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Linearization of Normally Hyperbolic 
Diffeomorphisms and Flows 

CHARLES PUGH*, MICHAEL SHUB** (IHES,Bures sur Yvet te)  

1. Introduction 

In this paper we linearize a diffeomorphism near an invariant sub- 
manifold in the presence of normal hyperbolicity. 

Definition. If f: M - * M  is a C 1 diffeomorphism of  a Riemannian 
manifold M leaving invariant the compact C 1 submanifold V, f V= V, then f 
is normally hyperbolic at V provided that its tangent T f  : Tv M - *  Tv M 
leaves invariant a continuous splitting Tv M = N u ~ T V G N ~ and 

(a) m(NUf)>  I[ VfII, 

(b) IIN~fll < m ( V f )  
where NUf  = T f l N  ~, V f  = T f l  TV, N S f  = T f l N  ~ and 

m(NUf)=~nfHN[, f  -~ll - ' ,  I[Vf[]=sup[]Vpf[[, 
p~V 

IINSfll=supl[N~f[I, m(Vf)=infvl lVpf  - ' l [ - '  
p~V 

See [3] where normal hyperbolicity is discussed extensively. Condi- 
tions (a), (b) mean that the normal behavior dominates the tangent 
behavior. 

Definition. A C 1 f low {f t}  on M is normally hyperbolic at V if f '  V= V 
for all t and f l  is normally hyperbolic at E 

From [3] we know that all f t ,  t 4 = O, are normally hyperbolic at V if 
one, say f l ,  is. The splitting NU~3 T V G N  ~ is independent of t. If V is 
a closed orbit of the flow {f t}  then normal hyperbolicity at Vis equivalent 
to genericity of V in the usual sense. 

Theorem 1. I f  f is normally hyperbolic at V then f is conjugate to N f 
near V. 
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Theorem 2. I f  {ft} is normally hyperbolic at V then {ft} is conjugate 
to {N f t} near V. 

N f  is T f I N U ~ N  s and the conjugacy is a homeomorphism h defined 
from a neighborhood of the zero section of N V  to a neighborhood of V 
in M such that N ( f )  h = h f. 

A conjugacy between the flows {ft} and { N f  t} is a single homeo- 
morphism that conjugates each f t  to N f  t near V. 

The proofs of Theorems 1, 2 were inspired by the geometric proof of 
Hartman's Theorem in Palis [6] and the proofs of Hartman's Theorem 
for a fixed point in a Banach space Palis [5] and Pugh [8]. For Hartman's 
Theorem is the case V= one point in Theorems 1, 2 [1 a]. Theorem 2 for 
the case of a closed orbit was independently proven by Irwin [4]. The 
techniques used to prove Theorem 2 simplify when V is a closed orbit 
as follows: 

Proposition. I f  {ft} is normally hyperbolic at a closed orbit V then {ft}  
is conjugate to {N f t} near V. 

Proof. Let V have period z. We need only find topological disks 
D o c D  transverse to V at x e V  such that f~(Do)cD, for then f~lDo is 
conjugate to the Poincar6 transformation on a differentiably transverse 
disc just by following the solution curves near V and the Poincar6 
transformation is conjugate to N f  ~ IN x E Thus there is a local conjugacy 
h: U- ,Do.  Now we may define the conjugacy H by H ( x ) = f  t h N f - t ( x )  
where 0 ~ t < T  and N f - t ( x ) e D o  . H is defined and continuous in a 
neighborhood of V and HNf~=ftH. The existence of the topologically 
transverse disc is a simple application of the proof of Theorem 1, ex- 
tending W uu over W~ s~ x for f ' .  

Takens has recently shown that a differentiable H exists generically 
for V a closed orbit. 

For such linearization theorems, the notion of normal hyperbolicity 
may be unnecessarily strong. For instance, suppose N"=0, NS= N is 
left invariant by T f  and contracted, although perhaps not so sharply as 
is TV. We could then find a diffeomorphism g leaving V pointwise fixed 
such that Tg leaves N V  invariant and contracts each fiber by constant- 
multiplication, c >0. Then g of would be normally hyperbolic (purely 
contracting) if c were small enough. Also it could be shown that g of is 
conjugate to f near V and N(gof) is conjugate to Nf.  By Theorem 1, 
N(gof )  is conjugate to g of near V and thus N ( f )  is conjugate to f. 
This says that in the purely contracting case, we could weaken the normal 
hyperbolicity assumption to "0-normal hyperbolicity": the normal 
behavior, N f, dominates the zero-th power of T f  on TV. Similarly in 
the purely expanding case. If we try the same trick in the true hyperbolic 
case, N" ~= 0 ~k N', we would make N ~ g = multiplication by C > 1, N ~ g = 
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multiplication by 0 < c < 1, then g of  would be normally hyperbolic at V 
for c small and C large. Although it can be seen that N(g of) is conjugate 
to N( f ) ,  it is not clear whether g of  is conjugate to f. 

2. Linearization in Banach Bundles 

The proofs of Theorems 1, 2 are not so similar as we would like. Both 
rely on forms of Hartman's Theorem for Banach bundles, but in the flow 
case we prove only a purely contracting Banach bundle theorem. 

(2.1) Theorem. Let 
E r ~ E  

I 1 
X I ~ X  

be a hyperbolic Banach bundle automorphism covering the homeomor- 
phism f. Let F' : E ~ E be continuous and obey 

(a) f '  covers f, 

(b) L(F~-Fx)< # x e X  and I f~- fx l<~ ,  

(c) F'(Ox)=Oix x e X ,  
where Fx, F~ are F, F' restricted to the fiber over x, E~, and O~-, x is the 
origin of E x. Then F' is conjugate to F. The conjugacy leaves X pointwise 
f ixed and preserves E-fibers. I t  is the unique conjugacy covering the 
identity map X-- ,  X and at a finite distance from the identity map E--, E. 
The constant p is determined as in [8] by/~ < 1 - z where z is the skewness. 

Proof. There are two ways to produce the conjugacy h between F' 
and F. One may just consider the functional analytic proof of Hartman's 
Theorem [5, 8] and observe that at no stage does the presence of the 
parameter xe  X complicate the argument. Alternatively, one may let F, F' 
induce hyperbolic automorphisms Fb, F~ on ZbE, the Banach space of 
bounded sections of E. The map F~ is within/1 of the hyperbolic auto- 
morphism F b. They are conjugate using Hartman's Theorem directly, 
say by H: XbE--,XbE. The characterization of H can then be used, as 
in [2] and the deduction of stable manifold theory for hyperbolic sets 
from the theory for a point in a Banach space, to conclude that H induces 
a conjugacy between F' and F. It is defined by 

h (y) = H(i~ y) (x) 

for yeEx  and ix y the bounded section of E which vanishes except at x 
when it equals y. 

Though the second proof is somehow more satisfying, it is consid- 
erably longer. Both are straightforward. 
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The functional analytic proofofHartman's Theorem gives uniqueness. 
In practice we must deal with a local situation. 

(2.2) Theorem. Let F, F' be as in (2.1) except that F' is defined only 
on U, a uniform neighborhood of  a closed f-invariant subset X o c X and 
satisfies 

(a) F' covers f, equaling f on X n U, 

(b) L(F~-F~)<#/2  x ~ X n  U 

the function Fj, - F~ being defined only on U n Ex. Then restrictions of  F' 
and F to neighborhoods of X o are conjugate. The conjugacy equals the 
identity on X and preserves fibers. 

Proof It is merely a matter of extending F', or a restriction of F', to 
all of E while preserving (a), (b). Then we apply the global Theorem (2.1) 
to F and this extension. The resulting conjugacy, restricted to a neigh- 
borhood of Xo, works. 

Let e > 0 be chosen so that 

U ~ U~= {y~ Ex: d(x, Xo) < e, lYl =<e} 

and let r be a continuous bump function on X, 0 =< r 1, vanishing off 
U n X and equalling 1 on U~ c~ X. 

Let p: E~E(e) be the radial retraction defined by 

y if lyl<e 
P(Y)= ey/lYl if lYl>_e. 

Then define 
ff(y) = r (x) . (F' - F) o p (y) + F(y) 

for yeEx. When x~ U, this makes F== F=. Note that ff covers f, equals F' 
on U~, and 

L (fix - F=) = L ((p (x).  (F~-  tx)  o p=) < (p (x) L (F~ - F=) L (Px). 

In the next lemma, we check that L(p=)< 2. Hence f verifies the hypoth- 
eses of (2.1) and (2.2) is proved. 

(2.3) Lemma. L(p)< 2 where p: E--. E(e) is the radial retraction of  the 
normed space E onto its closed e-ball E(e). 

Proof Let yl, y2eE. We must show that 

IP(YO- P(Y2)[ <~2 lye-y21. 

'If yl, y2eE(e) then there is nothing to prove. This leaves the cases 
[yll~e~[y21, e~_[yll~]y2]. The first is a consequence of the second: a 
norm is continuous so there is a point Y3 on the segment [Yl, Y2] having 
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I),'3 J = & T h e n  

Ip(y~)- p(yz)l < lp(y~)- p(y3)l + lp(ya)-p(yOI 

<=ly~- y3l + 21y3- y21~ 2 [ly~- y3l + ly3- y2l]= 21y~- y21. 

It remains to consider: e <  lye( lY21. 

IP(Y~)-P(Y2)I-- eyl ey2 =1~11 y~ Y2 
)Yll ly2l - ~ -  

< Yl lyll Y2 <lYe-Y21 I lYll ) - * 

<,yl-yzI+[IY2I-lYl '  I 
lY21 lYzI<21y~-Y21" 

Remark. This estimate is the sharpest possible for the Lipschitz 
constant of p. For L ( p ) = 2  when E=R 2 and t(x, y)l=max(Ixl,  1Yl)- 

(2.4) Note. The hypotheses (b) of (2.2) is verified on a small enough 
neighborhood of Xo if 

(b') F~ is C ~, its derivative is uniformly continuous at Xo, and 
D F~ = F x at X o . 

This differentiability of F~ means the derivative of F' exist along 
fibers; its continuity at Xo means that (DF:~,)r tends uniformly to (DFx)o 
as l YI ~ 0 and x'--~ x E X 0 . Since L (F x - F~) < sup II Fx- (OF~)~ll, (2.2 b) holds 
on a small neighborhood of Xo. r 

3. Proof of Theorem 1 

Case 1. N ~ = 0. That is, f is purely expanding in the normal direction, 
N = N  u. According to [3], there is homeomorphism g: N ~ W ~  u, the 
unstable manifold of V, carrying the linear fiber N,(p) to the strong 
unstable fiber W~U~ (p). The map g, restricted to each N~ (p), is C ~, uniformly 
in p, and 

T(gIN~ (p)): Tp (N(p)) ~ T~ M 

is the inclusion N(p) r Tp M. Since N(p) is linear Tp(N(p)) is canonically 
isomorphic to N(p). 

We considerf '=g-l fg:  N ~ N  for J < e .  Then f '  and NUf=Nfare  
fiber preserving maps of N, both covering the same map f l V. 

N f"Nf~N 

1 1 
V fW ~ V 
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Of course f '  is just defined locally. Since T(g IN~(p)) is the inclusion at p, 
f '  is tangent to N f  along fibers at V. This lets us apply (2.4), (2.2) to 

produce a conjugacy h, f '  h = h o N f . 

Then g h = H conjugates N f to f since H o N f =  g o h o N f = g o f ' o  h = f o H. 

Case 2. N u = 0. Apply Case 1 to f -  1. 

Case 3. N ~ 4:0 4= N s. Restricting f to the C 1 submanifold W s, the 
stable manifold of V, we may apply Case 2 to produce a conjugacy of 
NS f to f l W s near V 

h~: N~s~W~ ~, h~oN~f=flW~Soh~. 

At present W u is fibered over V by the strong unstable fibers W "~. 
We shall extend the fibration, f-invariantly, to be over W~ ~. 

Indeed let G be a fundamental domain of WsV. That  is, let G be a 
compact subset of W~ ~ satisfying 

f 2 G c ~ G = O ,  

U f " G  w V is a neighborhood of V in W ' V. 
n~0 

Such domains exist by I-6, 7]. Alternatively one could observe that a 
linear contractive bundle automorphism certainly has a fundamental 
domain: the closed unit disc bundle minus the image of the open unit 
disc bundle. Thus N ~ f  has a fundamental domain and we could use h~ 
to give us one for f l W~ ~- 

Over a neighborhood of G in W~ ~ introduce a C 1 fibration whose 
fibers meet W ~ V transversally at G, rr ~: U---, G. As in 1-6, 7] the fibration 
rr u and f .  n U = f o n % f  -1 can be averaged over a neighborhood of 
G n f G  so that an f- invariant  fibration over G is achieved, call it again rr u. 
Then extend rr ~ to an entire neighborhood of V except Vr u V by f-i teration 
as in 1-6, 7]. By the 2-1emma [6] n ~ extends regularly to the W ~u fibration: 
the union of the n ~ fibers and the W uu fibers forms a continuous fibration 
over W~ s and the tangent spaces to its fibers very continuously, Call flu 
the union of these two fibrations: 

~'l WU is the W u~ fibration, 
$~ is f- invariant regular, 
flu: U ~  W,S ~'1Vr ~ is the identity. 

For  yeNS(p)  define/V"(y) to be the affine translate of NU(p) to y in 
N(p). This lets us look at N as a bundle over N ~ and look at N f  as a 
bundle expansion over the base homeomorphism N S f  

N Nf ) N  

.I I. 
Ns, ,N'f ) N ~ 



Linearization of Normally Hyperbolic Diffeomorphisms and Flows 193 

For  the fibers of ~ are the N``'s and they are invariantly expanded by N f .  
We intend to apply (2.2) when N * = X, V= Xo. To lift f to N in such a 
way that it also covers N S f  requires a nice parameterization of the YP 
fibers. 

Define a homeomorphism g: N~ --:, G such that 

(i) g(y)= hs(y ) if y~NS(p), 
(ii) glN~(y) is a C 1 diffeomorphism onto the fiber (~``)-l(h,y). Its 

derivative is continuous on N~ and equals the inclusion N``(pF-.,TpM at 
y=p~V.  

That such a g exists will be seen in a moment. Now look at 

f ' = g - l  ofog 

which lifts f to N, near V,, as a fiber preserving map locally covering N~f  

N~ f ' , N  

N s N~f , N s 

By (ii), N f  and f '  are tangent along the ~-fibers at V. That  is, D (f'lb)`` (p))p 
= N f  I N"(p) = N``f(p). Restricting to a small neighborhood of V, as in (2.4), 
we can apply (2.2) and find a conjugacy 

h o N f = f ' o h .  

Put H = g o h. Then H o N f =  g o h o N f =  g of 'o h--~ f ~  H so H is a conjugacy 
between N f  and f near V. 

It remains to explain how the map g: N,---, U was defined. We just 
work backwards. As in [3] we have a smooth exponential map, exp. For  
yeN~(p), the ~``-fiber through h~(y) is pulled back by expp -t to the 
graph of a C 1 map 7: N~(P)--~N~(p)OTe V. Let p be the projection 
Tp M --~ N u (p) along N ~ (p) ~ Tp V. Then g can be defined as the composition 

/Vf(y) P , Nff(p) graph~ , TpM exp , (~')-t(h~y). 

When y=p ,  g maps N~(p) onto W~"``(p) the same as in [3] and its deriv- 
ative is the inclusion required in (ii). 

This completes the proof of Theorem 1. 

4. Flows 

Turning to the case of flows, we should like to imitate (2.2), (2.4). 
Unfortunately, we cannot do this, but we can prove a theorem sufficiently 
general for our needs. 
14 lnvenUones math., Vol 10 



t94 C. Pugh and M. Shub: 

(4.1) Theorem. Let {U} be a continuous linear flow on a Banach 
bundle ~: E - .  X covering the flow {ft} on the base X. Suppose the time 
one map is a uniform contraction on fibers: 

IIFlJExH ~c t<  1 forall xEX.  

Let U be a negatively invariant nonempty subset of X. Let {G t} be a local 
flow over U also covering {ft}, leaving the zero section of E invariant 
and being close to {ft} : 

L(Ft-GtlEx)<#<min(�89 l - a )  0<t_< 1 x e U  

for fl=inf{m(ftlEx): xEX, O~ t<  1}. Then {U} and {G t} are conjugate 
over U near the zero section. Similarly for a uniform expansion. 

Remark. By "negatively invariant" we mean 

f t  (x) e U for all t < 0 and x e U. 

By "local flow over U" we mean that Gt(y) is defined, continuous, and 
has the group property, Gt+S(y)=Gt(GS(y)), on its domain. This must 
include 

{(t, y): 0_<t< 1, [yl<=e, H y e U }  u {(t, Gs(y)): s>=O, -s<t<_O} 

for some e > 0. 

Remark 2. It is the problem of extending a non-smooth flow on a non- 
smooth manifold that forces us back to a local proof of this theorem, in 
contrast to the Banach space case [-8]. 

Remark 3. If F 1 is hyperbolic, instead of purely contracting, we do 
not know whether the theorem holds. 

(4.2) Lemma. If F: E --~ E' is a Banach space isomorphism and h: U-~ E' 
for U c E satisfies 

h(0)=0,  L(h)<�89 

then IF + hJ is radially monotone. 

Proof. For x e E, x :~ 0, we must show that I(F + h)(2 x)l increases as 2 
increases, ;t > 0. When 0 < ;t < 1, 

,(F + x)l= lF x h (,;t x) 

= 2 IFx + h(x) +-~ [(h(2 x) -  h(x)) + (h(x)- 2 h (x))] 

<2 I(V+h)(x)l + Ih(2 x ) -  h(x)l + Ih(x)-  2 h(x)l 

<21(F+h)(x)l+L(h)(1 - 2) Ixl + (1 - 2) Ih(x)l. 
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Thus 
I(F + h)(x) l -  I(F + h)(2 x)l _>- (1 - 2).I-[(F + h)(x) l -  L(h)Ixl-  [h(x)l] 

>_ (1 -2 ) [m(F) -3L(h ) ]  Ix l>0  
which proves the lemma. 

Proof of (4.1). Consider the functions defined for y e E (e) n n -  1 U by 
1 1 

g(Y)= S Ia'(y)l dt, f ( y ) =  S IF'yl dr. 
0 0 

We claim that 

(i) The flow {G t} is topologically transverse to the level surface of 
g off the zero section. 

(ii) g-l(e/~) cuts every radius of E(e)c~ H -~ U exactly once. 
(iii) g oG'y and IGt(y)l become small, as t grows large, at controlled 

rates until, if ever, ft(rc y) leaves U. 

(iv) Similarly for f, {F'}. 

Note that (i, ii, iii) =~ (iv) by taking G' - F'. 

For 0<lYl<e ,  rcy~U, and 0 < t < l ,  
1 t + l  t 1 

g(Gt y) = ~ tG'+~(y)l ds= ~ IG~(y)l ds= ~ IG ~ GS(y)l ds + S IGS(y)l ds 
0 t 0 t 

t 1 

< ( ~ + # )  S IG~(y)l ds+ ~ IGS(y)l ds 
0 t 

so that g o G~(y) decreases as t increases. This proves (i). 

By (4.2); the integrand IGt(2y)l, for any fixed (t, y) is monotone in 2, 
0_<2< 1. Clearly its integral also is" g(y) is radially monotone. If ly l=e 
then 

g(y) > ( f l -  I~) lYl > l~ e 

so that for some unique 2, 0 < 2 < 1, g (2 y )=  e #. This proves (ii). 

(iii) follows at once from the estimates on {F'}. 

By (ii), (iv) we can define a homeomorphism 

H: g-l(e#)---~ f - l ( e# )  

by sliding along radii. Then we extend H by setting 

HIGt(g-I(elO)=F%HoG -t, O_<t<_oo, 

H(y)=y for rcyeU, lyl=0 

(i) insures H is well defined. Since F t, G t cover the same map on X, 
preserves fibers and covers 1. By (iii), (iv) R is defined on all of 

14" 
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g- t  ([0, e#]) and is continuous at 0. The inverse of H is given by 

H - l l F t ( f  - l ( e /a ) )=G'on - loF- '  O<t<oo 

and for the same reasons is well defined, continuous, and defined on all 
o f f - l ( [ O ,  e/a]). By construction i~ conjugates the two flows. The ex- 
panding case is treated by taking reverses of all flows, {F-'}, {G-t}, etc. 

In order to produce smooth fundamental domains for flows we must 
use some Lyapunov theory. 

(4.3) Theorem. I f  {ft} is a C 1 flow on a finite dimensional smooth 
manifold M and if V is a uniform attractor then there is a smooth L yapunov 
function for the flow at V, H: M--. R : 

H - ' ( 0 ) =  V, 

H decreases along trajectories near V. 

Proof [9]. By "uniform attractor" we mean that for some compact 
neighborhood K of V 

N K t = V  where Kt={fS(x):  x eK ,  s>t} .  
t~_O 

Now we are ready to prove Theorem 2 that a normally hyperbolic 
flow can be linearized. 

Proof of Theorem 2. {ft} is a C 1 flow on M leaving V invariant. One 
f a  is normally hyperbolic at E By [3] all f t ,  t # 0, are and the splitting 
T v M = N a t ~ T V ~ ) N  ~ is independent of t. By [3] the stable, strong 
stable, unstable, and strong unstable manifolds for fa a r e  the same as 
those for f ' ,  t a > 0. 

As in Theorem 1 we have three cases. 

Case 1. N~=0. Using (4.1) instead of (2.1), the proof is the same as 
for Case 1 of Theorem 1. 

Case 2, N~=0. Apply Case 1 to { f - '} .  

Case 3. N~#:O#N ~. In W~ ~ there exists a C 1 submanifold B of co- 
dimension one bounding a neighborhood of V, and across which 

X = f t  points transversally inwards. B's existence is assured by 

the Lyapunov Theorem (4.3). 
Over B we erect a C 1 fibration n~ whose fibers are transverse to W~ 

as in [6, 7]. Then le t f l  act on n ~ by 

f %  ~ o f - ' .  
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Since B and ~t ~ are C x and the flow is differentiably transverse to B this 
produces, locally, a C 1 fibration, also called ~ ,  over a neighborhood of 
B in W~ ~. By the 2-1emma it tends reguiarly to the W~-fibrat ion of W~ ~ 
as t -~ oo. The union of the ~ and the W ~ fibrations is a fibration, ff~, 
over W~ s whose fibers have continuously varying tangent planes. (Of 
course, we always cut the flu-fibers down to a fixed neighborhood of E) 
As in Theorem 1 

~ ' [W ~ is the W~U-fibration, 

flu is f t  invariant, t>O, and regular, 

ff~: U--* W~ ~, ~[W~ s is the identity. 

By Case l, there is a homeomorph i sm hs: N , ~ W ~  ~ conjugating 
{U~f  t} and {/']W~S}. 

As in Theorem 1 define/V"(y) to be the affine translate of  NU(p) to y 
in N(p) when y~NS(p). Then 

N NI' , N  

N s N,f, } N s 

is a purely expanding bundle flow over the base flow {NSft}. The 
E-fibers are the ~u. 

Let g be the same parameterizat ion of the ff~-fibration as in Theorem 1. 

Putting G t =g-1 of  to g 

lifts {f '}  to N~ as a fiber preserving flow locally covering {N ' f t } .  

N~ ~' , N  

'1 1' 
N s N s f  t , N s 

As in Theorem 1, N f '  and G' are tangent along the X-fibers at V. 
Restricting to a small enough neighborhood of V, as in (2.4), we may 
apply (4.7) to produce a conjugacy h between {G'} and { N f  t} near V. 
As in Theorem 1, g o h conjugates { N f ' }  to { f t}  near V. 
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