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1. INTRODUCTION

Let X and Y be compact metric spaces and F: Y — Y, f: X — X, and
7: ¥ — X continuous maps such that = o ' = fo 7. Bowen [1] has proved that
if 7 is surjective then

H(F) < HF) < W(f) + sup{h(F | mX(x)): x € X}, (LY

where £ denotes topological entropy. It is often difficult to apply Bowen’s
inequality (1.1) because, in principle, the last term involves computation of the
entropy A(F | 771(x)) for every x in X. The computation is difficult not only
because X has many points in general, but because the orbit of F | #~1(x) involves
the metric on m(f*(x)) forn =0, 1,... .

Here we show how this difficulty can be overcome for a special class of maps.
Let #: E — X be a vector bundle with a Finsler structure, that is, with a norm || ||
on the fibers, and let 7r: S(E) — X be the corresponding unit sphere subbundle
of E. If A: E — E is a vector bundle map that is nonsingular on every fiber, one

can define a map S(4): S(E) — S(E) by
S(AV = AWV AV (1.2)
We prove the following:

THEOREM. Let 7: E — X be a locally trivial vector bundle over the compact
metric space X with a finite-dimensional fiber and a Finsler structure. Suppose that
A: E — E is a vector bundle endomorphism of E over f: X — X that is nonsingular
on every fiber. Then h(S(A)) = h(f), where S(A) is as defined above.

Our approach differs from Bowen’s in that, whereas he defined the entropy
of a map on a (not necessarily invariant) subset, we use a concept of the entropy
of a sequence of maps as defined below.
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2. Toe ENTROPY OF A SEQUENCE

Let X, X, ,... be a sequence of metric spaces with metrics d,, d; ,... and let
D = {p;:7=0,1,2,.} (@, = identity of X)) and F = {f;:7 = 1,2,..} be
sequences of continuous maps where ¢;: X, — X; and f;: X; ; — X, . # is said
to be a compositional representation of @ if for every i, o; = [T;_.f; . If the
@;’s are all homeomorphisms, a (unique) compositional representation of @ can
be constructed by taking fi.; = @i © 97

If @ is as above, 6 > 0, and K C X is compact, a subset W C K is said to
(n, 8)-span K if for every y in K there is an x in W such that for 0 <{j < n,
di(pi(x), i(y)) < 8. Such a set W is said to be (n, 8) separated in K if for all x»
and y in W with x 5 y, d(p,(x), ;(¥)) > 8 for some f, 0 < j < n. Let 7,(3, K)
denote the minimum cardinality of an (n,8) spanning set for K and
$,(8, K) the maximum cardinality of an (n, 8) separated set. Let Ry(e, K) =
lim sup(1/n) log 7,(e, K) as n— o0; Sg(e, K) = lim sup(1/n) log s,(¢, K) as
n— .

The following lemma is proved as in [1].

LemMa 2.1, 7,(e, K) < su(e, K) < ru(ef2, K) and if ¢, < 3, Rofey , K) =
Roley, K), and Sqfe; , K) = Safes , K).

It follows from Lemma 2.1 that for any compact K, lim_g4 Re(e, K) =
lim,_, Sg(e, K) = (P, K) and we define the entropy of @ by A(P) =
SUPx compact (P, K) so that 0 < A(P) < oo. If & is a compositional representa-
tion of @ we define A(F) = A(P). In particular, if X; = X and f, = f, h(f) =
h(F), where h(f) is the topological entropy of f as defined by Bowen [1]. Note,
however, that in general (%) depends on the metrics d; whereas A(f) is topolo-
gically invariant. On the other hand, & does have the following invariance

property:

LemMa 2.2, Let D be as above and suppose that §; X; — X; (1 = 0, 1,...} is
an isometry. Then if ¥ = {11 = 0, 1,..}, where ; = 0,0 ¢;, (¥) = h(D).

The proof is immediate from the definitions involved.

Rematk. 'The following variant of Lemma 2.2 is also easily proved. Suppose
that there are metrics p; on X; (i = 0, 1,...) such that for the positive constants
¢ and ¢, ,

adilz;, ;) < pilz;, w) < ed (=, , w;)

holds for all 3, and w; in X, and 7 = 0, 1, 2,... . Then A(P) is the same for the
sequence of metrics pg, py ,... as for dy, d ,... .

In the next lemma Bj(x) denotes the open ball of radius 8 centered at a point
of a metric space.
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Lemma 2.3. Let (Y, p) and (X, d) be compact metric spaces and let w: Y — X be
a surjective map. Then for any € > 0, therets ay = y(e) > Osuch thatify, ..., v,
are e-dense in w(x) then

. (U Bu(3)) B,

The proof is a standard compactness argument, which we omit.

3. MapPs OF SPHERES

Let X; = S'~ RY/Z'for7 = 0, 1,..., and suppose that f;: S — S'is a homeo-
morphism for every i.

LemMmA 3.1. Let F ={f;:i = 1,2,..} be as above. Then for any 8 > 0,
7,(8, SY) < 21871 for large n, hence H(F) = 0.

Proof. Let k = [2671] and let the “intervals” [, , %,],..., [* , %] on S* be
of length k1. Let O, = Uly ¢7%({%; ..., %)), Where, as above, ¢; = [Ti_. f; -
The set O, has at most nk = n[25*] <{ 2187 elements and the centers of the
intervals in S* — {Q,} form an (n, 8) spanning set with at most nk elements.

Lemma 3.2. Let m: Y — X be a locally trivial S* bundle over a compact base
space X. Suppose that there are continuous maps g;: Y — Y and f;: X — X such
that mg; = fm for i = 0, 1,..., where every g, restricted to a fiber w=Y(x) is a homeo-
morphism. Assume the maps g; are equicontinuous, that is, for every y > O there is a
8 = 8(y) independent of i such that d(g(x), g{¥)) <y whenever d(x,y) < 3.
Then h(F) = h(G), where F = {f;}, G = {g;}.

The proof is an imitation of Bowen’s argument for proving (1.1) using
Lemmas 2.3 and 3.1. We omit the details.
" The main lemma needed in the proof of the theorem is:

_ Lemma 33. Let AsR*—>R* (i = 1,2,.. > 2) be linear isomorphisms
such that for some X > 0, 4;|| < A and|| A7 ]| < )\ Then if S(4;): S* 71— §71
is defined by (1.2) and & = {S(4,):i = 1,2,..}, H(Z) = 0.

Proof. For n = 2 the lemma follows from Lemma 3.1. Now suppose that
it has been proved for all 2 < k£ < n — 1. Let ¢, ,..., ¢, be the standard ortho-
normal basis for R Let ¢; = [;-; S(4;) and let 6; be an orthogonal trans-
formation of R such that 0,(p,(¢;)) = a;¢, (a; > 0). If @ ={p;: £ =0, 1,...} and
Q ={w;, = b;op:i=1,.}, {P) = k) by Lemma 2.2. Thus the extra
notation can be dropped and it can be assumed that 4,(e;) = a;e, , where a; > 0.
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Let P: R*— R"! be the orthogonal projection from R" to the subspace
spanned by e, ,..., ¢, , so that for any x € R*!

Ayx) = (I — P) A(x) +- By(*),

where B;. R*1— R"1 is linear. Assume that xe R*, | x| = 1, and define
y = x — a; (I — P)A4,(x). Then A,(y) = PA,(x) = B,(x) and

[y 13 =122+ a2 — P) A@)IP = | x* = 1.
Now

Al = [ Aol = | Bx)| = [l A(p)l = Ay = A7 =],

so || Byl < A; || B; || < A Therefore B = {B;:1 == 1,...} satisfies the hypotheses
of the lemma and consequently the conclusion by the induction hypothesis.
Let S*~%2and S"1 be the unit spheres in R* ! and R”, let &: ST x S»2 — Sn2
be a projection onto the second factor, and let g: §* x S$*2 — S*1 be defined
by g(e*"*, x) = (cos 2wt, x sin 2nt), where S = {&¥"}, x = (%, ,..., %, ;) € S 2
Then since S(4;) maps great circles through e, to other such circles, there is a map
fir St X S72— St x 872 such that go f; = S5(d4;) e g and ko f; = S(B;) o k.
Now we know that A({S(B,)}) = 0, so the conclusion follows from Lemma 3.2.

4. CONCLUSION

Now the theorem stated in Section 1 follows from Lemma 3.3 and Bowen’s
inequality (1.1). To verify this one only needs to observe that A(S(4) | »~(x)) =
h(S(A), mY(x)) = 0, where on the left is meant the entropy of the sequence
consisting of the iterate of S(4) | #1(x), and on the right is meant the entropy
of S(4) relative to the subset #~(x).

The theorem was motivated by an attempt to prove the entropy conjecture
(cf. [2]) for immersions of compact manifolds to themselves. There one would
take £ = A"(TM) or A¥(T*M). We were not able to find a proof using this
method, but it seems that the theorem is of independent interest.
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