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FILTRATIONS, DECOMPOSITIONS, AND EXPLOSIONS.

By Z. NiteECck1 AND M. SHUB.*

Our goal in this paper is to establish for flows results analogous to those
obtained for discrete dynamical systems in [5].

To formulate the main result, we begin by recalling from [4] the notion of
a filtration for a flow. Let ¢ be the flow on compact n-manifold M generated by
a C! vector field X=¢

Definition. A filtration for ¢ (or X) is a finite sequence N
={M,,....M} of compact submanifolds with boundary such that

(i) @=My,cM,C--- CM,=M

(i) dimM;=n(Vi>1)

(iii) ¢, [M;] CintM; (V¢>0)

(iv) The flow is transverse to the boundary of each M,—that is, for
x €0M; (0<i<k), X, is not tangent to OM,.

"Given a filtration 9, the maximal ¢-invariant subset of M;—M,_, is
denoted

K, (9M)=n{¢[M,—intM,_,]:tER}

and we let K (M )= U {K;(9MN):i=1,...,k}. We shall call the filtration fine if
K (9 ) =Q(¢) (the set of non-wandering points for ¢). If ¢ does not admit a fine
filtration, we will look for a sequence 9, of filtrations for which K (91;) tend
to § (¢). More precisely,

Definition. A filtration i, = (Mg, M,,... ,M,} refines the filtration
M ={M,,...,M} if for each a=1,...,1 there exists i,, 1 <i, <k, such that

[Ma_Ma—l] C[Mia_Mia—-l]'
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1030 Z. NITECKI AND M. SHUB.

Definition. A sequence IN,, IM,,... of filtrations for ¢ is said to be fine
if
(i) O, , refines M, (i=1,...)
(i) NK(IM,;)=8(¢).

A fine sequence of filtrations will be seen to control the growth of  under
perturbations.

Definition. A flow ¢ has no C° Q-explosions if given any neighborhood
U of Q (¢) in M, there is a neighborhood V of =X in X' (M) (the space of C’
vectorfields on M with the C° topology) such that a flow ¢ with Y€V has
Q Y)cU.

Our main result, then, is

THEOREM 2. A necessary and sufficient condition for ¢ to have no C°
Q-explosions is that ¢ admit a fine sequence of filtrations.

The paper has four parts. We begin by recalling some properties of
filtrations and demonstrating the sufficiency of the above condition. In the
second part, we define the notions of decomposition and open decomposition
for an invariant set, and establish that the existence of a fine filtration is
equivalent to the existence of either kind of decomposition for &, with no
cycles. In the third section, we investigate the problem of constructing a fine
sequence of filtrations, or equivalently, of finding an open decomposition
without cycles inside any specified neighborhood of Q. We show how such a
construction is possible in the absence of C° Q-explosions. Most of our tech-
niques are translations of arguments in [5] to the flow case. We close the paper
by showing how the dimension restrictions in a central lemma of [5] can be
removed.

1. We begin with some observations concerning filtrations. A filtration
for ¢ gives some rough information concerning the dynamic structure of the
flow. As usual, given a ¢-invariant set A, we define its stable (unstable) set by

W (A)={xEM: dist(¢,(x),A)—>0 as t—+ o0}
W* (A)={x € M:dist(¢,(x),A) >0 as t—>— o0 }.

PropositioN 1. If O ={M,,...,M} is a filtration for ¢, then:

(i) each K;(9N) is compact
(i) Q(¢)CK(IM)
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(iii) M is the disjoint union of the W*(K,) (W*(K,)). In fact, M;,C U
{W*(K;):j<i}.
(iv) K;= W*(K,)N W*(K,). In fact, letting Q,=Q(¢)N K,(IN), we have
K,=W*(Q,)n W*(Q,) and W°(K,)= W°(Q,) (6=u,s).
The proof of (i) is immediate. To see (ii), note that for any point x&
[M;—int M;_,]— K;(91), there is some t ER such that ¢, (x) & M,—int M,_,. If
t>0, ¢,(x) Eint M;_, and x wanders; if ¢ <0, ¢,(x) € M — M;; since this is taken
into itself by the reverse flow, x wanders again. We defer proof of (iii) and (iv)
to the next section, where they will be established in a more general setting.
The real usefulness of a filtration, however, is that it gives information not

only about the flow ¢, but about (C°) nearby flows, as well.
ProrposrioN 2. If 9N is a filtration for ¢, then:

(i) O is also a filtration for any flow ¥ with ¥ sufficiently (C°) near
.

(ii) Given a neighborhood U of K (ON), there exists a neighborhood AU
of ¢ in X°M) such that for any flow ¢ with Y€ AU, the corre-
sponding maximal set for

K,(9)= U M [ M,~intM,_, ]

i teR
is contained in U.
(iti) If O is a fine filtration for ¢, then ¢ has no C° Q-explosions.

Proof. The first statement follows from the observation that since the
flow is transverse to the dM,, we must have <i>#—'0 on dM;; hence small
perturbations of ¢ must point in approximately the same direction. The second
statement follows from the remark that by compactness of K;, there is a finite
time, T, such that

N{o[M,~M,_,]:|t|<T}cU.

The third statement is an immediate consequence of the second, combined with
(ii) in the previous proposition.

While fine filtrations exist for a large class of flows (in particular, for those
satisfying Axiom A’ and the no cycle condition), this class is not generic, as
noted in [5] for the discrete case, using the example of Newhouse [2]. (The
suspension of this example provides a C*-open set of vectorfields without fine
filtrations on every manifold of dimension 3 or greater.) However, the flows
with a fine sequence of filtrations seem to include the Newhouse example, and
this condition suffices for prevention of C° Q-explosions:
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PropOSITION 3. A flow with a fine sequence of filtrations has no C° Q
-explosions.

Proof. We combine statement (ii) of the previous proposition with state-
ment (ii) in Proposition 1, and observe that for a fine sequence of filtrations,
K (9,){Q(¢), so that for large i, K(9N;) C U, where U is any given neighbor-
hood of Q(¢).

2. We now turn to the decomposition of invariant sets. These are of two
kinds: the first will be called an “open decomposition”, the second, simply a
“decomposition”. Let A be a compact ¢-invariant set.

Definition. An open decomposition for A is a finite, disjoint family of
open sets, W, ..., W, in M such that AC U*.,W,. We will denote the maximal
¢-invariant subset of W, by

K= N ¢t[ VVi]
teR

The open decomposition will be called proper if each K, is compact. Of course,
A C UK, because any trajectory of a flow is connected and the W, are disjoint.

Definition. For an open set W C M, we define

we=U ¢_[W]

t>0

Definition. If Wy,..., W, is an open decomposition of A, then

(i) An r-cycle (r>2) is an ordered r-tuple of distinct indices (iy,...,1i,)
such that

WA W, #@  (j=L...r=1)
W.NnW, #g
(ii) A 1l-cycle is an index i such that

(3xEM—W,)(3s,t>0) ¢_,(x) E W, ,(x) E W,

Note that if an open decomposition has no r-cycles (r >2), then we can
reindex the open sets so that i > j= W, N W; =g. Following Newhouse [1], we
call such a numbering a filtration ordering. The terminology is motivated in part
by the observation that if @=M,C -+ C M, =M is a filtration, then the sets
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W,=int M;,~ M,_, form an open decomposition for {(¢) with no r-cycles
(r>2), and in this case the given numbering is a filtration ordering,

We shall be particularly interested in compact invariant sets A which
contain all limit sets—that is, such that for every x€M, a(x)Uw(x)CA. We
begin with some data about the maximal invariant sets of an open decomposi-
tion for such a A.

ProrosiTiON 4. Let A be a compact, ¢-invariant set such that a(x) U w(x)
CA(VxEM). If W,,..., W, is an open decomposition for A, with no 1-cycles,
letting K,= N, ¢, [W]] and Q,=Q(¢) N K,, then:

(i) The decomposition is proper—i.e. the K, are compact.
(ii) The stable sets W°K, partition M—in fact, (Vx € M)(3i,j)a(x) C K,
w(x) C K;.
(iii) WK,=W*Q, WK,=W"R, and

K,= W*Q,n W*Q,.

Proof.

(i) Suppose xEclos K;—K;. Since clos K; is ¢-invariant, a(x)Uw(x)C
clos K;, so that a(x)Uw(x)CAN W,. Since W, is a neighborhood of AN W,
¢,(x) € W, for [t| large. On the other hand, x & K;, so that for some t, ¢,(x) € W,.
Thus, we have a 1-cycle; the contradiction implies that clos K; — K; is empty, so
K; is compact.

(ii) We reproduce a well-known argument of Smale ([11], p. 782), to show
that w(x) is contained in a single K;; the argument for a(x) follows by
time-reversal. Suppose w(x) intersects several distinct K;. Since a single orbit is a
connected set and the W, are disjoint open sets, it follows that if ¢r (x)E W,
and ¢ (x)€ W, with T,<T, and i#j, then for some time S, T,<S<T,,
¢s(x) EM— UX_, W,. Since the orbit of x frequently enters more than one W,
we can pick a sequence of times S,—+oco when ¢g, (x)EM—U W, An
accumulation point of this sequence lies outside A C U K;, contradicting the
assumption that A contains all a- and w-limits. '

(iii) To show K, C W*@,n W*Q,, take x € K; and note that 3 4,/ such that
xEKN W'QN W Q. We want to show j=I=i. Certainly, a(x)CQ;, w(x)
C ;. Thus, since K, is invariant and closed,

@#a(x)CN K, CKNK,
F#w(x)CYN K, CKNK,.

Since the open sets W are disjoint, so are the K, and we have i=j=1. On the
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other hand, suppose x € W*Q,n W*Q,. Then, since the above set is invariant,
&, (x)E W*Q;n W*Q, (Vt). In particular, ¢,(x) E W, for |¢t| large, and so (since
there are no 1-cycles) for all ¢. Thus, x € K. QED.

We note that by (i) in the above, an open decomposition of A allows us to
write A as a disjoint union of the closed, invariant sets A;= K;nA=W,NA. In
general, we can define a decomposition of a compact ¢-invariant set A.

Definition. Let A be compact and ¢-invariant. A decomposition of A is a
finite, disjoint family of compact invariant sets A,,..., A, such that

We recall from [4] that in case A=RQ(¢), a spectral decomposition is a
decomposition such that each @, contains a dense orbit.

We would like to define the notion of cycles in this situation. Recalling the
defintion of W*A; and W*A, from Sec. I, we define a relation on the A, by:
A< if WANWEN#o.

Definition
(i) An r-cycle (r>2) for the decomposition A,,...,Ayx is an ordered

r-tuple of distinct indices (iy,...,i,) such that A; <A, <. < A,
<A,

(ii) A 1-cycle is an index i such that

(WANWHEA) - AN #0.

(iii) As before, a filtration ordering is a numbering of the A, so that

A< A=i<.

It should be pointed out that there is an important a priori difference
between the two kinds of decompositions. While for an open decomposition of
A “no cycles” is a condition affecting all orbits that come near A, the
corresponding condition for a decomposition of A takes into account only those
orbits that are asymptotic to A. On the other hand, if all orbits are asymptotic
to A and A is the maximal invariant set for the open decomposition, the two
conditions are the same, as shown in the following proposition. A corollary of
this is the proposition on p. 455 of [4] for flows; similar arguments yield the
result in the discrete case.

ProposITION 5. Let A be a compact ¢-invariant set containing all limit
sets a(x)Uw(x), x EM. Then a necessary and sufficient condition for A to be
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the maximal invariant set of an open decomposition with no cycles is that A
have a decomposition with no cycles.

Proof. The necessity follows from the observation (i) in Proposition 4. We
will prove sufficiency in a sequence of lemmas motivated by arguments in [10],
[9] and [6]. Fix A=UX | A, a decomposition of A with no cycles and a
filtration ordering.

Lemma 1. [clos W*A;] N W*A;#@=[clos W*A,]NA;#@.

Proof. Since clos [W*A,] is closed and invariant, the a-limit set of any of
its points is contained in it. But the a-limit set of any point in W*“A, is
contained in A;.

Lemma 2. If i#j, then clos [W*A,JN A7 @=clos [W*A;] N{W°A; -
A}Y#@.

Proof. Since the A, are compact and disjoint, we can pick open sets
U,D A, with U, disjoint and such that for [+’ and —1<t, s<]1,

¢(0,) N, (Uy)=0-
For each j=1,...,k consider the compact set

Li=¢_,[G]-U;
By assumption, there exists a sequence of points x, € W*A; with x, > A,.
Assuming x, € U, the fact that x, € W*A, implies the existence of T, <0

such that ¢; (x,)2 U, Since x,—A,, we can pick the T,——oco so that for

0>2p>T, ¢p(x,,)e U, Thus,

(Yn) ¢, () EL

and these points have an accumulation point x€L;. By choice of the T,
however, ¢,(x) € U; (Vt>0), because, if x =lim¢r (x,), then for any given ¢>0,
¢,(x)=lim¢y , ,(x,). Hence, w(x) C U, and so by Proposition 4, w(x)CA;, that
is, xE WA,

On the other hand, since x is a limit of points ¢ (x,) in the closed set
M- U,., we can conclude that

xE WA~ U,C WA~ A,

Lemma 3. If i#j, clos [W*A]NA,#@=i>|.
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Proof. Suppose i<j. The point x chosen in the previous lemma is an
element of W*A,; for some [. Since x€ W*A;n W*A;, we must have [ >j (I=j
would give a 1-cycle). Thus, x& clos [W*A,Jn W*A,, with [ >j. Since i <j,
i7 [ and we can apply Lemma 1 to see that j in the hypothesis of Lemma 3 can
be replaced by some [ >j. Repeating this process, we get a strictly increasing
sequence [, <[, <--- of indices I for which clos [W*A;]JN A; 7 @. But this is
impossible, since there are only finitely many indices altogether.

LEmma 4. clos{W*A,JC U {W*“A,;:j<i}.

Proof. Every x€ clos| W*A,] has its a-limit inside some A, so x € W*A;
but then by Lemma 1, j <.

LEMMmA 5. For each i=1,...,k, Ujci WsAi is an open set containing
Ujci WA,

Proof. Applying Lemma 4 to the reverse flow, we see that U;,;.; W'A;
is closed, so U;; WA;=M—U,;5,;,; WA, is open. Suppose x&€ W*A,, j <i.
Then x € W* A, for some [. But since we have a filtration ordering, I < §, and so
the lemma follows.

Lemma 6. Any compact neighborhood Q of Pi=U;¢; W*A,; contains a
compact neighborhood V; of P, such that Vt>0 ¢,[V,]C V,.

Proof. We can assume without loss of generality that Q C U;.; W*A,, so
that in particular all points of Q— P, have their a-limit outside Q. It then
follows that P,= N {¢,[q]:¢t >0}, and we adapt to this case an argument given
by Smale in [6, Lemma 4.2]:

Given a real number r >0, we let

A=n{¢[Q]:0<t<r}

and note that each A, is a compact neighborhood of P,. We also note that the
sets A, are nested (A, CA, if r>s) and NA, =P,

We claim that for sufficiently large r, ¢,[A,]C int A for 0< ¢ <1. To see
this, consider the sets U,= Uy¢,<; {¢,[A,]}-int A}, which is a nested family of
compact sets with empty intersection, hence U, N - N U, =& for some finite
set of indices.

But then, consider any r satisfying the above, and let 0 < T<1. Then

o[ A ] =07 N {$,0:0<t<r}]NintA,
=N{$,Q:T<t<r+T}NN{$Q:0<t<1}
CN{$Q:0<t<r+T}CA,
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Furthermore, for any t>0, pick an integer n > ¢, and note that

¢1Ar=¢t/"[¢t/”[ . '-qbt/,,Ar] tr ] CA,.
Thus, V,= A, works.

Lemma 7. There is an open decomposition W,,..., Wy for A with no
cycles, with A,=K,= N¢,[W,].

Proof. Noting that W*A,=A,, we take W, =int V, V, as in the previous
lemma, and such that V;NA;=@ for i >1. To construct W,, we start with a
neighborhood U of A, whose closure is disjoint from VU, ,A;. We then note
that V, U U" is a neighborhood of W*A; U W*A, so by Lemma 6 contains a
compact neighborhood V, of W*A, U W*A, with ¢,[V,]C V,(Vt>0). We let
U= V,N U, and avoid 1-cycles by taking W, = U* N U*. We note that by the
forward-invariance of V, and V,,

WonW,=0°n0*NV,=U*Nn@=0

and W, C V,, so that Wy C V,.

We can now proceed to construct W, by a similar process starting with a
neighborhood of A; disjoint from V,,V, U ,3A,, and so on. The construction
of W, insures no 1-cycles immediately, and the fact that W, C V,, together with
forward-invariance of V;, insure that W* C'V,, so that W*n W=¢ for j>i.

To see that A;=K;, we recall from Proposition 4 (iii) that K; is the set of
points {x:w(x)U a(x) CA,;}, so that if A, K;, we would have a 1-cycle for the
decomposition of A.

The last lemma is the sufficiency statement of Proposition 5, and thus
concludes its proof. The reader may have noticed that the proofs of the last two
lemmas have amounted to the construction of something very much like a
filtration for ¢. We are lacking certain differentiability statements—our V, are
not necessarily submanifolds-with-boundary, and we have no transversality at
the boundary.

We obtain these refinements by means of Lyapunov functions.

Definition. Let K be a closed ¢-invariant set. A Lyapunov function for
(¢,K) is a differentiable function

L:M—-R
such that

(1) K is the set of critical points of L.

2) $(L)<0 offK.
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ProrosITION 6. Suppose A is a compact ¢-invariant set containing all a-
and w-limit sets, and let W,..., W, be an open decomposition for A, with no
cycles. Then there exists a C* Lyapunov function L for K= U K;, with each K,
contained in a different critical level of L.

Proof. We present in detail an argument from [3]. Let

A= U W"A; and B=U WA,

i<i I>i

Then note that by Lemma 6, A; is a uniformly asymptotically stable set for ¢
with domain of attraction U;.; W*A;=M— B;; similarly, B; is uniformly
asymptotically stable for the backward flow ¢_,, with domain of attraction
M~—A,. Thus by [7] there are C® non-negative functions f;,, g, defined
respectively on M — B; and M — A,, with (i) f,"'[0]=A4,, g7' [0]=B,, (ii) Df,=0
on A, Dg,=0 on B, (iii) (d/dt) fi4,(x)) <0, 2 A, (d/df) g,(¢,(¥) >0, xZB,

and (iv) lim,_, 5 f;=Lim,_, , g,(p)= 0.
Pick a number ¢, 0< ¢ <%, such that f,~'[0,c)ng~ 1.[0,c)=0. Then the
set

f e, w)ngi e o0)
is diffeomorphic to

fe]x (1] [e] X e~ c]

(see, for example, [8]) and we can thus find a C* function h, defined on this
set, taking values in [c,1~ c], which agrees with 1— g, on a neighborhood of
g; '[c] and with f; on a neighborhood of f,”[c], and which decreases along
trajectories of ¢. Then the function L, defined by

1-g(p) ifpeg; [0y
L(p)=1h(p) if pefi'[c,00)ngi e, )
fi(p) ifpef, '[0,c)

is a C* function defined on M such that:

(i) ( p)€[0.1] VPEM
'[0]=4, L '[1]=B, DL,=0onA,UB,
(m) ¢p(L) d/dtL((pt( p)) <0 for pZ A,U B,
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Taking L=3%_1 L, we get a C* function L: M—[0,k — 1] such that
(1) L7'Mi]oK;, i=0,... k-1

(2) DL=0onK;=U;; W*A,n U W*A;
1>i

(3) ¢(L)<0off K.
Thus, L is the required Lyapunov function. Q.ED.
We show how this yields a filtration for ¢.

ProposiTiOoN 7. If L is a C" Lyapunov function for K, with finitely
many critical values, then there is a filtration @=M,C... CM,=M for ¢,
with K= U K, (where K;= N, ¢,[M;—int M,_,]).

Proof. Letc, <c¢,<--- <c be the (finite number of) critical values of L.
We pick d; €(c;, ¢, ), a regular value, and let M;= L ~'(— o0, d;]. Then clearly
the maximal invariant subset of M; —int M, _, is K;= L~ *(c;) N { critical points of
L}, and the M, are the desired filtration.

We can summarize the results of this section in a

TueoreM 1. Let A be a compact ¢-invariant set containing all a- and
w-limit sets. Then the following conditions are equivalent:

(i) There is a decomposition A=A, U -+ UA; of A with no cycles.
(ii) There is an open decomposition W,..., W, for A with no cycles
and A=K.
(iii) There is a filtration @=M,C - -+ C M, =M for ¢, with A= U*_,K,.

We note that in the case when A =§}(¢), Theorem 1 gives necessary and
sufficient conditions for the existence of a fine filtration.

3. We turn now to the necessity statement in Theorem 2. Given a flow ¢
with no C° Q-explosions, our problem is to construct a fine sequence of
filtrations for ¢. By the results of Sec. 2, it suffices to construct a sequence of
open decompositions of §(¢) with no cycles, whose intersection is £(¢). This last
condition amounts to constructing an open decomposition W,,... Wy of §(¢)
with no cycles such that U W,C U, where U is some arbitrarily specified
neighborhood of §(¢) in M.

This construction is in two steps. In Lemma 8, we show how any open
cover of {¥(¢) naturally generates a no-cycle open decomposition. Then in
Proposition 8, we show how a properly chosen cover generates an open
decomposition inside U, provided there are no C° Q-explosions.
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The first of these steps can be formulated, as before, for any ¢-invariant set
containing all limit sets.

Lemma 8. Let A be a compact ¢-invariant set containing all limit
sets, and let V,,...,V, be (not necessarily disjoint) open subsets of M with
AC U!L_,V,. Then there exists an open decomposition W,,..., Wy for A with no
cycles, such that each V; (possibly shrunk slightly) is contained in one of the

A

Proof. Given the V,, we let U,,...,U, be the connected components of
U!_, V,. By shrinking the V; a little, we can assume the U, have disjoint
closures. We eliminate r-cycles (r > 2) in this open decomposition by calling U,
and U; equivalent if they are contained in a common cycle, and letting
W,,...,Wy be the unions of the equivalence classes. We then eliminate
l-cycles by enlarging the W,, letting

W,= W0 Weo W,

The resulting open decomposition clearly has no cycles and contains the
(slightly shrunk) V;’s. It is in some sense the “minimum” no-cycle open
decomposition containing the V.

We will use an argument by contradiction to prove that the construction of
Lemma 8 can be carried out inside a specified neighborhood of { (¢). The heart
of the argument is the following proposition, a kind of specialized C° closing
lemma. We fix a Riemann metric on M.

ProposITION 8. Given a flow ¢, an open neighborhood U of Q(¢), and
€ >0, there exists an open cover Vy,...,V; of U(¢) by subsets of U such that,
if W,,...,Wy is the corresponding no-cycle open decomposition given by
Lemma 8 and x € W, then there exists a (C) flow ¢ satisfying

(i) |lx1}—q'>|| < € pointwise on M
(ii) x is periodic under .
We defer the proof of Proposition 8 for a moment to show how it yields
the main result.

CoROLLARY . Given a flow ¢ with no C° Q-explosions and an open
neighborhood AU of Q(¢), there exists an open decomposition W ,..., Wy with
no cycles and U W, C U .

Proof of Corollary.  Since ¢ has no C° Q-explosions, we can pick € >0 such
that any flow ¢ with ||{—¢|| < e pointwise on M must have Q(y)C U . Thus,
the open decomposition in Proposition 8 must be contained in U, for if
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x €W, — A, then there exists a flow y with Iy —&|| < € but with xEQ (y)— AU,
a contradiction. Q.E.D. (Corollary)

In the course of proving Proposition 8, we will first produce a curve which
is to serve as the desired periodic orbit, and then modify the vectorfield so that
the curve becomes an integral curve. We begin with a consideration of which
curves allow such a modification.

Definition.
() Let % (¢)={x:¢(x)=0}
(ii) Given a nonzero vector Y EM,, where x& Z(¢), we define the

inclination of Y (relative to ¢) to be the length of the normalized
difference

1
o(Y)=|—=<—-Y— ¢x
) “ AT T

If the angle between Y and <i>(x) is § (0<8<7), then o(Y)=2 sin(ﬁ/z).
Note that 0< 0 <2, 6=0 if and only if Y points in the same direction as ¢, and
that Y=(||¢|| /| Y|) Y is a vector parallel to Y with || Y —¢||=a(Y)||d|. We
define the inclination of a curve v to be the inclination of its velocity vector ¥.

LEmma 9. Given € >0 and a flow ¢. Suppose v is a C' curve in M (an
embedded closed interval or circle) such that at each point x in the image of v
one of the following conditions holds:

(@) llowl <e/2,or
(ii) x2Z Z($), and y has inclination 6 <e/|$| at x.

Then, given any neighborhood U of the image of v, there exists a flow
on M satisfying:

() ¥=9 off U
(b) =9l <eon M

(¢) v is a (segment of an) integral curve of .

Proof. By reparametrizing y, we can insure that at each point for which
(1) holds, l7]l < €/2, and at each point for which (ii) holds, the difference vector
—¢ has length arbitrarily close to ol|¢||, say ||[7v— q>||<o||¢||+8 Thus, for
every point of y, the length of the difference vector is less than ¢, either
because by (i)||¥ — &l <[l Y]l +ll¢]l <€ or because by (i) ||y —oll <ol|¢|| + 5 <e
(for & small). Taking a tubular neighborhood N of y inside U, we can extend the



1042 Z. NITECKI AND M. SHUB.

vectorfield y— ¢ to N by making it constant along fibers; if y is a closed curve,
then N is a neighborhood of y, and we multiply ¥ —¢ by a “bump” function ¢
which is 1 on y and 0 off N, to obtain a vectorfield £ on M with £=+—¢ on v.
If v is not a closed curve, we extend it beyond its endpoints, extend N to be a
tubular neighborhood of the extended curve, and take ¢ again so that =1 on
the original curve y, and ¢ =0 off of the extended neighborhood N. Again, we
end up with a vectorfield £ on M such that £= y—o at points of y and ||§|| <e.
Then the vectorfield yy=£+ ¢ satisfies:

(@) =gl <e
(b) y=£&+¢=y for points of v.

Proof of Proposition 8. 'We will produce a closed curve through x which
satisfies conditions (i) or (ii) of Lemma 9 at each point; the conditions will be
insured by restricting our construction piecewise to well-chosen subsets of M.

Recall that a coordinate chart ¢: U—R" is called a flow box for ¢ if p[U]
is the product % X I of an (n—1)-dimensional disc and an interval, with $a
constant multiple of 0/0¢t—that is, ¢ flows along the “I” factor at constant
speed. For definiteness, we will always take I=(—1,1). A flow box will be
called §-narrow if any point on its left edge, % X { —1}, can be joined to any
point on its right edge, ® X {1} by an arc with inclination everywhere <&
(relative to ¢). A box is extra 8-narrow if the boxes obtained by division into
thirds, D X(—1, —3), 9 X(—4%, 3), and % X(4, 1) are all §-narrow. Narrow-
ness is a bound on the ratio between the diameter of °) and the time of transit
across U, so that any flow box can be made as narrow as desired by shrinking
) without changing I (i.e. the transit time).

For technical reasons, we will take a pair of coverings of {(¢) by open sets.
For each point x € Z(¢), we pick a ball U, about x on which 6l < €/2; for
each x€Q(¢)— Z (¢), we pick U, an extra-8-narrow flow box with x at its
center, where § is chosen so that &||¢|| < e everywhere on U,. (We can simply
pick < ¢/supy 9]l

By bounding the diameters of the U, away from 0, we can find for each x a
second open set, V, C U,, such that if x&Z Z (¢), then V, is a §-narrow flow box
with x at its center and contained in the middle third () X (- 3, 3)) of U,, and
a finite collection x),...,x E{(¢) such that the V, =V, cover {(¢) and so that if
V,.N Vx,#:@ and x;, x; Z Z (¢), then V, U inc U,N U:c,'

We wish to show that the collection {V,,...,V,} satisfies the conclusion of
Proposition 8. Letting { W;} be the no-cycle open decomposition of {(¢)
generated by the open cover {V,---V;}, we fix x€ W, and wish to produce a
closed curve through x which will eventually become a closed orbit.
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By definition, x € Wf a Wj“; tracing this back, we see that it means that x
belongs to a cycle of the open cover {V,}, in the sense that we can find a
sequence of points y, (a«=1,...,m) and times ¢, >0 (¢ =0,...,m) such that:

(i) Each y, belongs to one of the V,, which we call V,,
(i) ¢, (x)EV,
(it) @, () € Vasy (a=1,...,m—1)
(iv) ¢tm( Y) =X

Note that if x& W, for some j, then x € V; for some i, and we can take m=2,
V.=V, (a=1, 2) and ¢; small, so that i)-iv) are trivial to satisfy.

The curve I' will be formed of orbit segments and curves v, joining them
which satisfy one of the hypotheses of Lemma 9. If V, is one of the open sets V,
(i < r) on which ||¢|| < e/2, any curve vy, joining ¢,  (y,_,) to y, and lying in
V, satisfies the first condition of Lemma 9. If V_ is a flow-box, we would like to
join the first entry of the orbit of y,_, into the left edge of V, to the last exist of
y, from the right edge of V, by a curve vy, of small inclination. When the orbit
of y, enters V,_ , after leaving V_, this is fine, but it is possible that y, € V, N
V. +1 and this argument could break down. However, since V, contains points
of §(¢), we can find a point w € V,, which leaves V, and even U, by the right
edge (let ¢, (w) be the latter exit point) and thereafter re-enters U, by its left
edge, at ¢, , (w), (see Fig. 1). Since ¢, (y,_;)EV,, its forward orbit in U,
crosses the transverse disc % X {1} at a point ¢, (y,_,), and similarly the
backward orbit of y, in U, crosses the transverse disc °) X {—4%} at a point
¢_(y,). The extra narrowness allows us to join ¢, (y,_;)ED X{3} to
¢, (w) € %D X {1}, by an arc of inclination o < §, then follow the orbit of ¢ , (w)
to ¢, . (w)ED X{—1}, then travel to ¢_(y,)E D X{—1} via an arc of low
inclination, and thence to y, itself. The (broken) arc y, thus described, starting
from ¢t,_, (y,_,) and ending at y,, satisfies condition (ii) in Lemma 9.

! |

| | ¢ta lya l
|

|

/z /////// §¢+(ya—1)
SN A |
b4 (w) : //// y ot i Dttt —>
\‘////,/y“/;: /// E P
|

Figure 1. Constructing v,.
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When we are all through, we have constructed a closed, C ! curve T,
pieced together from the arcs v, (¢ =2,...,m) and the orbit segments [x, ¢, (x)],
[ Y0 9; (Yo)], and [y,,,x]. We note that T" satisfies condition (i) or (ii) of Lemma
9. Since inclination depends continuously on a vector, any small C'-
perturbation of I' will also satisfy the hypotheses of Lemma 9, provided it is
simple. If dim M >3 transversality arguments allow us to C'-perturb T to a
simple, closed curve satisfying (i) or (ii) at each point. If dim M =2, transversal-
ity does not let us eliminate intersections via a C'-perturbation, but only allows
us to conclude that there are finitely many intersections, all transversal.
However, we can think of I" as a graph, with vertices at the intersection points,
and then find a simple, closed sub-graph through x. This can be done by going
along I' until we hit a point of intersection, regarding this as a crossroads and
turning onto the path corresponding to the later of the two times of crossing.
This yields a simple, closed, continuous curve I" through x with nonzero tangent
vector defined continuously everywhere except for possible jump discontinuities
at the old crossing points. The curve can, however, be modified on a small
interval about each of these points to become a C! simple, closed curve; since
the right and left limits of I' at such a point both satisfy the conditions of
Lemma 9, it is possible to make sure that the modification also satisfies Lemma
9.

Thus, we end up with a closed, simple C! curve through x which at every
point satisfies the hypotheses of Lemma 9. The conclusion of that lemma then
yields a C° perturbation ¢ of ¢ with T' as one of its integral curves. Q.E.D.

(Proposition 8)

We close this section with a few remarks concerning the space in which
our perturbations are operating. In Sec. 1 we showed that if ¢ is a flow with a
fine sequence of filtrations, then any flow ¥ whose velocity vectorfield  is
uniformly near o (in the C° sense) has Q(y) not much bigger than Q(¢). The
above proposition, on the other hand, when incorporated into the corollary, is a
strengthened version of the opposite implication: we have shown that a flow ¢
without a fine sequence of filtrations has a C® flow { whose velocity vector-
field § is C%near ¢ and which exhibits an Q-explosion. If we distinguish several
interpretations of the statement “¢ has no C° Q-explosions” by adding a phrase
of the form “among flows of C” vectorfields,” then no C° Q-explosions among
flows of C*® vectorfields is the weaker hypothesis (a priori, we allow -
explosions for C°nearby flows of low differentiability) while no C® Q-explosions
among flows of C° vectorfields is the stronger conclusion. Our theorem, of
course, shows these conditions to be equivalent; but as M. Hirsch has pointed
out to us, the weaker hypothesis might be easier to check in practice. We
summarize our results, then, in
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THEOREM 2. For ¢ a flow on a compact manifold M with velocity
vectorfield ¢, the following are equivalent:

(i) ¢ has no C° Q-explosions among flows of C° vectorfields.
(ii) Given a neighborhood U of S(¢), there is an open decomposition
for Q(¢) by subsets of U, with no cycles.
(iii) ¢ has a fine sequence of filtrations.
(iv) ¢ has no C° Q-explosions among flows of C" vectorfields for any r,
0<r<oo.

4. We close this paper with some considerations of the dimension restric-
tions in [5]. Because of a technicality, the main theorem is stated for dim M > 3.
This restriction can be removed in two ways. One is to note that given a
diffeomorphism f € Diff (M) on a manifold of dimension r, we can “suspend”
it as the Poincaré map of a flow ¢; on a manifold of dimension r+ 1.

Another way of removing the restriction is to prove directly the following
topological lemma, whose proof in [5] required dim M > 3. Since the lemma
itself might be of some independent interest, we give a proof below.

LemMa 13. Let M be a manifold of dimension >2 with distance d
coming from a Riemann metric. Suppose a finite collection {(p,,q,)EM X M:
i=1,...k} of pairs of points of M is specified, together with a small positive
constant § >0 such that:

(i) For each i, d(p;,q,) <8
(ii) If i#j, then p,#p, and q;#q;.

Then there exists f €Diff (M) such that

(a) d(f(x),x) <278 for every xEM
®) f(p)=gq;, fori=1,...,k.

We remark that the above is well known to be false when M=S*, and that
S. J. Blank has an independent proof when dim M > 2, using a fine triangulation
of the manifold.

Proof of Lemma. We consider the “suspension” of the identity, by taking
M X St with the vectorfield X (p,89)=2793/930. The induced flow is, of course,
¢,(p,0)=(p,0+2mt). Its time-one map, ¢,, takes M X {0} to itself and induces
the identity map there.

Given the points p;, g; € M, we consider the points (p;,7/2) and (q;,37/2)
in M X S', We take, for each i, a curve v;(t) in M, (0< t< 1) of constant speed,
joining p; to g;, of length < 8. Then the curve g; in M X S’ given by

g(t)=(w(t)mt+ g) 0<t<1
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1
2

slightly so that g,.(t)=éX at t=0, 1, and then use Lemma 9 to find a

has velocity vector ¥,+ > X, whose inclination is <278. We can change g

vectorfield Y with ||Y— X|| <278 for which the curves g, are segments of
integral curves. But then the flow of Y takes (p,,7/2) to (g;, 37/2), so that
(p;,0) and (g;,27)=(q;,0) are joined by an integral curve of Y. Hence, the
time-one map of the flow of Y is a diffeomorphism of M X {0}, (a) within
distance

1
f Y= X]| dt <278 of the identity,
0

and (b) taking p; to g;. QE.D.

Since the rest of [5] uses no dimension assumptions, this establishes the
main result when dim M > 2. The case of diffeomorphisms of the circle is easy
to take care of directly. There are four cases: (i) If there is at least one
topologically transversal periodic point, there must be at least one other
periodic point and an open decomposition separating them has no cycles; there
are no C°Q-explosions, (ii) A transitive homeomorphism (irrational rotation) has
Q=S', so explosions are impossible and only one open decomposition is
possible; (iii) an intransitive homeomorphism (Denjoy example) always has
I-cycles and always has Q-explosions (by the Denjoy theorem); (iv) a homeo-
morphism for which the rotation number is rational but all periodic points are
topologically degenerate, always has cycles, and can always be perturbed to
irrational rotation number.

Thus, the main theorem of [5] is true for both discrete and continuous
dynamical systems on compact manifolds of all dimensions.

TurTts UNIVERSITY AND QUEENS COLLEGE.

REFERENCES.

[1] S. Newhouse, “Hyperbolic limit sets,” Trans. Amer. Math. Sci., 167 (1972) pp. 125-150.

[2] , “Diffeomorphisms with infinitely many sinks,” Topology 12 (1974) pp. 9-18.

[3] C. C. Pugh,, and M. Shub, “The Q-Stability theorem for flows,” Inventiones Math., 11 (1970),
p. 150-158.




FILTRATIONS, DECOMPOSITIONS, AND EXPLOSIONS, 1047

[4] M. Shub, “Stability and genericity for diffeomorphisms,” Dynamical Systems (ed., M.
Peixoto) (Proceedings of Symposium on Dynamical Systems, Salvador, Bahia, Brazil,
1971) Academic Press, pp. 493-514.
[5] ———, and S. Smale, “Beyond hyperbolicity,” Annals of Math., 96 (1972), pp. 587-591.
[6] S. Smale, “The Q-stability theorem,” Global Analysis, Proc. Symp. Pure Math., 14 (Provi-
dence: A.M.S., 1970), pp. 289-299.
[7] F. W. Wilson, “Smoothing derivatives of functions and applications,” Trans. Amer. Math.
Soc., 139 (1969), pp. 413-428.
[8] ———, ‘“The structure of the level surfaces of a Lyapunov function,” J. Diff. Eq., 3 (1967),
pp. 323-329,
[9] J. Palis, “On Morse-Smale dynamical systems,” Topology 4, (1969), pp. 385404.
[10] S. Smale, “Morse inequalities for a dynamical system,” Bull. Amer. Math. Soc., 66 (1960), pp.
4349,
[11] ———, “Differentiable dynamical systems,” Bull. Amer. Math. Soc., vol. 73, (1967), pp.
747-817.



http://www.jstor.org

LINKED CITATIONS
-Pagelofl-

You have printed the following article:

Filtrations, Decompositions, and Explosions
Z. Nitecki; M. Shub
American Journal of Mathematics, Vol. 97, No. 4. (Winter, 1975), pp. 1029-1047.

Stable URL:
http://links.jstor.org/sici ?sici=0002-9327%28197524%2997%3A 4%3C1029%3A FDA E%3E2.0.CO%3B2-T

This article references the following linked citations. If you are trying to access articles from an
off-campus location, you may be required to first logon via your library web site to access JSTOR. Please
visit your library's website or contact a librarian to learn about options for remote access to JSTOR.

References

"Smoothing Derivatives of Functions and Applications

F. Wesley Wilson, Jr.

Transactions of the American Mathematical Society, Vol. 139. (May, 1969), pp. 413-428.
Stable URL:

http:/links.jstor.org/sici 2si ci=0002-9947%28196905%29139%3C413%3A SDOFAA%3E2.0.CO%3B2-C

NOTE: The reference numbering fromthe original has been maintained in this citation list.


http://links.jstor.org/sici?sici=0002-9327%28197524%2997%3A4%3C1029%3AFDAE%3E2.0.CO%3B2-T&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0002-9947%28196905%29139%3C413%3ASDOFAA%3E2.0.CO%3B2-C&origin=JSTOR-pdf

