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Linearization of Normally Hyperbolic
Diffeomorphisms and Flows

CHARLES PUGH*, MICHAEL SHUB** (IHES, Bures sur Yvette)

1. Introduction

In this paper we linearize a diffeomorphism near an invariant sub-
manifold in the presence of normal hyperbolicity.

Definition. If /: M—M is a C' diffeomorphism of a Riemannian
manifold M leaving invariant the compact C' submanifold V, f V=V, then f
is normally hyperbolic at V provided that its tangent Tf: T, M—>T, M
leaves invariant a continuous splitting T, M=N"*® TV® N* and

@) m(N*f)>|Vfl,

(b) IN*fll<m(Vf)
where N* f=Tf|N*, Vf=Tf|TV, N f=Tf|N°* and

m(N“f)=I§g£IIN£‘f‘1II", IIVflI=§lelgllV,,fl|,
!IN’f!|=iggllN5fll, M(Vf)=gggll%f“ll‘1-

See [3] where normal hyperbolicity is discussed extensively. Condi-
tions (a), (b) mean that the normal behavior dominates the tangent
behavior.

Definition. A C* flow {f'} on M is normally hyperbolicat Vif f'V=V
for all t and ! is normally hyperbolic at V.

From [3] we know that all f*, =0, are normally hyperbolic at V if
one, say f!, is. The splitting N*@® TV @ N°® is independent of t. If V is
a closed orbit of the flow { f*} then normal hyperbolicity at V is equivalent
to genericity of V in the usual sense.

Theorem 1. If f is normally hyperbolic at V then f is conjugate to N f
near V.
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Theorem 2. If {f*} is normally hyperbolic at V then {f'} is conjugate
to {N f*} near V.

N fis Tf|N*@® N* and the conjugacy is a homeomorphism h defined
from a neighborhood of the zero section of NV to a neighborhood of V
in M such that N(f)h=h{. ‘

A conjugacy between the flows {f'} and {N f*} is a single homeo-
morphism that conjugates each f* to N f* near V.

The proofs of Theorems 1, 2 were inspired by the geometric proof of
Hartman’s Theorem in Palis [6] and the proofs of Hartman’s Theorem
for a fixed point in a Banach space Palis [5] and Pugh [8]. For Hartman’s
Theorem is the case V=one point in Theorems 1, 2 [1a]. Theorem 2 for
the case of a closed orbit was independently proven by Irwin [4]. The
techniques used to prove Theorem 2 simplify when V is a closed orbit
as follows:

Proposition. If { f*} is normally hyperbolic at a closed orbit V then { f*}
is conjugate to {N f*} near V.

Proof. Let V have period t. We need only find topological disks
D, D transverse to V at xeV such that f*(Dy)<= D, for then f*|Dy is
conjugate to the Poincaré transformation on a differentiably transverse
disc just by following the solution curves near V and the Poincaré
transformation is conjugate to N f°|N, V. Thus there is a local conjugacy
h: U— D,. Now we may define the conjugacy H by H(x)=f'hN f ~'(x)
where 0<t<t and Nf'(x)eD,. H is defined and continuous in a
neighborhood of ¥V and HN f*'=f"H. The existence of the topologically
transverse disc is a simple application of the proof of Theorem 1, ex-
tending W** over W** x for f*.

Takens has recently shown that a differentiable H exists generically
for V a closed orbit.

For such linearization theorems, the notion of normal hyperbolicity
may be unnecessarily strong. For instance, suppose N*=0, N°=N is
left invariant by Tf and contracted, although perhaps not so sharply as
is TV. We could then find a diffeomorphism g leaving ¥ pointwise fixed
such that T'g leaves NV invariant and contracts each fiber by constant-
multiplication, ¢>0. Then gof would be normally hyperbolic (purely
contracting) if ¢ were small enough. Also it could be shown that gof is
conjugate to f near V and N(gof) is conjugate to N f. By Theorem 1,
N(geof) is conjugate to gof near V and thus N(f) is conjugate to f.
This says that in the purely contracting case, we could weaken the normal
hyperbolicity assumption to “0-normal hyperbolicity”: the normal
behavior, N f, dominates the zero-th power of Tf on TV. Similarly in
the purely expanding case. If we try the same trick in the true hyperbolic
case, N“+04 N*, we would make N* g=multiplication by C>1, N'g=
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multiplication by 0<c <1, then gof would be normally hyperbolic at V
for ¢ small and C large. Although it can be seen that N(gof) is conjugate
to N(f), it is not clear whether gof is conjugate to f.

2. Linearization in Banach Bundles

The proofs of Theorems 1, 2 are not so similar as we would like. Both
rely on forms of Hartman’s Theorem for Banach bundles, but in the flow
case we prove only a purely contracting Banach bundle theorem.

(2.1) Theorem. Let

E-5E

|

X-Isx

be a hyperbolic Banach bundle automorphism covering the homeomor-
phism f. Let F': E— E be continuous and obey

(a) F' covers f,

(b) L(F,—F)<p x€X and |F,—F | <y,

© F'(0)=0y, xeX,
where F,, F, are F, F' restricted to the fiber over x, E,, and O, <> X is the
origin of E,.. Then F' is conjugate to F. The conjugacy leaves X pointwise
fixed and preserves E-fibers. It is the unique conjugacy covering the
identity map X — X and at a finite distance from the identity map E— E.
The constant p is determined as in [8] by u<1—1 where 1 is the skewness.

Proof. There are two ways to produce the conjugacy h between F’
and F. One may just consider the functional analytic proof of Hartman’s
Theorem [5, 8] and observe that at no stage does the presence of the
parameter xe X complicate the argument. Alternatively, one may let F, F’
induce hyperbolic automorphisms F,, F, on X®E, the Banach space of
bounded sections of E. The map F, is within u of the hyperbolic auto-
morphism F,. They are conjugate using Hartman’s Theorem directly,
say by H: X*E— X®E. The characterization of H can then be used, as
in [2] and the deduction of stable manifold theory for hyperbolic sets
from the theory for a point in a Banach space, to conclude that H induces
a conjugacy between F' and F. It is defined by

h(y)=H(i, y)(x)

for yeE, and i, y the bounded section of E which vanishes except at x
when it equals y.

Though the second proof is somehow more satisfying, it is consid-
erably longer. Both are straightforward.
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The functional analytic proof of Hartman’s Theorem gives uniqueness.
In practice we must deal with a local situation.

(2.2) Theorem. Let F, F’ be as in (2.1) except that F' is defined only
on U, a uniform neighborhood of a closed f-invariant subset Xo< X and
satisfies

(@) F’ covers f, equaling f on X n U,

(b) L(F,—F)<u/2 xeXnU
the function F,—F, being defined only on U N E,. Then restrictions of F’
and F to neighborhoods of X, are conjugate. The conjugacy equals the
identity on X and preserves fibers.

Proof. It is merely a matter of extending F', or a restriction of F', to
all of E while preserving (a), (b). Then we apply the global Theorem (2.1)
to F and this extension. The resulting conjugacy, restricted to a neigh-
borhood of X, works.

Let £>0 be chosen so that
UDU;::{yEEx: d(x: X0)§3, '.V’ég}

and let ¢ be a continuous bump function on X, 0<¢ <1, vanishing off
Un X and equalling 1 on U,n X.

Let p: E— E(¢) be the radial retraction defined by
if [y|=e

)= {sy/m if ylze.

Then define
F(y)=0¢(x)-(F —F)op(y)+F(y)

for ye E,. When x¢ U, this makes F,= F,. Note that F covers f, equals F’
on U,, and

L(F,—F)= L((P(x) (Fi=F)op,) S (x) L(F;—F) L(py).
In the next lemma, we check that L(p,)<2. Hence F verifies the hypoth-
eses of (2.1) and (2.2) is proved.

(2.3) Lemma. L(p)<2 where p: E— E(¢) is the radial retraction of the
normed space E onto its closed ¢-ball E ().

Proof. Let y,, y,€ E. We must show that
() =p()I=2|y—yal-

If yy, y,€E(g) then there is nothing to prove. This leaves the cases
IvilSely,l, eyl =Sly,|. The first is a consequence of the second: a
norm is continuous so there is a point y; on the segment [y,, y,] having
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ysi=¢. Then

o) =pI=Zlp ) — P +1p(yz)—p ()
Slyi—yal+2lys— A 220y —val +1ys —y2l1=2y1—yal.

It remains to consider: e <[y | 1yl

£y E&)y; € [yl
lov)—p )I=l - = - y
V=P U= T T Tl [ Tl
|y [yl
=T Ve S = val Hy =
W1 ™ 2= n 2 V2 17| Y2
{2l =1yl
Sy —yal+ ——‘21}7 ! S yal 21y —yal.
2

Remark. This estimate is the sharpest possible for the Lipschitz
constant of p. For L(p)=2 when E=R? and |(x, y)| =max(]x]|, |y|)-

(2.4) Note. The hypotheses (b) of (2.2) is verified on a small enough
neighborhood of X, if

by F, is C', its derivative is uniformly continuous at X,, and
DF,=F,at X,.

This differentiability of F, means the derivative of F' exist along
fibers; its continuity at X, means that (DF,), tends uniformly to (DF,),
as |y| — 0and x'— xe X, Since L(F, — F))< sup||F,— (DF)), |, (2.2b) holds
on a small neighborhood of X|;. Y

3. Proof of Theorem 1

Case 1. N*=0. That is, f is purely expanding in the normal direction,
N=N¢* According to [3], there is homeomorphism g: N,— W}", the
unstable manifold of V, carrying the linear fiber N,(p) to the strong
unstable fiber W**(p). The map g, restricted to each N, (p),is C*, uniformly

in p, and T(gIN,(p)): T,(N(p) - T,M

is the inclusion N(p)> T, M. Since N{p) is linear T,(N(p)) is canonically
1somorphic to N(p).

We consider f'=g~! fg: N;— N for §<e¢. Then f" and N* f=N f are
fiber preserving maps of N, both covering the same map f|V.

N SONS N

[

v,y
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Of course f” is just defined locally. Since T(g|N,(p)) is the inclusion at p,
f' is tangent to N f along fibers at V. This lets us apply (2.4), (2.2) to

produce a conjugacy h, f'h=hoNf
Then g h=H conjugates N fto fsince HoN f=gohoN f=gof o h=foH.
Case 2. N*=0. Apply Case 1 to f 1.

Case 3. N*#+0+ N*. Restricting f to the C' submanifold W*, the
stable manifold of V, we may apply Case 2 to produce a conjugacy of
N*fto f{W?* near V

h: NP> W, hoN°f=f|W oh,.

At present W* is fibered over V by the strong unstable fibers W*~.
We shall extend the fibration, f~invariantly, to be over W

Indeed let G be a fundamental domain of W*V. That is, let G be a
compact subset of W’ satisfying

fGnG=9,

(J f"GuV isaneighborhood of Vin W*V.

nz0
Such domains exist by [6, 7]. Alternatively one could observe that a
linear contractive bundle automorphism certainly has a fundamental
domain: the closed unit disc bundle minus the image of the open unit
disc bundle. Thus N*f has a fundamental domain and we could use k,
to give us one for f|W".

Over a neighborhood of G in W introduce a C! fibration whose
fibers meet W*V transversally at G, n*: U— G. As in [6, 7] the fibration
n* and f, n“=fon“of~! can be averaged over a neighborhood of
G f G so that an f-invariant fibration over G is achieved, call it again 7“.
Then extend n* to an entire neighborhood of V except W* V by f-iteration
asin [6, 7]. By the A-lemma [6] n* extends regularly to the W** fibration:
the union of the n*fibers and the W** fibers forms a continuous fibration
over W and the tangent spaces to its fibers very continuously, Call 7*
the union of these two fibrations:

7| W" is the W** fibration,

7 is f-invariant regular,

7: U-—> W 7| W} is the identity.

For ye N*(p) define N*(y) to be the affine translate of N*(p) to y in

N(p). This lets us look at N as a bundle over N° and look at Nf as a
bundle expansion over the base homeomorphism N°f

N-Y,N

'

N NS N*
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For the fibers of 7 are the N*’s and they are invariantly expanded by N f.
We intend to apply (2.2) when N*=X, V=X,. To lift f to N in such a
way that it also covers N*f requires a nice parameterization of the 7
fibers.

Define a homeomorphism g: N, — U such that

i) g =hly)if ye N*(p),

(i) g|N*(y) is a C! diffeomorphism onto the fiber (7*)~'(h,y). Its
derivative is continuous on N, and equals the inclusion N*(p)— T, M at
y=peV.

That such a g exists will be seen in a moment. Now look at

f'=g lofog
which lifts f to N, near ¥, as a fiber preserving map locally covering N* f

e\

g E

N°§ Nsf N®

By (ii), N f and f” are tangent along the #-fibers at V. Thatis, D(f'|N“(p)),
=N f|N*(p)= N* f(p). Restricting to a small neighborhood of ¥, as in(2.4),
we can apply (2.2) and find a conjugacy

hoNf=f'oh.

PutH=goh. ThenHoN f=gohoN f=gof'oh=fo H so Hisaconjugacy
between N f and f near V. _

It remains to explain how the map g: N, — U was defined. We just
work backwards. As in [3] we have a smooth exponential map, exp. For
yeNs(p), the n*fiber through h,(y) is pulled back by exp,' to the
graph of a C' map y: N'(p)—>N°(p)®T,V. Let p be the projection
T,M > N*(p)along N*(p)® T, V. Then g can be defined as the composition

N(y)—2> N¥(p) 22220 T, M 2, (72) = (h, y).

When y=p, g maps Nf(p) onto W**(p) the same as in [3] and its deriv-
ative is the inclusion required in (ii).
This completes the proof of Theorem 1.

4. Flows

Turning to the case of flows, we should like to imitate (2.2), (2.4).
Unfortunately, we cannot do this, but we can prove a theorem sufficiently
general for our needs.

t4  Inventiones math., Vol 10
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(4.1) Theorem. Let {F'} be a continuous linear flow on a Banach
bundle n: E— X covering the flow {f'} on the base X. Suppose the time
one map is a uniform contraction on fibers:

IFYE|Sa<l forall xeX.

Let U be a negatively invariant nonempty subset of X. Let {G'} be a local
flow over U also covering {f'}, leaving the zero section of E invariant
and being close to { '} :

L(F'—G'|E)<u<min@Gp, 1—a) 0<t<l xeU
Jor B=inf{m(F*|E,): xeX,0=t=1}. Then {F'} and {G'} are conjugate
over U near the zero section. Similarly for a uniform expansion.

Remark. By “negatively invariant” we mean
f'(x)eU forall t<0 and xeU.

By “local flow over U” we mean that G'(y) is defined, continuous, and
has the group property, G'**(y)=G'(G*(y)), on its domain. This must
include

{(t,y): 05 t= 1, |y|Se, Mye Uy U {(t, G,(»)): s20, —~s<1<0}
for some £>0.

Remark 2. It is the problem of extending a non-smooth flow on a non-
smooth manifold that forces us back to a local proof of this theorem, in
contrast to the Banach space case [8].

Remark 3. If F* is hyperbolic, instead of purely contracting, we do
not know whether the theorem holds.
(4.2) Lemma. If F: E— E'is a Banach space isomorphismand h: U— E'
for UcE satisfies
h(0)=0, L(h)<im(F)

then |F + h| is radially monotone.

Proof. For xeE, x+0, we must show that |(F + h)(4 x)| increases as 4
increases, A>0. When 0<A<1,

(F+R)(Ax)|=2 Fx+—}—h(ix)

=A|Fx+h(x)+—i«[(h(/lx)—h(x))+(h(x)—~,1h(x))]

SAFE+R) ) +1h(Ax)—h(x)|+|h(x)— L h(x)]
SAF+m )+ L (1= 2) x| +(1 =) |h(x)].
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Thus
{F +m)(x)| = (F + B)(Ax)| 2 (1 = HLIF + B)(x)| — L(h) | x| — [h(x)]
2(1-A[mF)-3LH]|x|>0
which proves the lemma.
Proof of (4.1). Consider the functions defined for yeE(e)nn~' U by

1 1
g(y)=0j|G'(y)|dt, f(y)=oj|F'y| dt.

We claim that

(i) The flow {G'} is topologically transverse to the level surface of
g off the zero section.

(ii) g~'(ep) cuts every radius of E(e)n IT-' U exactly once.

(iii) goG'y and |G'(y)| become small, as ¢t grows large, at controlled
rates until, if ever, f*(n y) leaves U.

(iv) Similarly for f, {F*}.
Note that (i, ii, iii) = (iv) by taking G'=F".
For O0<|y|<e, myeU, and O<t<1,

t+1

1 t 1
g(G'y)= 6‘ G W)l ds= | |G°()l ds= g IG' G*(y)l ds+ [1G° () ds

t

t 1
é(ot+u)0f IGC )l ds+ [ 1G° ()] ds

so that g o G*(y) decreases as t increases. This proves (i).

By (4.2); the integrand |G*'(4y)|, for any fixed (¢, y) is monotone in A,
0<A£1. Clearly its integral also is: g(y) is radially monotone. If |y|=¢

then e (B— )yl > ue

so that for some unique A, 0<i<1, g(Ay)=¢pu. This proves (ii).
(iii) follows at once from the estimates on {F‘}.
By (ii), (iv) we can define a homeomorphism
H: g ' ew)—f(en)
by sliding along radii. Then we extend H by setting
H|G' (g '(ew)=F'oHoG™", 0St=<oo,
H(y)=y for nyeU, |y|=0
(1) insures H is well defined. Since F*,G' cover the same map on X,

H preserves fibers and covers 1. By (iii), (iv) H is defined on all of
14
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g7 1([0, e1]) and is continuous at 0. The inverse of H is given by
H-YF(fYew)=G'oH 'oF" 0<t<o0

and for the same reasons is well defined, continuous, and defined on all
of £~1([0,eu]). By construction H conjugates the two flows. The ex-
panding case is treated by taking reverses of all flows, {F~'}, {G~'}, etc.

In order to produce smooth fundamental domains for flows we must
use some Lyapunov theory.

(4.3) Theorem. If {f*} is a C* flow on a finite dimensional smooth
manifold M and if V is a uniform attractor then there is a smooth Lyapunov
Junction for the flowat V, H: M—R:

H(0)=V,

H decreases along trajectories near V.

Proof [9]. By “uniform attractor” we mean that for some compact
neighborhood K of V

(\K,=V where K,={f*(x): xeK, s=t}.

t20

Now we are ready to prove Theorem 2 that a normally hyperbolic
flow can be linearized.

Proof of Theorem 2. { f'} is a C! flow on M leaving V invariant. One
f¢ is normally hyperbolic at V. By [3] all f*, t+0, are and the splitting
TyM=N‘@TVO®N* is independent of t. By [3] the stable, strong
stable, unstable, and strong unstable manifolds for /* are the same as
those for f*, ta>0.

As in Theorem 1 we have three cases.

Case 1. N°=0. Using (4.1) instead of (2.1), the proof is the same as
for Case 1 of Theorem 1.

Case 2. N*=0. Apply Casel to {f~'}.

Case 3. N*+0+N®, In W there exists a C' submanifold B of co-

dimension one bounding a neighborhood of ¥, and across which

d . . . .
X =7 I points transversally inwards. B’s existence is assured by
t=0

the Lyapunov Theorem (4.3).

Over B we erect a C* fibration n* whose fibers are transverse to W, *
as in [6, 7]. Then let f* act on n* by

f'°7t“°f_'.
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Since B and n* are C! and the flow is differentiably transverse to B this
produces, locally, a C* fibration, also called n*, over a neighborhood of
B in W’ By the A-lemma it tends regularly to the W*“-fibration of W
as t — co. The union of the n* and the W** fibrations is a fibration, 7“,
over W* whose fibers have continuously varying tangent planes. (Of
course, we always cut the 7*fibers down to a fixed neighborhood of V)
As in Theorem 1

74| W* is the Wt -fibration,
7 is f* invariant, t=0, and regular,
7 U— WS 7|W? is the identity.
By Case 1, there is a homeomorphism h;: N— W} conjugating
{N°f"} and { f*|W;"}. .
As in Theorem 1 define N*(y) to be the affine translate of N*(p) to y
in N(p) when ye N*(p). Then
N XN

|

N°® Nege N°¢

is a purely expanding bundle flow over the base flow {N°f'}. The
fi-fibers are the N*.
Let g be the same parameterization of the 7*-fibration as in Theorem 1.

Putting G'=gloftog

lifts { f*} to N, as a fiber preserving flow locally covering {N* f'}.

N,—% N

I

N§ NsJt N°*

As in Theorem 1, Nf' and G' are tangent along the #i-fibers at V.
Restricting to a small enough neighborhood of ¥, as in (2.4), we may
apply (4.7) to produce a conjugacy h between {G'} and {N f*} near V.
As in Theorem 1, go h conjugates {N f*} to { f*} near V.
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