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Neighborhoods of Hyperbolic Sets
M. HirscH, J. PaLts, C. PuGH, and M. Saus (Univ. of Warwick)

§ 1. Introduction

In this paper we study the asymptotic behavior of points near a
compact hyperbolic set of a C" diffeomorphism (r=1) 1 M—-M, M
being a compact manifold. The purpose of our study is to compiete the
proof of Smale’s Q-stability Theorem by demonstrating (2.1), (2.4) of [6].

Q denotes the set of non-wandering points for f. Smale’s Axiom A
requires [5]:

(a) Q has a hyperbolic structure,

(b) the periodic points are dense in Q.

Hyperbolic structure, the stable manifold of Q, and fundamental

neighborhoods are discussed in §§2 and 5.
The result of [6] proved here is:

If f obeys Axiom A then there exists a proper fundamental neighbor-
hood V for the stable manifold of Q such that the union of the unstable
manifold of Q and the forward orbit of V contains a neighborhood of Q in M.

As a consequence we have:

If f obeys Axiom A then any point whose orbit stays near Q is asymp-
totic with a point of Q.

Section 8 of the mimeographed version of [1] contains a generalization
of the above results with an incorrect proof. A correct generalization is:

(1.1) Theorem. If A is a compact hyperbolic set then W*(A)u0_V
contains a neighborhood U of A, where V is any fundamental neighbor-
hood for W(A) and 0, V=) f™(V). If A has local product structure

nz0
then a proper fundamental neighborhood may be found and any point
whose forward orbit lies in U is asymptotic with some point of A.

Theorem (1.1) is proved in §5, local product structure is discussed in
[5] and in §2. In §7 we prove the analogous theorems for flows.

Here is an example, due to Bowen, of a compact hyperbolic set A
which does not have local product structure, has no proper fundamental
neighborhood and for which there are points asymptotic to A without
being asymptotic with any point of A.
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Consider the Cantor set C as the space of sequences of zeros and ones
with a decimal point:

X={.X_3X_1.X9X{...) x;=0or L.

The elements of C can be thought of as maps Z — {0, 1}. The compact
open topology makes C a metrizable compact space. A distance is given
by 00
Xi =i
d(x,y)= 3 A e L

The shift map ¢: C— C moves the decimal point one space to the right:

(. Xx_g.xg Xy - )=0..X_1X0.%X1.-.).

o is a homeomorphism. By [4] (C, ) is conjugate to the restriction of
a diffetomorphism f: S2— S? to a certain compact invariant hyperbolic
set K. Hence the topological properties of C reflect themselves exactly
in K.

Consider the subset of C, and correspondingly of K,

A={xeC: any finite maximal string of 0’s is of even length}.

Clearly A is a compact g-invariant subset of C and the periodic points
are dense in A. However, there are points ce C such that
d(c"c, A)—0 as n—+ao
d(o" ¢, ¢" x) +0 as n— +oo for any xeA.
That is, there are points of C tending to A but not asymptotic with any
point of A. Even worse, there are periodic points of C — A whose entire
orbits lie arbitrarily close to A. This behavior is opposite to that of (1.1).

Define such ¢ as follows. Put odd maximal strings of zeros of increasing
length on both sides of the decimal point

... 1006001000101 . 1010001000001 ... .

Given any m>0, ¢" ¢ has at most one entry of 1 in [ —m, m] for
large enough |n|. The sequence x with zeros except at this entry belongs

to 4 and die" e, Y 1/2M=1/2m-1

lifzm

which is arbitrarily small when m is large. Hence ¢” ¢ — A. On the other
hand, for any xe C if d(¢" ¢, 6" x) — 0 as |n| — o0 then

x=¢ to the right of some entry if n— 0
x=c to the left of some entry if n— — 0.

Either way, x can not belong to A.
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A periodic point pe C is a sequence which endlessly repeats a finite
block. If this block is of the form 10 ... 0 with 2m +1 zeros then the orbit
of p lies within a distance 1/2"~! of A by the same reasoning as before.
Thus, the existence of periodic points as claimed above is clear.

§2. Local Product Structure

Several notions and results from [1, 5] should be recalled.

A compact set A= M is hyperbolic for the diffeomorphism f: M — M
if fA=A and Tfleaves invariant a continuous splitting T, M =E*® E*,
expanding E* and contracting E°. That is

| Tf @)=l if veE®
ITfw)| =zt ol  if veE*

for some constant 7,0<t <1, and some Riemannian metric on M. The
constant t is called the skewness.

Through such a A pass families of smooth unstable and stable mani-
folds tangent to E¥, E* at A [1]. The unstable manifold of size ¢ through
peA is called W*(p), the stable one W:(p). This “size ¢” refers to the
radius measured in the tangent space at p:

W (p)=exp,(graph g,)

where g,: E4(g)— Ej(¢) is a smooth map whose graph has slope <1 with
2,(00=0, Tg,(0)=0. E}(¢), E}(¢) are the e-discs in Ej, Ej. Similarly for
W:ip).

The families W= {W}(p)|pe A}, WS={W?{p){pe A} are overflowing
invariant in the following sense: f ~! W¥*(p)c W*(f ! p) and f W (p)=
W2(f p). They are expanding from A4 and contracting to A in the sense

that
ﬂf—-n I’Vsu=/1= ﬂf" VV:

nz0 nz0

for W= ) W*(p) and W:= ) W*(p). We call W=W"A the local
peAd peAd

unstable manifold of A. Similarly, W= W} A is called the local stable

manifold of A. Notice that this terminology differs from that of Smale

in [5].

If pis a hyperbolic fixed point (that is A = p in the preceding discussion)
and V is a local submanifold transverse to its stable manifold then
locally f™ presses V toward the unstable manifold of p, W*(p). If V has
the same dimension as W*p then as n—o0, f"V— W*(p) in the C!
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Fig. 1. f" flattens V toward W*p

sense, locally. This is the content of the A-lemma [3] and is illustrated
in Fig. 1.

A direct consequence of the A-lemma is the

(2.1) Cloud Lemma. If f: M — M is a diffeomorphism and p, q are
hyperbolic periodic points with W*(p) & W*(q)+0, W*(p) & W*(q)+0 then
these points of intersection are non-wandering.

Proof [5]. See Fig. 2 for n so large that p, q are fixed points of /™
The set U is a neighborhood of xe W*(q) n W*(p). We have drawn some
iterates f"* U and shown how they must re-intersect U eventually, by
the A-lemma.

Fig. 2. f*" U re-intersects U

Definition. A hyperbolic set A has local product structure if, for some

>0,
W p)n W)= 4
for all p, p'eA.
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(2.2) Local Product Structure Theorem. If f obeys Axiom A then f
has local product structure on Q.

Proof. Let £ 0 be small enough that the 3e-local stable and unstable
manifolds through points of £ are given by the stable manifold theory
of {1]. Let x, x'eQ have ye WS (x)n WS(x'). By [1] the intersection is
transverse, consists of a single point, and the same is true of the inter-
section Wj (x)n Wy, (x'). (See Fig. 3.)

quc"' \X'

W3 ¢

e

Fig. 3. Local product structure

Approximate x, x’ by periodic points p, p’. By continuity of the stable
and unstable manifolds, the intersections

Wii(p) N W3.(0), 5:p) N W3 (P)

continue to be transverse and to consist of single points, g, 4" (see Fig. 4).
By the Cloud Lemma, g, '€ Q. As ¢ is arbitrarily near y and Q is a closed
set, y belongs to Q.

Fig. 4. Stable and unstable manifolds for periodic p, p’ approximating x, x’
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Corollary of the Proof. If A is any hyperbolic set isolated from Q— A
and the periodic points are dense in A then f has local product structure at A.

The following key lemma shows how local product structure simplifies
the topology of W= { ] W(p).
peAd

(2.3) Lemma. W is a neighborhood of A in W if 0<d=¢, & is small,
and A has local product structure.

Proof. Suppose, on the contrary, that there existed a sequence of
points x,e W' (p,)— Wy converging to some peA. As in (2.2), when ¢ is
small this implies that W5 ,.(p,) & W3.(p) in a single point, say g,,. By local
product structure g,eA4 and d(x,, ¢, — 0. Thus x,e W;j(g,) when n is
large, contradicting our assumption.

§ 3. Fundamental Domains

A fundamental domain for W is a compact set D < W such that
Wp—A<0,_D

where 0, D= ( ) /"D, i.e. the forward orbit of D. A fundamental domain
nz0

for W} is a compact set D < W such that
Wit—~A<0_D

where 0_ D= () f~"D. If in addition D is disjoint from A, we call D a
nz0

proper fundamental domain.

(3.1) Lemma. The set D°=CIl(W,—fW?) is a fundamental domain
for W and D*= CI1(WY— f~' W) is one for W*.

Proof. 0, D> W — ﬂ [*WE=W:—A. The proof for D¥ is similar.

nz0

(3.2) Lemma. If A has local product structure then D°, D* are proper

fundamental domains.

Proof. There is a 6,0<d<s¢, such that f W o Wy By (2.3), W5 is a
neighborhood of A in W. Therefore D°= C{ (W — f W) is disjoint from
A. Similarly for D*.

Question. Do the following conditions imply the existence of proper
fundamental domain for W* A:

(a) the periodic points are dense in A,

(b) there exists a neighborhood U of A suchthatif xeUand 0, (x)c U
then w(x)< A, where w(x) is the w-limit set of x.
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§4. Semi Invariant Disc Families

In this section we state and prove the basic technical theorem
required for (1.1).

The space Emb (D*, M) of all embeddings of the closed u-disc into M
may be thought of as a fiber bundle over M. The fiber at xe M is the set
of all embeddings e: D“— M such that ¢(0)=x. We put the uniform
topology on Emb (D¥, M).

Definition. If a: X — Emb (D%, M) is a continuous section over X c M
then & = {image a(x)} xe X} is a (continuous) u-disc family through X

Clearly Wy*={W¢(p)|peA} is a u-disc family for any small 5>0.

The following lemma may be thought of as a type of Inverse Function
Theorem for certain u-disc families. By R™(¢) we mean the disc of radius &
in R™ centered at the origin.

(4.1) Lemma. If u+s=m and & ={A(y)|yeR*(8)} is a u-disc family
through 0 x R*(6)c R™ with A(y)=graphg, for g,: R*(e)— R’ g,(0)=y
then | ) A(y) is a neighborhood of 0 in R™.

yeRs

Proof. Continuity of o implies that g: (x, y)— (x, g, x) is a continuous
map from B=R¥(e)x R*) into R™. It suffices to prove that g|dB is
homotopic to the inclusion map dB<>R™—0. Such a homotopy is

given by
Gi(x, y)=(x,(1-1) g, +1 y).

The curves G,(x,y) never pass through 0 when (x, y)edB since x=0
implies g,(0)=y and so G,(x, y)=(0, y)*0. Thus, (4.1) is proved.

Now we may proceed to the main theorem of this section.

(4.2) Theorem. For any small >0 there is a u-disc family W} through
N, a neighborhood of A in M, which reduces to Wy at A and is semi-
invariant in the sense that

Wr(fx)cfWp(x)  for any xeNnf~!N.

Moreover for any peA, | ) W}(y) is a neighborhood of p in M.
yeWsp

Remark. If fis C" we can make W}* a continuous family of C" u-discs.

Remark. We cannot expect any sort of uniqueness for W, as simple
examples show with A taken to be one point. It is unknown whether
W3 can be chosen to foliate a neighborhood of A.

The proof of (4.2) is similar to the existence of {W(p)|peA} in [1].
All estimates needed here were proved in [1]. We must deal with graph
transforms induced by maps of one space to another instead of to itself.
We outline what must be re-interpreted.
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Let E=E; xE,, F=F, xF, be Banach spaces, equiped with the
product norms
|(x1, x2)|=max(|x,], |x,1).

Define 4,(E) to be the space of maps g: E;(¢) — E, such that
g0)=0, L(g)=1

where L denotes the Lipschitz constant and E(g) denotes the closed ball
of radius &. The metric in 4,(E)is |g—g'| = sup |g x—g’ x| and is complete.
Define ¢,(F) similarly.

Let f: E(g)— F, f(0)=0 be a map. It might happen that for every
ge%.(E) there exists he%,(F) such that

graph h< f(graph g).
If so, h is uniquely determined by g and we call h the graph transform
of g by f, -
h=I,g.

The next theorem was proved in [1, §4].

(4.3) Theorem. Let T: E— F be an isomorphism sending E, onto F,,
E, onto F, when E, xE,=E, F;xF,=F as above. Suppose |T,| <7,
1T <1, 0<t<l for T,=TI|E;, i=1,2. If f: E(e)—F is sufficiently
near T|E(g) then I;: 4.(E)— %.(F) is defined and has L(I;)<1. The precise
condition on f is Lot

1+7
Before proving (4.2) we need a simple extension lemma.

(4.4) Lemma. Let E, M be manifolds and n: E— M a fiber bundle.
If s: X — E is a section over a closed X M then s extends tos: N —E,
a section over a neighborhood of X.

Proof. Since E is an ANR (absolute neighborhood rectract) and M
is a normal space, s extends to a map s,: N, — E when N, is a neighbor-
hood of X in M. Let d be a metric on M. Choosing small neighborhoods
Nc N, of X makes the function d(x sy x, x) small if xe N,. Because M
is an ANR, this makes 7 54| N: N — M homotopic, rel X, to the inclusion
iy: N—M. The Covering Homotopy Theorem [7] shows that so|N is
homotopic, rel X, to a map5: N — E such that = §=iy. This proves the
lemma.

Proof of (4.2). Let the skewness of Tf|T,M be <rt. By (4.4) there
exists a neighborhood N, of A and extensions E*, E* of the bundles
E*, E° to N, for they are sections of the Grassmann bundles G*(M),
G*(M) restricted to 4. Taking a smaller N, if necessary we have E*®E =
Ty, M since E*@E'=T M.

f(0)=0 and L(f—T)<
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Applying (4.4) again we can find a “connector” 6, that is a continuous
family of isomorphisms 6(x, x'): M_— M_. defined for all (x, x)eM x M
sufficiently near the diagonal 4 of A x A such that

0(x,x)=1,, 6(x,x)E*=E%, 0(x,x)Ei=E:

In fact GL(EY) is a bundle over N, x N, whose fiber over (x, x) is the
space of all isomorphisms E*~— E* and the map (x, x)—1, is a section
of GL(E") over A. By (4.4) this section extends giving a section * Similarly
we get a section §°. Combining the two as §*@8° we get the connector 6.

Of course E*@E? is not likely to be Tf-invariant. Let (Tf),: M,—M x
be defined, with respect to this splitting, by the matrix

A, B,

M= ¢

for xef =Ny~ N,. Consider the linear map T,: M,—M, defined on
fﬂlNOmNOby T = Ax 0
= ( 0 Kx) '

At A the entries B and C vanish and T="Tf.

For any Ncf- 'Non N, the map T: TyM—T,xyM defined by
T|M,=T, is a bundle isomorphism leaving E*@E* invariant and equal
Tf at A.

Let f=exp~'o foexp: M(8)— TM, where M(8)= | ] M,(6). For small

xeM -
enough & and a small enough neighborhood Nc<N; of 4, f is well
defined and .
sup L((f = T) M. (9)=

satisfies the inequality of (4.3), £<(1—1)/(1+1). For when s—0 and
N—A we are merely seeing how well Tf approximates f at 4. By (4.3)
I;: 95(TyM)— %5(T;y M) is defined and has Lipschitz constant <1.

We may assume N chosen to be a smooth manifold with boundary.
If Vis a neighborhood of fN with ¥= N, and p: V—>fN a retraction
then 6(p x, x) will be defined for ¥ small enough and p near enough
the inclusion iy, : V—M. )

Defineh: V— N by h=f 1o p. Foreach xe Vdefine (8, f),: M, (0)—

by _ .
(0,1)=0(p x, x)of | M} (9)
and define (0, T),: M,,—M, by
0, T)e=0(p x, x)o ;.
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Since 8 is continuous, and equals I, at 4, (9, T'), may be made arbitrarily
near Tf| T, M by taking N small, V'near N, and p near i;,. That is

can be made near ¢ and in particular can be made <(1—1)(l+7).
But (0, T) preserves E* and E® because both # and T do. Taking N small
enough assures (6, T) has skewness < 7 because Tf| T, M has skewness <.
Hence we may apply (4.3) to conclude that (8, /) defines a graph-transform
I, ry: 95(Ty M)— %,(T,, M) with Lipschitz constant <1.

Let ¢: M—[0, 1] be continuous with ¢=0 off Vand ¢=1 on fN.
Define F: 9;(Ty M)—9;(Ty M) by sending ge%;(Ty M) onto the element
of 4,(Ty M) which, when restricted to E%(d) equals

0 if xeN—-V,
o (xX) I g, 7),.(8) if xeVnN.

If xedVA N, we know that ¢(x)=0 and so the two definitions agree.
Note that I, , (g) is a map E%(6)—E3(d) and so our definition of F
is well stated. Also note that F is not globally a graph transform: it does
not cover a map N—N.

Clearly F carries 4;(Ty M) into itself because Iy ,, carries 4,;(Ty M)
into %;(T;, M) and multiplication by ¢, 0<¢ =1, can only help. In the
computation of the Lipschitz size of the map F(g),: E4(5)>ES(d), @ is
constant. For the same reason, L(F)< L(Ij, )< 1. Hence F has a unique
fixed point, say g*.

Put W;'(x)=exp, (graph(g*| M,(9))), where xef ' N N. For such x,
it is clear that f W¥(x) >W(fx) by the definition of F. On A we have just
gone through the construction of W in [1] again and so Wy*(p)= W} (p)
by uniqueness of {W¥(p)|peA}. Thus W} is a semi-invariant family
of u-discs extending W3, It remains to show that () W(y) is a neigh-
borhood of p for pe A. yele )

There is a diffeomorphism j: M,(e)— M,(¢) such that (Tj),=1, and
j(exp, "(WZ p)=E(e). j(exp, "(W p))=E}(e). So

{joexp~ (W} y)| ye Wy p}

is a u-disc family through E}(u). Its radius may be slightly less than J,
but it is greater than 8/2, say, if x4 is small enough. Also, for small &
these u-discs will be graphs of maps E}(d/2)— E;(¢) having slope =2.
By (4.3) this u-disc family includes a neighborhood of p in M,(¢) and
hence its exp,ej~! image {W(y)|ye W; p} contains a neighborhood
of p in M, since exp,oj~" is a local diffcomorphism at p. This proves
4.2).



Neighborhoods of Hyperbolic Sets 131

Remark. In a similar manner we could obtain an invariant family
of linear graphs G,: E*—E%. These determine a subbundle of TyM
semi-invariant under T, and thus a semi-invariant extension of E°®E*
to E*“@Es= Ty M. Proceeding with the construction of W} we find that
W;(y) is tangent to E* at y for y near A. In fact, it can be shown that
W#(y)is C" when fis C" by imitating the proof of smoothness of unstable
manifolds in either [ 1] or [2]. In this way one can prove.

(4.5) Theorem. The semi-invariant family Wy of (4.2) can be chosen
to be a continuous family of C" u-discs when fis C'.

§ 5. Fundamental Neighborhoods and the Proof of the Main Theorem

As before, let A be a hyperbolic set for fe Diff(M). A fundamental
neighborhood for W?® is a compact neighborhood of a fundamental
domain of W}. Similarly for W}

The following theorem was stated in § 8 of the mimeographed version
of [1] but was proved incorrectly.

(5.1) Theorem. If V is a fundamental neighborhood for WS then
W0, Vis a neighborhood of A in M.

From (5.1) we can finish the proof of (1.1). By (3.1), (3.2) it suffices to
prove the following

(5.2) Theorem. If WA has a proper fundamental domain D then A
has a neighborhood U such that if 0, x < U then xe W (p) for some pe A.

Proof. Let Vbe a compact neighborhood of D disjoint from A. Set
U=(Wu0_W-V

where 0_V= () f~"V. By (5.1) applied to f ~*, U is a neighborhood of A.
nz0

If f*(x)eU for all n=20 then x¢0_V for otherwise f"(x)eV for some

120, but f*(x)eU M —V which is a contradiction. Therefore xe W/,

proving the theorem.

Proof of (5.1). Let D be a fundamental domain for W and let V be a
neighborhood of it. We must show that W*u0_V is a neighborhood
of Ain M.

Consider the semi-invariant u-disc family Wy constructed in (4.2)
where & has been chosen so small that W¥(y)<V for any yeD and
0<éZe

Clearly _

W00, Vo Wru ) W0, )
yeD

10 Inventiones math., Vol.9
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by the semi-invariance of Wy But Ws=Au (0, y) and so
yeD

wro U W0, )= U W),

yeD yeWi
But for each pe A, | ) Wy'(y)= |J W§(y) which is a neighborhood of p
yeWi yeWip
in M by (4.2). Hence W} 0_ Vis a neighborhood of 4 and (5.1) is proved.

§ 6. The Pseudo-Hyperbolic Case

The goal of this section is to generalize (4.2) to psendo hyperbolic
invariant sets of diffeomorphisms. We will apply this theorem to extend
to flows the main results of the earlier sections about diffeomorphisms.

Recall that a compact subset A4 of M is pseudo hyperbolic for fe Diff(M)
if fA=A and Tf leaves invariant a continuous spitting TyM =E, ®E,
such that ||(Tf)~ | E, || <k, | Tf | E,|| <£,and k£ < 1. For fe Diff"(M), r 21,
Theorem 3B.5 of [2] says

(6.1) Theorem. Ifk <1 thenthere exists >0 and aunique f-invariant C"
regular family W, ,={W, .(p):pe A} of submanifolds of size € such that
W,..(p) is tangent to E,(p) for each pe A. The manifold W, .(p) is charac-
terized by xe W, .(p) if and only if

d(f"x,f"p)<e  forall n20
fim 2UT"%S7)

n— o k"

0.

We extend W] to a disc family through a neighborhood of 4 asin § 4.

(6.2) Theorem. If A is as in (6.1) then for any small 5>0 there is a
disc family W, 5 through N, a neighborhood of A, which reduces to W, ;
at A and is semi-invariant in the sense that

Wis(f0)=fWi5(x)  for xeNnf~'N.

Proof. The proof of (6.2) is essentially the same as that of (4.2), except
that a new complete metric on the function spaces %.(E), %.(F), etc.
must be used. It was introduced in [2,§3B] and is

|g—g'l,=suplgx—g'x|/|x|.
x%0

The estimates demonstrating the analogue of (4.3) in the pseudo hyper-
bolic case with k<1 are contained in [2, § 3B] and are similar to those
in [1]. Once this analogue of (4.3) is proved, the proof of (6.2) is exactly
the same as that of (4.2).
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§ 7. Flows

Let {¢,} be a C" flow on M, r= 1. A compact invariant subset A<M
is said to be hyperbolic for {¢,} if, for every t>0, T, leaves invariant a

continuous splitting T, M=E'QE°QE*
M=

expanding E* and contracting E’, where E? is the tangent bundle to the
orbits of the flow. If X is the vector field generating the flow then E is
the 0-dimensional or 1-dimensional space spanned by X,. The equality
(T, (X,)=X,,, is valid for any smooth flow {¢,}, so invariance of
E? is automatic. In [5] and [2] details and equivalent definitions are
given.

Note that A is a pseudo hyperbolic set for ¢,, t+0. If t>0 then
E,=F*and E,=E°@E". If t <0 then E; =E° and E, = E*@®E®. In either
case we can choose k<1 where |[(To,|E;)"}| <k.

Applying (6.1) to ¢, we get a unique @;-invariant family through
A, We={W}plpe A} tangent to E*. By uniqueness, as in [2], W}* is
locally ¢, invariant for all t. Applying (6.1) to ¢ _,, we get a unique ¢ _,
invariant family through A, W= {W? p:pe AY tangent to E* and W/ is
@-invariant for all . For any orbit ¢ = A we put

weo={) Wep,  Wro=\)Wp.
pel pel

(7.1) Theorem. The {W'0}, {WS 0} form invariant families of C'
manifolds. The families {W'p|pe0}, {W:p:pe®} form C" fibrations of
Wr0, WS 0.

Proof. Since o, Wpo> W2(g,p) for t>0 and ¢, Wip>W:(e,p) for
t<0, (7.1) is a direct consequence of (6.1).

We say that A has local product structure if
WnWe=A4A
for some ¢>0. (2.3) and (3.1) generalize at once to
(7.2) Proposition. Let {@,} be a flow satisfying Axiom A [5], i.e. the

nonwandering set Q is hyperbolic and the periodic orbits are dense in Q.
Then 2 has local product structure.

(7.3) Lemma. If t>0 and A is hyperbolic for {p,} then the set
D’=CI(W— o, W) is a fundamental domain for W A. If A has local
product structure, D* is proper.

We also have

(7.4) Theorem. If D= WS A is a fundamental domain for some ¢, 1>0,
and Vis a neighborhood of D. Then the set

wrAuO, vV
is a neighborhood of A in M.

10>
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Proof. Extend the disc family W to a disc family WY semi-invariant
by ¢,, through a neighborhood of A. This can be done by (6.2). Then
apply (4.1) as in (4.2). Since 0, V=1 ) ¢,V = ) ¢, ¥, the theorem is proved.

t=0 n20

(7.2, 7.3, 7.4) provide the analogue of (1.1) for flows.

Remark. (7.4) holds for normally hyperbolic foliations as defined
in [2]. The proof is the same.
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