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ENTROPY AND STABILITY
MiIkeE SHuB and RoBerT F. WILLIAMS
{Received 18 October 1974)

WE PROVE two theorems, the basic one giving an inequality, the second an equality.

THEOREM 1. Suppose f: M" — M" is a diffeomorphism satisfying Axiom A and the no cycle
condition. Then h(f)=log s(f,).

Here h(f) is the topological entropy of f and s(f,) is the spectral radius of
fo: Ho(M;R)= H(M;R). That is, s(f,) = max |A| where the max is taken over all eigenvalues
of fait H{M;R)— H:(M:R) and all dimensions i.

This theorem is already known in the Morse~-Smale case[14, 16] and more generally in the
Axiom A and no cycle case with the added hypothesis that the non-wandering set is zero
dimensional[4]. Also, Manning proves that h(f)=log s(f,:), where f,; is the map in
{-dimensional homology and f is a continuous map of quite general spaces. For further
discussion of entropy see [10] and [11].

This theorem was conjectured in [15] and {16] and has its most striking application in a
significant sharpening of the Lefschetz trace formula when the periodic points of f are counted
asymptotically. This follows from the work of Bowen[1] where the following was first proved:

Tueorem [Bowenl. If f: M — M is a diffeomorphism satisfying Axiom A then h{(f)=
lim sup 1/n log N.(f).

Here N, (f) is the number of periodic points of f of period n, that is, the number of fixed points
of f". Since

2 trace fqi

log s(f) = lim sup ;zl— log

we have
CoROLLARY A. If f: M — M is a diffeomorphism satisfying Axiom A and the no cycle condition,
then:

(I) lim sup % log N,.(f) = lim sup-}l— log '2 trace f1

For a diffeomorphism which has only transversal periodic points the Lefschetz trace formula
implies that N, (f) = |2 (=1)' trace f4.| so that

(I tim sup-}q— log N.(f)=lim sup% log ’2 (~1) trace fy

The difference between I and II lies in the alternation of signs. Indeed, it is easily seen that the
right hand side of II may be identically zero while the right hand side of I is not and hence
predicts an infinity of periodic points growing exponentially in number with n. An example of this
phenomenon may be found in [15].

The Axiom A and no cycle diffeomorphisms were defined by Smale and proved to be (-stable
by him[18, 19]. In particular if f: M"™ — M" satisfies Axiom A and the no cycle condition, then
there is a neighborhood of f, U; C Diff'(M) with the property that forany g € U, N.(g) = N.(f)
for all n. The Axiom A and no cycle diffeomorphisms are the only known diffeomorphisms with
this property.

THEOREM 2a. For f.it Hi(M;, M;_1;R)O

>log s(fei); i#u
h(flA;) (= log s (fau);
=log s(fuu)s

where the coefficients of f,. are perhaps twisted.
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330 M. SHUB AND R. F. WILLIAMS

As twisted coefficients are a bit obscure, we state the following untwisted theorem:

THEOREM 2b. With the additional assumption that the bundle E" on A; extends
semi-invariantly to an oriented bundle and df preserves (or reverses) an orientation, then
h(flA;) =log s (fau).

Here A, is a basic set for f and M;, M;_, are the two elements of a filtration bracketting A;. See
also paragraphs below for discussion of X, A and f. The first two parts of Theorem 2a, even in the
weaker form h(f|A;) = log s(f«) prove Theorem 1 by induction on j via exact sequences. This is a
well known process (see e.g. [4] concerning 0-dimensional non-wandering sets).

The strict inequality of the first part of Theorem 2 is quite important as it allows one to neglect
all but one dimension in the asymptotic version of the Lefschetz trace formula and thus avoid the
cancellation alluded to above. This, in a relative version, together with the computation of N.(f)
as given in [5], [9] proves the third part of Theorem 2.

We were convinced of the equality in Theorem 2 because of Plante’s ‘‘asymptotic
cycles”[12]. We have not pursued this approach for two reasons. On the one hand, the work of
Ruelle and Sullivan{13] on ‘“geometric currents” preempted us, and on the other hand, we
realized that we need not construct these classes geometrically. The inequalities of Theorem 2
already imply the existence of such classes as well as other algebraic facts.

Let A;, M, M;_, be as above and define X =f"(M;), A =X N f ™ (M;_,) for m suitably
large. Then there is a “relative double cover” (X, A) of (X, A) and a lifting f of f to (X, A) and we
have

THEOREM 2. There is a real homology class C. € H.(X, A) such that f.C. = AC. where
log/\ = h(f'A;)

Remark. Under the hypothesis of Theorem 2b, this class actually lies in H,(M;, M;-;R) and
f+Cu = £ AC. depending upon whether df preserves or revérses the orientation of the extended
bundle E*“

For sake of definiteness, we state the conclusion of these results in a special case as the

CoroLLARY B. If f: M — M is an Anosov diffeomorphism such that

(a) M is connected;

(b) Q(f)=M;

() M and E“ are oriented and f preserves these orientations, then there are homology classes
C. € H.(M), C, € H,(M) such that

(1) fuCu =AC. where log A = h(f) #0;

@) f+C=/N)Csand C. N C, =1,

(3) if u is an eigenvalue corresponding to neither C. nor C,, then

A <lu|<A.

It is a pleasure to acknowledge useful conversations with R. Sacksteder, W. Thurston and D.
Tischler.

THEOREM, Suppose f: M" — M" is a diffeomorphism satisfying Axiom A and the no cycle
condition. Then h(f) =log s(f«).

Remark. 1t suffices to prove the theorem with f replaced by any power, f* of f.

Proof. This is just additivity of h and s together with functorality of f*, i.e. that (f*), = (f.)".

The proof of the theorem is in several steps, the first rather easy, and fairly well known:

LEMMA 1. We may suppose M" is orientable. That is, let M be the orientable double cover of M
(in case M is not) and f:M —> M a diffeomorphism covering f. Then h(f)=h(f) and
s(Fai) = s(fxi). .

Proof. That h(f) = h(f) is basic to entropy theory and well known[3]. The homological
statement follows from the diagram

H(M) —= H(M)

,..(jr. ".or.

in which m: M — M is the projection and T, is the transfer map. T, is induced from the chain
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map T, which assigns to each simplex o in C,(M) the chain o, + 02, where . and o are the two
simplexes which cover o. Then it follows that 7,T,=2 id, so that if f,.(x)=Ax, then
Fui(Tex)=ATyx, and 7, Tyx = 2x, so that T,x # 0 if x# 0. Thus each eigenvalue of f,; is also
one of fyi, so that s(fy)< s(f«:), which completes the proof of Lemma 1.

The rest of the proof proceeds as many arguments by induction on a filtration[18],

¢=M,CM, C---CM =M, where

(@) fM; C M;;

(b) QIfI(M; = M;_1)] = A;, a basic set[18].
Now fix a j and let « and s stand for the dimensions of the fibers of E* and E°, where E*, E* give
the hyperbolic structure on A;. Then the principal new result is the

PrOPOSITION A. h(f|A;) = log s(f4:), where fy: is the map induced by f on Hi(M;, M;_,;R). Here
the inequality is strict, except in case i = u.

Proof. As A; will be fixed below, we drop the subscript and refer to A. Define X, A as in the
introduction, by X = f*(M;), A =X N f#(M;-;). Then

Lemma 2. It suffices to prove our proposition with f, replaced with
U‘X)*5 Hy(X,A)— Hy (X, A).

Proof. If m = B, then we have the commutative diagram

(X, A) = (X, A)

i iy i

(MA) T (M3, A)

in which fi, f2, f> are all f, but considered with different range and target spaces. Thus in homology
we have

Ho(X, A) =2 Ho (X, A)

.
i NS %

H.(M;, A) _‘;’,,T"‘) H.(X, A)

We claim f.4 and fs, have the same non-zero eigenvalues, which one can easily check directly;
this is also proved in [21], as fi, and fs, are “shift equivalent” by our diagrams, above.
In just the same way one uses the diagram

(M, A) <= (M,, A)

Lo

(M, M;-,) ‘7,;—’ (M;, M;-0)
to show that fs, has the same non-zero eigenvalues as fs,. Thus for large values of n,
> trace f 4 = >, trace (f| X )u:

which proves Lemma 2.

We return to the proof of Proposition A, except we work with the (X, A), where g is chosen
sufficiently large so that our considerations are reduced to a small neighborhood of A, which we
describe beiow.

We now consider a Markov partition of A[2] and a volume form w. for the unstable manifold
of a fixed point p which we assume (by taking powers of f if necessary) lies in the interior of
some element of the Markov partition. Arrange the notation so that this is the first element of the
Markov partition. We also assume that W*(p) is dense in A by taking a power of f if necessary.

Let Bo C X — A°be a ball in the unstable manifold W*(p), around p, which we assume to be
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a fixed point, lying in the interior of the first element of a Markov partition. Let T be the
intersection matrix of the Markov partition and define

B, =f"(B)) N (X—A".

LEMMA 3. Let A be the large eigenvalue of T and € > 0. Then there are constants C,, C.> 0 such
that

Ci(A —€)" <volume B, = Ci(A +¢€)".

Proof. We prove this by estimating the number of times B, passes through each element W,
of the Markov partition. Our problem is that the various W, intersect, causing a possible over
count, and another that the W, are a neighborhood in A and not (necessarily) in X — A, so that
we have trouble deciding which parts of B. “belong” to which elements of the Markov partition.

The elements of the Markov partition are products, W, = W*x W', where
W CW*G)N A and W= Wi (x)N A, x, x' some points in A. Choose a closed
neighborhood U; C W* so that (Uxa) N (Uyxb)=¢ for i#j, where a and b refer to
variables in W;' and W". This is possible by staggering.

Uy xw;

Then there is an €, >0, such that no disk in W"(p) of diameter <e, contains two plaques
Ui x a, U; X b, where either i#j or a# b. We assume also that d(A, A) < ¢,. Thus, there is an
integer a such that if D C W"(p) is a disk centered at p and x € D, then f*(D) contains an €,
neighborhood of x and this in turn lies in X — A.

Thus we have the estimates

cr “(L,1,..,)=svol B, = C.T"™ | - (1, 1,..., 1.

0
™

As ——— v, the positive eigenvector associated with A, one has that, as n — o,
o

1
0
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Hence
Cix —€)" =vol B, = Ci\ +¢€),

where Ci = Cx(A + ¢)®. This proves Lemma 3.

Next, there are semi-invariant extensions of the bundies E*, E° [6; p. 131] to a neighborhood
of A, which are expanded and contracted in some adapted metric. We know that W*(p) is dense
in A. Thus the 7-tubular neighborhood V.(W*(p)) of W*(p), for  fixed and small, contains a
neighborhood of A, and hence X - A°, for a suitable choice of B, taken so that the extended
bundles E¥, E* are also defined on X — A°. Here and below we take the fibers of normal bundles
to be close to E”. See [8; §§ 6, 7] for this type of discussion.

Now let 5 be a differential form of dimension u in C* (X, A;R), and Do a disk transverse to
E’® with a bounded angle, lying in X — A°, and

D.=f"(Do) N (X-A".

Then,
LemMA 4. Given € >0, there is a constant C >0 such that |[p,1]|=<C( +¢€)", all h>0.
The proof uses the
LemMa 4.1. We can define a “projection” mu: Du = Bu.p in the tubular neighborhood v.(B.+s)
for some fixed B and all large h. Furthermore, f"(D) N (X — A®)—> mu(Dy) in the C’' sense.
Proof. This is essentially contained in [7], [8], but we indicate how part of the proof goes.
Let »'/{W*(p)) be the 7-tubular neighborhood of W*“(p); this contains in turn

W e D> U n (W)=,

where v.(W,*(x)) is the T-tubular neighborhood of the d-ball about x in W*“(x). Also ». contains
a neighborhood of A. To see this, note that A N W*(p) is dense in A so that the uniformly large
7 X d boxes contain an e-neighborhood of A for some e. See [8; §§6,7] for this type of
discussion.

There is the “‘semi-invariant disk family” W, (x), for each x € W,*(A)= U ven Ws“(y). Let

F = f(Ws“(A)) — W5"(A). (F is a “proper fundamental domain.”) If p is small enough, then

U xEWs (A) W"’ (x)- U <EF W,,’ (x)

is a neighborhood of A. But in fact, if we let

c= U W),

xEANW (p)

then
UG = U, cc W)= U, cpne W' )

is also a neighborhood of A.

To see this last, note that the proof of [6; (4.1)] gives a uniform estimate and W*(p) N A is
dense in A by our hypotheses. Furthermore we choose p and & much smaller than 7 and d, so that
in particular, U(8, p) C v, defined above. In fact, for any x € A N W*(p),

Bx= L) W) C (W (x)) C o

eWs' (.

Thl.ls, to define the *“‘projection” on U(8, p) along the fibers of v., it suffices to do this for each
box _B (x), if only finitely many boxes are used. So we define a partial projection
me: B(x)— Ws“(x) just to send z € », fiber of ».(W;"(x)) to its base point.
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Now given z € U(8,p), say z € W,"(w) and w € Wa"_(x), x € AN W*(p). Define
mo(z) = me(2). If f*(z) € U(8,p) for 0<h <k, then f"(z) € W,* (fw) and f“(w) € Ws*(xn),
where x» € A N W*“(p). Moreover, the distance between f"(z) and f" (w), measured along

+4

a
k
W (f w\ is less than nn , where 0< 8 <1 is the contr ng th

If p, & are chosen small enough, then

(1) f(2) € v, Wa*(x);
Q) gn = 7(f"2) € Wis(xa);

3) f(Qh ) € Was(xn);
@ f(Wa' (xn)) O Wa' (xn)+15

and by induction

(3) fh(Wdu(xo)) D Wi (xa).
Here (1) is obvious and implies (2). Then (3) and (4) follow easily, geometrically.

We return to the proof of (4.1) and note first that there is a finite set of the B.’s which cover
Do. Thus we write D, as a finite union

Dy=E, U ---U E, E; N E; a thin set,

where each E, C B(x), [ =1,...,t
Now take B sufficiently large that Bs O W,“(x)), for | =1,...,t. We define

h: Dy = Biug, as follows:
if z € Do, say z € E, then f*(2) € v, Wa(xi0),
where Xih = (X()h. But
Bhes D fh(Wdu(Jﬁ)) D Wi (xin)
so that it is OK to set
ma (f"z) = proj of f'z in »,Ws*(xea)

as then mu(f"z) C Bu+s. It follows that

ﬂhlfh(El) n (X—Ao) is C’,
just because the bundle v. is.

That f*(D) N (X — A°) converges to m,(D,) is a familiar argument, used in the proof of the
stable manifold theorem{7] and elsewhere{8]. The crucial fact is that we can use the
semi-invariant disk family to show that m, moves points by no more than " where 0< 8 <1 is
the contraction along the W,"’s. Since the tangent planes to W*(p) N U(p, 8) lie in a continuous
bundle E* defined on a compact neighborhood, the resuit follows.

For large h, f*(E\) is transverse to the smooth bundle »., which gives convergence in the
C'-sense, as in [7] and [8].

We continue with the proof of Lemma 4. Using Lemma 4.1, there are e, >0, ¢, >0 as h >,
such that (recall fx means fxnx-a%)
[
(D)

<
ff"(m ”’Il

+ €, vol m, (D),

so that
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j,, ﬂlS(C+eh)vol(w;.(D))
D)y

< (C + Gh)Vol (Bh+B)
=(C+e)A+e)’(A+e)
=C'(A+¢€).

This completes the proof of Lemma 4.

Now suppose we are given an eigenvalue 0 — yo in H.(X, A;R) and suppose first that v is
real. Then there is a singular cycle 2 vyio: representing o such that the o are all transverse to E*
with bounded angle. Let n be a differential form dual to o, i.e., a closed form such that [z, 7 = 1
and [, n =0 for all other singular 7’s filling out a basis of H.(M). Note that these sums are all
finite. Here, we are integrating over a chain having its support in X — Ao. But below this will not
be the case; [x n means [xnx-4% 7.

Computing,

"Pl= 'E Yif TIISC’:(A-FG)", by Lemma 4.
" (o)

" (Ewon)

But,

=y

f ) n'= f *hy
P2 yioi) Z yio:

Thus |y|" < Ci(A + €)"; that is, for each € >0, there is a C, = Ci(¢) such that |y|" = Ci(A +¢€)".
Thus |y|= A + ¢ for each ¢ so that |y| =< A. This proves the following in case ¥y is real:

LemMa 5. If v is an eigenvalue of f*: H.(X, A)— H.(X, A), then |y|= A.

The complex case. Let v be a complex eigenvalue, and [o] be a corresponding eigenvector.
We think of [o] as being a real vector in a two dimensional vector space V and write
f«lo1=|v|-R([c]), where R is a rotation of V. Let 5 be a corresponding real form, dual to [o],
and let o be a singular cycle representing [o].

Choose a sequence n; — « such that R"™ — the identity on V. Then

s o=l =1 e 7
Mo feilel lyIMR ™)

f ’q’ = Cly|™ for large i.
R"io]

=|y[™

Thus |y[= A as in the real case.

Next, suppose we are given a real eigenvalue y of f,.: H(X, A;R)— Hi(X, A;R) where
I <u. As before, we let £ be an I-dimensional cycle representing the homology class of the
y-eigenvector. Let n be a closed differential form dual to ¢& We wish to estimate [y, for n
large.

We think of £ as a geometric complex K of dimension /, with a real coefficient a; associated
with each l-simplex o.. Consider the cartesian product, K x D, D a (u — I)-disk.

For any map H: K x D — M, so that H|K x 0 represents £ we have that

el (e

where & = H|K xt, t € D, weighted with the coefficients a on o, xt. Here D has
(u = )-volume = 1. Then

wr=cf Wl
KxD
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Note that we have absorbed the coefficients a; into the constant C,.
Now H is chosen to be transverse to E° with bounded angle, and to be a diffeomorphism on
each closed u-simplex D, for some simplicial subdivision of K X D. Then

wr=c3 [ ralsa3 [ Iralse 3 [ atlol

where o is the volume form for the E* bundle, and a < 1, Here w is only C° as a form, but we do
not use any differentiation. Further, w is defined up to sign only, so that all further integration is
taken in a positive sense. a can be taken less than 1 because in the adapted metric, f uniformly
stretches every vector in E*. Consequently the volume of any u-dimensional parallelopiped in
the bundle E* grows faster than any [-dimensional parallelopiped by a factor of 8“~', where
8 > 1 is the minimum expansion on E"“.

Hence

v =Can T [ IH ),
as H* is a diffeomorphism on each D“. Thus
ly|" = Cua™ 3, - H*f*"w.
D"

Now we are back in the case of estimating the growth of u-forms over disks, so that
I'yl" < Csa” vol Br+j = Coa'"\",

where o <a’ <1. Hence |y|<A.
The case where y is complex is treated just as before. Thus
LemMa 6. If v is an eigenvalue of fui: Hi(X, A;R)YD for 1 <u, then |y|<A.
Proof of Proposition A. If we consider the dual filtration of f~' given by

¢=M—M:CM—M1—1C"'CM—M0=M

our proof up to now applies, and shows that for any eigenvalue y of

;t H[(M_M]—l, M—M;)O

ly|=h(FA) =h(fIA)=A,i=<s

with strict inequality holding except (possibly) when i = s. But as the coefficients are real,

f*H'M-M-,M-M)O
has the same property for i =s. But now by duality (see e.g. {4; p. 64]) it follows that
fa—ini Haet (M}, M;-1) O

has this property for i < s, and therefore so does f,:, for i = u because u + s = n. This completes
the proof of Proposition A.

Hence, using the homology sequence of the pair (M, M;-1), it follows by induction on j and
Proposition A, that h(f|M;) = log s(f*|M,) for each j; see [4, p. 67). For M; = M, the theorem
follows.
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§2. ENTROPY AS AN EIGENVALUE

We begin with a proof of Theorem 2b. Here, the Lefschetz trace formula determines N, [18]
as

N, =(=D"A" (=1)" trace f:

where we use f,i to mean f,.: Hi(M, M- ;;R)O. Therefore, h(f|A;)=1limsup (1/n)
log (=1)*A™ £ (1)’ trace f4: and the only map on the right which can possibly contribute an
eigenvalue which is large enough is f,.. This proves Theorem 2b.

To prove Theorem 2a we use the auxiliary space introduced by Guckenheimer{5]. For the
sake of completeness and to include a few more details, we include a description of this space in
the appendix.

Lemma (Guckenheimer). There is a relative manifold (X, A) and a relative double cover
n: (X, A)— (X, A) such that

(1) (X, A) is as in the proof of Proposition A.

(2) (X, A) has the same (relative) structure as a manifold with basic set satisfying Axiom A.

(3) There is a map f: (X, A)— (X, A) covering f.

(4) N.(f)=(=1)* 2 (-1)' trace fy.

Note that the local structure of (X, A) (e.g. smoothness, stable manifolds, etc.) pulls back to
(X, A). Now Proposition A applies to f so that

h(f)=h(f)=log s(fu:)

where strict inequality holds except (possibly) when i = u. Thus
h(f) = lim sup 1 Nu (Fs) = log s (Fuu).

But f, is the same as f, with coefficients in the orientation sheaf of X. This proves Theorem 2a.

Theorem 2' is proved by comparing two computations of the zeta function of
f:(X,A)>(X, A), that due to Guckenheimer (above) and that due to Manning. Manning
proved[9] that

- p(t) .
LA = S det =TTy
(M)

1
I;L|>x, i any zero p or q

where T is a positive integral matrix and log A is the entropy of f]A; Guckenheimer’s
computation together with our Proposition A, gives

5(t)

Ay =—-22 .
tdet (I —tf,.

Gan (t) det (I — tfy.)

lv]>-}‘-, v any zero of § or §.

The second half of this last follows from Proposition A because each of § and § is a product
of terms of the form det (I — tf,)j# u. The Perron-Frobenius theorem says that the zero’s of
det (I —tT) include 1/Aw where w varies over a complete set of roots of unity. It follows that the
roots of det (I — tf,.) include {1/Aw} and thus that the roots of det (fo. — tI) include {Aw}, o as
above. Taking @ =1, proves Theorem 2'.

To prove Corollary B, we note first that f,.: H.(M:R) has eigenvalues of the form {Ao},
A >1and w as above. But as we are on the C-dense case, the matrix T has the property that T*
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has all entries strictly positive, for k = (some integer). But then, again by Perron-Frobenius, T
has an eigenvalue A > 1, and all others of modulus <A.

Thus let C. be a homology class associated with A and C, € H,(M:R) the dual class. This
proves (1) and (2) of the corollary, and (3) follows by duality and the strict inequality above.

APPENDIX (AFTER GUCKENHEIMERIS]))

Recall that we choose the (X, A) in the proof of Proposition A small enough that
(a) the bundle E“ extends to X ~f(A°);
(b) the derivative df extends to ¢

EX —2— E—z

Lk

X-A° — X-f(A")

where E,“ and E,* are restrictions of E* (Note: using the fater work of [6] as above, ¢ can be taken = df). Then let
(X, A) 3 (X, A) be the relative double cover of X, A which orients the bundie E*. In detail (as this seems to be a novel
notion), let

0. Xo= X - f(AD) =X,

be the double cover of X, orienting E* to the bundle E,* over Xo. Let X =X, U A/~ where x ~y if

(1) mox = moy and mex € A or

() mox=yand y € A.
Define E*=E~X-A4, A =image of Ain X. Note we still have a map : (X A)—» (X, A), that the deck transformation
T: X — X is fixed point free off of A so that = is a relative double cover and (X, A) a relative smooth manifold. In general,
now, there is an orientation of E* so that T reverses it at each point. It is sometimes, but not always, unique up to signs (e.g.
it is not unique for the “horse shoe”).

Next, there is a lifting of f to f

[ AN
—_—

P
Mg

This was defined in [5] by

6] fjA = umque covering of f

(if) f|X A is the unique covering of f preserving the orientation of E".
Such an f is clearly unique if it exists. To see that it exists, proceed through the connected components of X-Aoneata
time, as follows. Take x € C. fx is determined as one of y, Ty, where wy = 7Ty = mfx. But for one and only one of y, Ty will
this preserve the orientation as T reverses it. And this choice prevails uniformly over C by connectedness. Thus fis
continuous on C. Finally, X - A° will generically have only finitely many components. In particular, finitely many

components of X — A, cover A = w7'(A). Use them.
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