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Neighborhoods of Hyperbolic Sets 
M. HIRSCH, J. PALIS, C. PUGH, and M. SHUB (Univ. of Warwick) 

w 1. Introduction 

In this paper we study the asymptotic behavior of points near a 
compact hyperbolic set of a C r diffeomorphism (r__>l)f: M - ~ M ,  M 
being a compact manifold. The purpose of our study is to complete the 
proof of Smale's O-stability Theorem by demonstrating (2.1), (2.4) of [6]. 

O denotes the set of non-wandering points for f Smale's Axiom A 
requires [5]: 

(a) O has a hyperbolic structure, 

(b) the periodic points are dense in O. 

Hyperbolic structure, the stable manifold of O, and fundamental 
neighborhoods are discussed in ~j 2 and 5. 

The result of [-6] proved here is: 

I f  f obeys Axiom A then there exists a proper fundamental neighbor- 
hood V for the stable manifold of f2 such that the union of the unstable 
manifold oft2 and the forward orbit of V contains a neighborhood of 0 in M. 

As a consequence we have: 

l f  f obeys Axiom A then any point whose orbit stays near 0 is asymp- 
totic with a point of 0. 

Section 8 of the mimeographed version of [ 1 ] contains a generalization 
of the above results with an incorrect proof. A correct generalization is: 

(1.1) Theorem. I f  A is a compact hyperbolic set then WU(A)uO+ V 
contains a neighborhood U of A, where V is any fundamental neighbor- 
hood for WS(A) and 0+ V= Uf" (v ) .  i f  A has local product structure 

n>O 

then a proper fundamental neighborhood may be found and any point 
whose forward orbit lies in U is asymptotic with some point of A. 

Theorem (1.1) is proved in w 5, local product structure is discussed in 
[-5] and in w In w we prove the analogous theorems for flows. 

Here is an example, due to Bowen, of a compact hyperbolic set A 
which does not have local product structure, has no proper fundamental 
neighborhood and for which there are points asymptotic to A without 
being asymptotic with any point of A. 
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Consider the Cantor  set C as the space of sequences of zeros and ones 
with a decimal point: 

x = ( . . ,  x _ 2 x _ l . x 0 x l . . . )  x j = 0  or 1. 

The elements of C can be thought of as maps Z - ~  {0, 1}. The compact  
open topology makes C a metrizable compact  space. A distance is given 
by co Ix, ~ y i ] d(x, y ) =  ~2 21i[ 

- - c O  

The shift map  a: C -* C moves the decimal point one space to the right: 

at. . .  x _ l .  x0 xl . . 3 = ( . . . x _ 1  xo.  xl ...). 

a is a homeomorphism.  By [4] (C, a) is conjugate to the restriction of 
a diffeomorphism f :  S 2 ~ S 2 to a certain compact  invariant hyperbolic 
set K. Hence the topological properties of C reflect themselves exactly 
in K. 

Consider the subset of C, and correspondingly of K, 

A =  {xe C: any finite maximal string of O's is of even length}. 

Clearly A is a compact  a-invariant subset of C and the periodic points 
are dense in A. However, there are points cs  C such that 

d(a"c,A)---~O as n--~ _+ oo 

d(a" c, a" x) +*O as n ~ + o o  for any xeA.  

That  is, there are points of C tending to A but not asymptotic with any 
point of A, Even worse, there are periodic points of C - A  whose entire 
orbits lie arbitrarily close to A. This behavior is opposite to that of (1.1). 

Define such c as follows. Put odd maximal strings of zeros of increasing 
length on both sides of the decimal point 

... 1000001000101. 1010001000001 . . . .  

Given any m > 0 ,  a"c  has at most  one entry of 1 in [ - m ,  m] for 
large enough [n[. The sequence x with zeros except at this entry belongs 
to A and d(a" c,x)< ~ 1/21q=1/2 " - I  

lil->m 

which is arbitrarily small when m is large. Hence a" c --~ A. On the other 
hand, for any x e  C if d(a" c, a" x )~O as Inl ~ then 

x = c to the right of some entry if n ~ 

x = c to the left of some entry if n ~ - ~ .  

Either way, x can not belong to A. 
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A periodic point p E C is a sequence which endlessly repeats a finite 
block. If this block is of the form I0 ... 0 with 2 m + 1 zeros then the orbit 
of p lies within a distance 1/2 'n- 1 of A by the same reasoning as before. 
Thus, the existence of periodic points as .claimed above is clear. 

w 2. Local Product Structure 

Several notions and results from [1, 5] should be recalled. 
A compact set A c M is hyperbolic for the diffeomorphism f :  M--~ M 

if f A  = A and T f  leaves invariant a continuous splitting TA M= E~GE ", 
expanding E" and contracting E s. That  is 

ITf(v)lMv Ivl if v~E" 

ITf(v)l>=r -~ Ivl if v~E" 

for some constant z, 0 <  z < 1, and some Riemannian metric on M. The 
constant z is called the skewness. 

Through such a A pass families of smooth unstable and stable mani- 
folds tangent to E", E ~ at A [1]. The unstable manifold of size e through 
peA is called W~(p), the stable one W~(p). This "size e" refers to the 
radius measured in the tangent space at p: 

W~" (p) = expp (graph gp) 

where gp: E~ (e)--+ E~(e) is a smooth map whose graph has slope < 1 with 
gp(0)=0, Tgp(0)=0. E~(e), E~(e) are the e-discs in E~,, E~. Similarly for 
ecZ(p). 

The families W~"= {W~"(p)[peA}, W~= {W~S(p)lpeA} are overflowing 
invariant in the following sense: f - 1  W~"(p)c W~"(f -1 p) and fW~S(p)c 
W~(fp). They are expanding from A and contracting to A in the sense 
that 

NS-. w~.=A= NS. w~ ~ 
n>O n>0 

for W~U= U l/V~"(p) and W~S= U W~U(P) �9 We call W~u=W~"A the local 
peA p~A 

unstable manifold of A. Similarly, W~ s = W, ~ A is called the local stable 
manifold of A. Notice that this terminology differs from that of Smale 
in [5]. 

Ifp is a hyperbolic fixed point (that is A = p in the preceding discussion) 
and V is a local submanifold transverse to its stable manifold then 
locally f "  presses V toward the unstable manifold of p, W"(p). If V has 
the same dimension as WUp then as n - * ~ ,  f"  V ~  W~(p) in the C 1 
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f 

p 

j V  
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wUp 

Fig. I. f "  flattens V toward W" p 

sense, locally. This is the content of the 2-1emma [3] and is illustrated 
in Fig. 1. 

A direct consequence of the 2-1emma is the 

(2.1) Cloud Lemma. I f  f :  M--~ M is a diffeomorphism and p, q are 
hyperbolic periodic points with WU(p) ?fi W~(q) ~ O, W~(P) ?fi WU(q) ~ 0 then 
these points of intersection are non-wandering. 

Proof [5]. See Fig. 2 for n so large that p, q are fixed points of f" .  
The set U is a neighborhood of xe  W"(q)c~ W'(p). We have drawn some 
iterates f , k  U and shown how they must re-intersect U eventually, by 
the 2-1emma. 

Fig. 2. fk.  U re-intersects U 

Definition. A hyperbolic set A has local product structure if, for some 
e>O, 

for all p, p' ~A. 
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(2.2) Local Product Structure Theorem. I f  f obeys Axiom A then f 
has local product structure on f2. 

Proof. Let e > 0 be small enough that the 3 e-local stable and unstable 
manifolds through points of f2 are given by the stable manifold theory 
of [1]. Let x, x'cf~ have y~ W~'(x)n W~S(x'). By [1] the intersection is 
transverse, consists of a single point, and the same is true of the inter- 
section W]~(x)n W~(x'). (See Fig. 3.) 

• 

W~• 

Fig. 3. Local product structure 

Approximate x, x' by periodic points p, p'. By continuity of the stable 
and unstable manifolds, the intersections 

W~(p) n W~(p'), W~(p) n W~(p') 

continue to be transverse and to consist of single points, q, q' (see Fig. 4). 
By the Cloud Lemma, q, q' e f2. As q is arbitrarily near y and t2 is a closed 
set, y belongs to t2. 

Fig. 4. Stable and unstable manifolds for periodic p, p' approximating x, x' 
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Corollary of the Proof. I f  A is any hyperbolic set isolated from f2 -  A 
and the periodic points are dense in A then f has local product structure at A. 

The following key lemma shows how local product structure simplifies 
the topology of W~ ~ = U W~S(P) �9 

p~A 

(2.3) Lemma. W~ ~ is a neighborhood of A in W~ ~ if 0 < 6 < z ,  ~ is small, 
and A has local product structure. 

Proof. Suppose, on the contrary, that there existed a sequence of 
points x,E W~(p,) - W~ ~ converging to some peA. As in (2.2), when e is 
small this implies that W~(p,) �9 W~(p) in a single point, say q,. By local 
product structure q.~A and d(x,,q,)-~O. Thus x~eW~S(q.) when n is 
large, contradicting our assumption. 

w Fundamental Domains 

A fundamental domain for W~ s is a compact set D c W~ s such that 

W~S- A ~ O + D 

where 0+ D =  U f nD, i.e. the forward orbit olD. A fundamental domain 
n_>0 

for W~ u is a compact set D c W~ u such that 

W~"-A~O D 

where 0 D =  U f - " D .  If in addition D is disjoint from A, we call D a 
n__>0 

proper fundamental domain. 

(3.1) Lemma. /he set D~= C I (W~-  f W~ ~) is a fundamental domain 
for W/ and DU=Cl(W~u-f  -1 W~ ~) is one for W~ ~. 

Proof. O+ DsD W~ ~-  N f "  W~= W~ ~-  A" The proof for D" is similar. 
n=>0 

(3.2) Lemma. I f  A has local product structure then D ~, D u are proper 
fundamental domains. 

Proof. There is a ~ , 0 < 6 < ~ ,  such that f W ~  W~ s. By (2.3), W~ ~ is a 
neighborhood of A in W~ '. Therefore D s = C l (W~ ~ - f  W~ ~) is disjoint from 
A. Similarly for D ~. 

Question. Do the following conditions imply the existence of proper 
fundamental domain for W ' A: 

(a) the periodic points are dense in A, 

(b) there exists a neighborhood U of A such that if x z U and 0 + (x) c U 
then co(x)c A, where co(x) is the co-limit set of x. 
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w 4. Semi lnvariant Disc Families 

In this section we state and prove the basic technical theorem 
required for (1.1). 

The space Emb (D u, M) of all embeddings of the closed u-disc into M 
may be thought of as a fiber bundle over M. The fiber at x ~ M  is the set 
of all embeddings e: D U ~ M  such that e(O)=x. We put the uniform 
topology on Emb (D u, M). 

Definition. If a: X ~ Emb (D u, M) is a continuous section over X c M 
then ~r = {image a(x)[ x ~ X }  is a (continuous) u-disc family through X. 

Clearly l/V~U= {W~"(p)lp~A} is a u-disc family for any small 6>0.  

The following lemma may be thought of as a type of Inverse Function 
Theorem for certain u-disc families. By R'(~) we mean the disc of radius 
in R", centered at the origin. 

(4.1) Lemma. I f  u + s = m  and ~r is a u-disc family 
through 0 x RS(6) ~ R" with A(y) = graph gy for gy: R"(e) ~ R ~, gr(O) = y 
then U A(y) is a neighborhood of O in R m. 

y~R s 

Proof Continuity o f ~ '  implies that g: (x, y) ~-~ (x, gr x) is a continuous 
map from B=RU(e)• into R". It suffices to prove that sIOB is 
homotopic to the inclusion map OB~--~Rm-O. Such a homotopy is 
given by 

G,(x, y) = (x, (1 - t) g,, + t y).  

The curves Gt(x,y) never pass through 0 when (x,y)eOB since x = 0  
implies gy(0)=y and so Gt(x, y)=(0, y)#:0. Thus, (4.1) is proved. 

Now we may proceed to the main theorem of this section. 

(4.2) Theorem. For any small 6 > 0 there is a u-disc family ITV~ " through 
N, a neighborhood of A in M, which reduces to VV~" at A and is semi- 
invariant in the sense that 

17V~"(f x ) c  f lTVo'(x) for any x s N  c~ f - l  N.  

Moreover for any peA,  U 17V~"(Y) is a neighborhood of p in M. 
yEW~Sp 

Remark. If f is C r we can make 17r a continuous family of C ~ u-discs. 

Remark. We cannot expect any sort of uniqueness for l~a ", as simple 
examples show with A taken to be one point. It is unknown whether 
l~" can be chosen to foliate a neighborhood of A. 

The proof of (4.2)is similar to the existence of {W~U(p)lpeA} in [1]. 
All estimates needed here were proved in [1]. We must deal with graph 
transforms induced by maps of one space to another instead of to itself. 
We outline what must be re-interpreted. 
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Let E=E1 •  2, F=Fa •  2 be Banach spaces, equiped with the 
product norms 

](xl, x2)l = max(Ix1/, [XE[). 

Define (~(E) to be the space of maps g: E1 (e) ---, E2 such that 

g(0)=0, L(g)=<l 

where L denotes the Lipschitz constant and E(e) denotes the closed ball 
of radius e. The metric in (~(E) is Ig -g ' ]  =sup  Ig x - g '  xf and is complete. 
Define fg~(F) similarly, x 

Let f :  E(e)~F,  f ( 0 ) = 0  be a map. It might happen that for every 
gefg~(E) there exists hefr such that 

graph h o f ( g r a p h  g). 

If so, h is uniquely determined by g and we call h the graph transform 

ofg  b y f  h=Fig" 

The next theorem was proved in [1, w 

(4.3) Theorem. Let T: E ~ F be an isomorphism sending E1 onto F1, 
E2 onto F2 when El xE2=E, F1 •  as above. Suppose []T2[F<z, 
[[Tl-l[[<z, 0 < z < l  for Ti=T[Ei, i=1,2.  I f  f: E(e)-+F is sufficiently 
near TIE(e) then Is: ~(E)--~ fg~(F) is defined and has L(Ff)< 1. The precise 
condition on f is 1 -- z 

f ( 0 ) = 0  and L ( f - T ) < - -  
l + z  

Before proving (4.2) we need a simple extension lemma. 

(4.4) Lemma. Let E, M be manifolds and ~z: E--~ M a fiber bundle. 
I f  s: X - *  E is a section over a closed X c M then s extends to 3: N-}E ,  
a section over a neighborhood of X. 

Proof Since E is an ANR (absolute neighborhood rectract) and M 
is a normal space, s extends to a map So: No--} E when N O is a neighbor- 
hood of X in M. Let d be a metric on M. Choosing small neighborhoods 
N c N  o of X makes the function d(~ s o x, x) small if xeNo. Because M 
is an ANR, this makes ~ So IN: N--~ M homotopic, rel X, to the inclusion 
iN: N ~-*M. The Covering Homotopy Theorem [7] shows that so[N is 
homotopic, rel X, to a map 3: N--} E such that ~ 3= i N. This proves the 
lemma. 

Proof of(4.2). Let the skewness of Tf[ TAM be <z.  By (4.4) there 
exists a neighborhood N o of A and extensions E", E ~ of the bundles 
E", E s to N O for they are sections of the Grassmann bundles GU(M), 
G~(M) restricted to A. Taking a smaller N O if necessary we have E"~ES= 
TNoM since E"~E s= TaM. 
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Applying (4.4) again we can find a "connector"  0, that is a continuous 
family of isomorphisms O(x, x'): Mx--* M x, defined for all (x, x')~M x M 
sufficiently near the diagonal A of A • A such that 

O(x, x)=  Ix, O(x, x')E~ = E~,,, O(x, x')E~ = E~,,. 

In fact GL(E") is a bundle over N o x N o whose fiber over (x, x') is the 
--U ). --U space of all isomorphisms Ex Ex, and the map (x, x)---,Ix is a section 

of GL(F.") over A. By (4.4) this section extends giving a section 0". Similarly 
we get a section 0 s. Combining the two as 0"@0 ~ we get the connector 0. 

Of course E"@E~ is not likely to be Tf-invariant. Let (Tf) x: Mx---,Msx 
be defined, with respect to this splitting, by the matrix 

for xef-lNongo. Consider the linear map T~: M,,--~Msx defined on 
f - l  N o n N  o by o) 
At A the entries B and C vanish and T= Tf. 

For  any N c f - l N o n N o  the map T:TsM_-~TINM defned by 
T[M x = T x is a bundle isomorphism leaving E"O)E s invariant and equal 
Tf at A. 

Let f =  exp-  1 o f o exp: M(6) ~ TM, where M(6) = U Mx(6). For small 
x e M  

enough 6 and a small enough neighborhood N o N  o of A, f is well 
defined and 

sup L ( ( f -  T)[ Mx(6))= 
x ~ N  

satisfies the inequality of (4.3), ~ < ( 1 - z ) / ( l + z ) .  For  when s-+0 and 
N---~A we are merely seeing how well Tfapproximates f at A. By (4.3) 
If: ~q~(TsM ) ~ ~ ( T I s M  ) is defined and has Lipschitz constant < 1. 

We may assume N chosen to be a smooth manifold with boundary. 
If V is a neighborhood of f N  with Vc N o and p: V---~fN a retraction 
then O(p x, x) will be defined for V small enough and p near enough 
the inclusion iv: V~---'M. 

Define h: V ~  N by h = f  - 1 o p. For  each x ~ Vdefine (0, f)x :Mhx (6 )~  Mx 
by 

(O,f)x = O(p x, x)ofl Mhx(6) 

and define (0, T)x: Mhx-+Mx by 

(0, T)x = 0 (p x, x) o Th x. 
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Since 0 is continuous, and equals I x at A, {0, T)~ may be made arbitrarily 
near Tft TaM by taking N small, Vnear N, and p near iv. That is 

sup L((O,f)x-(O, T)x)= 
x ~ V  

can be made near ~ and in particular can be made < ( 1 - T ) ( l + z ) .  
But (0, T) preserves ~u and ES because both 0 and T do. Taking N small 
enough assures (0, T) has skewness < z because Tf[ TAM has skewness < r. 
Hence we may apply (4.3) to conclude that (o,f) defines a graph-transform 
F(o.y): f~(TNM)--,cS~(Tv M) with Lipschitz constant < 1. 

L e t ~ 0 : M ~ [ 0 ,  1] be continuous with cp=0 off Vand (p= l  on f N .  
Define F: fr (T~ M) ~ fr (TN M) by sending g e N0 ( TN M) onto the element 
of Na(TNM) which, when restricted to E~(6) equals 

0 if x e N -  V, 

~o(x) F~0,y)~(g) if xe VeiN. 

If xeOVc~N, we know that ~0(x)=0 and so the two definitions agree. 
--U ___} S Note that F~0,f)~(g ) is a map Ex(6 ) Ex(6) and so our definition of F 

is well stated. Also note that F is not globally a graph transform: it does 
not cover a map N-~N. 

Clearly F carries ~6(TNM) into itself because Fco, y ) carries ~6(TNM) 
into ~6(TvM)and multiplication by ~p, 0=<~0=< 1, can only help. In the 
computation of the Lipschitz size of the map F(g)~.E~(6) E~(6), ~p is 
constant. For the same reason, L(F)<= L(F~o,I))< 1. Hence F has a unique 
fixed point, say g*. 

Put l~6"(x) = exp~ (graph (g* I M~ (6))), where x e f  -~ N m N. For such x, 
it is clear that f lYd~"(x)~lTVo~(fx) by the definition of F. On A we have just 
gone through the construction of W6 ~ in [1] again and so l~a"(p}= W~"(p) 
by uniqueness of {Wa"(p)[peA}. Thus [~z, is a semi-invariant family 
of u-discs extending W~". It remains to show that 0 lYdo"(y) is a neigh- 
borhood o fp  for peA. y~w~p) 

There is a diffeomorphism j: Mp(D--,Mp(e) such that (Tj)v=l~, and 
j (exp; ~ (W~ * p))-- Ep(c), j(exp~- X(W: p)) = E~ (e). So 

{.]oexp- l (~"  y)l ye W~,S p} 

is a u-disc family through E~p(p). Its radius may be slightly less than 6, 
but it is greater than 6/2, say, if # is small enough�9 Also, for small 6 
these u-discs will be graphs of maps E"p(6/2)--~Ep(e) having slope <2. 
By (4.3) this u-disc family includes a neighborhood of p in Mp(~) and 
hence its exPvoj -I image {lY/,~"(y)[yeWu~p} contains a neighborhood 
of p in M, since exppoj -~ is a local diffeomorphism at p. This proves 
(4.2). 
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Remark. In a similar manner we could obtain an invariant family 
--U ~ --B 

of linear graphs G~: Ex E~. These determine a subbundle of TNM 
semi-invariant under Tf, and thus a semi-invariant extension of E~GE" 
to/~"@/]~= TNM. Proceeding with the construction of I,V~" we find that 
lYV~"(y) is tangent t o / ~  at y for y near A. In fact, it can be shown that 
[~" (y) is C r whenf is  C" by imitating the proof of smoothness of unstable 
manifolds in either [1] or [2]. In this way one can prove. 

(4.5) Theorem. The semi-invariant family ITV~ ~ of (4.2) can be chosen 
to be a continuous family of C ~ u-discs when f is C ~. 

w 5. Fundamental Neighborhoods and the Proof of the Main Theorem 

As before, let A be a hyperbolic set for f~Diff(M). A fundamental 
neighborhood for W~; ~ is a compact neighborhood of a fundamental 
domain of W~ s. Similarly for I4~/. 

The following theorem was stated in w 8 of the mimeographed version 
of [1] but was proved incorrectly. 

(5.1) Theorem. I f  V is a fundamental neighborhood for I/V~ ~ then 
W~u0+ Visa  neighborhood of A in M. 

From (5.1) we can finish the proof of (1.1), By (3.1), (3.2) it suffices to 
prove the following 

(5.2) Theorem. I f  W~U A has a proper fundamental domain D then A 
has a neighborhood U such that if O + x c U then x~ W~S(p) for some peA.  

Proof Let Vbe a compact neighborhood of D disjoint from A. Set 

u=(w~'u0_ ~0- v 

f , U is a neighborhood of A. where 0_ V= U f - "  v. By (5.1) applied to -1 
n>O 

If f"(x)~ U for all n > 0  then x r  V for otherwise f"(x)E V for some 
n > 0, but f "  (x) ~ U ~ M - V which is a contradiction. Therefore x ~ W~ s, 
proving the theorem. 

Proof of(5.1). Let D be a fundamental domain for W~ ' and let V be a 
neighborhood of it. We must show that W~"u0+Vis a neighborhood 
of A in M. 

Consider the semi-invariant u-disc family # u  constructed in (4.2) 
where 6 has been chosen so small that I~U(y)c V for any yED and 
0 < 6 < ~ .  

Clearly 
WZu0+ V~ WZu U "" 0 w~(+y) 

y~D 

10 Inventiones math., Vol. 9 
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by the semi-invariance of I7r But W~"=Au U (o+ y) and so 
yeD 

U y)= U 
ye D ye WE 

But for each peA, U lTV~"(y) = U 17v~(y) which is a neighborhood of p 
ye W~ ye WE p 

in M by (4.2). Hence ~ u 0+ Visa neighborhood of A and (5.1) is proved. 

w 6. The Pseudo-Hyperbolic Case 
The goal of this section is to generalize (4.2) to pseudo hyperbolic 

invariant sets of diffeomorphisms. We will apply this theorem to extend 
to flows the main results of the earlier sections about  diffeomorphisms. 

Recall that a compact subset A of M is pseudo hyperbolic for fe  Diff(M) 
if f A = A  and Tf leaves invariant a continuous spitting TAM=E10E2 
such that II(Tf) -1 [El II <k, II ZflE211 <~, and kd< 1. For f e  Diff'(M), r >  1, 
Theorem 3B.5 of [2] says 

(6.1) Theorem. Ifk < 1 then there exists e > 0 and a unique f-invariant C r 
regular family I, VI,, = {WI,,(p):peA} of submanifolds of size e such that 
WI,,(p) is tangent to Ex(p) for each peA. The manifold Wl,~(p) is charac- 
terized by xe WI,,(p) if and only if 

d ( f - " x , f - " p ) < e  for all n>O 

lim d ( f - " x , f - " p ) - 0 ,  
/1 ~ o0 k n 

We extend Vr to a disc family through a neighborhood of A as in w 4. 

(6.2) Theorem. If  A is as in (6.1) then for any small 6 > 0  there is a 
disc family 17V1,~ through N, a neighborhood of A, which reduces to Wj,~ 
at A and is semi-invariant in the sense that 

17VL~(fx)=flTVL~(x ) for x e N n f - ' N .  

Proof. The proof of (6.2) is essentially the same as that of (4.2), except 
that a new complete metric on the function spaces (~(E), N~(F), etc. 
must be used. It was introduced in [2, w 3 B] and is 

[g - g'l. = sup Ig x -  g' xl/Ixl. 
x:~O 

The estimates demonstrating the analogue of (4.3) in the pseudo hyper- 
bolic case with k < 1 are contained in I-2, w 3 B] and are similar to those 
in 1-1]. Once this analogue of (4.3) is proved, the proof of (6.2) is exactly 
the same as that of (4.2). 
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w 7. Flows 
Let {q>,} be a C' flow on M, r >  1. A compact invariant subset A c M  

is said to be hyperbolic for {q~,} if, for every t>0,  Tq~t leaves invariant a 
continuous splitting TaM=E,,@E~,~)E ~ 

exp~/nding E" and contracting E s, where E 'p is the tangent bundle to the 
orbits of the flow. If X is the vector field generating the flow then E~ is 
the 0-dimensional or 1-dimensional space spanned by X x. The equality 
(Tq~t),, (XJ=X~o,x is valid for any smooth flow {opt}, so invariance of 
E ~' is automatic. In [5] and [2] details and equivalent definitions are 
given. 

Note that A is a pseudo hyperbolic set for @t, t ~=0. If t > 0 then 
El =E"  and Ez=E*@E< If t < 0  then E1 = E  ~ and E 2 =EU~E q'. In either 
case we can choose k<  1 where [I(Tq~,IE1) -I  IJ <k.  

Applying (6.1) to qh, we get a unique ~ol-invariant family through 
A, W~"={W~p[p~A} tangent to E". By uniqueness, as in [2], W~" is 
locally q~t invariant for all t. Applying (6.1) to ~o_1, we get a unique q~-i 
invariant family through A, W~ ~= {W~ ' p:peA~'tangent to E ~ and W~ ' is 
~0t-invariant for all t. For any orbit (~ c A we put 

p ~  per 

(7.1) Theorem. The {W~"(~}, {~(~}  form invariant families of C" 
manifolds. The families {W~"plp~(~}, {W~p:per form C ~ fibrations of 

Proof. Since q~ W~"p~ W~(~p,p) for t > 0  and @t W~p~W~(tP~P) for 
t <0,  (7.l) is a direct consequence of (6.1). 

We say that A has local product structure if 

W / n  I4~ = A  

for some e>0.  (2.3) and (3.1) generalize at once to 

(7.2) Proposition. Let {q~,} be a f low satisfying Axiom ~ [5], i.e. the 
nonwandering set f2 is hyperbolic and the periodic orbits are dense in f2. 
Then f2 has local product structure. 

(7.3) Lemma. I f  t > 0  and A is hyperbolic for {~o,} then the set 
D ~= C I (Vr ~ -  q9 t W~9 is a fundamental domain for W~A. I f  A has local 
product structure, D ~ is proper. 

We also have 

(7.4) Theorem. I f  D = W/A  is a fundamental domain for some ~o~, ~ > O, 
and V i s a  neighborhood of  D. Then the set 

W~AuO+ V 
is a neighborhood of  A in M. 
10" 
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Proof E x t e n d  the disc fami ly  ~ to  a disc fami ly  9 ,  s e m i - i n v a r i a n t  
by  ~o~, t h r o u g h  a n e i g h b o r h o o d  of  A. Th i s  c an  be d o n e  by  (6.2). T h e n  
app ly  (4.1) as in  (4.2). S ince  0+ V= U ~~ ~~ I~, the  t h e o r e m  is p roved .  

t__>O n>O 

(7.2, 7.3, 7.4) p ro v i d e  the a n a l o g u e  of  (1.1) for flows. 

Remark. (7.4) ho lds  for n o r m a l l y  h y p e r b o l i c  fo l ia t ions  as def ined 
in  [2].  T h e  p r o o f  is the  same.  
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