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FILTRATIONS, DECOMPOSITIONS, AND EXPLOSIONS. 


Our goal in this paper is to establish for flows results analogous to those 
obtained for discrete dynamical systems in [5]. 

To formulate the main result, we begin by recalling from [4] the notion of 
a filtration for a flow. Let + be the flow on compact n-manifold M generated by 
a C'vector field X =4 

Definition. A filtration for + (or X)  is a finite sequence % 
= {M,, . ..,Mk}of compact submanifolds with boundary such that 

(i) 0 = M O c M l c . . .  c M k = M  
(ii) dimMi=n(Vi> 1) 

(iii) +, [Mi] cint M, (V t >0) 
(iv) The flou; is transverse to the boundary of each Mi--that is, for 

x € aMi (0 < i <k), X,  is not tangent to aMi. 

Given a filtration a,the maximal +-invariant subset of Mi- Midl is 
denoted 

and we let K ( % ) =  u { K i ( % ) : i = l ,  ...,k). We shall call the filtration fine if 

K (317,)=Q(+) (the set of non-wandering points for +). If + does not admit a fine 
filtration, we will look for a sequence 5Ri of filtrations for which K ( !Xi )tend 
to Q (+) More precisely, 

Definition. A filtration 6k= { i , ,  G I , .  ..,G1}refines the filtration 
Em = {M,, . . .,Mk) if for each a =1,.. .,I there exists i,, 1< i, < k ,  such that 
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1030 Z. NITECKI AND M. SHUB. 

Definition. A sequence .TL,,Em,, . . . of filtrations for + is said to be fine 

if 
(i) o ~ , + lrefines "%, ( i = l ,  . . . )  

(ii) nK(%,)=8(+) .  

A fine sequence of filtrations will be seen to control the growth of 52 under 
perturbations. 

Definition. A flow @ has no C0 a-explosions if given any neighborhood 
U of 8 (+) in M, there is a neighborhood V of $= X in %' (M)  (the space of C r  
vectorfields on M with the CO topology) such that a flow 4 with $EV has 

$2 (4)cu. 
Our main result, then, is 

THEOREM2. A necessary and sufficient condition for + to have no C0 
a-explosions is that + admit a fine sequence of filtrations. 

The paper has four parts. We begin by recalling some properties of 
filtrations and demonstrating the sufficiency of the above condition. In the 
second part, we define the notions of decomposition and open decomposition 
for an invariant set, and establish that the existence of a fine filtration is 
equivalent to the existence of either kind of decomposition for 8 ,  with no 
cycles. In the third section, we investigate the problem of constructing a fine 
sequence of filtrations, or equivalently, of finding an open decomposition 
without cycles inside any specified neighborhood of 3. We show how such a 
construction is possible in the absence of C0 8-explosions. Most of o w  tech- 
niques are translations of arguments in [ S ]  to the flow case. We close the paper 
by showing how the dimension restrictions in a central lemma of [5] can be 
removed. 

1. We begin with some observations concerning filtrations. A filtration 
for @ gives some rough information concerning the dynamic structure of the 
flow. As usual, given a +-invariant set A, we define its stable (unstable) set by 

Ws (A)= {x EM :  dist(@,(x),A)-+O as t -++ a) 

Wu (A)=  { X E  M:dist(+,(x),12)-+0 as t-t-  co). 

1. "%PROPOSITION If = { MO,. . . ,Mk)is a filtration for +, then: 

(i) each K,  (9R)is compact 

(4 ~ ( + ) c K ( % )  



FILTRATIONS, AND EXPLOSIONS. 1031DECOMPOSITIONS, 

(iii) M is the disjoint union of 	 the WYK,) ( Wu (K,)). In fact, Mi c u 
{ W s ( K i ) : j <  i ) .  

(iv) Ki = WS(Ki)n Wu(K,). In fact, letting Oi = 8(+)nKi(uX), we have 
Ki = WYO,)n Wu(Oi) and Wu(Ki)=  Wu(Oi) (a= u , ~ ) .  

The proof of (i) is immediate. To see (ii), note that for any point x E  
[Mi -int Mi-,]-Ki(%),  there is some t E R such that +, (x) Mi -int Mi-,. If 
t >0, +t (x)Eint Mi -,and x wanders; if t <0, +, (x)EM -Mi; since this is taken 
into itself by the reverse flow, x wanders again. We defer proof of (iii) and (iv) 
to the next section, where they will be established in a more general setting. 

The real usefulness of a filtration, however, is that it gives information not 
only about the flow +, but about (CO) nearby flows, as well. 

2.PROPOSITION If % is a filtration for +, then: 

(i) 	% is also a filtration for any flow I)with 4sufficiently (CO) near 

+. 
(ii) Given a neighborhood 	U of K ( L9R), there exists a neighborhood 91 

of d, in XO(M) such that for any flow I) with 91, the corre- 
sponding maximal set for 4 

U 	n #,[Mi-intMi-,] 
i ~ E R  

is contained in U .  
(iii) If % is a fine filtration for +, then + has no C0 O-explosions. 

Proof. The first statement follows from the observation that since the 
flow is transverse to the aMi, we must have d,f 0 on aM,; hence small 
perturbations of d, must point in approximately the same direction. The second 
statement follows from the remark that by compactness of K,, there is a finite 
time, T, such that 

n { + t [ ~ i - ~ i - l ]  : I t /< T )  c U .  

The third statement is an immediate consequence of the second, combined with 
(ii) in the previous proposition. 

While fine filtrations exist for a large class of flows (in particular, for those 
satisfying Axiom A'  and the no cycle condition), this class is not generic, as 
noted in [5] for the discrete case, using the example of Newhouse [2]. (The 
suspension of this example provides a C2-open set of vectorfields without fine 
filtrations on every manifold of dimension 3 or greater.) However, the flows 
with a fine sequence of filtrations seem to include the Newhouse example, and 
this condition suffices for prevention of C0 O-explosions: 
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PROPOSITION3. A flow with a fine sequence of filtrations has no C0 
-explosions. 

Proof. We combine statement (ii) of the previous proposition with state- 
ment (ii) in Proposition 1, and observe that for a fine sequence of filtrations, 
K (ai)@(+), c U ,  where U is any given neighbor- so that for large i ,  K (%,) 
hood of a(+). 

2. We now turn to the decomposition of invariant sets. These are of two 
kinds: the first will be called an "open decomposition", the second, simply a 
"decomposition". Let A be a compact +-invariant set. 

Definition. A n  open decomposition for A is a finite, disjoint family of 
open sets, W,, . . . ,Wkin M such that A cu !=, W,.We will denote the maximal 
+-inuariant subset of W, by 

The open decomposition will be called proper if each Ki is compact. Of course, 
A c u K,, because any trajectory of a flow is connected and the Wiare disjoint. 

Definition. For an open set W cM, we define 

Definition. If W 1 , .  . .,Wkis an open decomposition of A, then 

(i) A n  r-cycle (r  > 2) is an ordered r-tuple of distinct indices (i,,  . .. ,i,) 
such that 

(ii) A 1-cycle is an index i such that 

Note that if an open decomposition has no r-cycles ( r> 2), then we can 
reindex the open sets so that i > j- Wi n W,"=0.Following Newhouse [l],we 
call such a numbering a filtration ordering. The terminology is motivated in part 
by the observation that if 0= M ,  c . . . cMk = M is a filtration, then the sets 
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W, = int Mi-Mi-, form an open decomposition for a($)with no r-cycles 
( r> 2), and in this case the given numbering is a filtration ordering. 

We shall be particularly interested in compact invariant sets A which 
contain all limit sets-that is, such that for every x E M, a(x) uO(X) cA. We 
begin with some data about the maximal invariant sets of an open decomposi- 
tion for such a A. 

PROPOSITION Let A be a compact, $-invariant set such that a(x)uo(x)4. 
cA(VxEM). If W,, . . . ,Wk is an open decomposition for A, with no 1-cycles, 
letting Ki = n ,$, [ Wi] and Oi=a($)n K,, then: 

(i) The decomposition is proper-i.e, the Ki are compact. 
(ii) 	The stable sets WsKi partition M-in fact, (VxE M)(3i, j)a(x) C K,, 

O(X) cKi. 

(iii) WsKi= W",, WuKi= WuOi,and 

Proof. 
(i) Suppose x Eclos K, -K,. Since clos Ki is $-invariant, a(x)U o(x)c 

clos K,, so that a(x) uo(x)cA n W,. Since Wi is a neighborhood of A n  W,, 
$,(x) E Wi for It1 large. On the other hand, x E  Ki, so that for some t ,  $,(x)E W,. 
Thus, we have a 1-cycle; the contradiction implies that clos Ki -Ki is empty, so 
K, is compact. 

(ii) We reproduce a well-known argument of Smale ([ll] ,  p. 782), to show 
that o(x) is contained in a single K,; the argument for a(x)  follows by 
time-reversal. Suppose o(x) intersects several distinct K,. Since a single orbit is a 
connected set and the Wi are disjoint open sets, it follows that if $,AX) E W, 
and $,,(x) EWi with To< T ,  and i# j ,  then for some time S, To< S< T,, 
$s (x)EM - uf= Wl. Since the orbit of x frequently enters more than one W,, 
we can pick a sequence of times Sn+ + m when $sn (x)E M - u Wl. An 
accumulation point of this sequence lies outside A c uK,, contradicting the 
assumption that A contains all a -  and o-limits. 

(iii) To show K, c WQi n WuOi, take x EKiand note that 3 j ,  1 such that 
x E K , n  WQin  WuO,. We want to show j =  1= i .  Certainly, a (x)cOi ,  w(x) 
cO, .  Thus, since Ki is invariant and closed, 

Since the open sets W are disjoint, so are the K, and we have i = j =  1. On the 
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other hand, suppose x E WQi n Wu!di.Then, since the above set is invariant, 
+ , ( x )  E WS!din Wu!di (b't). In particular, +,(x)E Wi for It\ large, and so (since 
there are no 1-cycles) for all t .  Thus, x EK,. Q.E.D. 

We note that by ( i ) in the above, an open decomposition of A allows us to 
write A as a disjoint union of the closed, invariant sets hi=Kin A= W, n A. In 
general, we can define a decomposition of a compact +-invariant set A. 

Definition. Let A be compact and +-inuariant. A decomposition of A is a 
finite, disjoint family of compact invariant sets A,, . . . ,A, such that 

We recall from [4] that in  case A=!d(+), a spectral decomposition is a 
decomposition such that each !di contains a dense orbit. 

We would like to define the notion of cycles in this situation. Recalling the 
defintion of WWi and WuAi from Sec. I, we define a relation on the A, by: 
A,< A, if W W i n  WuAi#O. 

Definition 

(i) A n  r-cycle ( r  >2) for the decomposition Al, . . . ,AK is an ordered 
r-tuple of distinct indices ( i , ,  . . . ,a,) such that A,, iA,, i. . . < 
< A,,. 

(ii) A 1-cycle is an index i such that 


(WSAin  WuAi)-Ai#O.  


(iii) 	As before, a filtration ordering is a numbering of the A, so that 
A, iAi*i < j .  

It should be pointed out that there is an important a priori difference 
between the two kinds of decompositions. While for an open decomposition of 
A "no cycles" is a condition affecting all orbits that come near A, the 
corresponding condition for a decomposition of A takes into account only those 
orbits that are asymptotic to A. On the other hand, if all orbits are asymptotic 
to A and A is the maximal invariant set for the open decomposition, the two 
conditions are the same, as shown in the following proposition. A corollary of 
this is the proposition on p. 455 of [4] for flows; similar arguments yield the 
result in the discrete case. 

PROPOSITION Let A be a compact +-invariant set containing all limit 5. 
sets a(x)u~ ( x ) ,x E M. Then a necessary and sufficient condition for A to be 
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the maximal invariant set of an open decomposition with no cycles is that A 
have a decomposition with no cycles. 

Proof. The necessity follows from the observation (i) in Proposition 4. We 
will prove sufficiency in a sequence of lemmas motivated by arguments in [lo], 
[9] and [6]. Fix A = u f= hi a decomposition of A with no cycles and a 
filtration ordering. 

LEMMA1. [clos WuA,] n WuAi# a-[clos WuAi]n Ai#  0. 

Proof. Since clos [WuAi] is closed and invariant, the a-limit set of any of 
its points is contained in it. But the a-limit set of any point in WUAi is 
contained in Ai. 

LEMMA2. If i # j ,  then clos [ WuAi]n hi# (Zl=xlos [ WuAi] n { WsAi-

A,) f 0. 

Proof. Since the Al are compact and disjoint, we can pick open sets 
Ul > Al with @ disjoint and such that for I #  1' and - 1 < t ,  s < 1, 

For each j = 1,.. . ,k consider the compact set 

By assumption, there exists a sequence of points x, E WuAi with xn+Ai. 
Assuming x, E q, the fact that xn E WUAi implies the existence of T, < O  

such that @,"(x,)E Ui. Since xn+Ai, we can pick the Tn+ - cc so that for 
0 >, p > T,, cp, (x,) E Ui. Thus, 

and these points have an accumulation point x E  Li. By choice of the T,, 
however, @t (x)E ( V t> O), because, if x =lim+," (x,), then for any given t > 0, 
+, (x)=lim (pTn+ (x,) Hence, o(x) c q, and so by Proposition 4, o(x)cAi, that 
is, x EWsAi. 

On the other hand, since x is a limit of points @%(xn) in the closed set 
M - Ui, we can conclude that 

LEMMA3. If i # j ,  clos [ WuAi]n Ai# 0*i > i .  
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Proof. Suppose i < j .  The point x chosen in the previous lemma is an 
element of WuAl for some I. Since x EW V in WuAl, we must have 1 > j (1  = j 
would give a 1-cycle). Thus, x E clos [WuAi]n  WuAl, with 1 > j .  Since i < j ,  
i # I and we can apply Lemma 1 to see that j in the hypothesis of Lemma 3 can 
be replaced by some 1 > j .  Repeating this process, we get a strictly increasing 
sequence 1, < I, < . . . of indices 1 for which clos [WuAi]n A, # 0.But this is 
impossible, since there are only finitely many indices altogether. 

LEMMA4. clos[WUAi]c u{ WuAj : j  < i}. 

Proof. Every x E clos[ WuAi] has its a-limit inside some Aj, so x E Wu hi ;  
but then by Lemma 1, j < i. 

LEMMA5. For each i = 1,.. . ,k, ui < i  WSAi is an open set containing 
u i 4 i  WuAi. 

Proof. Applying Lemma 4 to the reverse flow, we see that u i,i+ ,W q h ,  
is closed, so u j ,<i W q i  = M - ui> i+ l  W%, is open. Suppose x E WuAi, j < i. 
Then x E WSAl for some 1. But since we have a filtration ordering, 1 < j ,  and so 
the lemma follows. 

LEMMA6. Any compact neighborhood Q of Pi = U i G i  WuAi contains a 
compact neighborhood Vi of Pi such that Vt > 0 @,[Vi]c y.  

Proof. We can assume without loss of generality that Q cu ig i  WSAi,SO 

that in particular all points of Q- Pi have their a-limit outside Q. It then 
follows that Pi = n {@,[q]: t > 0), and we adapt to this case an argument given 
by Smale in [6, Lemma 4.21: 

Given a real number r >/ 0, we let 

and note that each A, is a compact neighborhood of Pi. We also note that the 
sets A, are nested (A, cAs if r > s) and n A, =Pi. 

We claim that for sufficiently large r, @,[A,] c int A, for 0 6 t < 1. To see 
this, consider the sets U, = u , < , ~ ,  {@,[A,]}-int A,, which is a nested family of 
compact sets with empty intersection, hence U,, n . . . n U, =0 for some finite 
set of indices. 

But then, consider any r satisfying the above, and let 0 < T < 1.Then 
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Furthermore, for any t >0, pick an integer n > t ,  and note that 

+tA,=+,/"[%/"[ .. .+'/.A,] . . . ] CAT. 

Thus, V,=A, works. 

LEMMA7. There is an open decomposition W l , .. . ,W Kfor A with no 
cycles, with A, =Ki = n+,[Wi]. 

Proof. Noting that W u A ,=A,, we take W ,=int V,, V ,  as in the previous 
lemma, and such that V ,n A, =0 for i > 1. To construct W,, we start with a 
neighborhood U of A, whose closure is disjoint from V,u ,>,A,. We then note 
that V ,u Uu is a neighborhood of W u A lu W u A 2so by Lemma 6 contains a 
compact neighborhood V, of W u A lu W u A ,  with +,[V,]c V,(Vt > 0). We let 
c=V 2 n  U, and avoid 1-cycles by taking W,= 5" f iu .  We note that by the 
forward-invariance of Vl and V,, 

and W 2c V,, so that W," cV,. 
We can now proceed to construct W ,  by a similar process starting with a 

neighborhood of A, disjoint from V l u  VzU u ,>,A,, and so on. The construction 
of Wi insures no 1-cycles immediately, and the fact that W ,c V,, together with 
forward-invariance of y ,  insure that W," cV,, so that W," n W s=0 for j > i .

1 
To see that A, =K,, we recall from Proposition 4 (iii) that Ki is the set of 

points {x :o(x)u a (x)cA,),  so that if A, # K,, we would have a 1-cycle for the 
decomposition of A. 

The last lemma is the sufficiency statement of Proposition 5, and thus 
concludes its proof. The reader may have noticed that the proofs of the last two 
lemmas have amounted to the construction of something very much like a 
filtration for +. We are lacking certain differentiability statements-our Vi are 
not necessarily submanifolds-with-boundary, and we have no transversality at 
the boundary. 

We obtain these refinements by means of Lyapunov functions. 

Definition. Let K be a closed +-invariant set. A Lyapunov function for 
(+,K ) is a differentiable function 

L:M-tR 
such that 

(1) K is the set of critical points of L. 
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PROPOSITION Suppose A is a compact $-invariant set containing all a-6. 
and a-limit sets, and let W , ,  . . . , Wkbe an open decomposition for A, with no 
cycles. Then there exists a C" Lyapunou function L for K = u K,, with each Ki 
contained in  a different critical leuel of L .  

Proof. We present in detail an argument from [3] .Let 

A,= U WuAi and Bi = U W q A , .  
j C i  l > i  

Then note that by Lemma 6, A, is a uniformly asymptotically stable set for r$ 
with domain of attraction u i< W q i= M -B,; similarly, Bi is uniformly 
asymptotically stable for the backward flow r$-,, with domain of attraction 
M -A,. Thus by [7] there are C" non-negative functions f,, g i  defined 
respectively on M - Bi and M -A,, with (i) f , - ' [o]  = A,, g<' [0]= B,, (ii) Df ,  = 0 
on A,, Dgi=O on B,, (iii) ( d / d t ) f , ( @ , ( x ) ) < O ,x E A , ,  ( d / d t )  gi(r$,(x))>O, x E B i ,  
and (iv) limp+qf, = Limp+A,g ( p )  = oo. 

Pick a number c ,  O < c <;, such that A-'[O, c )  n g - l i  [0,  c )  = 0. Then the 
set 

is diffeomorphic to 

(see, for example, [8] )and we can thus find a C m  function hi defined on this 
set, taking values in [ c ,1- c ] , which agrees with 1-gi  on a neighborhood of 
g,;'[c] and with fi on a neighborhood of 5 - ' [ c ] ,  and which decreases along 
trajectories of $. Then the function Li defined by 

is a C m  function defined on M such that: 

(i) L i ( p ) E I O , l ]  V p E M  

(ii) L [ ' [ o ] = A , ,  L [ ' [ l ] = B , ,  D L , = O o n A , u B ,  

(iii) $ , ( ~ , ) = d / d t L ~ ( $ ~ ( p ) ) < O f o r p ~ A ~ ~ B , .  
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Taking L =2:;: L,, we get a C " function L :M+[O, k - l] such that 

Thus, L is the required Lyapunov function. 	 Q.E.D. 

We show how this yields a filtration for +. 
PROPOSITION7. If L is a C n  Lyapunoc function for K ,  with finitely 

many critical ualues, then there is a filtration (a= M,c . . . c Mk = M for $, 
with K =  u K i  (where Ki= n ,  +,[Mi-int  Mi-,]). 

Proof. Let c ,  < c, < . . . < ck be the (finite number of) critical values of L. 
We pick diE(c,, ci+,), a regular value, and let Mi =L - '( - oo,d,]. Then clearly 
the maximal invariant subset of Mi- int Mi- is K, = L -  ' (c , )  n {critical points of 
L),  and the Miare the desired filtration. 

We can summarize the results of this section in a 

THEOREM1. Let A be a compact +-invariant set containing all a - and 
a-limit sets. Then the following conditions are equiualent: 

(i) There is a decomposition A =  A, u . . . u Ak of A with no cycles. 
(ii) 	There is an  open decomposition W,, . . .,Wk for A with no cycles 

and A =  K.  
(iii) There is a filtration (a =Mo c . . . c Mk =M for +, with A = uf= ,Ki. 

We note that in the case when A =a(+),  Theorem 1 gives necessary and 
sufficient conditions for the existence of a fine filtration. 

3. We turn now to the necessity statement in Theorem 2. Given a flow + 
with no C 0  S2-explosions, our problem is to construct a fine sequence of 
filtrations for +. By the results of Sec. 2, it suffices to construct a sequence of 
open decompositions of a($) with no cycles, whose intersection is a($). This last 
condition amounts to constructing an open decomposition W,, . . . W, of a(+) 
with no cycles such that u Wi c U,  where U is some arbitrarily specified 
neighborhood of Q(+) in M. 

This construction is in two steps. In Lemma 8, we show how any open 
cover of a(+)naturally generates a no-cycle open decomposition. Then in 
Proposition 8, we show how a properly chosen cover generates an open 
decomposition inside U ,  provided there are no C 0  S2-explosions. 
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The first of these steps can be formulated, as before, for any +-invariant set 
containing all limit sets. 

LEMMA8. Let A be a compact $-inuariant set containing all limit 
sets, and let V,, . . ., be (not necessarily disjoint) open subsets of M with 
A c u f ,,y. Then there exists an open decomposition W1, . . . ,WKfor A with no 
cycles, such that each V, (possibly shrunk slightly) is contained in one of the 
wi. 

Proof. Given the Vi, we let U,, . . . ,U, be the connected components of 
uf=, X. By shrinking the Vi a little, we can assume the U, have disjoint 
closures. We eliminate r-cycles (r>2) in this open decomposition by calling Ui 
and Ui equivalent if they are contained in a common cycle, and letting 
G I , .. . ,l@Kbe the unions of the equivalence classes. We then eliminate 
1-cycles by enlarging the Gi ,  letting 

The resulting open decomposition clearly has no cycles and contains the 
(slightly shrunk) v's.  It is in some sense the "minimum" no-cycle open 
decomposition containing the y . 

We will use an argument by contradiction to prove that the construction of 
Lemma 8 can be carried out inside a specified neighborhood of O (+). The heart 
of the argument is the following proposition, a kind of specialized C0 closing 
lemma. We fix a Riemann metric on M. 

PROPOSITION8. Given a flow +, an open neighborhood G2L of O(+), and 
E >0, there exists an open cover V,, . . . ,VLof U (+) by subsets of G2L such that, 
if W,, . . .,WK is the corresponding no- c ycle open decomposition given by  
Lemma 8 and x EWi, then there exists a (C") flow 4 satisfying 

(i) 1 1  4 -$11 < E pointwise on M 
(ii) x is periodic under ri/ 

We defer the proof of Proposition 8 for a moment to show how it yields 
the main result. 

COROLLARY. Given a flow + with no C0 0-explosions and an open 
neighborhood G2L of Q(+),there exists an open decomposition W,, . . . ,WK with 
no cycles and u W, c G2L . 

Proof of Corollary. Since + has no C0 O-explosions, we can pick E >0 such 
that any flow 4 with 11$-$ll< E pointwise on M must have Q(+) c%. Thus, 
the open decomposition in Proposition 8 must be contained in G2L, for if 
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X E  -%, then there exists a flow with II$-$II but with X E Q  (4)- %,< E  

a contradiction. 	 Q.E.D. (Corollary) 

In the course of proving Proposition 8, we will first produce a curve which 
is to serve as the desired periodic orbit, and then modify the vectorfield so that 
the curve becomes an integral curve. We begin with a consideration of which 
curves allow such a modification. 

Definition. 

(i) Let 2:(4)= {x :$(x) =0) 
(ii) Given 	a nonzero vector Y EM,, where x % (+), we define the 

inclination of Y (relative to +) to be the length of the normalized 
difference 

If the angle between Y and +(,, is 8 (0 < 8 < n), then a (  Y )  =2 sin(8/2). 
Note that 0 < a <2, a =0 if and only if Y points in the same direction as 4, and 
that Y"=(l l$ l l / l l  Y I I )  Y is a vector parallel to Y with 1 1  ? - $ ~ l  = a(Y)ll$ll. We 
define the inclination of a curve y to be the inclination of its velocity vector y. 

LEMMA9. Given E >0 and a flow +. Suppose y is a C1 curve in M (an 
embedded closed interval or circle) such that at each point x in the image of y 

one of the following conditions holds: 

(i) 114(,)ll or 
(ii) x g  % (+), and y has inclination a < E /  II$IIa t  X. 

Then, given any neighborhood U of the image of y ,  there exists a flow $ 
on M satisfying: 

(a) It=$off u 
(b) II$-$II on M< E  

(c) y is a (segment of an) integral curve of $. 

Proof. By reparametrizing y ,  we can insure that at each point for which 
(i) holds, 1 1  <~ / 2 ,  and at each point for which (ii) holds, the difference vector 
+ -$ has length arbitrarily close to ail+ll, say ~ly-$ll < all$ll+ 6. Thus, for 
every point of y ,  the length of the difference vector is less than E, either 
because by (i)ll--+I1 < I I + 1 1 +  1 1 $ 1 1  < E  or because by (ii) ~lj,-$~l <all$11+6 < t  

(for 6 small). Taking a tubular neighborhood N of y inside U , we can extend the 
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vectorfield + -6 to N by making it constant along fibers; if y is a closed curve, 
then N is a neighborhood of y ,  and we multiply +- + by a "bump" function g, 
which is 1 on y and 0 off N ,  to obtain a vectorfield 5 on M with 5= + -4 on y .  

If y is not a closed curve, we extend it beyond its endpoints, extend N to be a 
tubular neighborhood of the extended curve, and take g, again so that g, = 1 on 
the original curve y ,  and g, = O  off of the extended neighborhood N .  Again, we 
end up with a vectorfield 5 on M such that 5= +-6, at points of y and 11511< E. 

Then the vectorfield 4 =(+4 satisfies: 

(a! 1 4 - 4 1 <6 

(b) 4 =5++= + for points of y.  

Proof of Proposition 8. We will produce a closed curve through x which 
satisfies conditions (i) or (ii) of Lemma 9 at each point; the conditions will be 
insured by restricting our construction piecewise to well-chosen subsets of M. 

Recall that a coordinate chart g, : U+Rn is called a flow box for + if q [ U ]  
is the product 9x I of an (n -  1)-dimensional disc and an interval, with 4 a 
constant multiple of a/&--that is, + flows along the " I "  factor at constant 
speed. For definiteness, we will always take I =  ( - 1,l).  A flow box will be 
called 6-narrow if any point on its left edge, 9x { - l ) ,  can be joined to any 
point on its right edge, 9x (1) by an arc with inclination everywhere <6 
(relative to 4). A box is extra 6-narrow if the boxes obtained by division into 
thirds, 9x ( - 1, - i),9x ( - +, k), and 9x (5, 1)are all 6-narrow. Narrow- 
ness is a bound on the ratio between the diameter of 9 and the time of transit 
across U, so that any flow box can be made as narrow as desired by shrinking 
9 without changing I (i.e. the transit time). 

For technical reasons, we will take a pair of coverings of a(+)by open sets. 
For each point x E 2 (+), we pick a ball Ux about x on which /I$II<~ / 2 ;  for 
each x EQ(+)- % (+), we pick Ux an extra-6-narrow flow box with x at its 
center, where 6 is chosen so that 6 11411< E everywhere on Ux. (We can simply 

pick 6 <~ / ~ ~ P , I I ~ I I . )  
By bounding the diameters of the Ux away from 0, we can find for each x a 

second open set, Vx cU,, such that if x E % (+), then Vx is a 6-narrow flow box 
with x at its center and contained in the middle third (qx ( - j ,  j))of Ux, and 
a finite collection x,, . . . ,xl Ea(+)such that the V, = cover Q(+) and so that if 
V , n V , f 0 a n d x , , x i E 2 ( + ) , t h e n V , u V 3 c U , n U 3 .  

We wish to show that the collection { V,, . . . ,Vl) satisfies the conclusion of 
Proposition 8. Letting { Wi) be the no-cycle open decomposition of a(+) 
generated by the open cover { V, . . . Vl), we fix x EWi and wish to produce a 
closed curve through x which will eventually become a closed orbit. 
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By definition, xE n q;tracing this back, we see that it means that x 
belongs to a cycle of the open cover {V,),  in the sense that we can find a 
sequence of points y, ( a  =1,.. . ,m) and times t, >0 ( a  =0,. . . ,m) such that: 

(i) Each y, belongs to one of the y ,  which we call V,, 

(ii) +to(x) E Vl 
(iii) +tm(y,)E V,+, ( a = l ,  ...,m-1) 

(iv) +& ( ~ m )= x* 

Note that if x E q,for some j ,  then xE V, for some i ,  and we can take m =2, 
V, = V, (a= 1, 2) and t ,  small, so that i)-iv) are trivial to satisfy. 

The curve r will be formed of orbit segments and curves y, joining them 
which satisfy one of the hypotheses of Lemma 9. If V, is one of the open sets y 
(i < r )  on which II$/I<~ / 2 ,  any curve y, joining +t,-l ( yapI) to y, and lying in 
V, satisfies the first condition of Lemma 9. If V, is a flow-box, we would like to 
join the first entry of the orbit of y,-, into the left edge of V, to the last exist of 
y, from the right edge of V, by a curve y, of small inclination. When the orbit 
of y, enters V,+, after leaving V,, this is fine, but it is possible that y, E V, n 
V,+ ,and this argument could break down. However, since V, contains points 
of a(+),we can find a point w E V, which leaves V, and even U, by the right 
edge (let ++(w)  be the latter exit point) and thereafter re-enters U, by its left 
edge, at ++ + (w), (see Fig. 1).Since y, - ,)E V,, its forward orbit in U, 
crosses the transverse disc 9 X { i }  at a point ++( y, - ,), and similarly the 

backward orbit of y, in U, crosses the transverse disc 9 X { - i )  at a point 
+- ( y,). The extra narrowness allows us to join ++ ( y,- ,) E 9 X { i) to 
++(w)E9 X { l ) ,  by an arc of inclination a <6, then follow the orbit of ++ (w) 
to + + + ( w ) ~ 9  x{-1) ,  then travel to + - ( y , ) ~ 9  x { - 5 )  viaan arc of low 
inclination, and thence to y, itself. The (broken) arc y, thus described, starting 
from +t, -,( y, - ,)and ending at y,, satisfies condition (ii) in Lemma 9. 

3 
1 0 9 

1 

Figure 1. Constructing y,. 
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When we are all through, we have constructed a closed, C1  curve r, 
pieced together from the arcs y, (a: =2, . . . ,m) and the orbit segments [x,+tl(x)], 
[ Y,,+~=(ya)], and [ y,,x]. We note that l- satisfies condition (i) or (ii) of Lemma 
9. Since inclination depends continuously on a vector, any small C1-
perturbation of r will also satisfy the hypotheses of Lemma 9, provided it is 
simple. If dim M >, 3 transversality arguments allow us to C1-perturb r to a 
simple, closed curve satisfying (i) or (ii) at each point. If dim M =2,  transversal-
ity does not let us eliminate intersections via a C1-perturbation, but only allows 
us to conclude that there are finitely many intersections, all transversal. 
However, we can think of r as a graph, with vertices at the intersection points, 
and then find a simple, closed sub-graph through x. This can be done by going 
along r until we hit a point of intersection, regarding this as a crossroads and 
turning onto the path corresponding to the later of the two times of crossing. 
This yields a simple, closed, continuous curve r through x with nonzero tangent 
vector defined continuously everywhere except for possible jump discontinuities 
at the old crossing points. The curve can, however, be modified on a small 
interval about each of these points to become a C1 simple, closed curve; since 
the right and left limits of at such a point both satisfy the conditions of 
Lemma 9, it is possible to make sure that the modification also satisfies Lemma 
9. 

Thus, we end up with a closed, simple C1 curve through x which at every 
point satisfies the hypotheses of Lemma 9. The conclusion of that lemma then 
yields a C0 perturbation + of + with l- as one of its integral curves. Q.E.D. 

(Proposition 8) 

We close this section with a few remarks concerning the space in which 
our perturbations are operating. In Sec. 1we showed that if + is a flow with a 
fine sequence of filtrations, then any flow + whose velocity vectorfield $ is 
uniformly near 4 (in the C0 sense) has a($)not much bigger than 8(+).The 
above proposition, on the other hand, when incorporated into the corollary, is a 
strengthened version of the opposite implication: we have shown that a flow + 
without a fine sequence of filtrations has a C" flow + whose velocity vector- 
field $ is Co-near + and which exhibits an 0-explosion. If we distinguish several 
interpretations of the statement "+ has no C0 0-explosions" by adding a phrase 
of the form "among flows of C' vectorfields," then no C0 8-explosions among 
flows of C" vectorfields is the weaker hypothesis (a priori, we allow O- 
explosions for Co-nearby flows of low differentiability) while no C O  8-explosions 
among flows of C0 vectorfields is the stronger conclusion. Our theorem, of 
course, shows these conditions to be equivalent; but as M. Hirsch has pointed 
out to us, the weaker hypothesis might be easier to check in practice. We 
summarize our results, then, in 
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THEOREM2. For + a flow on a compact manifold M with velocity 
vectorjield 4,the following are equivalent: 

(i) + has no C0 Q-explosions among flows of C0 vectorjields. 
(ii) Given a neighborhood 	G2L of O(+), there is an open decomposition 

for a(+) by subsets of G2L, with no cycles. 
(iii) + has a fine sequence of filtrations. 
(iv) + has no C O  0-explosions among flows of C' vectorjields for any r, 

O < r < w .  

4. We close this paper with some considerations of the dimension restric- 
tions in [5]. Because of a technicality, the main theorem is stated for dim M >3. 
This restriction can be removed in two ways. One is to note that given a 
diffeomorphism f E Diff (M) on a manifold of dimension r, we can "suspend" 
it as the Poincare map of a flow +fon a manifold of dimension r +  1. 

Another way of removing the restriction is to prove directly the following 
topological lemma, whose proof in [5] required dim M >3. Since the lemma 
itself might be of some independent interest, we give a proof below. 

LEMMA13. Let M be a manifold of dimension > 2  with distance d 
coming from a Riemunn metric. Suppose a finite collection {( pi, q,) E M x M: 
i = 1,.. . k) of pairs of points of M is specified, together with a small positive 
constant 6 >0 such that: 

(i) For each i, d ( pi, qi) <6 
(ii) If i + j ,  then pi #pi and qi # qi. 

Then there exists f EDiff (M) such that 

(a) d (f(x),x) < 2 ~ 6  for every x E  M 

(b) f ( p i ) = q i  for i = 1 ,  ...,k. 


We remark that the above is well known to be false when M = S ', and that 

S. J. Blank has an independent proof when dim M > 2, using a fine triangulation 
of the manifold. 

Proof of Lemma. We consider the "suspension" of the identity, by taking 
M x S' with the vectorfield X ( p, 6 )  =2 d / a 6 .  The induced flow is, of course, 
+ t (  p,6) =( p, 6 +27it). Its time-one map, +,, takes M x (0)  to itself and induces 
the identity map there. 

Given the points pi, q, E M ,  we consider the points (p, ,7~/2) and (qi,3n/2) 
in M x S'. We take, for each i, a curve yi(t) in M, (0 < t < 1) of constant speed, 
joining pi to q,, of length <6. Then the curve g i  in M X S 1 given by 
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1has velocity vector -j: + -X, whose inclination is <2n8. We can change g,
2 

slightly so that gi (t)  = -
1 X at t =0, 1, and then use Lemma 9 to find a
2 

vectorfield Y with / I  Y- X / I  <2n8 for which the curves g i  are segments of 
integral curves. But then the flow of Y takes (pi ,n/2)  to (q,, 3n/2),  so that 
(pi,O) and (qi,2n)=(qi,0) are joined by an integral curve of Y. Hence, the 
time-one map of the flow of Y is a diffeomorphism of M x {O), (a) within 
distance 

1'Y -X 1 1  dt <2778 of the identity, 

and (b) taking pi to qi. Q.E.D. 

Since the rest of [S] uses no dimension assumptions, this establishes the 
main result when dim M > 2. The case of diffeomorphisms of the circle is easy 
to take care of directly. There are four cases: (i) If there is at least one 
topologically transversal periodic point, there must be at least one other 
periodic point and an open decomposition separating them has no cycles; there 
are no COO-explosions, (ii) A transitive homeomorphism (irrational rotation) has 
O= S', so explosions are impossible and only one open decomposition is 
possible; (iii) an intransitive homeomorphism (Denjoy example) always has 
1-cycles and always has 0-explosions (by the Denjoy theorem); (iv) a homeo- 
morphism for which the rotation number is rational but all periodic points are 
topologically degenerate, always has cycles, and can always be perturbed to 
irrational rotation number. 

Thus, the main theorem of [S] is true for both discrete and continuous 
dynamical systems on compact manifolds of all dimensions. 
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