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Beyond hyperbolicity 

By M. SHUBand S. SMALE 

The goal here is to study properties of (discrete) dynamical systems not 
possessing the frequently analyzed properties of structural stability or hyper- 
bolicity (e.g., Axiom A). In particular, we relate the two a priori disparate 
notions of filtrations and Q-explosions. 

The context is a compact C" manifold M and Diff (M), C' diffeomor-
phisms, C' topology, 0 2 r 2 m, r fixed throughout. Because of Lemma 4, 
we need dim M > 2, although presumably more work could remove this 
assumption, a t  least from the main theorem. We recall that  a filtration for 
f is a finite, ordered collection {M,}, a = 1, . . . , n, where each M, is a 
submanifold with boundary of M, dimension Ma = dimension M, with 
int M, 3Me-,, and f(M,) c int M,, each a. We also suppose that  MI = qb, 

Mn = M. 
A filtration has two obvious but important properties: (1) stability under 

even C0perturbations, i.e., if {&fa} is a filtration for f ,  then there is a neigh-
borhood N(f) of f in Diff (M), C0topology, such that  if g E N(f), then {Ma) 
is a filtration for g; (2) gives a decomposition of the nonwandering set Q =Q( f) .  
More precisely, recall that  Q is the closed invariant subset of points rc of M 
with property, given any neighborhood U of x, there is ?n> 0 such that  
fm(U)n U # 4. If {M,} is a filtra.tion for f, then let Q, = (Ma - Mu-,) n Q. 
Then the Q, give a finite, disjoint decomposition of Q into compact invariant 
subsets. 

Filtrations exist for any diffeomorphism, e.g., take MI = 4,  M2 = M. 
An additional useful property that  a filtration might possess and prevent this 
sort of triviality is as follows. 

Let Aa = nmsz -fm(M, Me-,). Note tha t  Aa is compact and contained 
in the interior of M, - Ma_,. Aa is the maximal invariant set for f on Ma -
Ma-,. Clearly, A, 3Q, for each a. We say that  {Ma} is a fine filtration if 
A, = Q, for each a. 

We make a detour by stating some problems related to fine filtrations. 

Problem (1): Let f:Dn-Dn be a diffeomorphism of the n-disk into itself 
(even for n = 2) such that  h(f) = Q(f) is true for f as well as C' perturbations 
( ~ ( f )= nm,cf -(on)). Is Q(f) a point? Clearly, Q(f) has the ~ e c h  cohomology 
of a point. 
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Problem (2): For a fine filtration {M,} off,  MI =$, Q, = $, and we have 
f* ( ~ e c htheory) H"(Q,) = limit {H*(M,)-H*(M,)). Can one find an exten-

sion of this statement for the other Q,? 

General conditions are known for the existence of fine filtrations. Axiom 
A and the no-cycle condition (there is no need to recall the definition here) 
imply the existence of a fine filtration and this is a major step in the proof 
of the Q-stability theorem. For a general reference for this whole subject, 
see the survey [I]. Fine filtrations exist under more general conditions than 
Axiom A, and i t  is a subtle question as to whether their existence is a generic 
property. The answer turns out to be negative by a remarkable, yet un-
published example of S. Newhouse concerning a set of diffeomorphisms of 
the 2-sphere. 

This example motivated us to define a jine sequence of filtrations. This 
is a sequence of filtrations, indexed by k = 1,2, ..., {Mk},a = 1, , n,, 
such that  

(1) {Mk}refines {M,:-'1, each k > 1,i.e., for each a, Mk - Mk-, is con-
tained in M,"-' - Mt.-; for some p; and 

(2) nk,,Ak = Q, where Ak = U, A),and At is defined for each k as before. 

Then a fine filtration is a fine sequence, constant in k, and i t  can be shown 
that  Newhouse's example has a fine sequence. 

On the other hand, a fine sequence of filtrations gives an approximation 
of a fine filtration and is the best that  can be hoped for in general by New-
house's example. I t  isn't known if possession of a fine sequence is a generic 
property for C' diffeomorphism. 

We say that  f in Diff (M) does not permit C0 Q-explosions if, given an 
open neighborhood U(Q(f)), there is a neighborhood N(f) in Diff (M), C0 
topology such that  Q(g)c U(R), any g in N(f ). If f has a fine sequence of 
filtrations, then i t  doesn't permit C0 Q-explosions. This is seen as follows. 
R e  are given a fine sequence for f and also U(Q). Choose k such that  
U(Q)=.Ak=.Q. Now, fix k. For each a, 1< a S ?I,,, we can find 912, q > 0 
such that  Q, c A&c f ""M,") - f -q(M:-,) c U(Q). In fact, we may suppose 
the same ?n, q work for all a. The last inclusion will be true for g in a 
sufficiently small Coneighborhood of f for all a. This implies the assertion. 

The main goal of this paper is to prove the converse, so: 

THEOREM.A difleorno~phis??~f possesses a fine sequence of filtrations if 
and o?zly iff does not pemnit Co Q-ezplosions. 

Toward proving this theorem, we define an open decompositio?~for f to 
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be a finite number of open sets W, in M, with disjoint closures and such 
that  U, W, 2a. Define W: = { r c  E MI f -"(x) E W, for some m 2 0). Then 
U, W: = M and each W: is open. Say that  Wg 2 W, if W, f'W$ # p. An 
r-cycle is a set of W, with W,, 2 W,, 2 2 W,r+l for r > 1, and a 1-cycle 
is a W, with some x g W,, m, q > 0, and f "(n;), f -q(z)E W,. Then {W,} has 
the no-cycle property if there are no r-cycles, r > 0. Let '1, = nmfi:f "(W,). 

LEMMA1. Let { W,},, ,be a n  open decomposition for f E Diff (M) with 
the no-cycle property and each A, compact. Then there is a f i l trat io?~{Me} 
such that A, c M, - Me-, for each a. 

Remarks. 
(1) The ordering of the filtration will be compatible with the relation 

2 on the W,. 
(2) One can find such an {Mm}(perhaps with a bigger indexing set) which 

refines any given filtration. 

For the proof, choose a simple ordering on A compatible with 2 and let 
ML = the closure of UgsnW;. This almost does i t  since A, c W, c Mi -M,:-, 
and f(MA) c MA. However, f(Mi) is not necessarily in the interior of ML 
(int ML), and the proof must be a little more elaborate. 

We proceed inductively to define M, as follows. Ml = and let N, = W,. 
Then n,,, f "(n,)= A, c AT,. Here R, is C1 AT,, or the closure of N,, and 
we have used the no-cycle property. Then, since A, is compact, (cf. Lemma 
4.2 of [2]), there is a compact neighborhood P, of A, contained in N, with 
f(P,)c int (P,). Finally, choose a compact manifold neighborhood M, of P, 
in N, with f(M,) c int M, to complete the first step of the inductive process. 

The next step begins by letting N3 = M, u W,". Then, using the no-cycle 
property, i t  follows that  n,,, fm(x3 )= Wu(A3)U A,, where 

Wu(A3)= {n; E Mi f "(x) ---t &I3as m --x) 

(note WU(A,)= h,). Furthermore, WU(h3)u A, is compact since 8W; c '1, 
(here ZW," = C1 W," - W,"). Then M3 is constructed from N, just as in the 
previous step. 

The general induction step proceeds similarly, with N, = W; U Mk-l, 

nmzof "(Nk)=UjskWu(hj),and Wu(hk)cUj,, Wu(A,). This proves Lemma 1. 

LEMMA2. Let f E Diff (M) not permit any Co Q-explosions and a neigh-
boyhood U(Q) be given. Then there is  a n  open decomposition { W,},,, with 
the no-cycle property, compact -1,and U, W, c U(Q). 

Lemmas 1and 2, together with Remark (2) after Lemma 1, yield the 
theorem. 
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For the proof of Lemma 2, suppose M has a metric coming from a Rie-
mannian metric and this metric induces a C%etric on Diff (M). Choose 
o" > 0 so that  if the C '  distance from g E Diff (M) to f is less than o", then 
Q(g) c UP) .  

Choose a finite covering of Q of open convex balls B,, each B, c U(Q), 
diameter B, < o". Let UBdenote the components of U B,. By shrinking the 
B, a bit, we may suppose the UJ; to have disjoint closure and be finite in 
number. 

Say U, is equivalent to UBif there is a common cycle containing Upand 
U, and let W, be the union of members of an equivalence class. Then {W,} 
is an open decomposition with no Y-cycles, 7. > 1. Let W:={zG Mi f m(s)E W,, 
some m 2 0) and V, = W::n W:. Then the finite number of Va are open, 
U, V0 2R, and {V,), has no cycles. Any m E C1A, - A, leads to a l-cycle 
since f " (9;)  EC1 -I,, all m. This implies that  A, is compact, each a. Finally, 
one can shrink the  V, a bit if necessary to insure that  their closures are 
disjoint. 

I t  remains to prove that  each V, is contained in U(Q). 
The idea of the proof is to create an Q-explosion by taking z E V ,  - U(Q) 

and perturbing f by less than o" to make n: a periodic point. 
To this end, define a chain of balls between y, x for any f E Diff (M) 

to be a sequence U,, .., U, of convex open balls of diameter <d, y E U,, 
x E U,,  U, n Q + +, and for each i = 1, ...,n - 1, there exists m 2 0 such 
that  f "(Us) n U,., # 0. 

LEMMA3. Given a chain 0.f 6-balls between y, x, there is  a y E Diff (M), 
with the Cndistance between f, y less than o', g' (f- I ( ~ ) )  = f(x), some N > 0 
and y = f outside U'-,U,. 

Postponing the proof of Lemma 3 for a moment, we see how i t  finishes 
the proof of Lemma 2 and hence of the theorem. 

Suppose m E V,, m C U(R). Since 9; E W::n W;, there exists m, q > 0 
such that  y = f "(z) E W,, f-q(z) = x E W,. We suppose m, q minimal with 
this property. Then there is a chain of d-balls between y and x of the B, used 
in constructing W. Application of Lemma 3 yields a g having z as a 
periodic point, contradicting our choice of d. 

Par t  of the idea of Lemma 3 is in the following. Here is where the 
hypothesis dim M > 2 is used. 

LEMMA4. Let (q,, p,), i = 1, .,1 be pai9.s of points on a compact ma~zi-
fold M, all  disjoi~ztsuch that d(q,, p,) < 6. Then there is a di.feomorp1zism 
T :  M -+M witlziqz C"dista~zceo' of the idesttity suclz that ~ ( q , )= p, f o r  each i. 
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For the proof, one uses disjoint arcs ai joining q, to pi, each i and applies 
a standard theorem from differential topology obtaining rj whose support is 
in the disjoint cell neighborhoods of each arc a,. 

We proceed to the  proof of Lemma 3. 
Let y, E fni(U,) n Ui_,, i = 1, .-.,?z - 1,where ?zi 2 0 is the smallest 

possible with nonempty intersection. Let xi = f-",(yi) and wi E U,, li 2 0 
be chosen such tha t  f li(w,) E Ui. This is always possible since Ui n Q # P .  
Now by changing f a little, if necessary, we may assume that  the points 
f-l(y), y, X, f ( ~ ) ,  y,, xi, and fj(wi), 0 jj 5 l,, are all distinct. 

Our goal is to perturb f to y which maps y -w,+x,+w,-2,-. ..x,-,-x 
under positive iterates. 

For this purpose, we consider the pairs of points {(a, p)) = (y,, w,); 

(fj(wi), f j(w,)) for 0 < j < 1,; (fli(w,), 2,); (y,, w,+,), (w,, z), and finally, 
(f(x), f (x)). By Lemma 4, there is a diffeomorphism 7 with support in 
Ui=l,...,,U, so that  rj(a) = p ,  7 has C0 size less than d and the support of 
7 c Ui=,,...,,Ui. 7 0 f is the  diffeomorphism we were seeking. 

and 

etc. 
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