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STABILITY OF FOLIATIONS
BY
HAROLD I. LEVINE(!) AND MICHAEL SHUB(2)

ABSTRACT. Let X be a compact manifold and let & be an integer. Itis
shown that the set of homeomorphism conjugacy classes of germs at X of foli-
ations of codimension % and the set of homeomorphism conjugacy classes of
(holonomy) representations of I, (X) in the group of germs at 0 of 0-fixed self-
diffeomorphisms of R™ are homeomorphic when given appropriate topologies.
Stable foliation germs and stable holonomy representations correspond under this
homeomorphism. It is shown that there are no stable foliation germs at a toral leaf
if the dimension of the torus is greater than one.

0. Introduction. The qualitative theory of ordinary differential equations on
compact manifolds without boundary may be considered a part of the theory of
foliations, but the question of stability which has dominated so much of the re-
cent work on vector fields and diffeomorphisms has been largely untouched for
foliations. The relation between global and local perturbations is different for
the two theories; whereas every local perturbation of a vector field extends to a
global perturbation, the same is not true for foliations. This can be seen by com-
paring Hirsch’s sufficient condition for global stability (quoted below) with our
nonexistence theorem for local stable foliations at a toral leaf.

In trying to generalize certain stability theorems for vector fields one can
assume the existence of a vector field tangent to the leaves which has a stabili-
zing effect on the foliation. For example.

Theorem (Hirsch). A foliation of a compact manifold which admits a normally
byperbolic vector field is stable.

In the same spirit, another easy consequence of [H.P.S.] is the local theorem
of persistence of a compact leaf:

Theorem. Let X be a leaf of a foliation ¢ Suppose there is a neighborhood
U of X and a vector field in U_\‘tzmgent to ¢ and normally byperbolic at X. Then
given a Clesmall perturbation ¢ of ¢ in U, there is an embedding i: X — U,
Cl.close to the inclusion of X in U, such that T(X) isa leaf of ?j;
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On the other hand at a compact leaf X of a foliation of codimension k one
has the holonomy representation. This is a representation, defined up to conjuga-
tion by elements of Diff (R, 0), of I X) in Diff (R, 0), the germs of local
diffeomorphisms of R® at the origin which leave the origin fixed. This is the gen-
eralization of the Poincaré transform. The holonomy group of X is the image of
the holonomy representation; this too is only defined up to conjugacy.

Theorem (Reeb stability theorem). Let X be a compact leaf of a differentiable
foliation. If the holonomy of X is finite then X bas a fundamental system of
neighborboods each of which is a union of leaves.

That the stability in these two results arises because of completely different
reasons is made clear by

Proposition. Let X be a leaf of foliations of a compact manifold which admits
a normally byperbolic vector field. Then X admits a nonvanishing vector field
and if X is compact HI(X) is infinite.

Proof. Suppose the vector field tangent to X has a singularity, the strong
stable manifold of the singularity [H.P.S.] would contradict the completeness of
the leaves. If X is compact take a recurrent orbit, close it up and observe that
the image of the homotopy class of that curve under the holonomy representation
is hyperbolic and hence the homotopy class is of infinite order. We shall concern
ourselves with local perturbations of foliations in a neighborhood of a compact
leaf and stability questions arising from such perturbations. It is interesting that
we can prove (see $1I) that a foliation is never locally stable in the neighborhood
of a toral leaf T* for k > 1, whereas many of the globally stable foliations of
Hirsch have toral leaves. Thus it is clear that there are local perturbations that
do not extend and that the global stability of a foliation is strongly affected by
the integrability conditions.

In part I, the notions of stability of a compact leaf of a germ of a foliation
are defined. The object of $1Iis to identify the space ¥ of homeomorphism
equivalence classes of foliation germs in a neighborhood of a compact n-manifold
X embedded in (n + k)-dimensional manifolds, with a subspace {H(X, Diff R¥)}
of H(X, Homeo R¥). The subspace ffx of those foliation germs at X having
X as a leaf is identified with the space {Rep (I (X), Diff (R%, 0))} of homeomor-
phism conjugacy classes of holonomy representations.

This identification allows us to reduce the study of stability of foliations
mod X to the study of stability of holonomy representations.

In part II, this reduction is exploited in order to show that there are no stable
foliation germs mod a toral leaf T* for k> 1.
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While this paper only deals with the stability of foliations in the neighborhood
of a given compact leaf, i.e. stability in Fy, Hirsch [Hirschz] has dealt with the
persistence of the compact leaf under perturbations.

L. Foliation germs at a compact manifold X; the basic homeomorphism theorem.

1. Let M be an (z + k)-dimensional manifold of class C%, ¢> 1. Let F (M)
be the set of C’-foliations of codimension k. We fix ¢, k, and n and delete them
where possible from the notation. In the obvious way F(M) is a subset of the
C'-l.sections of Gn(TM) over M, P(Gn,(TM))- Here Gn(TM) is the bundle over
M whose fibre over x € M is the Grassmann manifold of n-dimensional subspaces
of (TM), . On F(G”(TM)), we put the C!~1.Whitney topology, and we take F(M)
with the induced topology. Since the inclusion, F(M) — I'(G n(TM)) involves
taking one derivative, we call this topology on F(M) the C’topology.

Now let X be a compact n-dimensional manifold. Our object here is to study
perturbations of foliations having X as a leaf, in a neighborhood of the X-leaf.
These perturbations may not be restricted to those that preserve X as a leaf.
Thus we want to look at foliations of (n + k)-dimensional manifolds in the neigh-
borhood of an imbedded X where we make no assumptions that X is a leaf of the
foliation. However since we are interested in foliations close to ones having X
as a leaf we require that the leaves of the foliation are locally graphs over X. For
our purposes, therefore, it is no restriction to consider foliations of a neighborhood
of the zero section of an R®-bundle over X, whose leaves project nonsingularly
to X.

Let v be an R*-bundle over X with projection 7, and zero section 2, Let
U be an open neighborhood of zv(X), and let FV(U) be the set of those foliations
o € F(U) such that

(m,), (0 @) = (TX)7 ().

We topologize F (U) as a subset of F(U), with the C’-topology. We let F Y X(U)
CF (U) be the subspace of those foliations ¢ such that olz (x)) (= ) (TX )
Let F = UF (U) and F y = UF' x(U); where the union is taken over all
open ne:ghborhoods U of =z (X) and the F (U) are disjoint for distinct U.
Fmally let F = UF and FX =UF VX whete this union is taken over all
R¥.bundles over X. Thus F and Fy are disjoint unions of topological spaces;
they are given the obvious topologies .

For each r, 0 <r <t, we introduce an equivalence relation in F. Let o, €
I (TU )) represent foliations in F - i=1, 2. We say that 0| and o, are
C -equzvalerzt at X if there are open sets V,of z, (X) in U, and a C’-diffeomor=

phism b: V1 — V2 such that i
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(1) X 3 commutes.

(2) b takes leaves to leaves.

Note that Fy is a union of equivalence classes. For any 7, 0 <7 <t, we
denote by F7 and F7, the quotients of F and F respectively by the C"-equiva-
lence relation and give each the quotient topology. Thus we have 3:;( a subspace
of F.

If v is an R*.bundle over X, let S:L and T;.X be the images of F, and
F, x in F7 and F%, respectively; 5"; and 3:;. « are open in F" and F% respectively.

Note. Hereafter, we will omit the superscript 7 when r = ¢t; that is, we will
write J for Ft etc.

The set ?V is the set of germs at zV(X) of C!-foliations, and the topology
on 3:1/ is defined by the (¢ = 1)jet at zV(X) of the germ of the section into the
Grassmannian which defines the foliation.

For any r, 0 <r<t, the forgetful map ffx —*?;( is continuous.

Definition. A foliation class o € TX is C'-stable if the forgetful map ffx—'
3:;( is constant on a neighborhood of @.

Questions. (1) Is the C"-stability of o equivalent to: the image of ¢ in 3";{
is an isolated point?

(2) Is the forgetful map F, — ?;( open?

Definition. A foliation in Fy is C"-stable at X if its image in gx is r-stable.

Generally we shall be interested in CP-stability, thus when we say that a
foliation (or its class) is stable we will mean CY-stable.

2. Let Homeo” (R¥) be the set of germs of local C’-diffeomorphism of RE,
and let Homeo” (R, 0) be the group of those elements of Homeo” (R*) with source
and target equal to the origin. For the integer ¢ introduced in the preceding
paragraph, we let Homeo! (R¥) = Diff R* and Homeo! (R¥, 0) = Diff (R¥, 0). We
topologize Diff R* by means of the t-jets at the source; that is we give it the
weakest topology making the map continuous.

Diff Rk — JUR*, R*): f — JH () = (x, [0, 1 (D),

where f is a germ at x. Call this topology on Diff R* and the induced topology
on the subset Diff (R¥, 0), the C’-topology.

In distinction to the C’-topology, we have the usual sheaf topology on
Homeo”(R*), for any 7. A basic open set in this topology is (f, U) the set of
germs of [ at all points of U where U is an open set in R® and f is a
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C’-diffeomorphism of U into RX. Note that in this topology Diff (R, 0) is discrete.
We use the sheaf topology on Diff R® and Diff (R*, 0) to define the sets

HYX, Diff R¥) and H(X, Diff (R, 0)). The inclusion of Diff R®* in Homeo”(R¥)
for 7 <t induces a map from H (X, Diff R*) into H!(X, Homeo” R¥). We denote
the image of this map by {H (X, Diff R®)}". Similarly, {H!(X, Diff (R%, 0))} is
the image of H (X, Diff (R®, 0)) in H'(X, Homeo"(R¥, 0)).

To topologize H (X, Diff R*¥) and #'(X, Diff(R%, 0)), it suffices to topologize,
in a consistent way, the set of 1-cochains C'(1l, Diff R®) for U a finite open
cover of X. But C!(U, Diff R®) is just the product over all pairs U, V, € Il such
that UNV £ & of the sets CWU N V, Diff R*) of continuous maps of U NV
into Diff R® (with the sheaf topology). We give C(U NV, Diff R®) the topology
of uniform convergence using the C‘-topology on Diff R%. Notice that the analo-
gously defined topology on C (1, Diff (R, 0)) identifies C'(1, Diff (R¥, 0)) as a
subspace of (Diff (R, 0))? where ¢ is the number of pairs U, V € 1 with
Uunv# 2.

By a result of Haefliger (H,, p. 303], [H,, p. 382] o [H, p. 188]) there are
1: 1 correspondences

F A gx, Diff RY and F, & #l(x, Diff(RE, 0))
which commute with the inclusions ffx —F and HU(X, Diff (R%, 0)) —

H(X, Diff R*). It is obvious that for each r this correspondence b projects to

a 1:1 correspondence b” in the commutative diagram:

F % plx, Diff R®)

|

Fr B i(x, Diff ROV

Since the topologies on F7 and {H'(X, Diff R*)} are quotient topologies of the
two vertical maps, to prove " is a homeomorphism it suffices to prove that b is
a homeomorphism. The proof of this is carried out in S4.

For each 7, 0 <r <t, there is another space homeomorphic to ?’X, namely
the space of C"-conjugacy classes of representations of II,(X) into Diff (R*, 0).

The correspondence associates to each C’-foliation class the C'-class of its

holonomy representation.

Let Rep (Il (X), Diff (R%, 0)) be the set of representations of H-I(X) into the
group Diff (R, 0), and let {Rep (1, (x), Diff (R, 0)}" be the set of equivalence
classes of such representations, where two representations are equivalent if they
are conjugate by an element of Homeo'(R¥, 0), the group of germs of local homeo~
morphisms of R* at 0. Where no confusion is likely to arise we will write simply
Rep and {Repi{’.
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We topologize Rep as follows: Since II,(X) is finitely presented we can
choose a finite set of generators y,, «++, y, and map

y: Rep ——— Diff (R*, 0)”

p —— (ply )y <=5 ply))

and put the y-induced topology on Rep. This topology is independent of the choice
of generators. In fact if 7,, +++ 7 is another set of generators, then there are
words w(y, +=+5y)=n; and v(q, o0 n) = ¥; which define continuous maps
w and v, making the following diagram commute:

Rep —— (Diff (R¥, 0))"
w v

(Diff (R*, 0))°
Thus in the y-induced topology, 7 =w ©y is continuous so the y-induced topology
contains the 7n-induced topology.
We give {Rep(Il,(X), Diff (R*, 0))¥" the quotient topology.
Definition. A representation p € Rep (I, (X), Diff (R¥, 0)) is C'-stable if
the forgetful map

Rep (11, (X), Diff (R*, 0)) — {Rep (I, (X), Diff (R, 0))¥"

is constant on a neighborhood of p.
In the next section we establish a homeomorphism between

{HY(X, Diff Rk, ODY and {Rep(T1,(X), Diff (R¥, 0D

for 07 <t
Our results can be summarized:

Theorem 1. (a) The map b: F — HYX, Diff R¥) is a homeomorphism which
projects to a homeomorphism b” such that the following diagram commutes:
¥ b » HY(X, Diff (R, 0))
F§ ——H'(x, Diff R®)
§ —*{n(x, Diff R

|/ ~_ !

Fr, i » 111X, Diff (RE, O’
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(b) {H(X, Diff (R%, 0))}" and {Rep (UI(X), Diff(Rk, O} are homeomorphic

and the homeomorphisms commute with the forgetful maps. In particular the follow-
ing diagram commutes:

H'(X, Diff (R¥, 0)) — {Rep (I, (X), Diff (R¥, 0))}*

1H(¥, Diff (RE, 001 —{Rep (I, (X), Diff (R, O)Y"
(In both parts 0 <r <t and the topologies are the C'-topologies for t > 1.)

From this theorem we see that the study of stability of foliations at X is
equivalent to the study of stability of representations of II,(X) in Diff (R¥, 0).
More generally, if G is any subgroup of Diff (R¥, 0) with the inherited C’-topology
and F3G is the image under (b")~1 of {H!(X, G)¥, then

Corollary. There are homeomorphisms k™ (0 <r <t) such that the following
diagram commutes:

?;'G———ks—' {Rep (HI(X), (el

|

F36 * L, Rep I, (x), G

for 0 <r <s <t: the vertical maps are the forgetful projections.

Here {Rep(Il,(X), G)}" is the image under the forgetful projection of
Rep(II,(X), G) in {Rep(I],(X), Diff (R®, 0)}". The proof of the corollary is merely
the proof that {H(X, G)¥" and {Rep (T, (X), G)¥ are naturally (with respect to
forgetfulness) homeomorphic. This is proved in the next paragraph.

3. In this paragraph we construct a homeomorphism between {H!(X, G)}" and
{Rep (Il (X), G)¥" for any 7, 0 <7 <t, and G, any subgroup of Diff (R®, 0). Since
r is fixed in this paragraph we will suppress it.

Let U ={U,, .-+, U,} be a finite open cover by coordinate balls such that if
Uu,nu;=0, # & then U; U U, is simply connected and if U, NU; nu, =
Ui #% then U;U U, VU, is simply connected. We will show that {H1(ll, G)}
and {Rep (Il (X), G)} are homeomorphic. From the construction given below, it
it clear that if B is any covering of X of the same type that refines U then the
homeomorphism of {H1(B, G)} and {Rep (Il (X), G)} can be defined so that

('MW, 6)}

Py {Rep (I1,(X), G)}

{HY(3, 6)}
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commutes, where Pgu is the refinement map. Thus we will have defined a homeo-
morphism of {#!(X, G)} and {Rep (I, (X), G)}.

Let Z}(, G) = Z ! be the set of l-cocycles based on the covering l. Let
g be the number of pairs (i, j) with 1 <7, j <u such that U, ,1- @. Then as men-
tioned in §2 zl s just a subset of G4 Let A be the mclusmn of Z! in G4

Foreach U, € 1, choose a point x, €U, i=1,---,u; we construct a set
of ¢ generators for II,(X, x,). For each U, ;4 &y i< ], choose an arc D
Uu,v U joining x, to X e We will denote by D ., D, ]. , and D, is the constantly
X, path. For each *;, choose a path C; from xl to x. having the form
Dli2Di2i3 cee D,-l,-. For C, we take the constant path. Let Yii be the homotopy
class of CD; C 1. Since any closed path at x, is homotopic to one of the form
DDz " D 1 the set ly,;} obviously generates (X, x,). Using this set
of generators defme the map y from Rep = Rep(ﬂ X, x ) G) into G% By the
definition of the topology in Rep and Z ! we have two continuous inclusions

¥: Rep —G9 —Z1:M

The image of y is contained in the image of A. To see this we need merely show
that if U, # & that ¥(p);; ©¥lp), = ¥p),, but

) o ey = p(yil.) ° p(y].k) =ply, W=(>cp c: Nic. D4Ch 1)

= pCD, D, Co D = pICD,CE D = ply ) = ¥ip) .
Here we have used the simple connectivity of U, U U UU,, D”D’ 4Dy =1

Thus we have a 1:1 continuous map ¢: Rep — Z 1 defmed by Ao =y. To
construct a map in the other direction we define a map 7 from G7 to itself so that
the image of 7 ©A is contained in the image of y.

We have chosen as representative of y;; a word in the paths {D,;} which
begins with D,, and ends with D ;. Call this word ri.(D); r,.isawordin ¢q
symbols. Thus we may define 7: G? — G? by (T(g))ii = rij(g) for g € G% This
map is obviously continuous. To show that the image of 7°A is in the image of
¥, let g be in the image of A. Define P(yu =7, (g) We must show that p thus
defined on the generators of II (X x ) extends to a representation. This means
that if w is any word in ¢ symbols and if wly,) =1 then wlr (g))=1. Orif
w(r (D)) is null homotopic then u'(f (g)) =1, But the word w(r (D)) is null
homotoplc iff it can be reduced to the trivial word D, by a sequence of substi-

tutions of the form

(1) DD, replacing D, %f Ujkl’é @,

(2) Dy; replacing DD, if Uy, £ &
However if g is in the image of A, for each nonempty U;’kl we have g, .8 1j = 8kj*
Thus the image of 79X is in the image of y. We define a continuous map
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6: Z! -+ Rep by roA=yo8. Notice that 7 is defined so that 7 oy=y. For let
p € Rep and suppose y,. = [D1k1 eeeDyiees Dlll}' Then

r,p)) = p(ylkl) ceeply)ees p(ylll)
- P(ylkl e ‘y” se e yll) = p[lelelkz Y Dl] cee Dlll] = p(yu) = (y(p))u.

Thus we have constructed continuous maps making the diagrams commute:

a Glee1" G4
/\ and ')'I Ix
ZI

Rep 3 Rep — z!

Thus roy=rolog=yofog. Since roy=y wehave y=yo0o¢ so
Qo= lpepe So we have 6 is surjective. Suppose p and p! are conjugate repre-
sentations. Then there is a homeomorphism germ 5 such that

p‘(yi].) = bply b= 1 y(pl)il. = bly(p), )b~ 1

Thus ¢(p) and $(p!) define the same element in {#!}". Call the resulting con-

tinuous map, [¢]: {Rep} — {H!}". Also if g and g! in Z! define the same ele-

ment of {Hl.l, that is, if g}j = bigi’]:o;.'l for b, b in Homeo'(R¥, 0), then 6(g!)

is the b -conjugate of 0(g). Thus 6 also defines a continuous map [6]:

{H1})" — {Repl’. We already know that [6] o[¢] = 1 To see that [¢] o [6] =
111-11}’ note that

(8 00)g),, = 0y, ) = (O, = (A,

i Rep }".

-1
- 1”(g) = (giil cee glll)g”(glkr coe gkl l) = b'gl,b’

where C".=D1’.1 D,-I; and Cj=Dlle1 Dle,j'

This completes the proof of the fact that

Proposition 1. For any r, 0 <r <t, and any subgroup G of Diff (R*, 0), if
X is any compact manifold then {Rep(I1,(X), GV and {H(X, G)¥ are homeomor-

phic. These homeomorphisms commute with the forgetful projections.
4, In this paragraph we prove

Proposition 2. The 1:1 correspondence b given by Haefliger (see §2) isa
home omorphism making the following diagram commute.
jf —t B, Diff RM)

Fy ——sHUX, Diff(R*, 0))




428 H. I. LEVINE AND MICHAEL SHUB

To show that » is a homeomorphism, we restrict our attention to the open sets
3: and j:v x for v an RE-bundle over X. We describe 3" and 3:14 x in terms of
coordmate-/olzatzon germs at z (X) (defined below) by means of distinguished
functions (see [H ]) Since v wxll be fixed for this paragraph we let E be its
total space, 7 its projection, and z its zero section.

Definition. A coordinate-foliation germ at z(X) consists of a pair (1, f)
where Tl is an open cover of X and [ =1{f,| U € U}, where f,, is a germ at z(U)
of a diffeomorphism of a neighborhood of z(U) in E|U into U x R* such that

(1) the following diagram commutes,

(E\ U, =U)) w
Efu \ U
! /

(U X Rk, CU(U»
where {; =f, °= |U and p is the projection on the first factor. The Mather
broken arrow will be used to'denote germs.

(2) If U and U '€ U have nonempty intersection then there is a continuous
function from U N U’ into Diff R* (with the sheaf topology), gyy' » such that

(ElunU', «AunU)
fu' fU

gUU’

N\
(Un U xRE LU n u”) (U AU xRk, £ (U n U")

commutes, where if (z, v") = {yr @) and (u, v) = {,(@), then g ,0(u,*) is a germ
of a local C!-diffeomorphism of R*® with source v’ and target v. Call {/U}, the
coordinate germs and g1}, the transition germs of the coordinate foliation germ

For a fixed covering 1 of X, let C (1) be the space of coordinate foliation
germs defined in terms of . We topologize C V(n) by declaring two elements f
and f' to be close if their t+jets; (J¥f)|2z(U) and (J*f )1 z() are uniformly close.
An element of Cy(ll) determines an element of 3:”, that is, there is an obvious
map of C (11) into 5: Call the image of C (11) in 3" ¥ (11)

The collectxon of Cc (11) for all open covers Il isa dxrected system as is the
collection of all F (). The direct limit of {F (W)} is 3"1/ Replacing Diff R*
by Diff (R®, 0) in the above definition, we can define C, (1), and EV xW);
again F ,.x is the direct limit of 3: x{W). The topolog1es on §,(0) and 3" )
are the quotient topologies of those of €, (M) and C, ,(0).

Roughly speaking, dir lim (C, (11)) is the set of mxcrobundles with constant
transition functions at z(X) in E. An analogous imprecise identification could
be made of dir lim C V(U.) if we had available a notion of microbundle without a
zero section.
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The mapping 5: F — H1(X, Diff R®) can be easily described on F ). Take
a foliation which is the image of f € C (1), the h-image of this foliation is the
equivalence class of the I-cocycle in Zl('ll Diff R¥) given by g = lgyylU, U' €U},
the transition germs, where f, © /U' =1xgyy'- We determine the images under
b of ffy in H1(X, Diff R*) and of ffy(ll) in H(W, Diff R*).

Consider the map j: Diff (R*) — GL (k, R): ¢ — ¢'(x) where ¢ is a germ of
a diffeomorphism of R* with source %, and ¢'(x) is the Jacobian of ¢ at x. This
is a groupoid morphism and induces a map j:H (X, Diff R¥) — H1(X, GL &, R)).
In the usual way, by means of transition functions, we consider v € HXX, GL{, R))
and let H;(X. Diff R¥) be the preimage of v under j, and let H(X, Diff (R, 0)
be the j preimage of v in H;(X, Diff (R, 0)).

To complete the proof of Proposition 2 we prove

Lemma. (1) The h-image of ffv is contained in H;(X, Diff R%).
(2) HYX, Diff R®) is open in #'(X, Diff R®).
3) b ffv - HIIJ(X, Diff R®) is a homeomorphism.

Proof. For (1) it suffices to prove that the h-image of F (1) is contained in
Hi(n, Diff R*) for any open cover 1 of X, by coordinate balls. Thus we look
at the map 4 on the *‘coordinate’’ level: h: CV(U,) — ZlW), taking a set [ of
coordinate germs to the set g of transition germs. In particular suppose U =
U, }, let f, /U 3 =8y,uj E. -EIU etc. Thus b({/ = {g } where
I1xg,. —/ 0[ < Suppose c{)e local trivializations of E are gnven relative to
U by F E, —*U x R®. Thus the cocycle representing v-in H!(1, GL(k, R)) is
given by {G lwhere 1xG=F, OF'I, where G2 U, —GL (%, R). Define
1xA a germ at U;x0 of a dxffeomorphxsm of U, x Rle by the commutativity of

UxR"‘

e

\
f;

~ £Rk

Thus we have the germ equation at U i % oCcvuU i % R",
)\j o1 x Gji) =8; 0 (1 x Ai)'
Letting D denote differentiation in the R*.direction, we obtain

(D)‘i)lv,.,xo +Gji=(Dg;) ol x Ai'Ul.].XO) : D'\ilUi]xO

which gives us the equivalence of the j-image of the class of {g i].} with v
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To prove (2) it suffices to show that H1(X, GL(%, R)) is disctete, for which
it suffices to show that for any open cover Ul of X, H!(U, GL(%, R)) is discrete.
Thus we must show that if g and g are in ZX(1l, GL(k, R)) and sufficiently close,
there exist continuous maps A;: U — GL(k, R) such that gy, x) 0 A ix) = Ajy(x) ©
Euut(x), forall U, U' € Ul and x € U NU'. The construction of such a 0-chain
A is a special case of the proof of (3).

To prove that b: F, — H1(X, Diff R*) is a homeomorphism we note first that
by (1) of this lemma and the above mentioned result of Haefliger that this restricted
b is 1:1 and onto.

Note. In the remainder of this paragraph we omit Diff R® and X from the
notation for H1, z1, etc.

For each open cover 1l of X, we have the commutative diagram
hy
F Q) ————H L(ll)
%y Pu

y yl
3:11 A H,
where a, and 3, are continuous. Thus the continuity of b is a consequence of
the continuity of by which in turn is a consequence of the continuity of
cv(ll) i Z},(U.\ which takes a set of coordinate germs into the corresponding
transition germ cocycle. This last map is obviously continuous.
We prove that =1 is continuous by showing that for each open cover U the
map h~lo By is continuous.
Since the projection Z1(l) — H1(1) is open we need merely prove the continu-
ity of
By -1
z\w) - plmy = HL A F

v

Remark. 1. 1t is sufficient to restrict attention to covers of X by open coor-
dinate balls.

Definition. Let a: Diff RE — R* and b: Diff R* — R* be the source and
target maps. We say that a cocycle g € Z1(Ul, Diff R®) is C* if

(i) a(g ) Uy — Rk is ¢! and

(ii) the germ of the map at the graph of a(gu) Vit Ui % Rk— — R*, where

(x, ) is the germ g, (x), is the germ of a C!map.

Obviously if g is a C'-cocycle, b(g ) are also all C!-maps.

2. Since b: 3: -—»Hl is sur)ectwe, it is no restriction to compute Hl
using only C* -cocycles For the rest of this paragraph ZL(]J,\ means the set of
C*'-cocycles.
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Definition. If U is any open-ball covering of X, a proper refinement B of U
is a refinement by open balls such that the cover, B, the set of closures of the
balls in B, also refines 1.

The continuity of h~! is a consequence of the following:

Lemma. Let 1l be a cover of X by coordinate balls. Let g€ Z}J(U). Then
there is a proper refinement B of U and a neighborbood O of g and a continuous map

70—, ®)
such that the following diagram commutes:

zw>0 ¢ @)

Here b, and Gy are the obvious continuous projections.

Proof. The refinement B is any one such that b~ 1p,(g) € image of Iy It
is no restriction to assume that 1 —{U - U, } and B = {Vl, eV, } and
v;cC Vl C U; forall i. Just take a refmement 11 that has that property, construct
the map for the pair of coverings I’ and 8 and compose it with the refining map,
zL(W) — z1(W". Similarly we can assume that there is an f € C (1) with
bqu(/) = pu(g). In fact we may assume that if /={f, i=1,+++,2} and g = {gi].} that

fioff'=1xg.: U xRF——U xRt

as germs with source f(z(U;))) = graph of alg;;) and target f; (2(U,; )) graph of
a(g ;). Let a; i= a(gu) U;; L R*. The scheme of the proof is as follows For
'E close enough to g, we construct a set of submersion germs:

A: U.x RE— —sR*® with source U (graph a, ) U (U - UU)xRk
it N Vij
1;57 z;é]
where if we set ?; =(1xA)ef;, then

Lo VI A V]

- ~
fio/].l=1><gz..: Vi.ka-v——)Vi.xR."

as germs at the graph of a(g |V ) Notice that there is no a priori contradiction here
since if U, # & then g, g]k g on Uy so . =a, there. Thus a()\) is well
defined on U ;U The continuous dependence of A on g, g and a fixed

finite collectxon of partitions of unity is given explicitly below. The measure
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of proximity of g to g that defines the neighborhood 0O is given by the condluons
that the constructed A] are all submersxon germs. The fact that / o /' =1x g
on the graph of a(g . i |V ]) gives ho q%(/ = bq n(g) pu(g\ the commutanvxty
of the diagram of the lemma.
Let g € ZIW. Let alg;)=a,; and a@, =1 a5
= F . We proceed to define the )\ As we go along we find the conditions on
g wluch define O, the domain of 7. We define A in two steps. First for each

and let the graph of

j=1, -+, u, we define a submersion 7; so that

lxr
E —-——+U x R% ————-)U x R%

the target b1 x 7;° f ) agrees (on a slightly smaller cover) with the sources
a(l x g ). Thus at least as far as their sources and targets are concerned g ij
and (1xr)of7 lo(1 x r) 1 agree. In the second step the diffeomorphisms are
made to match up.

Let U1 be a proper refinement of 1 so that BcUlcUlc by which we
mean U!={Ul, ..., Ul} with

v.culcUlcu, for i=1l,eer,u
13 1 1 1

Let j€ {1, -+, u}; we define Tie Let {qSl, cee, qS } be a partition of unity for
U, subordinate to cover {u,; i i#7, u; - Uﬂé] U ! where the support of ¢, i
contamed in Uy, and the support of qS is contamed in U; - Ul,g i Ul.. Defme
2 Up x R* — Rk‘ by:
rlo D=1+ X ¢ () -a, )
i#i
Since /.(z(Ul..)) =T, = {(x, a(x)) |x € Ul.].l we see that for x € Ul.lj:

(1x7)o /([ Ux, a, (x))) = (x, a, (x) + § qSk(x)(a (x) - a (x))).
k#j

For x € Uy, ?z'k].(x)='5ij(x) and ak].(x) = al.].(x). Thus

W r,of )&, ) =T U} =1, &) x € ULL

Let 1x7.°f = fl fle(fh- l-—g”, ii= a(g1 ) and I"1 = graph of au We
have a(g1 )- a(g ) on Uj;. We construct A, =l u, by induction on j

so that (1 X A, ) °f1 fl"l o (1 x )ﬂ lo1x g ; as germs of diffeomorphisms on
F l Vi Let A U1 x RF— Rk be a pro;ecuon on the second factor. Suppose
we have completed (p ~ 1)-steps of our induction. That is, we have an open cover
121 such that B C 1%~ and a collection of submersion germs
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As U?"l x RE— -R* with source f}(z(U;" ),

j=lyeeesp=1, suchthaufff P=axA)eff, j=1,00,p-1, 12=1=1t,
7> b, andlxg —/p“IO(/p'l)’l, then

gp" —g]k on Up 1 for 1<j,k<p-1.

We still have a(g" 1= a(g]k) on Uf =1 for all j, k. Choose a proper refinement
P of UP=1 such thar B C 1P CTIP C 1o~ 1. To simplify the notation for this

inductive step let (el, ceeye ) (fp" .“’/p-l) and e, °e] Tlop, =gt-l
and let UP=1-B and 0P = QB' By our construction so fat by §‘U |w

p-1, and on W”k. bu g]k make sense for all i, j, k& (smce we adjusted all
the sources to be right in the last step). Let {¢} be a partition of unity for W,

subordinate to the covering {W. i <esW, = Uicp i

¢, is contained in W_, j <p, and ¢, = 1 - Ej<p b,
Define Ap by

ij? LIS

}, where the support of

A (x)(t) = Z ¢ (x)(g vi (x) ob; (x)(t)) + qS (x)z.

j=1
The condition imposed on g so that it is in O is that the )\ so defined be a
germ of a submersion at the graph of a(h ) If1<j<p and x € ;,, then
A, (x) = gp (x) °h,, (x). In fact for such an %, A, &)=2, < B, (%) * (gpk(x) o
b (x)) If i<k<p and ¢,(x)#£0, then x € W , and

Foal 0hg, () = 3, (9 07,00 obkp

=B, 0b () 0by () = F, () ob (.

For x € W].'p we have then

(1xA)oe,0e] -(lx)\)o(lxb )-lxgp

which completes the inductive step and the proof of the lemma.

1. Stability and instability of representations.

1. We begin investigating stability questions for S:X via the stability of
representations of HI(X). Here stability means COestability.

Up to this point we have suppressed, to a large extent, reference to the diff-
erentiability class of the foliations considered, the integer ¢. Since the choice of
t is relevant in this part, we make it explicit. The dictionary for this is

Fy=Fo Fy=F%  Diff = Diff".
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As before, the integer ¢ identifies the topology (the C’-topology) used in each of
these spaces as well as in the spaces Rep and {Rep}” constructed using Diff’,

In the case of a closed orbit of a differential equation, the necessary and
sufficient condition for stability is that the Poincaré transform be hyperbolic
[Marcus]. Recall that a linear map is hyperbolic if its eigenvalues miss the unit
circle and a diffeomorphism germ, f € Diff YR*, 0) is hyperbolic iff f'(0) is a
hyperbolic linear map. The following result is well known:

Proposition. If p € Rep (Z, Diff* (R%, 0)), then p is stable iff p(1) is
byperbolic.

Notation. If o € szX’ we denote by p_ the corresponding class in
{Rep (Z, Diff’ (R®, 0)}. Since hyperbolicity of an element of Diff*(Rk, 0) implies the
hyperbolicity of any Homeo® (R®, 0)-conjugate for s > 0, we can speak of the
hyperbolicity of pa(l), hence of p_. Thus we have

Theorem 2. Let o € zSFX and let HI(X) =Z, then o is stable at X iff p_
is hyperbolic.

This theorem is an instance of the stability of a foliation or a representation
depending only on the 1-jet of the representation.

We consider GL(k, R) as a subgroup of Diff! (R%, 0) and let jl: Diff! (R®, 0)
— GL(k, R) be the 1-jet at zero map. We have the commutative diagram:

ﬁ-gL(k.R) — {Rep(IT,(X), GL (k, R)}¥*

FOOLER) 5 {Rep (Il (X), GL(k, RI°

1

0. s {Rep (I1, (%), Diff* (RE, 0))1°

L

Fy 5 {Rep (I, (X), Diff (R, O)F

where all the horizontal maps are homeomorphisms (given by the corollary Theorem
1 of §2). The vertical maps are those induced by the inclusion of GL(k, R) in
Diff (R, 0), and all the diagonal maps are forgetful.

Definition. An element p € Rep (HI(X), GL (%, R)) is linearly stable if the
projection Rep (Il (X), GL(k, R)) — {Rep(II,(X), GL(k, R)1° is constant on a
neighborhood of p.

Using this definition we can speak of linearly stable, linear foliations where
a linear foliation at X is one whose class is in tﬂ")G(L(k'R),
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Question. What is the relationship between the stability of a foliation at X
and the linear stability of its 1-jet, linear foliation?

In other words, if p € Rep (Il (X), Diff* (R*, 0)) how does the stability of p
relate to the linear stability of j! o p?

In the case ¢ =1, it is trivial that if 0 € | F 4 is stable then so is its I-jet
linear foliation. This, of course, is a consequence of the fact that a neighborhood
of p; € {Rep (I, (X), Diff 1 (R, 0)}! contains a neighborhood in {Rep (I, (X), GL&, R}
of j! °p, + Thus we have

Proposition. If there are no stable elements in Rep (HI(X). GL(k, R)), then
there are no stable elements in 13:X'

So far we know that if II (X) is finite, any p € Rep(Il,(X), Diff* (R®, 0)) is
stable. If [ (X) = Z, then p € Rep(Z, Diff*R%, 0)) is stable iff ;! op(1) is
hyperbolic. Inthe next section we show that there are no stable representations
of Z" in GL{k, R) for » > 1. The next question would be the stability of finite-
dimensional linear representations of simple or semisimple groups. Is it true
that all finite dimensional linear representations of a finitely presented simple
group are stable? (This would be analogous to the situation for Lie groups.) We
have been informed that Stallings has produced a finitely presented infinite simple
group. Thus the question is not a priori subsumed under the finite II,(X) case.

2. We now consider representations of Z” into GL(%, R) and show that there
are no stable ones. The proof uses a number of elementary algebra arguments
which are included since we could find no reference for them.

Lemma. Let A, B € GL(k, R); then if A bas an eigenvalue of absolute value
one and B does not then A and B are not conjugate by a homeomorphism.

Proof. If A and B were conjugate by a homeomorphism the absolute-value-
one-eigenvector of A would be recurrent for B. But B has only 0 as recurrent point.

Definition. Let G be any group. A representation p € Rep(G, GL(, R)) is
byperbolic if the eigenvalues of plx) are all off the unit circle for x # idenitiy in G.

Proposition. For n > 1, the set of hyperbolic representations and its comple-
ment are dense sets in Rep(Z", GL(, R)).

This proposition implies

Theorem 3. Let n > 1, then there are no stable elements in Rep (Z”, GL(, R)).

Corollary. Let X be a compact manifold with 11, (X) = Z" for n> 1. Then
there are no stable elements in 13-'X‘
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Proof of the proposition.

Lemma. Let G be an abelian group and p € Rep (G, GL(, R)). Then R =
E,®... ®FE  where E, is an invariant subspace for the representation and in
complex form p(g) |E; =y, (@) + N (g) where y[g) € C - {0} and N (g) is nilpotent
and 'y, is a homomorphism of G into the multiplicative group of nonzero complex
numbers.

Proof. Let g € G and let A be an eigenvalue of p(g). For sufficiently high
m, ker (M - p(g))™ = ker (MW - p(g))"'“. Further this kernel is invariant under all
linear maps which commute with p(g). On this subspace p(g) = M + (p(g) = AI).
Using the finite dimensionality of R®, we get the direct sum decomposition. That
the y, are elements of Rep(G, C*) is obvious.

To complete the proof of the proposition, we take any representation p, and
restrict to one of the subspaces E; of the lemma. Let e, -+, e be a set of
generators of Z" We can change the representation by multiplying the p(e].) by a
real number i # 0. The representation g — yi(g) will hit the unit circle iff there
are integers m; such that |det (H].p(e].)mj)I =1.

This is equivalent to the existence of integers m, such that

Z m, In| yi(e].)l =0.
)

The set of points which satisfy 2;'31 mx. =0, for (ml, cee, mn) € Z" is a count-
able union of hyperplanes in R” which contains the set of rational points. Thus
this set and its complement is dense in R”. By multiplying the p(e].) by r;
arbitrarily close to 1 we may move the n-tuple (In|y,(e )|, .-+, In|yfe )]) into
either of these sets.

The proof given here is valid if Z” is replaced by any group of the form

Z" x G, for G arbitrary, and n > 1. Thus we have actually proven

Theorem. Let n > 1, and let G be an arbitrary group. Then there are no
stable elements in Rep (Z” x G, GL(k, R)).

Corollary. Let X be a compact manifold with HI(X) of the form Z" x G for
n > 1. Then there are no stable elements in 13:X’

Question. Are there any stable representations of (finitely presented) solvable
group into GL(k, R)?

We expect the answer to this question to be ‘‘essentially no”’, and for that
reason we raised the question of stability of linear representations only for simple

and semisimple groups.
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