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1. INTRODUCTION

The “entropy conjecture’ asserts that if T"is a differentiable map of a compact
manifold X, the topological entropy (cf. [1]) £ of T is at least as great as log A,
where A denotes the spectral radius of T*, the map on de Rham cohomology
induced by 7. Various results related to the entropy conjecture have been
obtained {1, 3, 4-6]. On the other hand, it is known that no such conjecture is
true for maps that are Lipschitz rather than differentiable [4, 5].

We have not been able to prove the entropy conjecture in full generality;
however, we establish several closely related inequalities. In Section 2, numbers 4,
and A that are related to Hausdorff measure and have properties similar to those
of & are defined. It is shown that k; <C £, and under certain conditions A, = &; .
In Section 3, another number 4, is defined in terms of the derivative DT and
log A <C &, is demonstrated. In Section 4 it is proved that #;, < %, and thus we
always have log A < A, < by and hy < k. Thus what is lacking to prove the
entropy conjecture in full generality is the inequality A, <C &3, which we have
only been able to prove under special conditions.*

2. hy AND hyg

It is assumed that X is a compact manifold of dimension m and that X has a
Riemannian metric; d denotes the distance function that defines d(x, ¥) to be the
greatest lower bound of the lengths of the arcs connecting points x and y
of X. Define a sequence of distance functions d,,d,,... by d,(» y)=
max{d(T*(x), T*(y)): 0 < k << n} and let Dy(x,¢) = {y e X:d,(x,y) < e} If
r(n, €) denotes the minimum cardinality of a set {x,,.., %} such that
X = D,(x;, ¢), the results of Bowen [1] show that

= lg% lnlgl0 sup(1/n) log r(n, ). (2.1)

* M. Misiurewicz and W. Szlenk have constructed a smooth map for which 4, > A,
hence k, > ;. (“Entropy of Piecewise Monotone Mappings,” University of Warsaw
Preprint.)
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Let £2,, be the volume of a Euclidean sphere of radius 1. For any ¢ > 0 and
n=1,2,. let M(n, ¢) be the greatest lower bound of £,, Zf;l €™, where
X = U, Dy(%;, ) and ¢; < e for i = 1,..., p. We define

hy = lirrol lim %lp(l/?l) log M(w, €).

It is obvious that
M(n, €) < 7{(n, €) $2,,e™

hence (2.1) and the definition of 4, give our first inequality,
hy < k. (2.2)

The quantity 4, is defined by taking limits in the opposite order, that is,
hy = lim,_(1/n) lim__,,log M(n, €). There is no difficulty about the existence
of the first limit. In fact, if we denote the m-dimensional Hausdorff measure of a
subset 4 of X, with respect to the metric d, by M,(4), then the definition of
Hausdorff measure shows that M,(X) = lim,,, M(n, ¢).

Since M (X) = M(n, €) = M(n, 8) if ¢ < 8, one always has h, > h;. One
would like to be able to show that A, = A,; however, we have only been able to
show this under the conditions of the proposition below.

PrOPOSITION 2.1. Suppose that there is a sequence a;,as,,... of positive
constants such that lim(a,)!/™ = 1 asn — oo and for all x in X,

M (D, (%, €)) < aze™
Then
hy = by

The proof just depends on observing that if X = (J7_, D,(x; , €;), then

»
Mn(X) < Z Mn(Dn(xz y Ez)) < a'n'Qm Z fz‘m;
i=1 ;

hence
M (X) < a,M(n, ¢) for every n and e.

The conclusion follows easily.

3. Tue Mars T* anbp Ej

Let w; and w, be complex-valued p-forms defined on X. We define for x in X,
(wy, we)(®) = *wy A *@,)(x), where * is the Hodge operator and — denotes
complex conjugation. Also,

[ l(x) = (w, w)(*)'/2
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Then (cf. [7, Chap. 6])
(i = [ (e, wa)() @V’

defines an inner product on the space of p-forms and the norm

folo= (] 1atyar)

is defined for ¢ >= 1. Also define || w{|,, = sup{| w |(x): x € X}. Here dI is just
the volume element associated to the metric, that is, V" == *1. The completion
of the space of forms (of dimension p = 0,..., m) with respect to |||, is denoted by
L?, where it is understood that the inner product in L2 is defined to make homo-
geneous forms of different dimensions orthogonal.

Let H denote the orthogonal projection from L? to the harmonic forms (cf.
{7, Chap. 6]). Since L2 C L it makes sense to ask if H is bounded with respect

to || |l; and as is well known, the answer is yes.

ProposiTiON 3.1. H 15 bounded with respect to || ], .

Proof. Let ay ,..., a, be an orthonormal basis for the harmonic forms. Then
T .
Ho =3 ) {w, aa;, s0

[ Ho | (¥) < % Ko obl 1o () and | Ha(o)h < 3 Ko, a0y
But,
Ko el < [ Jo () o] @)V < gl ],

SO

WHIL <Y sl ol
=1

Now let E; denote the map on forms and DT the tangent map induced by 7.
Then if the map on antisymmetric p-tuples of tangent vectors corresponding to
DT is denoted by D, T, one has

(Erw)(Xy .y X,) = o(DT(Xy),..., DT(X,) = w(D,T(Xy ,..., X,)).

Define 0,7(x) = || D,T7(x)||, where the norm of D,T on the antisymmetric
p-tuples of tangent vectors is determined by the Riemannian metric on X. Then
[(Er"a)| () < 0,7(%) | o | (%); hence

| Eraly < [ 0,2 [a| () dV < Ay ol (3.1)
X
where

Anzmang 0.%(x)dV,0 < p <m .
X
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Let T*: H¥X, Ry— H*(X, R) denote the induced map on de Rham
cohomology. If o is a harmonic from corresponding to the eigenvalue 8 of 7%,
Ef*a = fma -+ dy, , so by (3.1)

18" laly = HE; |, < T H |y | Erally < Aol Higlfello . (3.2)

Now if k; = lim sup,,.,, log A2, (3.2) gives log A < k, , where A is the spectral
radius of T*.

Remark. 'The argument also gives the stronger result that for any form «
(closed or not), im sup(1/n) log || Er x|, << Ay .

4. COMPARISON OF ky AND h,

If ', denotes the tangent space at a point x in X, || DT™(%){&)|% and || £|* can
be viewed as quadratic forms on V. The first is positive semidefinite and the
second is positive definite, so the eigenvalues 7,2, 7.2,..., 7,2 of the first with
respect to the second are defined and can be assumed to satisfy =y(x) >
To{x) = - (%) 2= 0. It is well known that 8,7(x) as defined above is given by

P

0n2(x) = [ ms(x)-

i=1

If g denotes the original Riemannian metric on X and g, the metric defined by
g€, m) = g€, ) + g(DT™E>, DT ), the volume element dV,, associated to
Zn is given by

G @ =TT+ 7).

If the right side is multiplied out, one of the terms is 8,7(x), hence
V(X)A, < V,(X). 1)

Now if y,(£, 7) = ZLO g(DTi€>, DT (n)) is still another Riemannian metric
on X, with associated volume element dU, , one has dU,(x)/dV (x) = 1 and
by (4.1)

V@), < U X). (4.2)

It is known [2, Sect. 6] that if a distance function is defined on X corresponding
to the metric v, , then dU,, is the corresponding Hausdorff measure. This, of
course is not the same as the Hausdorff measure M, defined in Section 2;
however, it will be shown that

lim%swup(l n)log U,(X) = lirgll%swup(l n) log M(X) = hy. 4.3)
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To prove (4.3), first observe that if the definition in Section 2 is made with the
distance function

Bum3) = (%, AT, TOP)

in place of ,,, the quantity A, is unaffected. This follows from

(1/m) (%, ¥) < du(®, ¥) < 8(, )
and
M(n, &) < M*(n, €) << n™M(n, ¢/n),

where M*(n, €) is the analog for 8, of M(n, €). Moreover, the Riemannian metric
y. defined above is related to §,, by

yalf, 72 = lim(11£) 8,(x(0), x(1)),

where £ is the tangent vector to x(t) at ¥ == 0. It is then easy to verify that the
Hausdorff measure corresponding to §,, is nothing but dU,, . This proves (4.3),
which together with (4.2) shows that A, <k, .

We collect our results:

THreoREM. Let T be a C* map of a compact manifold. Let X be the spectral
radius of the induced map on cohomology and let h be the entropy of T. Then the
quantities hy , hy , hy defined above satisfy logA << hy << hy = hy and hy < h.
Moreover under the assumptions of Proposition 2.1, h, = h; , hence log A <C A.
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