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SOME LINEARLY INDUCED MORSE-SMALE SYSTEMS,
THE QR ALGORITHM AND THE TODA LATTICE

Michael Shub and Alphonse Thomas Vasquesz

There have recently beenm papers "explaining” the QR
algorithm and linking it to the Toda lattice. Here we
present a dynamical systems perspective which is simple
yet more structurcd and general. We thank Etienne Ghys,
John Smillie, Dick Sacksteder and the students in Math,
U719 For useful conversations.

Given 4 group &, a subgroup O of &, and an element g e o,
attempt to conjugate g into U that is attempt to find an clement &
¢ & such that I:r‘lgh ¢ V. Groups & of special interest are GL{n),
the n = n invertible matrices over the reals or complexes, and [,
the subgroup aof upper triangular matrices (the eigenvalues of an
upper triangular matrix are its diagonal entries). In the attempt to
conjugate g into I it 15 quite natural to consider the dynamics of g
on /U, For if we find a lixed coset &L, that is, ght! = AU, then it
follows that hlghl/ = U and that hlgh ¢ U. So the k ¢ G such that
hlgh ¢ U correspond to the fixed points, i/, of the action of g on
G/, Denote this action by ¢ G/ - Gl

A main result of this paper is:

Theorem 1. Suppose that the eigenvalues of g € GL(n) have distinct
maduli, then Py GAU = G/U is a Morse-Smale dif feomorphism. It has
n! fixed points and ng periodic points other than these. The stable
mani fold of one of the fixed points is an open, dense sel.

The introduction of the space X = G/U was strongly suggested
by D. 8. Watkins' STAM review article [Wa]. He rightly emphasized
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the fact that the QR-process i5 "simultaneous iteration” and as such is
a natural extension of the power method. 1t seems to us that the space
X is the natural mathematical object to invoke to discuss
"simultaneous subspace iteration.”" This is because all = b/ ¢ X if and
only if for | €7 € n the vector subspace spanned by the firsti columns
of @ equals the vector subspace spanned by the [irst i columns of .

A diffeomorphism, ¢ : M % M, is Morse-Smale if and only if:

(i} The set, Per(y), of periodic points is finite.

{(ii) The periodic points of ¢ are hyperbolic; ie. for each x ¢
Per(e), T (¢"): T (M} = T (M) has no cigenvalue of modulus I;
here n is the period of x = the least positive integer k 3 : ¢%(x)
= X

1ii = U = R
Ui . x€ Per(ip) bl x€Par(gp) ()

where (with n denoting the period of x):

W¥x) = the stable manifold of x = {y e M| :cj-ari ¥ (y) = x}
and

WY x) = the unstable manifold of x = (v € M| E_.“lu 9 7)) = x).

[1v) IP’“{xl} and W"%(x,) are submanifolds meeting transversally for
any x. € Per(y). Sce Smale [Sm] for more details,

Remarks. The theorem implies: for any x ¢ X, {q:-:"{x}} CORVErges {0
a fixed point of Py Furthermore, for almost all x, the limit is the
same fixed point,

If g is a diagonalizable matrix with multiple cigenvalues but
no eigenvalues of equal modulus apart from multiple cigenvalues it
15 still true and fairly simple (see eg. Lemma 4 and the material
immediately therealter) to prove that Py is lincarly globally-
convergent in the sense that q::{x} converges linearly to a fixed
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point for any x ¢ &/U.

Let G =K = U" and m G = K be the projection onto K induced
by this product decomposition. For g ¢ G, left multiplication by g
on @, LE; & = G induces a map Knr' K = K by the formula: KE{I{} =
mgk). The diagram

¢ - G
L
E
in +
K K
K
B

commutes, as can readily be seen by identifying K with the coset
space G/U'. It also follows that a l-parameter group, g, acting on
the left of G induces a flow, ¢, = K on K,ie ¢, =629,

In the case of GL(n) over the reals and complexes respectively
take K to be the orthogonal and unitary subgroups, O(n) and Uln)
respectively, and U' to be the subgroup of upper triangular
matrices with recal positive entries on the diagonal. The product
formula GL{(n) = K = U' is closely related to the Iwasawa
decomposition of GL{n) while the factorization, A = QR, for an
individual matrix A is called the QR factorization of A.

If U'' is a subgroup of U, which is true in the cases we are
discussing, then the following diagram

G - @
Le
in A
k & Kk
Ky
1 +
o/ - Gy
g

commutes where once again K is identified with G/U'. The fiber
of K = G/U is identified with U/U'. So in the real case U/U' is
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finite and in the complex case U/ is a product of n circles, 5! =
g,

Corollary 1. Supposc that the eigenvalucs of g ¢ GL{n} have
distinct moduli, Then for any element &k ¢ K, [KG(k)} converges to
an invariant fiber of & = G/U (in fact K;"(k] is forward asymptotic
with K:‘(h} for a particular h in the fiber) and K{‘"{k}‘lgﬁ.’f‘“{k}
"tends to" the upper triangular matrices. If g lics on a one
parameter group g, and ¢, = K“L then the same is true for qbtl[k} and

(k) g, (k).

Remark. The parenthetical remark of the corollary follows since
the [fiber is a normally hyperbolic invariant manifold [HPS).
Conscquently the diagonal ¢lements tend to constants, the below
diagonal clements tend to zero, and the above diagonal elements
tend to rotate by the difference of the arguments of the
cigenvalues [Wi-1966]

Except for the parenthetical remark here is an elementary
proof. ldentify X = G/I7 with K/K" where X' = K n I, Let Gy €
K be such that Eimm_.mnpg‘{'k{.!} = gol/. Since this limit is obviously
fixed by Pgr g5 84, € U. The topology of the libration K ~ K/K'
implies that there is a sequence, k., € K', such that Iimmqu’;”{kjkm
= g, € K. Thus Iimm_.,,k;ni{ﬁ:;"qsc}-lgﬁzgmm}km ¢ U. Since the k_'s
arc diagonal matrices with diagonal entries of modulus 1, it follows
that the diagonal entries of K’;“{k}‘lgff;“{k} converge to the diagonal
entries ol qalgqn and 1ts below dingonal entries converge to 0.

The QR-algorithm (without shifts). Write an invertible n x n
matrix A = QR where Q ¢ K and R e U' and define A' = RQ.
Hence A' = Q1AQ = n(A)'An(A). The QR algorithm produces a
sequence of matrices A,

Ap=A and for i>0,4,=4! =R, Q,
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where A, , = Q,;R,, is the QR factorization of A;, Thus,
inductively,

A—Q : Q '”Qi-l‘i}{}

Also (see Wilkinson's discussion of Rutishauser’s and Francis's
work) by simple induction (for { 2 0)

| AH]:DD"'Q';RV”R
S5Ince

‘l._l.il-rﬂ a‘ﬂiAHrl EE AQD QiR'I i

Qn Qi"\jﬂRi RD

Q QQH—I 1+1 Rn'

Hence Q,---Q_ = n(A™tY) which, by definition of K., equals
K2Hi1d) and A = K®o(1d)y 'AKT(Id). Thus we have proved:

Corollary 2 (Francis, Kublanovskaya, Rutishauser, Wilkinson). If A
i5 an n x n invertible matrix and A 15 the k-th matrix produced
by the QR algorithm then A, = mA¥TAmMA®). For A with
cigenvalues of distinet moduli, A, "converges" to upper triangular
Form as in Corollary 1.

Now we turn to the proof of the theorem.

Notation. £ will denote the subgroup of lower triangular matrices,
&7 acts {on the left) on X = G/U; so also does each subgroup, H, of
6. We will be concerned with X as a (left) &/ space and as a (lelt)
L space. We will use the usual notation, Hx, for the unique H orbit
of X containing x.

For ¢ ¢ G, let <c> denote the coset ¢lf ¢ X. Let 3, ., %, be g's
eigenvalucs ordered so that x| > --- > x| Let b e G be such that
the j-th column of b is an eigenvector of g with ecigenvalue lj.
Thus gb = bd where d = Diagonal(},, ..., 3 ). Notc that b may be
chosen with real entries in the real case since our assumption
forees the A's to be real.
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Now Pg = Poap! = PpPaPy-l = tphnpdtp];l. Thus quesitions concerning
the dynamics of p, are equivalent to the corresponding gquestions
comcerning the dynamics of ¢4 It will be more convenient to deal
with e,

Let E be the subgroup of G consisting of permutation matrices,
E has n! elements. Since T n U = {e), {<p >'!FEE is a set of n! points
in X = G/

Note that <p> i5 a fixed point of v, because g4l€p?) = ddp> =
<pp7ldp> = <p> since pldp is diagonal (its entries are a
permutation of those of d) and hence in U7,

Lemma 1.
{a) L<p> C Wi <p>),
{b) Uip > C WY <{p .

Proof. We first note that for any g € G, 9 {e<p?) = (dgdH<p>
This is because ¢ (gép>) = dgp> = (dgd g (<p>) = dgd<p> (by
carlicr remark).

Hence ¢3(g<p?) = (d™gd ™} <p>. But [d“‘rd'”‘].tj = b.].mg.u( 3.“}'1 =
“i-ﬂ'j}mglj' If 2 =1¢ I '?ij = 0 for 7 <-4 and for i-= j
]imm_m{hi,-’lj}l“‘a'ij = 0. Hence lim__d™d™ = d' = Diagtly, o £,.).
So lim__.¢P(<p? = d'p> = <ppld'p> = {p) since - as above -
pld'p is diagonal and hence in U. This proves (a); the proof of
(b} is similar. O

Lemma 2.

{a) X =0G/U-= UI: Lip> {disjoint union)
PE

(h) X =G/ = UE [Fip» fdisjoint union).
PE

Proolf. The disjointness is clear from Lemma 1. We prove [b) [irst.
We need show: G = UpﬂUpU. This is a well-known result (Bruhat
decomposition); for the reader’s convenience we include an
clementary proof [rom Steinberg [St]. Consider & € 6. Suppose the
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i-th and j-th rows of b have precisely the same number of leading
0s {{ « /). Then by adding a suitable multiple of j-th row to the
i-th row we get a matrix b, having at least one more leading O than
b has. MNow bl = ¢b for a suitable elementary matrix, e. Since i <
Joe e U. Thus b, e Ub.

Let b, € Ub maximize the total number of leading 0's. The
above argument shows that the distinet rows of b, have distinct
numbers of leading 0's. It follows that these numbers must be (in
some order) 0,1,
Thus b ¢ Up-lU.

To show (b), argpue as above but replace "leading 0's" by
“trailing (’s". Ome gets b, € Ub as above a p in E such that pb, € L.
Sobisin UplLorble LpU. O

~ 1 — 1. So there is a p € L such that pb, ¢ U.

Remark. The following are easy conscquences of the above.

(i) Lip»=W%<p» for pin L.
(ii) U<p»=WY<p> for p in E
(111) A periodic point of ¢, is a lixed point.

Lemma 3. If x € W¥<p,>) n W¥(<p,>) then these manilolds intersect
transversally at x.

Proof. By (i) above, x is in L<{p,> and so Lx = L<p,» = Wi<p,2).
Similarly Ux = W%<{p,>». Hence we must show that the orbits Lx
and [x are transversal submanilfolds of X at x. But L and [J are
transversal in G at the identity element of G. 0O

Notation. Let L, denote the subgroup of lower triangular matrices
having 1's on the diagonal.

Lemma 4 ("linearization" of ¢,). For cach p e I

(a) The map, L, 21, = <pl;> ¢ X, deflines an cquivalence, Ep: L, =
0, Here O is an open, dense, g invariant neighborhood of
prin X,
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1k

(b) The composition, ;I‘Jltpdgp: Ly = L, is conjugation by d_ where

d, = pldp = Diaglhgy wm Mgry) for an  appropriate
permutation, o, of {1,2, .., n).

(¢} The eigenvalues of T {g,): TAX) = T (X} are (o *aritisg
{here x = <p>). In particular, {p> is a hyperbolic fixed point

of ¢,

Proof. As is well-known, LR-factorization (i.e. Gaussian
climination without pivoting [Wi]) yields an equivalence, L xU ]
Gy here Gy is an open, dense, subset (the "big cell” [Bol) of @
GL(n). Hence, lor each p, Cn is an equivalence between L, and an
open, dense, subset (christened Gp} of X. Furthermore, tpdgpl:fi} =
dply> = <pd [, = {pdpz‘ldl‘:‘} ¢ X (this last cquality because d is
diagonal and hence in ). The rest is obvious, O

These lemmas readily yield Theorem 1.

Rcmarks. Indeed they really prove quite a bit more. Note that
Lemmas 2 and 4 imply that X is the union of the Q.'s; so, X is
covered by n! co-ordinate systems (each of which covers "almost all" of
X) in each of which ¢, @5 linear. Note that the hypothesis that the
moduli of the d's are distinct is used only to prove hyperbolicity;
except for this Lemma 4 holds for any diagonal matrix d. These
coordinate systems emphasize that (in n! diffcrent ways) X = G/U
is a compactification of C'. This suggests that the "change of
coordinates” maps, ;';lg'p, arc "nice" - perhaps toroidal. Au
1

contraire, computation shows that they are quite complicated
rational mappings; in particular they are not toroidal for n > 2.
For more details see [V]; the mappings are "universal lormulaeg”
intimately associated with Gaussian elimination. We have here a
curious phenomenon - n! inequivalent linear representations of €0
which are all "birationally equivalent.”

G/U may be considered as the manifold of flags. A flag iz a
nested sequence FiCF,C--- €¥F where F; is a vector subspace
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of dimension i If F, is the subspace generated by the first i
columns of the matrix b, the corresponding flag is identical with
<b> g takes the flag V. .. I, to the flag gV, .. &8V This makes
the convergence remark after Theorem | simple to  sece.
Alternatively one can compute with the "linearizing" coordinate
gsystems of Lemma 4.

The space of llags can also be used to give a dynamical proof
of Lemma 2 (modulo the others). A linear map with eigenvalues of
distinct moduli induces a Morse-Smale diffeomorphism on the
projective space of a vector space. Sece [SM], [P), [Ba]. The fixed
points are eigenspaces and there are no other periodic points. Let g
be a diagonal matrix with rcal entries so that no products of two
distinct sets of diagonal entries are equal. Then g induces a
Morse-Smale diffeomorphism on the projective space of A*R"™) or
AYC™ and hence is globally convergent to fixed points on G, the
Grassmannian of k planes in R™ or C", which is contained in the
projective space of AF (the wedge of k vectors determining the same
k plane differ by a determinant). Now the manifold of [lags is
contained in the product of the G.s. The only fixed flags are
given by permutations of the basis and therefore UPEEIP'“HT}}} =
G/U. Lemmas 3 and 1 show that L<{p>» and W*(<p>) have the same
dimension and hence that they are equal. So U pL pr = GUL

As remarked in Lemma 3 the decomposition of X = G/U into
stable (unstable) manifolds of ¢, is intimately related to the Bruhat
decomposition of G. Seec e.g. pages 346 to 352 of [Bo]. Theorem I
apparently generalizes to this setting. Although we could not locate
it, it would not be surprising to find it already in the literature.

In the complex ¢ase all the npg‘s of Theorem | are conjugate in
Homea(X).

Proof. By structural stability of Morse-Smale diffeomorphisms it
suffices to show that the set of such g's in G = GL(n) 15 path
connected. Since @ is path connected and g = hdh-! it sulfices to
observe that A=1{d' ¢ G| d' iz diagonal with |[d| = ].:i!'j' i for i < f}
is path connected.
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Differential cquations. Given a matrix g, ¢%lies on the one paramerer
group ¢'% and, for suitable g, any matrix h which conjugates ¢% to
upper triangular form also conjugates g to upper triangular form
since eigenvectors of ef are eigenvectors of g If the eigenvalues of g
have distinet real parts then Theorem 1 applies to ¢® and thus
Kﬂtg{fd]'lgﬁ'etg“ﬂ'} is an isospectral deformation of g and "converges"
to an upper triangular matrix. It is tempting to differentiate this
cquation and define a differential equation on GL{n) whose solutions
tend to converge to the upper triangular matrices. This works.

Since the map m GL{n) - K is given by the product formula
GL{n) = K x U' the derivative of m at the identity can be
computed from a corresponding decomposition of the Lie algelbras.
In the real case, a convenient decomposition is {anti-symmetric) +
(diagonal + matrices with 0’ on or below the diagonal); in the
complex case, (skew-Hermitian) + (real diagonal + matrices with 0%
on or below the diagonal).

d,
- u
Given the complex matrix g with g = ¥ : then
I:!II:I'I
0 d, O 0
-L* . . U+L*
— + + ¥
g L .
0 O d O 0

] d
Let Lig) = . + y=1 x im
L - 3
0 @) d,
We omit discussion of the real case for two reasons: (i) it is strictly

analogous and (ii) it is a special case. Note that in the real case
the seccond term in L{g) is 0.
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The discussion yields:
Lemma 5. T (m(g) = L(gh

Lemma 6. The flow ¢(k) = K te(k) solves the differential equation
k = k-T Mk gk) = k-L(k7gk) on K.

Proof. ®,(k) = m(e"6k) = n{kk 'e'®k) = kn(k"e'8k). So
0K = AT M), T

Proposition 1. ¢(g) = m(e'™®) g ne'®) solves the differential
equation

g = [g, L(g)] on GL(n).
Proof. m(e'®) = K sgle). So

T 1), = ne®T (mnte’") g ne™™)
dt ]

and
o taE. . d tnr 1 tﬂg
08} | = ~Me T)T e | Ale ™) Teme ™)

ta

d
+ e ¥y g En[e“] |t
o T,{“}thig}}-'i‘.ﬂigl + *i};ﬂ'[E}TE(“}E*Ptﬂ{EH

= [#, (2), L(&, (e))] O

Theorem 2. Let ¢ = [g, L(g)] be the differential equation on GL{(n)
given by the vector field defined by the Lie bracket of g and L{g).
Let ¢, be its flow. Then

1) @, is isospectral.
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2) IJ the eigenvalues of g have distinct real parts then ¢.(8) rends to
the upper triangular matrices as t = = (as in Corollary 1),

3y If g is a real symmetric or Hermitian matrix then ¢It{g} tends to g
diagonal mairix.

Proof. All that is left to prove is 3). Since a Hermitian or real
symmetric matrix g has real eigenvalues the only way flor % o
have cigenvalues of equal modulus is to have multiple eigenvalues,
Now the remark after statement of Theorem 1 shows that the
diagonal entries converge and that the below diagonal cntries tend
to 0. The formula shows that the symmetry propertics persist and
so the above diagonal entries also converge to 0, O

Theorem 2 was motivated lor us by Deift, Nanda and Tomei
[DNT] but see also the earlier paper [Sy] by Symes. The flow
which they consider is restricted to symmetric tri-diagonal matrices,
In this case they attribute 1) to Flaschka and 3) to Moser. Flaschka
considered this isospectral flow of Lax type as a change of
variables of the Toda lattice equations for n particles on a line
with exponential nearest neighbor interactions and proved that this
system 15 completely integrable. The Hamiltonian is:

l n n-1
Gk 2 —
& = 5 k£1 vy + nE] exp{x, —x )
Flaschka's change of variables is:
ﬂ'k=—_].-'kf2 E=1,..,n
1 1
hk=£ﬂxp[5 l{xh—xk_‘_l)] k=1, o1

and the Toda differential equations become cxpressible in matrix
form as

Ei‘i A, L{A
T = [A L(A)L

where



LINEARLY INDUCED MORSE-SMALE SYSTEMS 193

a, b 0 0 0
"’1 Gy b, 0
A= by, ay by
bn-l
L O o &5 #

The isospectral character of the flow gives integrals of the
system and the ultimate behavior is used to show that these
integrals are in involution. At the end of their paper Deilt, Nanda
and Tomei comment that Nanda's thesis deals with general
symmetric matrices independent of the band size.
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