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Abstract. Two C', r=2, expanding maps of the circle which are absolutely con-
tinuously conjugate are C" conjugate. Here f and g: §' > S are expanding if they
stretch tangent vectors in some metric, and a conjugacy is an isomorphism h: $' > S*
such that fh = hg.

Section 0. Introduction

The C’ endomorphism f: M - M of the boundaryless compact differentiable mani-
fold M is expanding if in some smooth metric f stretches every tangent vector. Let
S' be the unit circle in the complex plane. Here we consider the conjugacies h
which may exist between two expanding endomorphisms f and g of S'. We study
h:S"- S" which is a2 Borel measurable bijection defined a.c., which satisfics fh = hg
a.e. and which is non-singular with respect to the Lebesgue measure A

A(X)=0 iff A(hX)=0.

Such an h is called an absolutely continuous conjugacy between f and g. In [6] it
was proved that any two expanding maps of the same degree are topologically
conjugate, that is conjugate by a homeomorphism of the circle. Generally these
homeomorphisms are not Lipschitz because eigenvalues of periodic points vary.
However, all these eigenvalue invariants are equal in the presence of an absolutely
continuous conjugacy because of:

TueoREM 1. Let 2= r = w. If two orientation preserving expanding C" endomorphisms
fand g of S' are absolutely continuously conjugate, then they are conjugate by a C’
diffeomorphism.

In § I we prove this theorem, including the proofs of some well known propositions
and lemmas when their proofs fit naturally into the discussion. The proof shows
that the absolutely continuous conjugacy agrees with a C" conjugacy except in the
case when both are smoothly conjugate to z— z" In § 2 we discuss the real analytic
case further vis a vis the Jacobian invariant of Parry and Walters. Finally we consider
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some examples among the Blaschke products, showing absolutely continuous con-
Jugacy implies conjugacy by elements from PSI(2, B). In § 2 we mention an open
problem.

Section 1.
LEmMA 1 (well known). Let f be a C'** expanding endomorphism of S'. There is a
constant ¢ >0 such that if I = S' is an interval and f* is injective on I then

1_1Df(y)l

c |Df(z)
Proof. Let y,z< I and let d(y, z, I) denote the distance between y and z measured
along I. Thus

d(fy, 2, D) =d((S" ) (S ). (S ) (2)). F1)
= AT (y), f7C2), D),
where | Df| = A > | comes from the definition of an expanding endomorphism. Since

Df is Holder of exponent @ and bounded away from 0, log | Df is Hélder. So there
is a constant K such that

log | Df(f/(y)2)|| = llog |DA(F(2))]|= K(A™"d(f*(y), f*(2), f* )"
sK(A%)™"Y,
where K’ is K times the length of the circle. Thus

<c foranyy,ze L

ol _ = |, 1o :
I‘OS |Df(2)| _i}O IOgIDf(f-’(z))I by the chain rule,

SK' z (A—ni»])u.
=0

Thus c=exp (K'(1-A7*)"") works. O
CoroLLARY 1. If an interval I about x has length less than (¢|Df™(x)|) ' then f™ is
injective on 1.
Proof. The proof is left as an exercise.
CoroLLARY 2. Let x, = f°x, y, = 7y, and D, = |Df*(x)|. If distance (x, y)=(cD,)",
then distance (x,, y,) is between ¢™' D, distance (x, ¥) and ¢D,, distance (x, y).
Proof. By corollary 1 the distortion lemma 1 applies to the short interval between
x and y. (B
CoroLLARY 3. If fis an expanding C'™ map, and A is an invariant set (f(A)< A)
of positive measure then A has full measure. In particular, f is ergodic.

Proof. (Well known.) Consider small intervals containing and converging to a
Lebesgue density point of A which can be expanded up injectively by powers of f
to almost fill the circle. By the distortion lemma and the invariance of A the image
intervals are mostly filled by points of A. Thus A must have full measure. O

TreoREM 2 (Sacksteder [5], Krzyzewski [1)). Let f be a C* expanding endomorphism
of M for 2=r=w. Then there is a normalized C"™" invariant measure for f.
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Note. 20— 1 =00 and w — 1 = @ in the statement of this theorem.

CoroLLARY 4. Let f be a C” expanding emdomorphism of S* for 2= r=w. Then f is
C’ conjugate to an expanding endomorphism g of S' which preserves Lebesgue measure.

Proof of corollary 4. Let p be the invariant measure for f given by the C"' density
function 6 which is necessarily strictly bigger than 0: for if  vanishes at a point,
invariance implies that @ vanishes on the backwards orbit of the point which is
dense in S. Now let h(x)=f: 0dA. hu=A, h is a C' difleomorphism and hfh ™’
preserves Lebesgue measure.

Proof of theorem 1. By the corollary to theorem 2 we may assume that f and g
preserve Lebesgue measure. Since f and g are ergodic it follows that h preserves
Lebesgue measure as well since hyA and h;'A are absolutely continuous invariant
measures for f and g respectively. Countable-to-one locally non-singular maps have
Jacobian derivatives (see[3],[4] and [7]for a discussion of these and their properties).
We denote these derivatives by | D] as in ordinary differentiation.

|[Dh|=1 so by the chain rule |Df] - h=|Dg|. (1)

|Df] is constant a.e. if and only if | Dgl is, and in that case there is an integer n> |
and two complex numbers of unit modulus a, 8 such that g(z) = az" and f(z) = Bz".
These two are conjugate by h(z) = yz where y satisfies y* ' = a/B. So we are reduced
to dealing with the case where neither |Df| nor |Dg| is constant a.e. This case is
achieved by the next proposition which finishes the proof of theorem 1.

ProrosiTiON |. Let f and g be C* expanding maps of S' which preserve Lebesgue
measure. Suppose that Df or Dg is not constant and that fh = hg for an absolutely
continuous conjugacy h. Then there is an isometry R of the circle such that h=R a.e.

Proof. Df is not constant. As Df is C' we may find a closed interval 1< S' such
that | Df] is monotone on I, maps I to the closed interval J in R and has a C' inverse
|Dfi": J > I.|Dg|™'(J) is a denumerable collection of open intervals, so one of these
intervals K must intersect h~'(f) in a set of positive measure X. So X< K,
|Dgl: K - J, |DfI™':J > I and h|X =(|Df]”"| Dg|)| X. Now & =|Df|"'|Dg|: K> T is a
C' map with bounded derivative. Thus h|X is Lipschitz.

We will now use the dynamics to spread this Lipschitz property of the conjugacy
h on X to a set of measure arbitrarily near 1. The Lipshitz constant will be uniform
so that we will conclude that h agrees a.e. with a Lipschitz map. Then we have a
conlinuous measure preserving conjugacy, that is an isometry between f and g
proving the proposition.

Let ¢ work in the distortion lemma for f and g and let L be a Lipschitz constant
for the conjugacy h on X. Consider a small interval I nearly filled by X which can
be expanded by /™ injectively to almost fill an interval of length 3. Let Y =f"(X n I).
Take two points x, y in Y whose distance is =} and written as (¢’L)'s. Let %, 7
be the pre-images by ™ of x and y in I, and let D =|(f7)'(£)|. The distance between
X and § is at most (¢D~')(c*L)'e =(eD)™'(L) "¢ by the distortion lemma. Thus
the distance between hx and hy is at most (¢cD)'e. The derivative of g” at A% is
also D. Thus by corollary 2 the distance between g"(hx) and g”(h¥) is at most «.
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But g"(hx) = hf"% = h(x) and g"(hy) = hf"(¥) = h(y). So the distance between h(x)
and h(y) is at most (¢’L) times the distance between x and ¥ (as long as this
distance as measured in /(1) is =(c°L) ).

Proceeding in this way we can find a sequence of sets Y, contained in intervals
I, so that I, - I an interval of length 3 say and measure Y, - 1. Then the conjugacy
is Lipschitz on I.

Now an a.e. conjugacy which locally agrees with a continuous map on some open
set locally agrees with a continuous map everywhere (by spreading again). Thus we
arc done. O

Remark. Theorem | requires the orientation hypothesis since z” and z " are
absolutely continuously conjugate but are not conjugate by a homeomorphism.

The existence of an absolutely continuous conjugacy implies the isomorphism of
the Jacobian derivative namely, |Df] - h=|Dg| where h is a measure preserving
isomorphism of the circle. In the real analytic case the isomorphism of the Jacobians
themselves almost determines an isometric conjugacy.

THEOREM 3. Let fand g be real analytic expanding endomorphisms of S* which preserve
Lebesgue measure. Suppose that the Jacobian derivatives of f and g are isomorphic,
i.e. that there exisis a measure-preserving isomorphism of S', h:S'> S such that
|Df] - h =|Dg|. Then there are isometries R, and R, of S' such that R,fR;' = R.g.

Proof. If |Df] and |Dg| are a.e. constant then there is an integer n and complex
numbers a, B of modulus one such that f and g are az=" and Bz*" and the conclusion
of the theorem is clear. So we may assume that |Df] is not locally constant. Then
construct ¢, K, J, I and X as in proposition | with the additional provision that
|Df1™", |Dg| and ¢ are real analytic, ¥ =|Df|"|Dg| and ¥|X = h|X. Differentiating
the last equation at the density points of X gives |D¢|=|Dh|=1 and by analytic
continuation [D¢|=1 on K and ¢ is the restriction of an isometry R, to K.
ID(RT'/R,)|=|Df| - R, so |D(R'fR,)|=|Dg] on X.

Since R;7'fR, and g are real analytic, analytic continuation shows that
D(R7'fR,)=%Dg on all of S' and there is an isometry R, of S' such that
RI—IIRI = R,g. .
Open problem. In other words theorem 3 says that f and g are conjugate up to a
phase factor if their Jacobians are isomorphic. If f and g are absolutely continuously
conjugate they are real analytically conjugate by theorem |. Thus the phase factor
is @ measure theoretic conjugacy invariant. In summary the Jacobian invariant and
a phase factor form a complete system of measure theoretical (and thus real
analytical) conjugacy invariants for real analytic expanding maps.

It would be useful to have a measure theoretical definition of a phase factor
invariant for expanding endomorphism of the circle. This is the promised problem.

Section 2. Finite Blaschke products
A finite Blaschke product

B:z-a, [l (z-a)/(1-az) n=1,la)=1,la|l<1 fori=o0,
=0
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determines an expanding endomorphism of the circle {z:|z| =1} iff each fixed point
ue S is expanding. The necessity is obvious. The sufficiency is explained in the
proof of:

TueoreM 4. If two expanding Blaschke products are absolutely continuously conjugate
they are conjugate by a Mébius transformation of the circle.

Proof. The degree of B on the circle is n so the total Lefschetz number of fixed
points has absolute value n—1. If each fixed point on S’ is expanding there must
be (n—1) of them. The degree of the Blaschke product as a rational map of S? is
also n and the total Lefschetz number of fixed points there is n+ 1.

Thus in the case of (n—1) fixed points on S' which are expanding there must be
2 other fixed points in S” off of S' (and symmetric by the inversion in S').

If z, is the fixed point inside the disk, then B( zp) = z, implies B on S’ preserves
the Poisson measure u(z,) on the circle relative to 2o (this is well known and follows
easily since B is analytic, preserves the unit disk, preserves the class of bounded
harmonic functions k on the disk, and these satisfy

h(z)=I (boundary values of h) d (Poisson relative to 2);
Sl

see [2] and the references therein for this argument).

We may transform u(z,) to Lebesgue measure by the Mébius transform ¢ carrying
Zp to the centre of the disk. Call 1Bt~ the normalized Blaschke product associated
to B. Since 1Bt~ preserves Lebesgue measure and is n-to-1 it is expanding in the
standard metric on S’.

Thus if two expanding Blaschke products are absolutely continuously conjugate
their normalized versions are conjugate by an isometry of the circle using proposition
1. This proves the theorem 4. 0
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