z, — H,(C,) be the projection and Z;
=y 1T).

0 B, " Z, T 0
\L Ek/ J{ Ek/ \l/ E*k
0 B, — v T I—>0

Combining these sequences we obtain a resolution of Z} as in [4, V.2]. Since Z, is free and ¥
is onto there exists p: Z, —» Z; such thatyip = ¢. Let K = kemnel i @ p: B, D Z, - Z;). We
obtain a diagaram

. L8]

-

o

=

(e
NN O

=

(e

<o
=
N
<
'ﬂ
o

<
Oe—
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where i @ p is onto Z, and for all z € Z, there exists a unique b € B, such that (b, z) e K. Also,
for ze Z, there exists a unique b € B, such that pN, (2) — E, p(2) = i(b); let *(z) be that b. We
obtain a resolution of E,/Z,

0 —> K —>B, ® Z,—Z,—>0
Pl
00— K —=B, @ Z,—Z,—0

E, * . o .
where H = ( 0" N ) restricted to K. Since N, is nilpotent so is H.
1

The lemma follows by splicing in this resolution of Z, to kill T. Since B, is free we have
G = Zyyy @ B,
e
G+ = Z4, @ B,
Let inc: Z; — C, be the inclusion. Then (C,, E’) is the following endomorphism

ak+2 ak
Ci+s Civa Zisy CG—C,y

E;

with maps E; = E; for j # k+1, k+2 and

E 0 E *
EII(+2=( :;2 H) Ek+1=( ‘E)H N ) d
1

Remark. 1f H,(C,)/Tis free then (C,, E’) can be constructed so that E; = E; except for j
=k, k+ 1. For Z, is free so the resolution of E,/Z; can be folded to obtain:

@ Z,

&
® Z,
Now0 - Z; - Z, - H,(C,)/T - Oisexact soif H,(C,)/Tis free then Z, is a direct summand
of Z, and the map *": Z; — K extends to a map *": C, - K. The new complex C,, is

Cis2 Cir1 @ 2, ¢ ® K—

er

(Zi+1 @ By @ Zl)—’(Bk—l @ Z ®K)

Z, K

E * H *
EI’;+1=( IE;I N ) and E,'(=<0 E)’
1 k

where both N, and H are nilpotent. O

B, K ® Z,
*

E, *7 E,
B

K @ Z

k

with maps

TOP 24:2-D
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THEOREM 1. Suppose M is orientable and fe F. Given signed representatives B for the
basic sets of f, there exists a Z-endomorphism of f(C,, E) such that for all k, E, is a nilpotent
extension of the signed representatives of index k.

Proof: We construct a nilpotent extension of (D,, F).By Lemma SNil (F, : Hy(D,) )is
finite; using Lemma 6 there exists a nilpotent extension (D), F’) such that (H, (DY), Fy,)
= (Ho(D,), F, ) = (Hy(M; Z).{, ). Continuing inductively we obtain a Z-endomorphism of
f(C,, E)such that for all k, E, is a nilpotent extension of F,. Thus E, i Fx > Bi where B, is
the nilpotent extension of the signed representatives of index k of Lemma 4.

It follows there exist nilpotent blocks N,, N; such that the matrix

Ny % %,
0 E, =
0 0 N,

is a nilpotent extension of B,. Let L,, L; be free Z-modules, of dim L, = rank N,, dim L,
=rank N,. At the k-th stage we adjoin contractible pairs in dimension k + 1, k and, k — 1.

G, T L, — ® G @ Li
E., N, / E, N,
. ® & o L
—>Csa
—=C,_, ® L,——>¢C_, —
Ek}l N, E,_,
—C,_, ® L,—>C_, —>

Since the homology of (C,, E) is unchanged we obtain at the n-th stage the desired Z-
endomorphism of f.

When k = 0 the last step could introduce (— 1) chains. Each component of M, either
contains a periodic sink or else its orbit eventually wanders into such a component. We can
absorb the wandering components into M; — M, and still have a filtration for f. Therefore we
can assume M, has one component for each periodic sink so f, :Ho(My; Z)© isa
permutationand B, = f, = F, = Ey,and no (—1)chains are introduced. Similarly, when k
= n, the last step in the proof need not introduce (n + 1) chains. However, (n + 1) chains could
be introduced when we kill Nil(F, :H,_, (D)2 ) using Lemma 6. If H,_, (M;Z)
~H,_(D,)/Nil (F, ) is free we can use the folded technique above and preserve the
dimension of the complex. N

Remark. 1f f is a Smale diffeomorphism, Theorem 1 can be proved using Pixton’s theory
of fitted rectangular decompositions, without the assumption that M is orientable. Pixton
proves that for Smale diffeomorphisms there exist filtrations M, ,0 < k < nwhere M, — M, _,
isa finite disjoint union of rectangles R; x R;" [10]. R;, R;" are submanifoids with boundary,
which embed in Euclidean spaces of dimensions k, n — k, but are not necessarily discs. After
choosing orientations the partition gives a choice of signed representatives, and it follows
from the Kiinneth formula that f, : H,(M,, M, _,;Z)® is a nilpotent extension of the signed
representatives of index k. Any two signed representatives of the same basic set are shift
equivalent [3], so this is true independent of the choice of signed representatives. The rest of
the proof of Theorem 1 is unchanged.
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§3. GEOMETRIC REALIZATION

Let (C,, E) be a Z-endomorphism of f. The geometric realization techniques of [13]
require the stronger condition of chain homotopy equivalence. Suppose dim M 2 6, I1, (M)
= 0, and let C,, (M) be the complex of a given handle decomposition of M and f,: C,(M)®
the induced map. (C,,, E) is realized by a handle decomposition of M and a diffeomorphism
isotopic to f if and only if there exists a chain homotopy equivalence h: C, — C, (M) such that
hE = f,h. This will be satisfied provided (C,, E)is also an R-endomorphism of f for R = Z/n
all n. (The problem is the off diagonal term in (E@1), on H,(C,;R)
= (H(C,)®R)®(H,_,(C,)* R).Incase H, (M; Z)is torsion free it suffices that (C,, E)bea
Z-endomorphism of f.

THEOREM2. Let M be a 2-connected manifold with torsion free homology and dimM 2 6. If
f€F has at least one source and one sink which are fixed then f is isotopic to an omega-
conjugate fitted diffeomorphism.

Proof: Let (C,, E) be a Z-endomorphism of f,asin Theorem 1. If C; = C,_; = Othen by
[13] there exists a handle decomposition of M and a fitted diffeomorphism g isotopic to f
whose chain map realizes E. g may be chosen so its geometric intersection numbers agree up to
sign with the entries of E. If the nilpotent blocks in the E, are put in upper triangular form
they give rise to wandering handles in g. If the signed representatives B* of f arose from
Markov partitions with 0-1 geometric intersection numbers, then () is topologically
conjugate to Q(g). Therefore the result follows provided C, =C,_, =0.

We use folding, asin [13, Appendix A] to eliminate 1 and (n — 1) chains. Suppose (C,,, E)is
given, H,(C,) = 0and d,: C, —» C, _, is zero. Since all boundaries are free we have a splitting
of Cyyy

—>Cy—>By, @ Hy @ CG—C,—=0

EHI// E |E

—>C,— B, @ i1 @ G—=C—=0

Folding C, up into (k + 2) we obtain:
Corz @ G By @ Hiy @ C)—>0—>C,,

1, ||

Gz @ G B, @ Hoy ® C)—0—GC,

The off-diagonal term «,: C, —» B,,, in E,,, can be balanced by an off-diagonal term
(Gr+2)"! © %,:C, > C,,, indimension (k + 2) after folding. However a term »,: C; — H, . !
in E, , , cannot be compensated for this way. We assume M is 2-connected so this problem
does not arise in folding C, and C, _, . .

Recall that when k = 0 the endomorphism E, and the signed representative B, coincided
in the proof of Theorem 1. Therefore if f has a fixed sink the corresponding component of M,
represents an invariant Z in H,(M; Z) and hence in C,; the components do not represent
boundaries in 6,: H, (M, My; Z) » Hy(M,, Z) so we obtain an invariant splitting of E,

C = B, @ 2

C = (B, @ 2

E
We first fold B, —2> B, up into dimension k = 2 so 0,: C, = C, is zero. Then we fold

C, —*= C, up into dimension k = 3. (n —1) chains can be folded similarly. The theorem
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follows since all the non-wandering information in the E, is preserved although the index is
not. |

Remark. “Folding” was introduced in [13] where it was described for complexes. Here
we will elaborate further the method for v.p. endomorphisms. Suppose C, is a free Z complex
0-C,—...>C,—>0 which has the homology of a simply connected manifold of
dimension n and E: C_ — C_ is represented by virtual permutation (v.p.) matrices. Then we
claim (C,, E) is chain homotopy equivalent to a v.p. endomorphism concentrated in
dimensions 0 <k <n with C, =C,_; =0. As above, off-diagonal terms can present
problems in folding. Let E; = E, except delete these off-diagonal terms in k = n,n —2 and 0,
2. 1. (C,,E)—~(C,,E) is a chain homotopy equivalence and E' is still quasi-unipotent.
Folding we obtain a new endomorphism (C,, E) where C, has the required form and E is
quasi-unipotent. By [5] we can add inverses on contractible pairs in adjacent dimensions so
that all C,, 2 < k < (n—3) have 2-step v.p. resolutions i.e. exact sequences 0 — (D, F,)
— (Dy, Fy) = (Cy, E,) — 0 where the D, are free and the F, are v.p. The Euler characteristic
x(C,, E)is unchanged so (C,_,, E, _,) has a resolution as well. Now splice in the resolutions
for2 < k< n-3asin[5]. To avoid re-introducing (n — 1) chains we need a transposed v.p.
resolutionof (C,_,,E,_,),i.e.asequence 0 — (C,_,, E,_,) > (Dg, Fg) - (D1, F;) = 0. Now
modules (M, E) which have v.p. resolutions are closed under short exact sequences [ 5, see also
8]. By duality so are free modules with transposed v.p. resolutions and a v.p. object trivially
has a transposed v.p. resolution. Therefore a free object which has a v.p. resolution also has a
transposed v.p. resolution. Splicing in a transposed v.p. resolution of (C,_,, E, _,) we obtain
the desired v.p. endomorphism. 0O

It would be good to relax the restrictive conditions of Theorem 2. Our arguments are a
continuation of algebraic ideas that appeared briefly in [13] as the Cech theory “going up”
proof that Morse-Smale diffeomorphisms can be represented by v.p. matrices, and of the
related algebraic methods of [1] and [3]. One would also want to prove Theorem 2
geometrically, possibly in the spirit of the “going down” proof of [13] using the filtration by
open manifolds and simple homotopy theory. In a forthcoming paper Pixton proves that a
Smale diffeomorphism is fitted provided it satisfies a condition he calls dynamicaily tame. A
natural approach would be to modify a Smale diffeomorphism by an isotopy to make it
dynamically tame. This would also give more information about the original diffeomorphism.
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