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ENTROPY AND STABILITY 

MIKE SHUB and ROBERT F. WILLIAMS 

(Reeeiued 18 October 1974) 

WE PROVE two theorems, the basic one giving an inequality, the second an equality. 
THEOREM 1. Suppose f: M” * M” is a diffeomorphism satisfying Axiom A and the no cycle 

condit~an. Then h cf) 2 log s (f*). 
Here hcf) is the topological entropy of f and scf*) is the spectral radius of 

f,: H,(M ; R)+ H&M ; It). That is, s cf,) = max IA 1 where the max is taken over all eigenvalues 
of fei : El, (M ; R) + Hi f M ; R) and all dimensions i. 

This theorem is already known in the Morse-Smale casell4, 161 and more generally in the 
Axiom A and no cycle case with the added hypothesis that the non-wandering set is zero 
dimensional f4]. Also, Manning proves that h tf) 2 log s(f**), where fe3 is the map in 
l-dimensional homology and f is a continuous map of quite general spaces. For further 
discussion of entropy see [lo] and [ Ill. 

This theorem was conjectured in 1151 and [I61 and has its most striking application in a 
significant sharpening of the Lefschetz trace formula when the periodic points of f are counted 
asymptotically. This follows from the work of Bowen[l] where the following was first proved: 

THEOREM [Bowen]. If f: M + M is a di~eomo~hism sutisfyi~g Axiom A then htf) = 
lim sup l/n log N,cf). 

Here N, cf) is the number of periodic points off of period n, that is, the number of fixed points 
of f”. Since 

log s tj*) = lim sup + log 
I 
Z: trace f$ 

I 

we have 
COROLLARY A. If f: M + M is a di#eomorphism satisfying Axiom A and the no cycle condition, 

then : 

(I) lim sup a log N. cf) z lim sup i log c trace fGi . 
I 

For a di~eomo~hism which has only transversal periodic points the Lefschetz trace fo~u~a 
implies that N,(f) z /Z (-l)i trace fiil so that 

(If) Iim sup i log Nncf) 2 lim sup i log c (-I)’ trace f Zi . 
I 

The difference between I and II lies in the alternation of signs. Indeed, it is easily seen that the 
right hand side of II may be identically zero while the right hand side of I is not and hence 
predicts an infinity of periodic points growing exponentially in number with n. An example of this 
phenomenon may be found in [El. 

The Axiom A and no cycle diff eomorphisms were defined by Smale and proved to be a-stable 
by him[l8, 191. In particular if f: M” --) M” satisfies Axiom A and the no cycle condition, then 
there is a neighborhood off, U, C Diff ‘(M) with the property that for any g E U, N,,(g) = N, tf) 
for all n. The Axiom A and no cycle diffeomorphisms are the only known diff eomorphisms with 
this property. 

THEOREM 2a. For f*i: Hi(Mj, Mj-t; W) 3 > log suei); i7e u 
htfliljf ZiOg slf*u); 

= log scf*u); 

where the coefficients of ieu are perhaps twisted. 

329 



330 M. SHUB AND R. F. WILLIAMS 

As twisted coefficients are a bit obscure, we state the following untwisted theorem: 
THEOREM 2b. With the additional assumption that the bundle E” on ‘Ii extends 

semi-invariantly to an oriented bundle and df preserves (or reverses) an orientation, then 

hCflAi) = log scf*u). 
Here A1 is a basic set for f and Mj, Mj_, are the two elements of a filtration bracketting Aj. See 

also paragraphs below for discussion of X, A and f The first two parts of Theorem 2a, even in the 
weaker form hcfjii,) 2 log scf*) prove Theorem 1 by induction on j via exact sequences. This is a 
well known process (see e.g. [4] concerning O-dimensional non-wandering sets). 

The strict inequality of the first part of Theorem 2 is quite important as it allows one to neglect 
all but one dimension in the asymptotic version of the Lefschetz trace formula and thus avoid the 
cancellation alluded to above. This, in a relative version, together with the computation of N,(f) 
as given in [5], [9] proves the third part of Theorem 2. 

We were convinced of the equality in Theorem 2 because of Plante’s “asymptotic 
cycles”[l2]. We have not pursued this approach for two reasons. On the one hand, the work of 
Ruelle and Sullivan[l3] on “geometric currents” preempted us, and on the other hand, we 
realized that we need not construct these classes geometrically. The inequalities of Theorem 2 
already imply the existence of such classes as well as other algebraic facts. 

Let Al, Mj, Mj-, be as above and define X = f”(Mj), A =X 17 fem(Mj-,) for m suitably 
large. Then there is a “relative double cover” (X, A) of (X, A) and a lifting i of f to (X, A) and we 
have 

THEOREM 2’. There is a real homology class C,, E H,,(X, A) such that f*C,, = AC, where 
log A = h(f]A,). 

Remark. Under the hypothesis of Theorem 2b, this class actually lies in H, (Mi, M,-,; IR) and 
f* C. = _’ AC, depending upon whether df preserves or reverses the orientation of the extended 
bundle E”. 

For sake of definiteness, we state the conclusion of these results in a special case as the 
COROLLARY B. If f: M + M is an Anosov d$eomorphism such that 
(a) M is connected; 

(b) fi(f)=M; 
(c) M and E” are oriented and f preserves these orientations, then there are homology classes 

C, E H,(M), C, E H,(M) such that 
(I) f*C. = AC. where log A = h(f) # 0; 
(2) f*C, =(llA)C, and C, n C, = 1; 
(3) if u is an eigenvalue corresponding to neither C,, nor C,, then 

l/A <jp[<A. 

It is a pleasure to acknowledge useful conversations with R. Sacksteder, W. Thurston and D. 
Tischler. 

THEOREM. Suppose f: M” + M” is a difleomorphism satisfying Axiom A and the no cycle 
condition. Then h cf) 2: log s cf*). 

Remark. It suffices to prove the theorem with f replaced by any power, f” of f. 
Proof. This is just additivity of h and s together with functorality off*, i.e. that (f”)* = (f*)“. 
The proof of the theorem is in several steps, the first rather easy, and fairly well known: 
LEMMA 1. We may suppose M” is orientable. That is, let &i be the orientable double cover of M 

(in case M is not) and f: fi+ fi a diffeomorphism covering f. Then h@) = h(f) and 
SU*i) 2 S(f*i). 

Proof. That h(j) = h(f) is basic to entropy theory and well known[3]. The homological 
statement follows from the diagram 

H,(fi) i., Hi@?) 
, 

*. f. 
11 

II. T. 
0 

Hi(M) 7 Hi(M) 

in which ?T: &? --, M is the projection and T, is the transfer map. T, is induced from the chain 
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map T, which assigns to each simplex u in C,(M) the chain (TV + u2, where (TV and u2 are the two 
simplexes which cover U. Then it follows that r*T, = 2 id, so that if f*i(x) = Ax, then 
j,i(T,x) = AT,x, and P* T,x = 2x, so that T,x # 0 if x # 0. Thus each eigenvalue of f*i is also 
one of p*i, so that scfei) 5 suei), which completes the proof of Lemma 1. 

The rest of the proof proceeds as many arguments by induction on a filtration [ 181, 

4 = MO C M, C . . . C M, = M, where 

(4 fM C Mj ; 
(b) Q._fJ(Mj - Mj-I)] = A;, a basic set[lS]. 

Now fix a j and let u and s stand for the dimensions of the fibers of E” and E”, where E”, E” give 
the hyperbolic structure on Aj. Then the principal new result is the 

PROPOSITION A. hCflAj) 2 log scfei), ~heref,~ is the map induced byfon Hi(Mj, Mj-1; W). Here 
the inequality is strict, except in case i = u. 

Proof. As Ai will be fixed below, we drop the subscript and refer to A. Define X, A as in the 

introduction, by X =f@(Mj), A =X II feB(Mj-l). Then 
LEMMA 2. It sufices to prove our proposition with f* replaced with 

U/X),: H,(X, A) + H,(X> A ). 
Proof. If m 2 p, then we have the commutative diagram 

in which f,, fi, f3 are all j, but considered with different range and target spaces. Thus in homology 

we have 

We claim f,* and f3* have the same non-zero eigenvalues, which one can easily check directly; 
this is also proved in [21], as f,* and f3* are “shift equivalent” by our diagrams, above. 

In just the same way one uses the diagram 

to show that f3* has the same non-zero eigenvalues as f5*. Thus for large values of n, 

2 trace f ii = x trace cflX);li 

which proves Lemma 2. 
We return to the proof of Proposition A, except we work with the (X, A), where p is chosen 

sufficiently large so that our considerations are reduced to a small neighborhood of A, which we 
describe below. 

We now consider a Markov partition of A [2] and a volume form wU for the unstable manifold 
of a fixed point p which we assume (by taking powers of f if necessary) lies in the interior of 
some element of the Markov partition. Arrange the notation so that this is the first element of the 
Markov partition. We also assume that W”(p) is dense in A by taking a power off if necessary. 

Let B. C X - A0 be a ball in the unstable manifold W”(p), around p, which we assume to be 
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a fixed point, lying in the interior of the first element of a Markov partition. Let T be the 
intersection matrix of the Markov partition and define 

B. = f”(Bo) f~ (X-A@). 

LEMMA 3. Let A be the large eigenvalue of T and e > 0. Then there are constants Cl, CZ > 0 such 
that 

C,(A - E)” 5 volume B. I &(A + 6)“. 

Proof. We prove this by estimating the number of times B, passes through each element Wr 
of the Markov partition. Our problem is that the various WI intersect, causing a possible over 
count, and another that the W, are a neighborhood in A and not (necessarily) in X - A ‘, so that 
we have trouble deciding which parts of B, “belong” to which elements of the Markov partition. 

The elements of the Markov partition are products, W, = 6’: X fit, where 
I@,” C W”(x) II A and I$‘,’ = W’(x’) fl A, x, x’ some points in A. Choose a closed 
neighborhood U C %” so that (U x a) rl (U, x b) = 9 for i# j, where a and b refer to 
variables in 5%‘: and fit. This is possible by staggering. 

U] xw; 

Then there is an l 1 > 0, such that no disk in W”(p) of diameter < el contains two plaques 
U x a, V, x b, where either i # j or a f b. We assume also that d(A, A) < el. Thus, there is an 
integer a such that if D C W”(p) is a disk centered at p and x E D, then f”(D) contains an e, 
neighborhood of x and this in turn lies in X -A. 

Thus we have the estimates 

* (1, 1,. . ., I) s vol B, 5 CzT”+- $1, 1,. . ., 1). 

0 

T’ ; (‘i 
As 0 

A” 
v, the positive eigenvector associated with A, one has that, as n + m, 

I 

0 
T n+ c : .(l,l,...,l) 

T” 

/i”+‘v * (1,. . .) 1) = * 
+ A”v*(l,...,l) * 
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Hence 

C,(h - E)” 5 vol B” 5 CXA + El”9 

where C: = Cz(h + 6)“. This proves Lemma 3. 
Next, there are semi-invariant extensions of the bundles E”, E” [6; p. 1311 to a neighborhood 

of A, which are expanded and contracted in some adapted metric. We know that W”(p) is dense 
in A. Thus the r-tubular neighborhood V,(W”@)) of W”(p), for T fixed and small, contains a 
neighborhood of A, and hence X-A’, for a suitable choice of /3, taken so that the extended 
bundles E”, E” are also defined on X -A’. Here and below we take the fibers of normal bundles 
to be close to E’. See [8; 88 6,7] for this type of discussion. 

Now let n be a differential form of dimension u in C”(X, A ; R), and DO a disk transverse to 
E’ with a bounded angle, lying in X-A’, and 

D, = f”(Do) n (X-A’). 

Then, 
LEMMA 4. Given e >O, there is a constant C >O such that lJD, ~1 s C(A + E)“, all h > 0. 
The proof uses the 
LEMMA 4.1. We can define a “projection ” wh : DI, + B h+B in the tubular neighborhood v,(Bh+,) 

for some fixed p and all large h. Furthermore, f”(D) n (X - A’) + ?T~(D~) in the C’ sense. 
Proof. This is essentially contained in [7], [8], but we indicate how part of the proof goes. 
Let Y% W”(p)) be the T-tubular neighborhood of W”(p); this contains in turn 

v:w”(PN 1 u vt (W&i” (x 1) = VT, 
XemW”(P) 

where v,( Wdy (x)) is the T-tubular neighborhood of the d-ball about x in W”(x). Also v, contains 
a neighborhood of A. To see this, note that A n W” @) is dense in A so that the uniformly large 
T x d boxes contain an e-neighborhood of A for some E. See [8; 8§6,7] for this type of 
discussion. 

There is the “semi-invariant disk family” W,(x), for each x E W,“(A) = U )IEA W,“(y). Let 

F = f( W,“(A)) - W,“(A). (F is a “proper fundamental domain.“) If p is small enough, then 

U xews”(h) Rw- u rEF wx> 
is a neighborhood of A. But in fact, if we let 

c= u Ws”b), 
xEAnW”(p) 

then 

U(S, p) = u wEC W;(w) - u +,=,oc W&v) 

is also a neighborhood of A. 
To see this last, note that the proof of [6; (4.1)] gives a uniform estimate and W”(p) fl A is 

dense in A by our hypotheses. Furthermore we choose p and S much smaller than T and d, so that 
in particular, U(6,p) C v,, defined above. In fact, for any x E A fl W”(p), 

&GE u W;(w) c V~(Wd”(X)) c v,. 
wew.“(x) 

Thus, to define the “projection” on U(S, p) along the fibers of v,, it suffices to do this for each 
box B(x), if only finitely many boxes are used. So we define a partial projection 
7~x: B(x)+ We”(x) just to send z E v, fiber of v,(Wsy(x)) to its base point. 
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Now given z E U(&p), say z E qP’(w) and w E Wa”(x), x E A fl W”(p). Define 
no(z) = r=(z). If fh(z) E U(S,p) for Oa h 5 k, then fh(z) E wPs(f’w) and f”(w) E W8”(xh), 

where x,, E A rl W”(p). Moreover, the distance between fh(.z) and f”(w), measured along 
wP’(f“w) is less than @“, where O< 0 < 1 is the contraction along the wi’s. 

If, p, 6 are chosen small enough, then 

(1) fh(z) E &Wd”(Xh); 

(2) qh = nCfhz) E w&(xh); 

(3) f(qh-1) E w%h); 

(4) f(Wd”(Xh)) 1 WdU(Xh)+l; 

and by induction 

(5) fh(Wd"(XO>) 1 WdU(Xh)* 

Here (1) is obvious and implies (2). Then (3) and (4) follow easily, geometrically. 
We return to the proof of (4.1) and note first that there is a finite set of the &‘s which cover 

Do. Thus we write Do as a finite union 

Do=E, u ..a U Et, Ei fl Ei a thin set, 

where each E, C l?(xO, I = 1,. . ., t. 
Now take p sufficiently large that BP 1 Wa”(x,), for I = 1,. . ., t. We define 

rh : Dh + &,cg, LiS fOllOWS: 

if Z E Do, Say Z E Et, then fh(Z) E &Wd”(Xl.h), 

where Xl,,, = (X,)h. But 

Bh+@ > fh(WdY(%)) 1 WdY(.b) 

so that it is OK to set 

rh(f’i?)=proj of fhz in v,Wd”(xI,h) 

as then rh(fhz) C Bh+@. It follows that 

?rhIfh(El) II (X-A’) is C’, 

just because the bundle V~ is. 
That f”(D) n (X -A? converges to ?r,(D,) is a familiar argument, used in the proof of the 

stable manifold theorem[7] and elsewhere[8]. The crucial fact is that we can use the 
semi-invariant disk family to show that rh moves points by no more than reh where 0 < 0 < 1 is 
the contraction along the ppS’s. Since the tangent planes to W”(p) n U(p, 6) lie in a continuous 
bundle E” defined on a compact neighborhood, the result follows. 

For large h, f”(6) is transverse to the smooth bundle v,, which gives convergence in the 
Cl-sense, as in [7] and [8]. 

We continue with the proof of Lemma 4. Using Lemma 4.1, there are eh > 0, ch +O as h +m, 
such that (recall JK means JKn(X--A~) 

so that 
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II I f”(D) q 5 (C + eh) vol (mz(D)) 

~(C+a)vol(Bh+P) 

5 (C + Eh)(A + l y(A + elh 
c C’(h + l y. 

This completes the proof of Lemma 4. 
Now suppose we are given an eigenvalue u + ycr in H. (X, A ; R) and suppose first that y is 

real. Then there is a singular cycle Z ‘yiui representing u such that the CT~ are all transverse to E’ 
with bounded angle. Let 7 be a differential form dual to a, i.e., a closed form such that _fr Tio, n = 1 
and J7 q = 0 for all other singular T’S filling out a basis of H.(M). Note that these sums are all 
finite. Here, we are integrating over a chain having its support in X - Ao. But below this will not 
be the case; _fK q means JKn(~--A~) 1. 

Computing, 

But. 

Thus ]r]” I C,(A -t l )"; that is, for each E > 0, there is a C, = Cl(e) such that /yj” 5 C,(A + e)“. 
Thus ]y( d A + l for each e so that IyI s A. This proves the following in case y is real: 

LEMMA 5. If y is an eigenualue off*: H.(X, A)+ H.(X, A), then l-y] I A. 
The complex case. Let y be a complex eigenvalue, and [cr] be a corresponding eigenvector. 

We think of [a] as being a real vector in a two dimensional vector space V and write 
f*[u] = (y].R([u]), where R is a rotation of V. Let 7 be a corresponding real form, dual to [u], 
and let u be a singular cycle representing [u]. 

Choose a sequence ni + ~0 such that Rni --, the identity on V. Then 

= ’ q I 5 C(y]“j for large i. 

Thus IyI I A as in the real case. 
Next, suppose we are given a real eigenvalue y of f*, : H!(X, A ; W)-+ H,(X, A ; R) where 

I < u. As before, we let 5 be an I-dimensional cycle representing the homology class of the 
y-eigenvector. Let n be a closed differential form dual to 5. We wish to estimate J,rfq, for R 
large. 

We think of 5 as a geometric complex K of dimension I, with a real coefficient ai associated 
with each I-simplex 0;. Consider the Cartesian product, K x D, D a (U - /)-disk. 

For any map H: K x D --* M, so that H)K x 0 represents 6, we have that 

IY I” = 16 (I,, H*f*“v) dfl 
where 5, = H/K x t, t E D, weighted with the coefficients ai on ui X t. Here D has 
(U - /)-volume = 1. Then 

IYI” 5 c’/_ IlH*f*“rlll. 
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Note that we have absorbed the coefficients aI into the constant C,. 
Now H is chosen to be transverse to E" with bounded angle, and to be a diffeomorphism on 

each closed u-simplex Di" for some simplicial subdivision of K x D. Then 

where o is the volume form for the E" bundle, and Q < 1. Here o is only Co as a form, but we do 
not use any differentiation. Further, w is defined up to sign only, so that all further integration is 
taken in a positive sense. (Y can be taken less than 1 because in the adapted metric, j uniformly 
stretches every vector in E ". Consequently the volume of any u -dimensional parallelopiped in 
the bundle E" grows faster than any I-dimensional parallelopiped by a factor of S“-‘, where 
6 > 1 is the minimum expansion on E". 

Hence 

as H* is a diffeomorphism on each D,". Thus 

Now we are back in the case of estimating the growth of u-forms over disks, so that 

Iyl” IC5a" vOlB,+,~ C6a'"A", 

where a <a'<l. Hence Irl<h. 
The case where y is complex is treated just as before. Thus 
LEMMA 6. If y is an eigenuafue of j*,: H,(X, A; R) f_J for I < u, then IyI < A. 
Proof of Proposition A. If we consider the dual filtration of j-’ given by 

b=M-M,CM-M,-,C...CM-Mo=M 

our proof up to now applies, and shows that for any eigenvalue y of 

1~15 h(f’IA) = h(flA) = A, i 5 s 

with strict inequality holding except (possibly) when i = s. But as the coefficients are real, 

ji-I*: H'(M -M,-,,M - M,);3 

has the same property for i 5 s. But now by duaiity (see e.g. [4; p. 641) it follows that 

has this property for i 5 s, and therefore so does f+i, for i 2 u because u + s = n. This completes 
the proof of Proposition A. 

Hence, using the homology sequence of the pair (M,, Mj-J, it follows by induction on j and 
Proposition A, that hCf[M,) 2 log scf*IM,) for each j; see [4, p. 671. For Mj = M, the theorem 
follows. 
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92. ENTROPY AS AN EIGENVALUE 

We begin with a proof of Theorem 2b. Here, the Lefschetz trace formula determines N. [18] 
as 

N, = (-1)“A” 2 (-l)i trace jii 

where we use j*i to mean j*i: Hi(Mj, Mj-1; R) ;3. Therefore, h(jlh,) = lim sup (l/n) 
log (-1)” A” C (-l)i trace j;i and the only map on the right which can possibly contribute an 
eigenvalue which is large enough is j*“. This proves Theorem 2b. 

To prove Theorem 2a we use the auxiliary space introduced by Guckenheimer[5]. For the 
sake of completeness and to include a few more details, we include a description of this space in 
the appendix. 

LEMMA (Guckenheimer). There is D rehztiue manifold (2, A) and a relative double cover 
7~: (&+ (X,A) such that 

(1) (X, A) is as in the proof of Proposition A. 
(2) (_%, A) has the same (relative) structure as a manifold with basic set satisfying Axiom A. 
(3) There is a map f: (2, A)+ (2, A) cooering j. 
(4) N,(J) = (-1)” B (-l)i trace/$. 

Note that the local structure of (X,A) (e.g. smoothness, stable manifolds, etc.) pulls back to 
(x, A). Now Proposition A applies to f so that 

where strict inequality holds except (possibly) when i = u. Thus 

But f,, is the same as j,, with coefficients in the orientation sheaf of _% This proves Theorem 2a. 
Theorem 2’ is proved by comparing two computations of the zeta function of 

f: (2, A) + (2, A), that due to Guckenheimer (above) and that due to Manning. Manning 
proved [9] that 

P(t) 
q(t) det (I - tT)’ 

[I I - P >; 9 p any zero p or q 

where T is a positive integral matrix and log A is the entropy of jlAi. Guckenheimer’s 
computation together with our Proposition A, gives 

u 1 v >-t h , v any zero of p’ or 4. 

The second half of this last follows from Proposition A because each of $ and 4 is a product 
of terms of the form det (I - tj*,)j# u. The Perron-Frobenius theorem says that the zero’s of 
det (I - tT) include l/Aw where o varies over a complete set of roots of unity. It follows that the 
roots of det (I - tf*.) include {llhw} and thus that the roots of det feU - t1) include {Ao}, o as 
above. Taking o = 1, proves Theorem 2’. 

To prove Corollary B, we note first that j*. : H,(M: W) 3 has eigenvalues of the form {AU}, 
A > 1 and o as above. But as we are on the C-dense case, the matrix T has the property that Tk 
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has all entries strictly positive, for k 2 (some integer). But then, again by Perron-Frobenius, T 
has an eigenvalue h > 1, and all others of modulus < A. 

Thus let C. be a homology class associated with A and C, E H,(M: W) the dual class. This 
proves (1) and (2) of the corollary, and (3) follows by duality and the strict inequality above. 

APPENDIX (AFTER GUCKENHEIMER[S]) 

Recall that we choose the (X,A) in the proof of Proposition A small enough that 
(a) the bundle E’ extends to X -f(A”); 
(b) the derivative df extends to $J 

- 7” * 7: 
X-A" - X-l(A’) 

where B,’ and e,’ are restrictions of I?“. (Note: using the later work of [6] as above, 4 can be taken = df). Then let 
(2, A) 3 (X, A) be the relative double cover of X, A which orients the bundle 8”. In detail (as this seems to be a novel 
notion), let 

be the double cover of X0 orienting I?” to the bundle l?,= over X0. Let X = X0 U A/- where x - y if 
(1) rrox = ?rOy and nOx E A or 
(2) aar = y and y E A. 

Define 8’ = &“I.% - A, A = image of A in X Note we still have a map n: (&A!+ (X, A), that the deck transformation 
T: X -+ X is fixed point free off of A so that rr is a relative double cover and (X, A) a relative smooth manifold. In general, 
now, there is an orientation of %’ so that T reverses it at each point. It is sometimes, but not always, unique up to signs (e.g. 
it is not unique for the “horse shoe”). 

Next, there is a lifting of f to f 

J?‘-x 

I- c 
x-x 

This was defined in [5] by 
(i) rJ4 = unique covering of f 

(ii) AX- R is the unique covering of f preserving the orientation of E”. 
Such an j is clearly unique if it exists. To see that it exists, proceed through the connected components of X-A” one at a 
time, as follows. Take x E C. jx is determined as one of y, Ty, where ny = nTy = ?rfx. But for one and only one of y, Ty will 
this preserve the orientation as T reverses it. And this choice prevails uniformly over C by connectedness. Thus f is 
continuous on C. Finally, X-A” will generically have only finitely many components. In particular, finitely many 
components of X-A, cover ri = n-‘(A). Use them. 
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