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Beyond hyperbolicity

By M. SHUB and S. SMALE

The goal here is to study properties of (discrete) dynamical systems not
possessing the frequently analyzed properties of structural stability or hyper-
bolicity (e.g., Axiom A). In particular, we relate the two a priori disparate
notions of filtrations and Q-explosions.

The context is a compact C> manifold M and Diff (M), C* diffeomor-
phisms, C™ topology, 0 < r < oo, r fixed throughout. Because of Lemma 4,
we need dim M > 2, although presumably more work could remove this
assumption, at least from the main theorem. We recall that a filtration for
f is a finite, ordered collection {M,}, a =1, ---, n, where each M, is a
submanifold with boundary of M, dimension M, = dimension M, with
int M, > M,_,, and f(M,) C int M,, each «. We also suppose that M, = ¢,
M, = M.

A filtration has two obvious but important properties: (1) stability under
even C° perturbations, i.e., if {}M,} is a filtration for f, then there is a neigh-
borhood N(f) of f in Diff (M), C° topology, such that if g € N(f), then {IM,}
isa filtration for g; (2) gives a decomposition of the nonwandering set Q =Q(f).
More precisely, recall that Q is the closed invariant subset of points @ of M
with property, given any neighborhood U of x, there is m > 0 such that
™U)N U= ¢. If {M,} is a filtration for f, then let Q, = (M, — M,_,) N Q.
Then the Q, give a finite, disjoint decomposition of Q into compact invariant
subsets.

Filtrations exist for any diffeomorphism, e.g., take M, = ¢, M, = M.
An additional useful property that a filtration might possess and prevent this
sort of triviality is as follows.

Let Ay = Nmez f™(M, — M,_). Note that A, is compact and contained
in the interior of M, — M,_,. A, is the maximal invariant set for f on M, —
M, .. Clearly, A, DQ, for each «. We say that {M,} is a fine filtration if
A, = Q, for each «a.

We make a detour by stating some problems related to fine filtrations.

Problem (1): Let f: D" — D" be a diffeomorphism of the n-disk into itself
(even for n = 2) such that A(f) = Q(f) is true for f'as well as C” perturbations
(AS) = Nmso S™D). Is Q(f) a point? Clearly, Q(f) has the Cech ecohomology
of a point.
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Problem (2): For a fine filtration {M,} of f, M,=¢, Q, = ¢, and we have

(Cech theory) H*(Q,) = limit {H*(M,) AN H*(M,)}. Can one find an exten-
sion of this statement for the other Q,?

General conditions are known for the existence of fine filtrations. Axiom
A and the no-cycle condition (there is no need to recall the definition here)
imply the existence of a fine filtration and this is a major step in the proof
of the Q-stability theorem. For a general reference for this whole subject;
see the survey [1]. Fine filtrations exist under more general conditions than
Axiom A, and it is a subtle question as to whether their existence is a generic
property. The answer turns out to be negative by a remarkable, yet un-
published example of S. Newhouse concerning a set of diffeomorphisms of
the 2-sphere.

This example motivated us to define a fine sequence of filtrations. This
is a sequence of filtrations, indexed by ¥ =1,2, ---, {M}},a=1, ««-, n,
such that

(1) {M}} refines {M}™'}, each k > 1, i.e., for each @, M} — M/}_, is con-
tained in M} — Mg for some g; and
(2) Niso A" = Q, where A* = J, A% and A is defined for each k as before.

Then a fine filtration is a fine sequence, constant in &, and it can be shown
that Newhouse’s example has a fine sequence.

On the other hand, a fine sequence of filtrations gives an approximation
of a fine filtration and is the best that can be hoped for in general by New-
house’s example. It isn’t known if possession of a fine sequence is a generic
property for C* diffeomorphism.

We say that fin Diff (M) does not permit C° Q-explosions if, given an
open neighborhood U(Q(f)), there is a neighborhood N(f) in Diff (M), C°
topology such that Q(g) © U(Q), any g in N(f). If f has a fine sequence of
filtrations, then it doesn’t permit C° Q-explosions. This is seen as follows.
We are given a fine sequence for f and also U(Q). Choose k such that
UQ) oA >Q. Now, fix k. Foreach @, 1 < a < n,, weecan find m, ¢ >0
such that Q.,cC AXc f™(MF) — f~(M}r.)c UEQ). In fact, we may suppose
the same m, ¢ work for all «. The last inclusion will be true for ¢g in a
sufficiently small C° neighborhood of f for all @. This implies the assertion.

The main goal of this paper is to prove the converse, so:

THEOREM. A diffeomorphism f possesses a fine sequence of filtrations if
and only if f does not permit C° Q-explosions.

Toward proving this theorem, we define an open decomposition for f to
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be a finite number of open sets W, in M, with disjoint closures and such
that U. W.D>Q. Define W: = {xe M| f™(x) e W, for some m = 0}. Then
U. Wi = M and each W is open. Say that W, = W, if W.N W} = ¢. An
r-cycle is a set of W, with W, = W,, = «-+ = W,_,, for r > 1, and a 1-cycle
isa W, withsome z¢ W,, m, ¢ >0, and f™(x), f~%(x) € W,. Then {W,} has
the no-cycle property if there are no r-cycles, » >0. Let Ax = Nnez S ™(Wa).

LEMMA 1. Let {W,}zc4 be an open decomposition for fe Diff (M) with
the no-cycle property and each A, compact. Then there is a filtration {M,}
such that A,c M, — M,_, for each c.

Remarks.

(1) The ordering of the filtration will be compatible with the relation
= on the W,.

(2) One can find such an {M,} (perhaps with a bigger indexing set) which
refines any given filtration.

For the proof, choose a simple ordering on A compatible with = and let
M, = the closure of Js<. W4. This almost does it since A, W, M, — M._,
and f(M.)c M,. However, f(M.) is not necessarily in the interior of M,
(int M), and the proof must be a little more elaborate.

We proceed inductively to define M, as follows. M, = ¢ and let N, = W,.
Then Nnszof™(N,) = A, N,. Here N, is CI N,, or the closure of N,, and
we have used the no-cycle property. Then, since A, is compact, (cf. Lemma
4.2 of [2]), there is a compact neighborhood P, of A, contained in N, with
f(P,) cint (P,). Finally, choose a compact manifold neighborhood M, of P,
in N, with f(M,) C int M, to complete the first step of the inductive process.

The next step begins by letting N, = M, U W¥. Then, using the no-cycle
property, it follows that Nnso f™(N,) = W*(A;) U A,, where

W Ay) = {xe M| f™(x) — A; as m —— — oo}

(note W*(A;) = A;). Furthermore, W*(A;) U A, is compact since oW: C A,
(here oW? = Cl W¥ — W¥). Then M, is constructed from N, just as in the
previous step.

The general induction step proceeds similarly, with N, = Wi U M,_,
Nrzo SN =Uj<r WHA;), and W*(A,) S U< W*(A;). This proves Lemma 1.

LEMMA 2. Let fe Diff (M) not permit any C° Q-explosions and a neigh-
borhood U(Q) be given. Then there is an open decomposition {Wa}se, with
the no-cycle property, compact A, and J. W, U(Q).

Lemmas 1 and 2, together with Remark (2) after Lemma 1, yield the
theorem.
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For the proof of Lemma 2, suppose M has a metric coming from a Rie-
mannian metric and this metric induces a C° metric on Diff (M). Choose
6 > 0 so that if the C° distance from ¢ e Diff (M) to f is less than d, then
Qg) < U(Q).

Choose a finite covering of Q of open convex balls B;, each B;c U(Q),
diameter B; < 6. Let U, denote the components of U B;. By shrinking the
B; a bit, we may suppose the U; to have disjoint closure and be finite in
number.

Say U, is equivalent to U, if there is a common cycle containing U, and
U, and let W, be the union of members of an equivalence class. Then {W,}
is an open decomposition with no r-cycles, » > 1. Let Wi={xe M| f™(x) € W,,
some m =0} and V, = W:N Wi. Then the finite number of V, are open,
U.V.DQ, and {V,.}. has no cycles. Any xeClA, — A, leads to a 1-cycle
since f™(») e Cl A,, all m. This implies that A, is compact, each a. Finally,
one can shrink the V, a bit if necessary to insure that their closures are
disjoint.

It remains to prove that each V, is contained in U(Q).

The idea of the proof is to create an Q-explosion by taking xe V, — U(Q)
and perturbing f by less than ¢ to make « a periodic point.

To this end, define a chain of 6 balls between y, z for any f e Diff (M)
to be a sequence U, ---, U, of convex open balls of diameter <4, ye U,
ze U, U NQ ¢, andforeach i =1, ---, n — 1, there exists m = 0 such
that f™(U;) N U;s, = 6.

LEMMA 3. Given a chain of o-balls between y, z, there is a ¢ € Diff (M),
with the C° distance between f, g less than 6, ¢"(f~(y)) = f(z), some N >0
and g = f outside Ui, U..

Postponing the proof of Lemma 3 for a moment, we see how it finishes
the proof of Lemma 2 and hence of the theorem.

Suppose ve V,, x¢ UQ). Since xe Wi W, there exists m, ¢ >0
such that y = f™x)e W., f%(x) = 2¢€ W,. We suppose m, ¢ minimal with
this property. Then there is a chain of o-balls between y and z of the B; used
in constructing W. Application of Lemma 3 yields a ¢ having x as a
periodic point, contradicting our choice of 4.

Part of the idea of Lemma 3 is in the following. Here is where the
hypothesis dim M > 2 is used.

LEMMA 4. Let (q;, p:), 1=1, «++, 1 be pairs of points on a compact mani-
fold M, all disjoint such that d(q;, p;) < 6. Then there is a diffeomorphism
n: M — M within C°distance o of the identity such that 7(q;) = p; for each 1.
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For the proof, one uses disjoint arcs «; joining ¢, to p,, each 7 and applies
a standard theorem from differential topology obtaining 7 whose support is
in the disjoint cell neighborhoods of each arc a;.

We proceed to the proof of Lemma 3.

Let y,e f(U)NU;yy, t=1,---,m — 1, where n; = 0 is the smallest
possible with nonempty intersection. Let z;, = f™"i(y;) and w; e U;, [, =0
be chosen such that f'(w;) € U;. This is always possible since U; N Q # ¢.
Now by changing f a little, if necessary, we may assume that the points
W), v, 2, f(), yi, 2, and fi(w,;), 0 < j < [;, are all distinct.

Our goal is to perturb f to g which maps y —w,—z,—w,—2,—++*2,_,—%
under positive iterates.

For this purpose, we consider the pairs of points {(a, B)} = (¥, w.);
(fiwy), fi(wy)) for 0 <j <ly (ff(wy), z:); Ui wis), (w;,2), and finally,
(f@, f (). By Lemma 4, there is a diffeomorphism 7 with support in
Ui=...... U; so that n(a) = B, 7 has C° size less than ¢ and the support of
NC Uizy,....n Use 1o f is the diffeomorphism we were seeking.

7o f(F7 W) = ws 7o flw) = flw);
and
no f(ff7w) = 25 o flz) = wy
ete.
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